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Global bifurcations in a piecewise-smooth Cournot duopoly game
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a b s t r a c t

The object of the work is to perform the global analysis of the Cournot duopoly model with
isoelastic demand function and unit costs, presented in Puu [2]. The bifurcation of the
unique Cournot fixed point is established, which is a resonant case of the Neimark–Sacker
bifurcation. New properties associated with the introduction of horizontal branches are
evidenced. These properties differ significantly when the constant value is zero or positive
and small. The good behavior of the case with positive constant is proved, leading always to
positive trajectories. Also when the Cournot fixed point is unstable, stable cycles of any
period may exist.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Rand [1] suggested that Cournot duopolies, if they were
characterized by reaction functions of upside-down U-
shape, might provide for multiple coexistent Cournot equi-
libria and, depending on parameters, display many of the
phenomena known from complex dynamics in other fields.
Rand, however, supplied no substantial assumptions,
based on economic theory, from which such reaction func-
tions could arise.

Economic theory abounds of useful microfounded
assumptions that might lead to interesting reaction func-
tion shapes, but very few allow one to obtain the reaction
functions in explicit closed form, to calculate the coordi-
nates of Cournot equilibria, and yet find some phenomena
economically interesting to investigate.

One of the present authors suggested in 1991 [2] the
combination of isoelastic demand, market price and quan-
tity being related by reciprocity, with constant marginal
costs for the competitors; this allowed one to make the ex-
plicit derivations, and resulted in, if not multiple Cournot
equilibria, at least the general shapes that Rand wanted,
producing period doubling bifurcation cascades to chaos.

The model has since then been used in a sizeable number
of publications (see the books by Puu and Sushko [3] and
Bischi et al. [4]) and several models were generalized by
using adaptive rules or heterogeneous participants (see
[5–14], to cite a few) and also using chaos control, as in
[15,16].

The isoelastic demand function has its advantages and
disadvantages. The advantages are that it results when
the consumers optimize general utility functions of
Cobb–Douglas shape. Consumers then always spend con-
stant budget shares on each commodity, which provides
for the reciprocity of price and quantity. As further all con-
sumers have demand functions of the same shape, this
provides for one of the few cases where the aggregation
problem is easily solved and a market demand function
of the same shape results.

The disadvantages are that the model is no good for
dealing with monopoly. As price and quantity are recipro-
cal, the revenue of a monopolistic firm would be constant,
no matter how much the firm sells. On the other hand, any
reasonable production cost function increases with output;
so producing nothing is the best choice for lowering costs.
With constant revenue, the obvious best choice is to actu-
ally produce nothing, so avoiding costs, and selling this
nothing at an infinite price. The solution has no meaning
in terms of substance; it is purely formal. Ultimately it re-
sults from the unlimited substitution possibilities inherent
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in the Cobb–Douglas indifference curves, and so illustrates
the difficulty of finding assumptions that in a reasonable
way represent the phenomena globally. The same problem
arises in the case of collusion.

In duopoly the problem does not directly arise, but it is
still hidden there, and this paper is in a way to precisely
deal with it. As the unimodal reaction functions eventually
come down to the axes, and as negative supplies make no
sense, a first choice is to replace negative values with a
zero branch. Negative supplies would also be related to
negative profits, and so it is natural to assume that after
the reaction function comes down to the axis the firm pro-
duces nothing. However, once one axis is hit, the system
can end up at the origin where the reaction functions also
intersect, i.e., at the collusion state. This is, however, for-
bidden by law in most countries. Further, the reaction
functions intersect with infinite slope in the origin, so it
is totally unstable, and the system would be thrown away
by any slight disturbance.

Yet, solutions involving the zero-branches are there and
even become stable in a weak Milnor sense. This has never
been properly investigated, and the first part of the present
paper deals with this.

One can also avoid the origin through stipulating that
the duopolists do not actually close down when they can-
not make any profit, but keep to some small ‘‘epsilon”
stand-by output. This assumption was originally intro-
duced in [2] to the end of keeping the computer from stick-
ing to a totally unstable origin in numerical work, but it
makes sense also in terms of substance. The importance
of the numerical value of this ‘‘epsilon” stand-by output,
has never been investigated, and is the purpose of the pres-
ent study in the second part of this paper.

