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Abstract In this paper we continue exploring a recently introduced financial market
model in which boundedly rational agents follow technical and fundamental trading
rules to determine their orders. Amongst other things, our model reveals that interac-
tions between heterogeneous speculators can generate interesting boom-bust cycles.
In addition, we provide an extensive analytical treatment of the model’s underlying
dynamical system, which is given by a one-dimensional discontinuous piecewise-
linear map. One result is that we detect a period-adding bifurcation sequence, implying
the existence of infinitely many stable cycles. Moreover, we analytically determine
the parameter space that yields stable, cyclical and chaotic asset price fluctuations.

Keywords Financial crises · Bull and bear dynamics · Discontinuous piecewise
smooth map · Border-collision bifurcation · Adding scheme

1 Introduction

Financial market models with heterogeneous interacting agents have proven to be quite
successful in explaining the complex behavior of asset prices. For recent surveys of
this burgeoning field of research see, for instance, Chiarella et al. (2009), Hommes and
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Wagener (2009), Lux (2006, 2009) and Westerhoff (2009). These models mainly focus
on the interactions between traders who follow different trading strategies. As is well
known from survey studies (Menkhoff and Taylor 2007) and laboratory experiments
(Hommes et al. 2005), financial market participants rely on both technical and fun-
damental trading rules to determine their investment positions. Recall that technical
trading rules try to profit from extrapolating price trends. By trading in the direction
of the current price trend, these rules apparently add positive feedback to the price
dynamics and are thus likely to be destabilizing. In contrast, fundamental trading rules
bet on a convergence between prices and fundamental values. Since these rules tend to
add a negative feedback to the price dynamics, they are often regarded as stabilizing.

Note that most models in this area are nonlinear and thereby have the potential to
generate complex endogenous dynamics. In fact, many models provide sound eco-
nomic arguments for a time-varying market impact of destabilizing technical and sta-
bilizing fundamental trading rules. The dynamics of these models may—in a stylized
way—evolve as follows. Suppose that technical traders, also called chartists, dominate
the market close to the fundamental value. Their orders drive the price away from the
fundamental value, and a bubble path is traced out. As mispricing increases, funda-
mentalists become increasingly active (e.g. due to higher expected trading profits).
Eventually they dominate the market and their orders push prices back towards fun-
damental values. If mispricing is corrected, however, fundamentalists may become
inactive again enabling technical traders to trigger a new bubble again. The price
pattern repeats itself, typically in an intricate (chaotic) way. Some prominent mod-
els featuring this and related mechanisms include Day and Huang (1990), Chiarella
(1992), De Grauwe et al. (1993), Lux (1995), Brock and Hommes (1998), Chiarella
et al. (2002), Westerhoff and Dieci (2006) and Franke (2009).

In this paper, we explore an asset pricing model recently proposed by Tramontana
et al. (2010b) in which the trading behavior of heterogeneous agents constitutes a
simple one-dimensional discontinuous map. To be more precise, the model contains
five types of agents. Besides a market maker, who adjusts prices with respect to excess
demand, there are two types of technical and two types of fundamental traders, who
follow their pertinent trading strategies. The reason for having two types of technical
and two types of fundamental traders, a novel and distinguishing feature of this model,
is that some of them determine the size of their orders using linear trading rules while
others always trade the same amount of assets. It is precisely this assumption that
makes the model piecewise linear and preserves its analytical tractability. The shape
of the map, i.e. its two slope and two offset parameters, depends on the underlying
parameter setting, which, in turn, characterizes the agents’ trading behavior. Despite
the simplicity of the model, it offers a surprisingly large number of interesting scenar-
ios which may give rise to rich, fascinating and different dynamics.

Here we seek to continue this line of research. One of our goals is to investigate
the dynamics of this model from an economic perspective. For instance, we try to
understand the emergence of boom and bust cycle dynamics via market participants’
trading decisions. Interestingly, the story we can extract from this exercise differs at
least to some degree to the (standard) story outlined above. Given the danger emanat-
ing from the current financial market crisis, we believe it is quite important to improve
our understanding of such disastrous boom-bust cycle phenomena. Another goal is
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to provide a full analytical treatment of the underlying dynamical system. Note that
we are entering a new research area since such maps have not yet been thoroughly
studied. We hope that our mathematical insights may prove helpful for other scholars
who are studying similar dynamical systems.

Let us finally give a few final technical remarks. The two slope and two offset
parameters of our map depend on the aggressiveness of the four trader types we con-
sider in our model. Their precise meaning will be explained in later sections—here it is
sufficient to realize that all four parameters are unrestricted, i.e. they can be positive or
negative. Tramontana et al. (2010b)1 focus on situations in which both branches of the
piecewise-linear model have either positive or negative slopes while the offsets have
opposite signs. In Tramontana et al. (2010a), we started to explore situations where the
left branch of the map has a positive slope, the right branch of the map has a negative
slope, and both offset parameters are positive. As it turns out, however, the dynamics
of the model depend crucially on the relative size of the two offset parameters. In this
paper, we continue our study by analyzing an unexplored parameter constellation. At
first sight, this may appear as a rather special endeavor. However, our analysis reveals
that this constellation is rather fascinating from both an economic and a mathematical
perspective.

