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Abstract

Based on the results obtained for the Hicksian multiplier-accelerator model with a consumption flor in [T. Pu, L. Gar-
dini, I. Shusko, On the change of periodicities in the Hicksian multiplier-accelerator model with a consumption floor,
Chaos, Solitons & Fractals 29 (3) (2006) 681–696], in this paper we show the appearance of a change of the periodicities
according to a simple rule for a similar model given by a piecewise-linear discontinuous map defined on the plane which
can be faced not only in some applications to Economics, but also in more general models related to Engineering leading to
border collision bifurcations.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Multiplier-accelerator model for business cycles was first formulated by Samuelson [8], but later Hicks [4]
suggested bounds, named ‘‘floor’’ and ‘‘ceiling’’, giving some explanations about this new event. Many others
authors, like Hommes [5], Gandolfo [2], Duesemberry [1], Rau [7], Goodwin [3], have discussed about these
bounds. But, summing up, the Hicksian nonlinear model can be formulated as the recurrence equation in the
income Y as follows:
0096-3
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Y t ¼ cY t�1 þmaxfaðY t�1 � Y t�2Þ;�Dg;

where a, c, D represent economic parameters.

In [6] it is introduced another constraint to the model, called consumption flor what transforms the model
into the new one
Y t ¼ maxfcY t�1; 0g þmaxfaðY t�1 � Y t�2Þ;�Dg: ð1Þ
003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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For this model, there is just one fixed point given by Y t ¼ Y t�1 ¼ Y t�2 ¼ 0 and the authors focus on the case
where this fixed point loses stability, at a = 1, showing a detailed local study of what happens to small ampli-
tude oscillations of this centre-like bifurcation.

Concretely, assuming that D is positive, in some small neighbourhood of the fixed point, the second order
equation in (1) can be written as the piecewise linear two-dimensional map on the plane
F 1ðY t; ZtÞ :
Y tþ1 ¼ ð1þ cÞY t � Zt

Ztþ1 ¼ Y t

�
for Y t P 0
and
F 2ðY t; ZtÞ :
Y tþ1 ¼ Y t � Zt

Ztþ1 ¼ Y t

�
for Y t < 0
The functions F1 and F2 are both linear maps and can be represented in terms of matrices, respectively, by
M ¼
1þ c �1

1 0

� �
; R ¼

1 �1

1 0

� �
:

The map F1 produces an m/n periodic orbit from any initial condition, provided we choose c so as to result in a
rational rotation number m/n,
c ¼ 2 cosð2pm=nÞ � 1:
In this case,
1þ c �1

1 0

� �
¼

2 cosð2pm=nÞ �1

1 0

� �
and this new matrix is called Mm/n. Observe that R = M1/6.
In this situation, in [6] it is shown that the fixed point of the piecewise linear map F is a centre-like bifur-

cation point with new rotation number 2m/(6m + n).
This unexpected event stimulates an equivalent problem arising from two rotations in the discontinuous

case. That is, it is interesting to understand if a new rotation number exists or the same persists when we have
discontinuity on the border line x = 0, since the bifurcation value provides two different rotations on the two
sides of this discontinuity line.

The question is that this is a problem which can be faced not only in some applications to Economics, but
also in more general models related to Engineering (specially Electronics or Mechanics) leading to border
collision bifurcations.

In this work we give some results related to this bifurcation case. It was quite surprising for us to detect the
same ‘‘rotation rule’’ given in [6] for the discontinuous case, although only under suitable conditions. Like-
wise, we found out possibilities of coexistence of different periodicities (or rotation numbers). However, in this
last context, after checking some different cases by computer simulation, we were not able to understand under
what conditions these dynamics occur. So, we give some examples which show these different kinds of
possibilities.