It is worth noting that the resulting reaction functions
are piecewise smooth, and we can apply the arguments
of the model here considered, also to several other models,
proposed for example in [3,4] as well as in many other
duopoly or oligopoly models.

The plan of the work is as follows. In Section 2 we shall
recall the model, considering the case in which the reaction
functions are define with a zero branch, and the global
dynamics associated with these branches is studied.
Clearly they play a role after the final bifurcation, when
all the trajectories are mapped into the invariant coordi-
nate axes, but also before, when the Cournot equilibrium
is locally stable. Moreover, the true nature of the bifurca-
tion of the unique Cournot fixed point is established, which
is a resonant case of the Neimark–Sacker bifurcation. Then
in Section 3 we shall consider the modified model in which
the zero branch of the reaction functions is changed into a
small positive constant value. This economically plausible
change leads to dynamics which are always positive. The
states previously convergent to the axes now are conver-
gent to some cycle in the positive phase space. As we shall
see, also after the final bifurcation the dynamics are con-
vergent to a unique superstable cycle, whose period may
be any integer number, depending on the parameters and
on the small constant value assumed in the model.
Section 4 concludes, noticing that the global analysis here
performed also works for a continuous piecewise-linear
model, with horizontal graphs in the reaction functions,

as well as in other duopoly models in which the constraint
of an horizontal branch is assumed.

2. The basic Cournot model with isoelastic demand
function

Assume, as in [2], the inverse demand function

p ¼ 1
xþ y

; ð1Þ

where p denotes market price and x, y denote the outputs
of the duopolists. Given the competitors have constant
marginal costs, denoted a, b, respectively, the profits are

U ¼ x
xþ y

� ax; ð2Þ

V ¼ y
xþ y

� by: ð3Þ

Putting the derivatives @U/@x = 0 and @V/@y = 0, and solving
for x, y, one obtains

x0 ¼
ffiffiffi
y
a

r
� y; ð4Þ

y0 ¼
ffiffiffi
x
b

r
� x; ð5Þ

as the reaction functions. The dash, as usual, represents the
next iterate, i.e., the ‘‘best reply” of one competitor given
the observed supply of the other.

Obviously, (4) returns a negative reply x0 if y > 1/a, and
(5) a negative reply y0 if x > 1/b. To avoid this, we put
x0 = 0 whenever y > 1/a, and y0 = 0 whenever x > 1/b. This
means reformulating (4) and (5) as a continuous piece-
wise-smooth map T, T(x,y) = (x0,y0) defined as follows:

x0 ¼ f ðyÞ ¼

ffiffi
y
a

q
� y if 0 6 y 6 1

a ;

0 if y > 1
a ;

8<: ð6Þ

y0 ¼ gðxÞ ¼
ffiffi
x
b

p
� x if x 6 1

b ;

0 if x > 1
b :

(
ð7Þ

As we know, the intersections of the two reaction functions
lead to the Nash equilibria, and in this basic model by
Cournot equilibrium we indicate the unique one with posi-
tive coordinates, given by

C ¼ x�C ; y
�
C

� �
¼ b

ðaþ bÞ2
;

a

ðaþ bÞ2

 !
: ð8Þ

There is also the origin O = (0,0) which is a locally unstable
equilibrium. As shown in [17], the dynamic behaviors of a
duopoly model can be studied via the one-dimensional
map x0 = F(x) = f(g(x)) that in our case is piecewise-smooth.
An example is shown in Fig. 1a at parameters’ values for
which the Cournot fixed point is locally stable.