The cases already covered in Tramontana et al. (2010a) are associated with bifurca-
tion structures of the so-called period-increment type, which are also associated with
the phenomenon of bistability, i.e. there are two coexisting attractors. Only unique
attractors exist for our new parameter setting. Indeed, the system is characterized by
infinitely many stable cycles with periodicity regions that follow the so-called “period-
adding” structures, a terminology introduced by Avrutin and Schanz (2006), Avrutin
et al. (2006) and Gardini et al. (2010). Besides infinitely many stable cycles, we can
also observe a convergence towards a unique steady state or chaotic asset price motion.
It is worth noting that we are able to determine analytically for which parameter com-
binations all these dynamical features occur, i.e. we derive a more or less complete
mathematical analysis of the underlying dynamical system (which can then again be
interpreted in economic terms).

The main point in the analysis of non-smooth systems is the occurrence of bor-
der collision bifurcations (BCB), due to the merging (or collapse) of some invari-
ant set (a fixed point, a periodic point of a cycle, or the boundary of any invariant
set) with the kink point at which the function changes its definition. A border colli-
sion bifurcation, a term coined by Nusse and Yorke (1992) and Nusse et al. (1994),
is a global bifurcation since it depends on the shape of the map on “the other side” of
the collision and may lead to several interesting dynamic effects that are impossible
in the framework of smooth systems. For example, the dynamics can change directly
from an attracting fixed point to an attracting cycle of any period or to chaotic dynam-
ics (Maistrenko et al. 1993, 1995, 1998; Banerjee et al. 2000).2 Obviously, such a
bifurcation can have severe economic consequences. For instance, a stable financial

1 Other financial market models featuring piecewise linear maps include, e.g., Huang and Day (1993),
Day (1997) and Huang et al. (2010).
2 Moreover, the type of chaos in our paper may be regarded as robust (following Banerjee et al. 1998 since
it is persistent as a function of the parameters.
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market may turn into a highly volatile market if speculators change their behavior
slightly.

Work associated with discontinuous maps commenced several years ago, and some
results have recently been rediscovered. We mention, for example, Mira (1978, 1987),
and Gardini et al. (2010). In Avrutin et al. (2010) the authors apply and extend the
pioneering works of Leonov, conducted as early as at the end of the 1950s (Leonov
1959, 1962).

Our work is organized as follows. In Sect. 2, we present our financial market
model. In Sect. 3, we recall some of our previous results and contrast them with our
new findings. In Sect. 4, we analytically establish the BCB curves associated with the
period-adding structure, which gives rise to infinitely many periodicity regions of sta-
ble cycles, and show that no coexistence of stable cycles can occur. Moreover, we shall
see that, in the parameter space, a particular set (whose equation is explicitly known)
separates the region of regular dynamics (without chaotic behavior) from that of only
chaotic behavior. In Sect. 5, we discuss how the model functions and the emergence
of boom-bust cycles from an economic perspective. Section 6 concludes.

2 The Financial Market Model

In this section, we recapitulate the model proposed in Tramontana et al. (2010b), which
gives rise to a simple one-dimensional discontinuous map. In addition, we clarify the
economic meaning of our underlying parameter setting, which is responsible for the
shape of the map discussed later in this paper. Overall, the model contains five types
of agents: a market maker, two types of chartists and two types of fundamentalists.
The main decisive features of our model are as follows. First, some agents (called type
1 chartists and type 1 fundamentalists) determine their orders by applying linear trad-
ing strategies while other agents (called type 2 chartists and type 2 fundamentalists)
always trade fixed amounts of assets. Second, the agents’ trading intensities depend
on whether the market is over- or undervalued. The remaining building blocks of the
model, describing the (general) behavior of the market participants, are standard: mar-
ket makers mediate transactions out of equilibrium and adjust prices, chartists chase
price trends and fundamentalists place orders on mean reversion.

Let us start with the market maker. As usual, the market maker collects all individ-
ual orders from traders and changes prices with a view to excess demand. For instance,
if buying orders exceed selling orders, the market maker increases the price (and vice
versa). For this reason, the log of price P for period t + 1 is quoted as

Pt+1 = Pt + a(DC,1
t + DC,2

t + DF,1
t + DF,2

t ), (1)

where a is a positive price adjustment parameter, DC,1
t and DC,2

t are the orders of the
two types of chartists, and DF,1

t and DF,2
t are the orders of the two types of fundamen-

talists, respectively. For simplicity, we set a = 1. Given that a is a scaling parameter,
this assumption goes without loss of generality.