Concretely, we are concerned about the behaviour of the discontinuous two-dimensional piecewise-linear
rotation map F which is defined by
F ðx; yÞ ¼
F 1ðx; yÞ ¼

cosðaÞ � sinðaÞ
sinðaÞ cosðaÞ

� �
x

y

� �
if x P 0;

F 2ðx; yÞ ¼
cosðbÞ � sinðbÞ
sinðbÞ cosðbÞ

� �
x

y

� �
if x < 0:

8>>><
>>>:

ð2Þ
Each of the functions F1 and F2 in (2) corresponds to a rotation of the plane with rotations numbers a and b,
respectively. For our purposes we suppose that a,b 6 p in order to have preserving orientation maps.
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Let us denote
a ¼ 2p
m
n

and b ¼ 2p
m0

n0
:

In this paper, we prove (Theorem 1) that if m0

n0 ¼ 1
2k, k 2 N� and m

n <
m0

n0 , then every orbit of the piecewise rotation
map is either eventually periodic or exactly periodic with rotation number
2m
2kmþ n

:

The two assumptions taken above are necessary because, otherwise the result may not be true, as we show at
the end of the work.

The plan of the sections in this paper is as follows. In second section, we will deal with the special case
b ¼ 2p1

6
, what help to understand the generic case treated in the third section. Finally, to complete the study,

in the last section we show some other particular cases in which the result does not work.

2. Special case b ¼ 2p1
6

In this section, we consider the map F given by the expression (2) in the particular case b ¼ 2p1
6

and prove
the result using some graphics to clarify the reasoning.

Hence, we are going to show that for any a ¼ 2pm
n with m

n <
1
6
, every orbit of the piecewise-linear rotation

map F is either eventually periodic or (exactly) periodic with rotation number
2m
6mþ n

:

To shorten notation, we will call Mm/n the matrix associated to F1 and R the matrix associated to F2.
First of all, as the movement of any point in the right half-plane is always related to the angle 2pm

n, we are
interested in the number of different zones of this amplitude in which we can divide this half plane. It is easy to
check that this number is n

2m.
We will take into account this number along the proof. Concretely, we know that there exist q; r 2 N such

that
n ¼ 2m � qþ r; 0 6 r < 2m: ð3Þ

Observe that if r = 0, then m

n ¼ 1
2q. So, we would have the even fundamental resonances. The proof in this case

is not difficult, even if m
n P 1

6
, because of the reflection property of the associated matrix Mm/n, what means that
Mn
m=n ¼

1 0

0 1

� �
:

On the contrary, if r 5 0, we can still divide the right half-plane in (sub-)zones of the same amplitude. Cer-
tainly, due to (3) we have q zones of amplitude 2pm

n and a residual zone of amplitude 2p r
2n.

We name each zone by the number of iterations of the matrix Mm/n needed to arrive in the left half-plane,
i.e., the zone nearest to the line x = 0 in the Northeast quadrant will be Z1, the next Z2 and finally the residual
zone nearest to the line x = 0 in the Southeast quadrant will be Zq+1 as schematically shown in Fig. 1.

Also, we have 2m/r (sub-)zones of amplitude 2p r
2n inside any non-residual zone Zj of amplitude 2pm

n for all
j ¼ 1; 2; . . . ; q . In this way, we are going to distinguish between two cases:

– r divides 2m: Then we can divide the right half-plane in 2m
r qþ 1 (sub-)zones of amplitude 2p r

2n. So, we have n
r

(sub-)zones of amplitude 2p r
2n. For each zone Zj, j ¼ 1; 2; . . . q, we denote each (sub-)zone with the (ordinal)

number in the anticlockwise sense. That is, in the residual zone Zqþ1 we only have a subzone, coincident
with Zqþ1, which is now denoted by the upper index 1, i.e., Z1

qþ1. In all the other zones we have 2m
r subzones,

denoted by the upper indexes 1; 2; . . . ; 2m
r as schematically shown in Fig. 2.

As we shall see, any point of the plane, in one round or at most in two, goes to either zone Zqþ1 or to one of
the subzones Zi

q with i between 1 and ð2m
r � 1Þ. So, first of all, we are going to study the movement of their

points, belonging to Z1
qþ1 and Zi

q, i ¼ 1; 2; . . . ; ð2m
r � 1Þ.