Considering the case there shown, from the existence of
two fixed points of F(x), the locally unstable origin O = (0,0)
and the Cournot point C ¼ x�C ; y

�
C

� �
(here locally stable) we

know that also a 2-cycle exists on the coordinate axes, say
C2A, given by x�C ;0

� �
; 0; y�C
� �� �

which is locally a saddle.
From the main property of the Cournot models (to have

a separate second iterate function) the basin of attraction
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of the Cournot fixed point for the two-dimensional map
T(x,y) is given by the Cartesian product BT x�C ; y

�
C

� �
¼

BF x�C
� �

� BG y�C
� �

where BF x�C
� �

is the basin of attraction of
the stable fixed point x�C for the map F(x) and BG y�C

� �
is

the basin of attraction of the stable fixed point y�C for the
map G(y) = g � f(y). In the case shown in Fig. 1a we have
that BF x�C

� �
is the whole segment ]0,1/b[ and BG y�C

� �
is

the whole segment ]0,1/a[. It follows that the basin of
attraction of the Cournot fixed point for the two-dimen-
sional map T(x,y) is given by the Cartesian product
BT x�C ; y

�
C

� �
¼ BF x�C

� �
� BG y�C

� �
¼�0;1=b½��0;1=a½ as shown in

Fig. 1b. We can see that all the other points of the phase
plane are mapped on the coordinate axes, either in the
fixed point O or converging to the 2-cycle saddle C2A.

This is not in contradiction with the fact that these
cycles are locally unstable. From a dynamical point of view
these cycles (the origin O and the saddle C2A) are called sta-
ble in weak sense or in Milnor sense (see [18]1). The reason
why these cycles are stable in Milnor sense is the existence
of ‘‘zero-branches” in the definition of the maps F(x) and
G(y). For the one-dimensional map F(x) all the points in ]1/
b, +1[ are mapped into the origin, and thus also in the
one-dimensional case (map F(x)) the basin of the origin is

of positive measure. Similarly for G(y). The separators be-
tween the basin of the proper attracting set (now C) and
those in Milnor sense is given by the lines x ¼ 1

b and y ¼ 1
a

as long as the nonlinear graphs of the two reaction functions
are included in the rectangle Q = [0,1/b] � [0,1/a].

The structure of the basins have a first change (global
bifurcation) as soon as one of the two reaction functions
exits from Q, thus modifying the structure of the composite
maps F(x) or G(y). Let us increase the parameter b keeping
fixed the value of the parameter a (with obvious changes
can be dealt with the symmetric case in which we increase
a). Noticing that the maximum of the function f(y) occurs
at ycr ¼ 1

4a (as f0(ycr) = 0) and f(ycr) = ycr, we have that it is
also a critical point of G(y) (here a local minimum) as
G0(ycr) = 0 and GðycrÞ ¼

ffiffiffiffiffiffi
1

4ab

q
� 1

4a. Then the minimum of
G(y) reaches zero at the same time in which the function
f(y) reaches the value 1

b. In fact f ðycrÞ ¼ 1
4a ¼ 1

b and
GðycrÞ ¼

ffiffiffiffiffiffi
1

4ab

q
� 1

4a ¼ 0 both occur when the parameters
satisfyffiffiffi

b
a

r
¼ 2; r ¼ b

a
¼ 4; ð9Þ

in our example (with a = 0.2) this bifurcation in the basins
occurs at b = 0.8. In fact, after this contact the structure of
the basins changes. An example is shown in Fig. 1c and d
at b = 0.9. The function F(x) is qualitatively the same while

Fig. 1. Example of reaction functions inside Q in (a) and corresponding basins of attraction in (b). In (c) reaction functions exit from Q and the corresponding
basins of attraction in (d).

1 A cycle is said stable in Milnor sense if it is locally unstable but its basin
of attraction is of positive measure in the phase space.
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G(y) now has a zero branch (as shown in Fig. 1d). We notice
that the Cournot fixed point is still stable, and its basin of
attraction is always given by BT x�C ; y

�
C

� �
¼ BF x�C

� �
� BG y�C

� �
,

where BF x�C
� �

is always the whole segment ]0,1/b[ while
BG y�C
� �

now consists of two disjoint intervals. Now the basin
BG y�C
� �

can be obtained by using the inverse of the function
f(y) as follows: BG y�C

� �
¼ f�1 BF x�C

� �� �
and in our case the ba-

sin BG y�C
� �

¼ f�1ð�0;1=b½Þ consists of two intervals, given by
f�1ð�0;1=b½Þ ¼ �0; y�½[�yþ;1=a½ð Þwhere

y� ¼ f�1ð1=bÞ ¼ 1
2
ffiffiffi
a
p � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1
a
� 4

b

r !2

; ð10Þ

and thus the basin of attraction for the two-dimensional
map T in the phase plane (x,y) is given by