Chartists believe in the persistence of bull and bear markets. They therefore opti-
mistically (pessimistically) buy (sell) assets if the current asset price is above (below)

123



Heterogeneous Speculators and Asset Price Dynamics 333

its fundamental value. Let F be the log of the fundamental value. Then the orders
placed by type 1 chartists are formalized as

DC,1
t =

{
c1,a(Pt − F) if Pt − F > 0
c1,b(Pt − F) if Pt − F < 0

, (2)

where c1,a and c1,b are positive reaction parameters, indicating how aggressively type
1 chartists react to observed trading signals. The orders placed by type 2 chartists are
captured by

DC,2
t =

{
c2,a if Pt − F > 0
−c2,b if Pt − F < 0

, (3)

where c2,a > 0 and c2,b > 0 indicate the amount of traded assets. For instance, in a
bull market, type 1 chartists ask for c1,a(Pt − F) assets while type 2 chartists demand
c2,a assets.

Fundamentalists believe that prices may disconnect from their fundamental values
in the short run but that there is some exploitable mean reversion tendency in the long
run. They therefore bet on a convergence between prices and fundamental values. The
orders placed by type 1 fundamentalists are given as

DF,1
t =

{
f 1,a(F − Pt ) if F − Pt > 0
f 1,b(F − Pt ) if F − Pt < 0

, (4)

where f 1,a and f 1,b are positive reaction parameters. The orders placed by type 2
fundamentalists are expressed as

DF,2
t =

{
f 2,a if F − Pt > 0
− f 2,b if F − Pt < 0

, (5)

where f 2,a and f 2,b are positive reaction parameters. Both types of fundamentalists
submit buying (selling) orders when the market is undervalued (overvalued). However,
type 1 fundamentalists increase their order size with the observed mispricing while
type 2 fundamentalists trade fixed amounts of assets. Note also that fundamentalists’
beliefs in the future direction of prices are exactly opposite to what chartists expect,
a powerful simplifying model assumption, going back to the pioneering work of Day
and Huang (1990), and recently empirically supported by Boswijk et al. (2007) and
Westerhoff and Franke (2010).

Although we need eight parameters to describe the behavior of the four different
groups of speculators, the model’s dynamical system can conveniently be simplified.
For this reason, let us first define sR = 1 + c1,a − f 1,b, sL = 1 + c1,b − f 1,a ,
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m R = c2,a − f 2,b and mL = f 2,a − c2,b. Introducing also the auxiliary variable
P̃t = Pt − F , the financial market model can be expressed in terms of deviations from
fundamental values. Rearranging (1) to (5) and making use of our definitions yields

P̃t+1 =
{

sR P̃t + m R if P̃t > 0

sL P̃t + mL if P̃t < 0
. (6)

Finally, using x ′ = P̃t+1 and x = P̃t , we obtain:

x ′ = T (x) =
{

fL(x) = sL x + mL if x < 0

fR(x) = sR x + m R if x > 0
(7)

which comprises a family of one-dimensional discontinuous piecewise-linear maps.
The shape and thus the dynamics of (7) depends crucially on the size of the four

(aggregated) slope and offset parameters. There is a surprisingly large number of dif-
ferent scenarios associated with (7), leading to intricate dynamics, a few of which
have already been covered. In Tramontana et al. (2010b), we focus on a setup in which
type 1 chartists are always dominated by type 1 fundamentalists while simultaneously
type 2 chartists always dominate type 2 fundamentalists (or viceversa). Formally, this
implies that the two slope parameters are either both positive or both negative, and
that the offsets have opposite signs.

In Tramontana et al. (2010a) and in this contribution, we break with this kind of
symmetry. Now the dominance of one trader type over the other trader type and the
“relative size of dominance” depends on economic circumstances, that is, whether the
market is in a bear or in a bull state. To be precise, the focus of this paper with respect
to the slope parameters is on sR < 0 < sL < 1. Accordingly, in the bear market the
aggressiveness of type 1 fundamentalists is “slightly” higher than the aggressiveness
of type 1 chartists (such that 0 < sL < 1) while in the bull market it is “much” higher
(and such that sR < 0). Moreover, we assume that both offset parameters are positive,
which means that in the bear market, type 2 fundamentalists dominate type 2 chartists
while in the bull market the opposite occurs.