Fig. 1. Zones of the right half-plane related to the number of iterations needed to arrive in the left half-plane.
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• If the initial point belongs the zone Zqþ1, coincident with Z1
qþ1, one can apply (q + 1)-times the matrix

Mm/n and arrives in the left half-plane. Then, the matrix R applies 3-times and the point arrives in
the subzone ð2m

r � 1Þ of Zq. Then, applying Mm/n q-times and R 3-times, the point arrives in zone
ð2m

r � 2Þ. Likewise, at each application of Mm/n q-times and R 3-times, the point moves from the zone
Zi

q to the zone Zi�1
q . Finally, we get the starting zone Z1

qþ1 at the same point. Actually, we have that
the previous movements are represented by

ðR3Mq
m=nÞ

2m=r�1R3Mqþ1
m=n ¼ �R3ð2m=r�1ÞMqð2m=r�1Þþqþ1

m=n ð4Þ

Note that, we can assume m,n have no common factor. Hence, as r divides n and 2m, then r divides 2. So
r can be only 1 or 2.
* When r = 1 the expression (4) above reduces to
Mq2mþ1
m=n ¼ Mn

m=n ¼ I :
* When r = 2, n is even and m is odd. Therefore, the expression in (4) reads
�Mqmþ1
m=n ¼ �Mn=2

m=n ¼ I :
• If the initial point belongs to the zone Zi
q for i ¼ 1; 2; . . . ; ð2m

r � 1Þ the movements are similar to those in

the case before. That is, in each turn, by R3Mq

m=n, the point goes down a subzone. In some turns, it arrives
in zone Zqþ1, where we can apply R3Mqþ1

m=n and return to subzone 2m
r � 1. As it is easy to check, the turns

around the origin are given again by R3Mq in ð2m
r � 1Þ and R3Mqþ1 in one time. So, due to the property

related to the matrix R, we obtain in each case the same power of the matrix Mm/n which, as we have
shown, reduces to the identity.



Fig. 2. Zones and subzones of the right half-plane when r divides 2m.

J.C. Valverde, L. Gardini / Applied Mathematics and Computation 194 (2007) 381–388 385
• On the other hand, if the initial point belongs to some other subzone on the right half-plane, then it is the
image of one of the points considered before. As those points are periodic, their images, which are in the
periodic orbit, are also periodic points of the same period. In order to see that, we are going to describe
precisely how the movements of these points are. If the initial point belongs to any other zone of the right
half-plane, Zj, then with the application of R3Mj

m=n it reaches one of the points treated before and the go-
down movement begins again.
* If the point belongs to a zone Zi

j for i ¼ 1; 2; . . . ; ð2m
r � 1Þ, the turns around the origin are given again

by R3Mq in ð2m
r � 2Þ times and R3Mqþ1 in one time. After that, we can apply Mq�j and we return to the

original point.
* If the point belongs subzone 2m

r of zone Zj, then the first point we get among those studied before by
means of R3Mj

m=n is in subzone ð2m
r � 1Þ inside zone Zq. So, the turns around the origin are given now by

R3Mq in ð2m
r � 1Þ times and R3Mqþ1 in no time. But, after that we can to apply Mqþ1�j which compensate

the turn with R3Mqþ1.

The above clarifies the dynamics of any point in the right half-plane. Now, let us consider the points be-
longing to the left half-plane.

It is obvious that any of these points reaches a point in the right half-plane in a finite number of itera-
tions. So, it follows that each one is either periodic or eventually periodic (of the same period given before).
In fact, the points which are images of (periodic) points of the right half-plane are periodic. The rest of them
are eventually periodic, because their iterations never return to the zone where they were at the beginning,
but get the right half-plane where every point is periodic. Thus, the region x < 0 is made up of wedges of
periodic points alternated with wedges of eventually periodic ones.
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The presence of eventually periodic orbits (in the left half-plane) proves that the discontinuous piecewise-
linear map given in (2) cannot be topologically conjugated to a rotation with that mentioned rotation
number. Differently, in the continuous case (1) considered in [6] the equivalent case is demonstrated to
be topologically conjugated to a rotation.