BT x�C ; y
�
C

� �
¼ BF x�C

� �
� BG y�C

� �
¼�0;1=b½� �0; y�½[�yþ;1=a½

� �
:

Fig. 1d shows the basins of attraction in the phase plane.
Besides the two rectangles of points (in red) converging
to the attracting Cournot point, there are also huge rectan-
gles of points which may be considered undesired points,
as leading to the extinction (the origin O) or leading to
the saddle cycle on the coordinate axes C2A. Now the sepa-
rators between the basin of the proper attracting set (C)
and those in Milnor sense is given by the lines x ¼ 1

b and
x ¼ 1

a as before and the lines y ¼ y� from the preimages
f�1(1/b), as clearly visible in Fig. 1d.

This is the main point, in order to have a model well de-
fined in a wider area of the (x,y) phase plane, we shall
modify the basic model, as we shall see in the next Section.

Let us first complete the analysis in the interesting rect-
angle R ¼ ½0;1=b� � ½0; y�� (or R ¼ ½0; x�� � ½0;1=a� in differ-
ent parameter settings, as we shall explain below) of the
region Q = [0,1/b] � [0,1/a] of the phase plane, which in-
cludes the attracting set of the map T(x). This part is al-
ready known in the literature, however it is suitable to
recall it here, in order to remark that the bifurcation of
the Cournot point, for the two-dimensional map, is not a
flip bifurcation. It is clear that in some way this bifurcation
is associated with a flip, as in fact for the map F(x) the
Cournot x-coordinate undergoes a flip bifurcation. How-
ever this is not reflected in a flip bifurcation of the map
T. In our case, a flip bifurcation of the map F(x) corresponds
to a degenerate Neimark–Sacker bifurcation for T. In fact,
the Jacobian matrix of our map T in the smooth branches,
evaluated in the Cournot fixed point is given by

J x�C ; y
�
C

� �
¼

0 b�a
2a

a�b
2b 0

�����
�����; ð11Þ

and its characteristic polynomial is given by PðkÞ ¼ k2 þ D
where the determinant is D ¼ ða�bÞ2

4ab always positive. Thus
the eigenvalues are pure imaginary. The equilibrium is sta-
ble as long as jDj < 1, which occurs as long as

3� 2
ffiffiffi
2
p

< r ¼ b
a
< 3þ 2

ffiffiffi
2
p

: ð12Þ

At the bifurcation value, when jDj = 1, the eigenvalues are
±i. Thus it corresponds to one of the ‘‘resonant” cases of
the Neimark–Sacker theorem. However, also in such a
degenerate case, a closed invariant attracting curve C ex-

ists after the bifurcation, made up of the saddle-node con-
nection of a pair of 4-cycles. In fact, let us prove this
directly via the one-dimensional map F(x), for which at
the same time a normal flip bifurcation occurs, leading to
a locally stable 2-cycle {x1,x2}. As we know (see [17]), a
2-cycle of F(x), locally stable, coexisting with the locally
unstable Cournot fixed point, leads to the existence of
two unstable 4-cycles C4A and C4B(C4A one on the coordi-
nate axes and C4B with points in the positive quadrant) plus
one stable 4-cycle C4C with points in the positive quadrant.
The 2-cycle already existing on the coordinate axes, C2A,
turns into a repelling node. All the periodic points listed
above belong to the Cartesian product 0; x1; x�C ; x2

� �
�

0; x1; x�C ; x2
� �

, as we can see in Fig. 2, where the closed
curve C is also shown, and a portion of the basins of the
topological attractors and the attractors in Milnor sense.

The transition to chaos for the map F(x) is as usual, via a
sequence of period doubling bifurcations. An example,
keeping a fixed and increasing the parameter b, is shown
in Fig. 3, and the whole sequence can be observed as for
the unimodal logistic map up to the last bifurcation,
involving the homoclinic bifurcation of the origin.