With respect to the offset parameters, we can furthermore distinguish three sub-
cases: (i) mL ≥ m R > 0, (ii) 0 < x∗

R ≤ mL < m R , and (iii) 0 < mL < x∗
R < m R ,

where x∗
R = m R/(1 − sR) stands for the unique fixed point of our model, located in

the right side of the map (a derivation will be presented in the next section). The first
two subcases were investigated in Tramontana et al. (2010a). Note that mL > m R

indicates that the dominance of type 2 fundamentalists over type 2 chartists in the bear
market may be regarded as larger than the dominance of type 2 chartists over type 2
fundamentalists in the bull market. Of course, mL < m R implies the opposite. How-
ever, in the latter case it is relevant for the dynamics whether mL is smaller or larger
than x∗

R . Since we assume in this paper that 0 < mL < x∗
R < m R , this corresponds

to a situation in which the offset mL (resp. m R) is lower (resp. higher) of a certain
critical level (x∗

R).
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Fig. 1 Qualitative shape of the discontinuous map

3 Some Properties of Our Model

The family of maps considered in this paper is indicated by (7), and the restrictions
we impose on our parameters are given by:

sR < 0 < sL < 1 and 0 < mL < x∗
R < m R, (8)

where x∗
R = m R/(1 − sR) stands for the fixed point of our model. Accordingly, we

have an increasing straight line for x < 0, a decreasing straight line for x > 0, and
the offsets of both branches of the map are positive. One example of the shape of
such a map is shown in Fig. 1a, which also enables us to identify what kind of asset
price dynamics we can, in principle, expect from our model. Since the slope of the
left branch is limited between 0 and 1, there is no equilibrium on the left side and
the iterated points are pushed upwards and eventually enter the right side. On the
right side, however, the slope is negative and—if the fixed point on the right side is
unstable—the trajectory is forced to return to the left side, after a finite number of
turns around the unstable fixed point. Then, again on the left side, an increasing price
sequence will recommence and the pattern repeats itself. We can also see that price
movements are always bounded in a natural way, which makes perfect sense from an
economic perspective. We do not observe any exploding price trajectories in either
our model or in real markets. Hence, the model appears to be promising with respect
to explaining boom-bust cycles and excessively volatile prices, as observed in many
real markets.

From Fig. 1a it can be seen again that if we relax the assumption about parame-
ter mL , we can discriminate the three different cases (i), (ii) and (iii) mentioned in
the previous section. Our attention is on case (iii), i.e. the offset of the left branch is
positive but located below the fixed point of the model. Before we continue, it is worth
pointing out that the results and properties determined in the following also hold when
the shape of the map is as depicted in Fig. 1b, due to the symmetry property of f (x),
we have that f (x, sR, sL , mL , m R) = − f (−x, sL , sR,−m R,−mL).
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The equilibrium of our model, determined via fR(x∗
R) = x∗

R , and given with x∗
R =

m R
1−sR

> 0, is obviously attracting for −1 < sR < 0. A degenerate flip bifurcation3

occurs when sR = −1. For sR < −1 a cycle of period 2 must be of symbol sequence
L R. We determined this cycle and its bifurcation in cases (i) and (ii). However, such
a cycle cannot exist in case (iii). Since fL(0) = mL < x∗

R , at least two iterations of
map fR are necessary to reach the left side again. Hence, the minimum period for a
cycle in case (iii) is 3, with symbol sequence L R2.

Due to the simplicity of the model, it is also possible to compute the eigenvalue
associated with a given cycle. In fact, a periodic orbit with period k = p + q, with
p points on the L side and q points on the R side, has the eigenvalue λ = s p

L sq
R . For

example, the eigenvalue of a 3-cycle with sequence L R2 is given by λ = sLs2
R .

Let us briefly sketch the main bifurcation scenarios of cases (i), (ii) and (iii). We
set m R = 3 and mL = 0.15 in the following. However, it should be noted that our
results are generally valid, regardless of the selected numerical values, as long as the
main parameter restrictions are met.

In the two-dimensional bifurcation diagram in the parameter plane (sR, sL) shown
in Fig. 2, we can easily identify two typical bifurcation scenarios. On the one hand, we
observe an increasing sequence of periodicity regions of stable k− cycles, for any inte-
ger k ≥ 1 of type Lk R, with period increment by 1, belonging to the parameter region
of case (ii). On the other hand, in Fig. 2b, which is an enlargement of the right part of
Fig. 2a, we have the parameter region belonging to case (iii). For the assumed values
of mL and m R , the region belonging to case (iii) is the strip between −19 < sR < 0.
There is an infinite sequence of periodicity regions of stable cycles, whose periods
and periodicity regions follow a period-adding scheme, which can be identified via the
Farey rule. In other words, between two contiguous periodicity regions of associated
with cycles of periods k1 and k2 = k1 + 1 another periodicity region associated with a
cycle of period p = k1 + k2 also exists. Moreover, no coexistence of cycles can occur.

In a piecewise linear map, the appearance/disappearance of a cycle can occur only
via a border collision bifurcation, so that the boundaries of the existence region of a
cycle is given by BCB curves associated with the collision of one periodic point of the
cycle with the discontinuity point (here x = 0). That is, one boundary is due to the
collision of a periodic point of the cycle with x = 0 from the right side and the other
boundary via a collision from the left side.