– r does not divide 2m: Now, we also have 2m/r (sub-)zones of amplitude 2p r
2n inside any non-residual zone

of amplitude 2pm
n. But, unfortunately, as r does not divide 2m, 2m/r is not an integer number. Then the

idea is to divide the zones Z1; Z2; . . . ; Zq and the residual zone Zqþ1, also in this case, in different subzones
of the same amplitude. So, we have to look for a number x such that the numbers given by
2p r
2n

2px
and

2p m
n

2px
ð5Þ

are positive integers.
We can choose x = 1/2n and we will have 2m subzones of amplitude 2p 1

2n inside each zone Z1; Z2; . . . ; Zq

and r subzones of the same amplitude inside the residual zone Zqþ1. We are going to construct our proof
taking into account those subzones in a similar way we did when r divides 2m.
For each zone, we denote each (sub-)zone with the (ordinal) number in the anticlockwise sense. That is,
in the residual zone Zqþ1 we have r subzones, Z1

qþ1; Z
2
qþ1; . . . ; Zr

qþ1, and in any non residual zone Zj for
j ¼ 1; 2; . . . ; q we have 2m subzones, denoted by upper indexes, Z1

j ; Z
2
j ; . . . ; Z2m

j , as it is schematically
represented in Fig. 3.
As in the previous case, we have that any point of the plane (except some points of the left half-plane)
goes, in the first round (these do it on the second) to either one of the subzones of Zqþ1 or to one of the
subzones of zone Zq between 1 and (2m � r). So, first of all, we are going to study the movement of their
points.

• If the initial point belongs the zone Zqþ1, e.g. subzone Z1
qþ1, one can apply (q + 1)-times the matrix Mm/n

and the point gets the left half-plane. Then, the matrix R applies 3-times and the point arrives in the
subzone Z2m�2rþ1

q of Zq. Then, applying Mm/n q-times and R 3-times, the point arrives in the subzone
Z2m�3rþ1

q . Likewise, applying again Mm/n q-times and R 3-times, the point arrives in zone Z2m�4rþ1
q . After

some turns, we get zone Zqþ1 again but not in the same subzone and hence not at the same point. So, we
are not in a periodic point yet and we have to continue the reasoning. As can be check, thanks to this
‘‘go-down’’ movement of r subzones in each turn, we have to do lcmð2m; rÞ=r turns around the origin to
reach the same subzone of zone Zqþ1. Among these turns, lcmð2m; rÞ=2m are obtained by applying
R3Mqþ1 and the rest by R3Mq. So, due to the property of the matrix R, we have that the previous move-
ment can be represented by

ðR3Mq
m=nÞ

lcmð2m;rÞ=r�lcmð2m;rÞ=2mðR3Mqþ1
m=nÞ

lcmð2m;rÞ=2m ð6Þ

But, we know that

lcmð2m; rÞ=r ¼ 2m=gcdð2m; rÞ and lcmð2m; rÞ=2m ¼ r=gcdð2m; rÞ:
So, the expression in (6) reads

ðR3Mq
m=nÞ

2m=gcdð2m;rÞ�r=gcdð2m;rÞðR3Mqþ1
m=nÞ

r=gcdð2m;rÞ ð7Þ

Besides, note that we can assume m,n have no common factors. Hence, neither have r,m and gcdð2m; rÞ is
either 1 or 2.
Fig. 3. Zones and subzones of the right half-plane when r does not divide 2m.
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* When gcdð2m; rÞ ¼ 1, r is odd and the expression (7) reduces to
ðR3Mq
m=nÞ

2m�rðR3Mqþ1
m=nÞ

r

what can be simplified to

ðR3Þ2mM2mqþr
m=n ¼ IMn

m=n ¼ I :
* When gcdð2m; rÞ ¼ 2, r is even and m is odd. Therefore, expression (7) reads
ðR3ÞmMmqþr=2
m=n ¼ �IMn=2

m=n ¼ ð�IÞ2 ¼ I :
• If the initial point belongs zone Zi
q with i between 1 and (2m � r) the movement is similar to the case
before. That is, in each turn, by R3Mq
m=n, the point goes down r subzones. In some turns, it arrives in zone

Zqþ1, where we can apply R3Mqþ1
m=n and return to one of this subzones inside the zone Zq. The turns around

the origin are given again by R3Mq in lcmð2m; rÞ=r � lcmð2m; rÞ=2m and R3Mqþ1 in lcmð2m; rÞ=2m. So,
thanks to the property related to the matrix R, we obtain in each case the same power of the matrix
Mm/n which, as we have shown, reduces to the identity.