This last bifurcation is illustrated in Fig. 4. As we can
see, the map F(x) has the maximum which ends in the kink
point 1/b (and at the same time notice that the maximum
of the function g(x) has a contact with the immediate basin
in the line y ¼ y�). It follows that for higher values of b al-
most all the points of the interval ]0,1/b[ are mapped in the
origin. Noticing that the critical point of the smooth func-
tion g(x) is xcr ¼ 1

4b (as g0(xcr) = 0) and g(xcr) = xcr, we have
that it is also a critical point of F(x), as F0(xcr) = 0 and

FðxcrÞ ¼
ffiffiffiffiffiffi

1
4ab

q
� 1

4b. It follows that the final bifurcation of

F(x) (and thus of T) occurs when FðxcrÞ ¼ 1
b which leads to

the following condition:ffiffiffi
b
a

r
¼ 2:5; r ¼ b

a
¼ 6:25: ð13Þ

In the case a = 0.2 used in our example we get the final
bifurcation at bf = 1.25, which is the value used in Fig. 4.

It is clear that if we change the parameters in such a
way that the ‘‘dimensional” parameter r ¼ b

a decreases (in-
stead of increasing it as we have done above) we shall see
the roles of the functions exchanged. That is, the first bifur-
cation of the basins occurs when the function f(x) has a con-
tact with the rectangle Q and at the same time the bimodal
function F(x) has a contact with zero, and this bifurcation
occurs when the parameters satisfyffiffiffi

a
b

r
¼ 2; r ¼ b

a
¼ 1

4
; ð14Þ

the Neimark–Sacker bifurcations occur at r ¼ 3� 2
ffiffiffi
2
p

and
the final bifurcation occurs when the function G(y) has a
contact with 1

b at the following condition:ffiffiffi
a
b

r
¼ 2:5; r ¼ b

a
¼ 1

6:25
: ð15Þ

After the final bifurcation the model is not so quite repre-
sentative, as only a chaotic repellor survives, and almost all
the points of the phase space are mapped into the coordi-
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nate axes in a finite number of steps, after which the state
jumps from one axis to the other one at each iteration. In

the next section we shall analyze a modified model, which
is more suitable in the applied context.

Fig. 2. The closed curve in (a) coexisting with other attractors that are attractors in Milnor sense. The corresponding basins of attraction are in (b).

Fig. 3. In (a) transition to chaos through the increasing of the parameter b. In (b) the corresponding basins of attraction.

Fig. 4. Last bifurcation in (a) and corresponding basins of attraction in (b).

F. Tramontana et al. / Chaos, Solitons & Fractals 43 (2010) 15–24 19
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Notice that the feasible dynamics observed up to now
also correspond to the dynamics of the original smooth
model, given by:

x0 ¼ f ðyÞ ¼
ffiffiffi
y
a

r
� y;

y0 ¼ gðxÞ ¼
ffiffiffi
x
b

r
� x;

assuming that the phase space of interest is the rectangle
Q = [0,1/b] � [0,1/a]. That is, all the points outside this
range have at least one negative iterate, and thus are con-
sidered unfeasible. This model has a Cournot fixed point
which is stable and globally attracting in Q as long as the
composite functions F(x) and G(y) are inside the rectangle
Q, and thus, as we have seen above, only before the first
bifurcation of the basins’ structure, which holds only in
the following range:

1
4
< r ¼ a

b
< 4: ð16Þ

Outside this interval, even is we have a locally stable Cour-
not point, or a different periodic or chaotic attractor, we
also have states in the rectangle Q which lead to some cycle
on the coordinate axes. The assumption of a piecewise-
smooth function as we have assumed in this section, has
the effect to allow also states outside the rectangle Q or in-
side Q after the first bifurcation of the basins. However, this
result is perhaps not so interesting because the non posi-
tive asymptotic states only belong to the coordinate axes.
This aspect will be improved in the next section.