The basic cycles shown in Fig. 2b have the symbol sequence Lk R2 for any integer
k ≥ 1, and these cycles are of the so-called first complexity level. For this period-
adding scenario we can use a relatively new technique to determine analytically the
bifurcation curves. This techniques stems from an idea introduced by Leonov (1959,
1962). It has recently been improved by Gardini et al. (2010) to get an iterative process
to calculate families of BCB curves, as we shall see in the next section. The white
region above the curve denoted by (S) (explicitly given in Sect. 4) denotes chaos.4

Figure 3 shows a two-dimensional bifurcation diagram in the parameter plane
(sR, mL) from which we can identify two other typical bifurcation scenarios. The

3 For the definition and properties we refer to Sushko and Gardini (2010).
4 Here chaos means that there is some invariant set of cyclic intervals having dense unstable periodic points
and dense aperiodic trajectories.
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Fig. 2 Two-dimensional bifurcation diagram and its enlarged portion. Different colors (or grey tonalities)
correspond to stable periodic orbits of different periods

Fig. 3 Two-dimensional bifurcation diagram. Different colors (or grey tonalities) correspond to stable
periodic orbits of different periods

black curve, given by mL = x∗
R (that is mL = m R/(1 − sR)), separates the region of

case (iii) (below it) from case (ii) (above it). The parameter space above line mL = 3
belongs to case (i). In the parameter region belonging to case (ii) we can see an increas-
ing sequence of periodicity regions of cycles of even periods of type L R2k+1 for any
integer k ≥ 0, with period increment by 2 (on the R side).5 The white region belonging
to case (iii), between the curve of equation mL = x∗

R and the curve denoted by (S),
represents the parameter space associated with chaotic dynamics. Below curve (S),
we can see another period adding scheme, now associated with basic cycles of first
complexity level with the symbol sequence L R2k for any integer k ≥ 1. Elements of
the family Lk R2 are also visible at the bottom of the figure.

5 Despite being invisible, there are regions of bistability between two consecutive cycles.
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The analytical equations of the BCB curves associated with the period increment
scenarios of cases (i) and (ii) can be found in Tramontana et al. (2010a). In the next
section, we determine the analytical BCB curves of the periodicity regions with respect
to the period-adding scheme occurring in case (iii).

4 Period-Adding Scheme

The peculiar thing about case (iii), besides the chaotic region, is the region with many
stable cycles and the so-called period-adding scheme. In this section we show how to
obtain the analytical expressions of the surfaces that, in the parameter space, separate
regions characterizing cycles with different periodicities.

4.1 Periodic Orbits of First Complexity Level

Let us first consider Fig. 2b to detect the periodic orbits of first complexity level from
which the period-adding scheme can be started. By assumption, we have mL < x∗

R ,
so that at the bifurcation value (of a point colliding with x = 0 from the left side) we
have fL(0) = mL < x∗

R . The existent cycle therefore starts with a periodic point that
must do at least two turns around the unstable fixed point before reaching the L side
again. That is, such cycles have the symbolic sequence given by Lk R2, for k ≥ 1.
Let us call x0 the point of the cycle immediately to the left of the discontinuity point
x = 0. Then the periodic point x0 of the orbit of symbolic sequence Lk R2 can be
obtained by looking for the fixed point of the function fL

k−1 ◦ f 2
R ◦ fL(x), that is, by

solving for fL
k−1 ◦ f 2

R ◦ fL(x) = x . From:

fL(x) = sL x + mL

f 2
R ◦ fL(x) = s2

RsL x + s2
RmL + sRm R + m R

fL
k−1 ◦ f 2

R ◦ fL(x) = sk−1
L [s2

RsL x + s2
RmL + sRm R + m R] + mL

1 − sk−1
L

1 − sL

we have

x0 = sk−1
L

1 − sk
Ls2

R

[s2
RmL + sRm R + m R + mLφL

k−1], (9)

where φL
k−1 = 1 − sk−1

L

sk−1
L (1 − sL)

. By setting x0 = 0 we have:

BC Bl
Lk R2 : sR = 1

2mL

[
−m R ±

√
m2

R − 4mL(m R + mLφL
k−1)

]
. (10)

Both branches, due to the ± components, are used to draw the BCB curves in Fig. 4,
determining the lower boundary of the periodicity regions shown in the stable regime
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Fig. 4 Numerical periodicity regions in a and analytic BCB curves in b

(the right side with respect to set (S)), and the upper boundary in the unstable region
(on the left side of the locus (S)).

Then such a cycle exists as long as the periodic point which we have called x0, the
first periodic point on the left side of the discontinuity point x = 0, merges with the
preimage of the origin on the left side, i.e. point x L−1 = f −1

L (0) = −mL
sL

(and this
condition also corresponds to the merging with x = 0 of the periodic point on the
right side closest to x = 0).