• On the other hand, if the initial point belongs to any other zone of the right half-plane, then it is the
image of one of the points treated before. So, it is periodic with the same period. In order to see that,
we are going to describe briefly the movement of these points. If the initial point belongs to another zone
of the right half-plane, e.g. Zj, then, with the application of R3Mj

m=n, it gets one of the points treated
before and the ‘‘go-down’’ movement begins again.
* If the point belongs to zone Zi

j with i between 1 and (2m � r), the turns around the origin are given
again by R3Mq in lcmð2m; rÞ=r � lcmð2m; rÞ=2m� 1 times and R3Mqþ1 in lcmð2m; rÞ=2m. After that,
we can apply Mq�j and we return to the original point.

* If the point belongs to a subzone Zi
j with i between (2m � r + 1) and 2m, then the first point we get,

among those studied before by means of R3Mj
m=n, is in a subzone of Zq between Z2m�2rþ1

q and Z2m�r
q . So,

the turns around the origin are given now by R3Mq in lcmð2m; rÞ=r � lcmð2m; rÞ=2m times and R3Mqþ1

in lcmð2m; rÞ=2m� 1 times. But, after that, we can apply Mqþ1�j what compensates the turn with
R3Mqþ1.
From this reasoning it results that any point in the region x P 0 is periodic. This is not the case in the
open half-plane x < 0 as we will explain below.

It is obvious that any of the points in the left half-plane reaches a point in the right half-plane in a finite
number of iterations. So, it follows that each one is either periodic or eventually periodic (of the same
period given before). In fact, the points which are images of the (periodic) points of the right half-plane
are periodic. The rest of them are eventually periodic: their iterations never return to the zone where they
were at the beginning, but get the right half-plane where every point is periodic. Thus, the region x < 0 is
made up of wedges of periodic points alternated with wedges of eventually periodic ones.Also in this case,
the presence of eventually periodic orbits (in the left half-plane) proves that the piecewise linear map F

cannot be topologically conjugated to a rotation with that mentioned rotation number. However, in the
continuous case considered in [6] the equivalent case is demonstrated to be topologically conjugated to a
rotation.
3. The rule for the change of rotation numbers

In this section, we give the result for the generic case, summed up in the following Theorem 1.

Theorem 1. Assuming that m0
n0 ¼ 1

2k, k 2 N� and m
n <

m0
n0 . Then the fixed point of the piecewise rotation map given by

(2) is called quasicentre-like with rotation number
2m
2kmþ n
i.e, every orbit of the piecewise rotation map is either eventually periodic or periodic with this rotation number.
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Proof. The proof made before in Section 2, for the particular case 1
6
¼ 1

2�3, can be translated to the generic case
1
2k. In fact, to prove Theorem 1 it is enough to write k in place of 3. h

The two assumptions of Theorem 1 are necessary because, as we will show in the next section, in other cases
the result may be not true.

4. Other special cases

Here, we are going to provide some examples showing that the assumptions of Theorem 1 are both
necessary.

When we consider a value m
n >

1
2k, on the contrary of the continuous case given in (1), the result may not

persist for our discontinuous map F expressed by (2). For example, if we consider the case m
n ¼ 1

5
and 1

2k ¼ 1
6

the result is still true and the new number of rotation is 2
11
¼ 2m

6mþn as one can verify following the reasoning
made in Section 2.

But, if we take the case m
n ¼ 1

3
and m0

n0 ¼ 1
6
, we find that every point is periodic or eventually periodic with rota-

tion number 1/4 different from 2/9 which is the corresponding rotation number given by the rule.
This last example can be also used to prove that if we consider m0

n0 6¼ 1
2k, the rule does not remain, even if

m
n <

m0

n0 .
Although this rule does not remain in every case, when we have preserving orientation maps in both sides of

the plane, the periodic points would have all the same period, as it seems by computer simulation. However, if
we consider m

n >
1
2

we have found a new interesting phenomenon: different periods can appear. This can be eas-
ily check for the case m0

n0 ¼ 1
6

and m
n ¼ 3

4
, where there exist periodic and eventually periodic points with rotation

number 2/5 and nevertheless all the points of the form ð0; yÞ 2 R2, y > 0 are periodic with rotation number 3/4.
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