It is also worth to mention that there is a symmetry in
the model, given by T(x,y; a,b) = T(y,x; b,a) leading to a
symmetric structure of the bifurcation curves in the two-
dimensional parameter plane (a,b), with respect to the line
a = b. This may lead us to reduce of one unit the number of
the parameters, and keeping the unique parameter r ¼ b

a.
This requires a rescaling in the variables: setting X = bx
and Y = ay we obtain a two-dimensional map which only
depends on ðX;Y ; rÞ; eT ðX;YÞ ¼ ðX 0;Y 0Þ (which is clearly
topologically conjugated with T) given by:

X0 ¼ r
ffiffiffiffi
Y
p
� Y

� 	
if 0 6 Y 6 1;

0 if Y > 1;

(
ð17Þ

Y 0 ¼
1
r

ffiffiffiffi
X
p
� X

� 	
if 0 6 X 6 1;

0 if X > 1:

(
ð18Þ

For a more suitable interpretation of the dynamics in the
applied context we prefer to avoid a rescaling in the state
variables, so we keep the map in its original form with
the parameters (a,b), as resulting from the optimization
problem. However, as we shall see, a complete analysis
performed in the next section is better visualized by using
the rescaled map eT .

3. The modified Cournot model

The undesired features of the basic model considered in
the previous Section are due to the zero value in the reac-
tion functions, and once that the zero value is get, the iter-

ated states in the duopoly can no longer abandon the
coordinate axes, even if the cycles on the axes are all lo-
cally unstable. Thus a more interesting model, satisfying
the intuitive economic behavior, is that a state variable x
or y can become very low, assuming a fixed low value,
say �, after which they can increase again. For sake of sim-
plicity let us take the same constant low value � for both
competitors. Thus the model we are now considering is
the map T�, T�(x,y) = (x0,y0) defined as follows:

x0 ¼ f ðyÞ ¼

ffiffi
y
a

q
� y if y 6 1

a ;

� if y > 1
a ;

8<: ð19Þ

y0 ¼ gðxÞ ¼
ffiffi
x
b

p
� x if x 6 1

b ;

� if x > 1
b :

(
ð20Þ

which is always piecewise-smooth, but now discontinu-
ous, with discontinuity lines in x ¼ 1

b and y ¼ 1
a. It is clear

that the analytical results of the previous map inside the
rectangle Q of the phase space are unchanged, and work
also for the modified model. However, the main fact is that
the zero state can no longer be reached. The one-dimen-
sional function F(x) = f(g(x)) (with a point of discontinuity
in x ¼ 1

b) has now the origin which is really a repelling fixed
point, while for x > 1

b the function takes the constant value
F(x) = f(�) say xm ¼ f ð�Þ ¼

ffiffi
�
a

p
� � which is the minimum

value that can be reached by the iterated points of the
map, inside the existing absorbing interval. As before, as
the parameters (a,b) are changed increasing r the final
bifurcation occurs when the maximum value of F reaches
1
b, that is, when (13) holds. And it is also immediate to real-
ize that now the final bifurcation will not lead the dynam-
ics to the axes. Instead, all the states exceeding 1

b are
mapped into xm which will be a periodic point.

Stated in other words, once that the state variable x
reaches a low value, the increasing branch of F(x) issuing
from the origin will push the state to increase again, enter-
ing the absorbing interval with minimum value xm and
maximum in the critical value of F(x). It follows that the
trajectories are converging to a cycle different from the
fixed point O, with positive state variables and superstable.
Clearly the period of the cycle depends on the value of �
and on the values of the other parameters.

As an example, let us consider the case at a = 0.2 fixed
considered in the previous section. Now, with the new
model T�, and assuming � = 10�4, the cycles existing for
b < 1.25 are exactly the same with the same coordinates
up to the final bifurcation, but the basins of attraction of
the attracting cycles are now changed. On the coordinate
axes there are now truly repellors, which are no longer
attractors in Milnor sense (their stable set is a set of zero
measure). All the points which we observed before in the
basin of the origin or in the basin of some cycle on the
coordinate axes, are now converging to the attractors in
the positive quadrant of the phase plane.