The other BCB curves, causing the disappearance of the cycles, are obtained using
the following equation:

x0 = −mL

sL

sk−1
L

1 − sk
Ls2

R

[s2
RmL + sRm R + m R + mLφL

k−1] = −mL

sL
, (11)

which leads to the following BCB curves:

BC Br
Lk R2 : sR = −1 − mL

m Rsk
L

− mL

m R
φL

k−1 (12)

A few of these curves (for k = 1, . . . , 8) are shown in Fig. 4, bounding the regions
for the existence of cycles Lk R2.

We can see from the same figure that the BCB curves bounding the regions of the
cycles Lk R2 intersect each other on a straight line of equation

(S) : mL(1 − sR) − m R(1 − sL) = 0

This bring us to the following property:
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Property 1 (S) is the locus in which the eigenvalues of all cycles become equal to 1.

For example, let us consider the intersection point of the BCB curves of equations
given in (10) and (12), bounding the existence region of cycle Lk R2 (whose eigenvalue
is given by λ = sk

Ls2
R). Parameters that satisfy (10) are such that (from (9)):

s2
RmL + sRm R + m R + mLφL

k−1 = 0

s2
RmL + sRm R = −m R − mLφL

k−1

s2
R

mL

m R
+ sR = −1 − mL

m R
φL

k−1

and substituting into (12) we obtain:

sR = −1 − mL

m Rsk
L

− mL

m R
φL

k−1

sR = − mL

m Rsk
L

+ s2
R

mL

m R
+ sR

sk
Ls2

R = 1

This proves the property for the cycles of the first complexity level. The statement
holds also for the BCB curves of the other periodicity regions, proved in a similar
manner, by using the analytical expressions of the BCB curves computed via the
Leonov approach, as described in the next subsection.

4.2 Periodic Orbits of Higher Complexity Levels

As can be seen from the bifurcation diagrams (and as can be also rigorously proved), the
periodicity regions in which stable cycles Lk R2 exist are disjoint, and there are cycles
with different periods in between. The Farey rule also works here. Let us remark that
in the description of the periodicity regions we can allocate a number to each region,
which may be called rotation number, in order to classify all periods and several cycles
with the same period. In this notation, a periodic orbit of period k is characterized not
only by the period but also by the number of points in the two branches separated by
the discontinuity point x = 0, already denoted by L and R, respectively. We can say
that a cycle has a rotation number q

k if a k-cycle has q points on the R side and the
others (k − q) on the L side. Then, between any pair of periodicity regions associated
with the rotation numbers q1

k1
and q2

k2
there also exists the periodicity region associated

with the rotation number q1
k1

⊕ q2
k2

= q1+q2
k1+k2

, where ⊕ stands for the so-called Farey
composition rule, or summation rule (see, for example, Hao 1989).

Then, by using a technique already proposed in Leonov (1959, 1962) and Mira
(1978), (see also Mira 1987, pp. 56–61 and pp. 80–84), we call regions of first
level of complexity those associated with the basic cycles Lk R2 for k ≥ 1. Between
any pair of consecutive regions of first level of complexity, say with rotation num-
bers 2

k1
and 2

k1+1 , we can then construct two infinite families of periodicity regions,
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called regions of second level of complexity, via the sequence obtained by adding
using the Farey composition rule ⊕ iteratively the first one or the second one, i.e.

2
k1+1 ⊕ 2

k1
= 4

2k1+1 , 4
2k1+1 ⊕ 2

k1
= 6

3k1+1 , 6
3k1+1 ⊕ 2

k1
= 8

4k1+1 , . . .and so on, that is:

2q

qk1 + 1
for any q > 1

and 2
k1

⊕ 2
k1+1 = 4

2k1+1 , 4
2k1+1 ⊕ 2

k1+1 = 6
3k1+2 , 6

3k1+2 ⊕ 2
k1+1 = 8

4k1+3 . . ., that is:

2q

qk1 + n − 1
for any q > 1,

which give two sequences of regions accumulating on the boundaries of the two start-
ing sequences.

Clearly, this mechanism can be repeated: we can construct two infinite families of
periodicity regions, called regions of third level of complexity, between any pair of
contiguous regions of second level of complexity, for example 2q

qk1+1 and 2(q+1)
(q+1)k1+1 ,

the sequence obtained by adding using the composition rule ⊕ iteratively the first
one or the second one, and so on. In this way, we obtain all of the infinitely many
periodicity regions.

We notice that, although we see periodicity regions filling the section on the right
side of the set (S) up to the stability region of the fixed point, the region is not filled
by the existence of periodicity regions. Some curves in between are left, the comple-
mentary set, which is a set of zero Lebesque measure. Quasiperiodic trajectories (not
chaotic, as no Cantor set of points can exist) correspond to such values of the param-
eters. Similarly, for parameters on the set (S): at a point belonging to the intersection
of two BCB curves, the map is conjugated with a linear rotation with rational rotation
number. In the residual set of parameter values, the map is conjugated with a linear
rotation, which has an irrational rotation number.