And after the final bifurcation, for b > 1.25, when the
dynamics were previously no longer interesting, we have
now that almost all the trajectories are converging to a
superstable cycle, whose period depends on the parame-
ters’ values. An example is shown in Fig. 5.

20 F. Tramontana et al. / Chaos, Solitons & Fractals 43 (2010) 15–24
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Fig. 5a illustrates a two-dimensional bifurcation dia-
gram in the (a,b) plane. Different colors correspond to cy-
cles of different period of F(x). A vertical section is shown
through a one-dimensional bifurcation diagram in Fig. 5b,
giving the state variable x as a function of the parameter
b. At b = b* the Cournot point becomes unstable and at
b = bf the maximum of F(x) reaches the value 1/b. Then
we can see that the period of the cycle changes up to a
2-cycle which persists for a wide interval. A change in
the period of the trajectories after the final bifurcation in
Q is due to a border collision bifurcation with the disconti-
nuity point.

We remark that the one-dimensional bifurcation dia-
gram shows the x-variable as a function of the parameter
b, and thus the period there observable is the period for
the one-dimensional map F(x). This does not correspond
to the period of the cycles of the two-dimensional map be-
cause there may be more periodic points with the same
projection in the coordinate axes (indeed this is the charac-
teristic property of maps like the present one, for which
the second iterate has separate variables). An example of
the map at b = 1.6 (>bf) for which the function F(x) has a
4-cycle, is shown in Fig. 5c. For the map T� this 4-cycle
leads to two disjoint attracting 8-cycles (C8B and C8C). The
whole positive phase plane consists of points converging
to one or the other of the 8-cycles. The two basins of attrac-

tion are shown in Fig. 5d. We remark that the rectangles of
the basins which are visible in Fig. 5b are not finite in num-
ber, as they are accumulating on the coordinate axes and
can be seen only in enlarged windows (the structure of
the basins in piecewise-smooth duopoly games has been
described also in Tramontana et al. [19]).

As already remarked above, the period also depends on
the choice of the parameter �. For example, by using
� = 10�5 we get a different picture, shown in Fig. 6.

Fig. 6a illustrates the two-dimensional bifurcation dia-
gram in the (a,b) parameter plane, while Fig. 6b illustrates
a section at a = 0.2 as before. We can see that the periods
are changed and also that infinitely many periods can be
obtained. In fact, in Fig. 6b we can see that there is a par-
ticular bifurcation in the parameter b : the periods are
odd and increase by two units at some BCBs as b tends to
b while after b the period is even end decreases by two
units. This sequence of bifurcations can be easily explained
from the graph of the function F(x). In Fig. 6c we can see
that for b < b the value xm = f(�) is above the preimage of
the Cournot fixed point or, equivalently, its image is below
the unstable Cournot fixed point: FðxmÞ < x�C . In the exam-
ple of Fig. 6d, at b ¼ 1:4 < b the minimum point is periodic
of period 9. As b increases the point F(xm) tends to the fixed
point and the period increases because this periodic points
must do more and more turns around the unstable Cournot

Fig. 5. An example of the modified Cournot model.
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point before reaching again the minimum value. Clearly
the period tends to infinity and at the value b ¼ b we have
FðxmÞ ¼ x�C that is: the minimum value is preperiodic to the
Cournot point. Then for b > b we have FðxmÞ > x�C and F(xm)
increases, so that the period from very high tends to de-
crease (in the example shown in Fig. 6d at b = 1.8 the min-
imum point is periodic of period 6).

In both the examples shown in Fig. 5b and Fig. 6b, at
b = b* (given in (12)) the local bifurcation of the Cournot
fixed point occurs while at b = bf (given in (13)) the final
bifurcation occurs. The main property of the map after
the final bifurcation is that almost all converges to the
existing cycle for the map F(x) which is unique and super-
stable. In fact, almost all the points inside the interval
]0,1/b[ exit from that interval in a finite number of steps
under F(x) and ultimately take the value xm which then is
periodic of some period. It follows that almost all the tra-
jectories converge to this cycle, which is superstable, having
one periodic point in a flat branch of F(x) with zero
derivative.