Hence, set (S) denotes the change of stability of all cycles on the right side of the
set: although these cycles also exist on the left side, between the curves with the same
equations given in (10) and (12), they are unstable.

4.3 The Leonov Technique

The Leonov technique for maps with positive slopes, which has been improved by
Gardini et al. (2010) (and extended by Avrutin et al. (2010), can also be used in our
context to get an iterative map in the coefficients. This also leads to the analytical
equations of the border collision bifurcation curves of second complexity level and
further levels. To demonstrate the application of the process, it suffices to notice that,
locally, we are in the same situation. If we consider a parameter point between two
consecutive periodicity regions of cycles of periods Lk R2 and Lk+1 R2, in a neigh-
borhood of the origin the graph of function FL(x) = fL

k ◦ f 2
R ◦ fL(x) for x < 0 and

the graph of function FR(x) = fL
k ◦ f 2

R(x) for x > 0 is that shown in Fig. 5, which
is the standard situation in which the adding scheme works. Thus, considering map
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Fig. 5 Qualitative shape of the
iterated functions in a
neighborhood of the origin,
FL (x) = fL

k ◦ f 2
R ◦ fL (x)

for x < 0 and
FR(x) = fL

k ◦ f 2
R(x) for x > 0

F(x) as defined accordingly, we can apply the iterative process described by Gardini
et al. (2010).

That is, consider the operator for the coefficients defined by

x ′ = F(x) =
{

FL(x) = AL x + ML , if x < 0
FR(x) = AR x + MR, if x > 0

(13)

where, to determine the BCB curves of the second level, we consider FL(x) = fL
k ◦

f 2
R ◦ fL(x) and FR(x) = fL

k ◦ f 2
R(x), so that we have

AL = sk+1
L s2

R (14)

AR = sk
Ls2

R

ML = sk
L [s2

RmL + sRm R + m R + mLφL
k−1 + mLφL

k ]
MR = sk

L [sRm R + m R + mLφL
k−1 + mLφL

k ]

We then obtain one second-level family by considering functions Fn
R ◦ FL(x) =

An
R AL x + ML An

R + MR
1−An

R
1−AR

for n ≥ 1. The periodic point x∗ of T (x) (of the cycle

with symbolic sequence (Lk R2)n Lk+1 R2), which is the first on the left of the origin,
is given by:

MR ≤ x∗ = 1

1 − An
R AL

[
ML An

R + MR
1 − An

R

1 − AR

]
≤ 0, (15)

and we obtain the BCB curves from equations MR = x∗ and x∗ = 0.
The second family is obtained in a similar manner, by considering functions Fn

L ◦
FR(x) = An

L AR x + MR An
L + ML

1−An
L

1−AL
for n ≥ 1. The periodic point x∗ of T (x) (of

the cycle with symbolic sequence (Lk+1 R2)n Lk R2), which is the first on the right of
the origin, is given by:
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Fig. 6 In a periodicity regions of the second complexity level. In b enlarged part of the leftmost corner of
Fig. 2b

ML ≥ x∗ = 1

1 − An
L AR

[
MR An

L + ML
1 − An

L

1 − AL

]
≥ 0 (16)

and we have the BCB curves from equations ML = x∗ and x∗ = 0.
The two second-level families can be seen in the enlargement of Fig. 6a for k = 2,

the first one accumulating to the periodicity region of cycle Lk R2 and the second
family accumulating on Lk+1 R2, and so on, iteratively. We can construct two infinite
sequences of periodicity regions between any two pairs of consecutive regions in a
similar manner.

Moreover, as we have seen from Fig. 3, there are other families of stable regions
following the period-adding scheme, all of which can be detected using the procedure
described in this section. Another example is in the enlarged part of the leftmost corner
of Fig. 2b, shown in Fig. 6b: it reveals that a sequence of infinitely many regions also
exists below the periodicity region of the 3− cycle L R2, with cycles of the first com-
plexity level which have the symbol sequence (L R2)k R2 for k ≥ 1, and the related
adding scheme.

4.4 The Locus S

We note that the existence of set (S) and its special role has already been described
by Gardini et al. (2010), associated with the same map, but in a regime with positive
slopes only, in which the adding scheme applies to the periodicity regions of principal
(or maximal) cycles. In that case, it was a separator between regions with only stable
cycles or quasiperiodic orbits or only chaos. Set (S) plays the same role in our case
(iii), since all cycles are stable on one side of (S) and all are unstable on the other side.
We can thus conclude that on one side of (S) we have stable cycles or quasiperiodic
trajectories; on the other side of (S) we have robust chaos.
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Fig. 7 Two bifurcation diagrams at fixed values mL = 0.15 and m R = 3. In a sR = −3; in b sR = −13

Fig. 8 Versus time trajectories at fixed values mL = 0.15, m R = 3 and sL = 0.9. In a sR = −3; in
b sR = −13

We close this section by showing two bifurcation diagrams of the state variable x as
a function of the left slope sL (Fig. 7). A comparison of the two diagrams reveals that
the lower slope sR , the shorter the interval of regular dynamics and the earlier chaotic
dynamics occur. However, some regularity can also be detected in the chaotic regime.
For instance, once the state variable is pushed into the L region, it always increases.
This can also be seen in Fig. 8, which we discuss in more detail in the next section.