An attracting cycle of period p for F(x) corresponds to
several coexisting attracting cycles for the two-dimen-
sional map T�, following the rules explained in [17].

Clearly the whole analysis with obvious changes occurs
if the parameters are changed such that r moves in the
opposite direction, decreasing.

3.1. Dependence on �

The examples shown above illustrate that the positive
constant value in the graph of the reaction functions is
important in order to have a representative model. Also
evidence that the dependence of the periods from the va-
lue of � is very strong. To better investigate this depen-
dence let us consider the topologically conjugated model
as a function of the only parameter r = b/a, so that, consid-
ering �as a second parameter, we may plot a two-dimen-
sional bifurcation diagram in the parameter plane (r,�).

By using the change of coordinates X = bx and Y = ay we
obtain the map fT� which only depends on ðX;Y ; r; �Þ;fT�ðX;YÞ ¼ ðX 0;Y 0Þ given by:

X0 ¼ r
ffiffiffiffi
Y
p
� Y

� 	
if 0 6 Y 6 1;

� if Y > 1;

(
ð21Þ

Y 0 ¼
1
r

ffiffiffiffi
X
p
� X

� 	
if 0 6 X 6 1;

� if X > 1:

(
ð22Þ

Fig. 7 shows the dependence on the constant value �, for
� 2 [0,0.06] in Fig. 7a, while in the enlarged window
� 2 [0,0.0014].

At r = r* (given in (12)) the local bifurcation of the Cour-
not fixed point occurs. At r = rf (given in (13)) the final

Fig. 6. Another example of the modified Cournot model with a differently (with respect to Fig. 5) fixed lowest value of the production.

22 F. Tramontana et al. / Chaos, Solitons & Fractals 43 (2010) 15–24



Author's personal copy

bifurcation in Q occurs. In the interval r* < r < rf the bifurca-
tions are those of a one-dimensional unimodal map, inde-
pendent on �, and the bifurcations are vertical lines. The
new interesting range is for r > rf. We can see that all the
periods can be detected, in fact, the periodicity regions in
the enlargement follow the structure of the box-within-a
box bifurcation of the unimodal maps (see [20]), but now
applied only to superstable cycles which change their per-
iod via border collision bifurcations. We remark that the
periodicity regions cannot overlap because at fixed param-
eters, as we have seen, it is possible to have only one
superstable cycle.

It is plain that a graph similar to the one in Fig. 7 can be
obtained also decreasing r.

4. Conclusions

The well known Cournot duopoly model has been here
investigated with respect to its global properties. Also
when the Cournot fixed point is locally stable or another
attracting set exists which lead to interesting dynamics,
there may be states in the phase space which lead to dan-
gerous situations (negative or zero production). The
assumption of a positive minimal quantity in the reaction
functions has the effect to enlarge the region in the phase
space associated with feasible dynamics, mainly periodic.
Specially in extreme cases, after the final bifurcation for
the bounded dynamics in a neighborhood of the Cournot
fixed point, we have proved the existence of superstable
cycles of any period, with positive quantities periodically
changed, which attract almost all the points in the phase
space (i.e., except for a set of zero measure, which may in-
clude a repelling Cantor set of points).

We remark that the results evidenced in the last two
sections are not due to the introduced discontinuity in
the shape of the reaction function. They only depend on
the positive horizontal graph of the reaction functions. In
fact, the results and comments of the last two sections
are still valid in a continuous piecewise-smooth model,
in which the kink points are not assumed at x = 1/b and
y = 1/a but are assumed dependent on the choice of � still
keeping continuous the model, as follows:

x0 ¼ f ðyÞ ¼

ffiffi
y
a

q
� y if y 6 py;

� if y > py;

8<: ð23Þ

y0 ¼ gðxÞ ¼
ffiffi
x
b

p
� x if x 6 px;

� if x > px;

(
ð24Þ

where the kink points px and py satisfy the conditions lead-
ing to continuous reaction functions:

� ¼
ffiffiffiffiffi
py

a

r
� py; � ¼

ffiffiffiffiffi
px

b

r
� px:
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