5 Boom-Bust Price Cycles

The dynamics depicted in Fig. 8 are quite appealing from an economic perspective and,
fortunately, our model allows us to comprehend them. We focus for concreteness on
the left panel and recall that our financial market model is formulated in terms of devi-
ations from the fundamental value. As can be seen, the panel reveals the emergence
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of significant boom-bust cycles. We are now ready to explore step-by-step what is
driving the dynamics within our model.

Let us start our analysis with a situation in which the market is deep in bear territory.
While chartists are depressed and consequently submit selling orders, fundamentalists
believe that the market is undervalued and perceive profitable buying opportunities.
Since both type 1 and type 2 chartists are dominated by type 1 and type 2 fundamen-
talists, positive demand pressure drives the price upwards. This process continues for
a few time steps, and the strong underpricing is corrected. However, the price increase
starts to slow down as the market converges towards the fundamental value. Since the
price adjustment of the market maker is proportional to excess demand, the reason
for this is also quite clear. Due to the reduction of mispricing, both type 1 chartists
and—in particular—type 1 fundamentalists receive weaker trading signals, and their
orders diminish, easing the upwards price pressure.

However, the orders of type 2 traders remain constant. A dominance of type 2 fun-
damentalists over type 2 chartists eventually pushes the price into the bull region. It
should be noted that at this moment the behavior of type 2 fundamentalists is destabi-
lizing. Clearly, their orders trigger an overshooting of the fundamental value. Once the
price is above its fundamental value, chartists change their attitude from pessimistic
to optimistic. Since we have assumed that type 2 chartists dominate type 2 fundamen-
talists in such a market environment, a positive excess demand accumulates and prices
strongly increase. This leads to a collapse in the market. Since type 1 fundamental-
ists strongly dominate type 1 chartists and since the market is now more overvalued
than in the previous time step, the excess demand of type 1 traders is (quite) nega-
tive and clearly overcompensates the still positive excess demand of type 2 traders.
We therefore observe a substantial crash. The more type 1 fundamentalists dominate
type 1 chartists, the deeper the crash. The behavior of fundamentalists thus once more
appears ambiguous with respect to market efficiency, which is, in general, a rather
surprising and notable finding. After the market has crashed, chartists sell assets while
fundamentalists buy assets. As just described, the market recovers, first quickly but
then at a slower pace.

Note that the strong price increase immediately prior to the collapse of the bubble is
typical for many financial market crises witnessed in the past. We find it quite remark-
able that our model is able to mimic this feature and that it offers an explanation for
this phenomenon: just before the crash, there is a strong buying pressure from opti-
mistic chartists while at the same time there are basically no stabilizing orders from
fundamentalists which would be able to balance the excess demand and counter the
price increase. Also the consequent abrupt, sharp market crash can be observed in the
real world. Within our model, such extreme price drops are caused by fundamentalists
who bet (too) aggressively on mean reversion.

6 Conclusions

In this paper we considered a piecewise linear discontinuous map with an increasing
branch on the left side, a decreasing branch on the right side, and two positive offsets,
representing the interactions of heterogeneous traders in a simple financial market
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model. We determined the border collision bifurcation curves leading to the existence
of infinitely many stable cycles, and described period-adding schemes. In addition,
we demonstrated that there can only be one attracting set, which may either be a cycle
(whose period may be associated with infinitely many rotation numbers) or chaotic
motion.

From an economic perspective, we conclude that our model delivers a plausible
story for the emergence of boom-bust cycles which differs, at least to some degree,
from the (standard) story reported in the introduction. What is important to note is
that the model does not only incorporate interactions between “standard” chartists and
fundamentalists but interactions between different types of chartists and fundamental-
ists. Although there are only four deterministic trading rules, the model posses quite
rich dynamics.

Of course, our model is stylized and many relevant aspects are missing, but, given
the importance of this topic, we consider it important to further our knowledge of what
may drive the dynamics of financial markets. Amongst other things, our model high-
lights the ambiguous role of fundamentalists during the course of boom-bust cycles
and the appealing implications of discontinuous dynamical systems brought about by
simple heterogeneous trading rules of boundedly rational agents, leading to potentially
momentous regime shifts. It would be interesting to calibrate this model such that it
matches the stylized facts of financial markets more closely. This will probably require
the inclusion of exogenous disturbances. We hope that the analysis of the deterministic
skeleton of such a stochastic model may prove helpful for this important challenge.
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