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In this work we consider the border collision bifurcations occurring in a one-dimensional piece-
wise linear map with two discontinuity points. The map, motivated by an economic application,
is written in a generic form and considered in the stable regime, with all slopes between zero and
one. We prove that the period adding structures occur in maps with more than one discontinuity
points and that the Leonov’s method to calculate the bifurcation curves forming these struc-
tures is applicable also in this case. We demonstrate the existence of particular codimension-2
bifurcation (big-bang bifurcation) points in the parameter space, from which infinitely many
bifurcation curves are issuing associated with cycles involving several partitions. We describe
how the bifurcation structure of a map with one discontinuity is modified by the introduction
of a second discontinuity point, which causes orbits to appear located on three partitions and
organized again in a period-adding structure. We also describe particular codimension-2 bifur-
cation points which represent limit sets of doubly infinite sequences of bifurcation curves and
appear due to the existence of two discontinuities.

Keywords : Piecewise linear discontinuous maps; period adding bifurcation structure; Leonov’s
approach; two discontinuity points.

1. Introduction

Since the pioneering works by Richard Day focused
on piecewise linear maps (see e.g. [Day, 1982, 1994]),
several applications to economics ultimately lead
to models which are described by piecewise linear
or piecewise smooth maps [Hommes, 1991, 1995;
Hommes & Nusse, 1991; Hommes et al., 1995; Galle-
gati et al., 2003; Puu & Sushko, 2002, 2006; Sushko

et al., 2003, 2005, 2006; Gardini et al., 2006a, 2006b,
2008]. In particular, several systems are modeled
via discontinuous maps, often with several discon-
tinuity points [Puu et al., 2002, 2005; Puu, 2007;
Sushko et al., 2004; Tramontana et al., 2009; Gar-
dini et al., 2011]. However, the bifurcations occur-
ring in discontinuous models with more than two
partitions have not yet been investigated. In this
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work we start this subject, limiting our analysis
to piecewise linear maps with two discontinuity
points and positive slopes. We are motivated by
the model introduced in [Tramontana et al., 2009],
where it is shown that a duopoly may give rise
to discontinuous reaction functions, whose explicit
formulation cannot be obtained. Observing, how-
ever, that the reaction functions are very flat, we
have roughly (but quite realistically) approximated
the pieces appearing in the reaction functions by
pieces of straight lines, so formulating the following
map T :

x′ = T (x),

T (x) =



fL(x) = aLx+ µL if x < d1

fM (x) = aMx+ µM if d1 < x < d2

fR(x) = aRx+ µR if x > d2

(1)

and the slopes which are observed in the economic
application are positive and smaller than 1, we shall
assume

aL, aM , aR ∈ (0, 1), d1 < d2. (2)

In particular, an interesting example in the applied
context is obtained by the following values:

aL = 0.9, aM = 0.3, aR = 0.4,

µL = 1, µM = 0.2
(3)

that we shall use in almost all the figures, to illus-
trate our results, which are however generic (for
the case with slopes ai ∈ (0, 1), i = L,M,R), as
the border collision bifurcation curves are given as
a function of all the parameters of the map T . A
qualitative example is shown in Fig. 1(a).

We also notice that we use the term “bifurca-
tion curves” in a wider meaning, as we ought to call
them, more properly, “bifurcation subspaces” in the
whole parameter space. However, as we mainly show
sections in a two-dimensional parameter space, fix-
ing all the other parameters, for simplicity, we use
everywhere the term bifurcation curves.

We are interested in the analysis of the bifur-
cations occurring as the discontinuity point d1

increases, reaching the second discontinuity point
d2, after which the piece in the middle disappears
and the map reduces to a map with only one dis-
continuity point [as shown in Fig. 1(b)], which we
denote as map F :

x′ = F (x),

F (x) =

{
fL(x) = aLx+ µL if x < d2

fR(x) = aRx+ µR if x > d2.

(4)

Or, equivalently, starting from the model with only
one discontinuity, x′ = F (x), we are interested in
the bifurcations introduced by adding a second dis-
continuity point d1 < d2 starting from d1 = d2 and
then decreasing d1 in the map x′ = T (x). We shall
follow this approach in the description of the bifur-
cation curves.

It is immediate to see that with the conditions
on the parameters given in (2), both the maps F
and T can only have stable cycles,1 because all the
slopes are positive and less than one, so that any
possible cycle has an eigenvalue which is necessar-
ily positive and smaller than one. Thus no unstable
orbit and also no chaotic behavior can occur.

An important difference between the two maps
T and F with positive slopes is that in F we can

(a) (b)

Fig. 1. Qualitative shape of the map under study. (a) Map T with two discontinuity points. (b) Map F .

1Except for particular structurally unstable parameter values at which quasiperiodic trajectories, or a Cantor set, exist.
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only have one attracting cycle2 (and, as we shall
recall, of any period), whereas in T we may have two
coexisting attracting cycles (we shall return to this
in Sec. 4.2). We only remark that due to the absence
of unstable cycles, when two coexisting cycles exist,
the separators between the two basins of attraction
belong to the set of the discontinuity points and
related preimages.

It is well known that a periodic orbit in
piecewise smooth maps as T and F may only
undergo border-collision bifurcations. The term
border-collision means a contact between a peri-
odic point of a k-cycle, for any k ≥ 1, with a dis-
continuity point, which represents a border of its
region of definition in the phase space. The term
border-collision bifurcation (BCB henceforth) was
introduced in [Nusse & Yorke, 1992, 1995] and it is
now widely used in this context (i.e. for piecewise
smooth maps), although the study and description
of such border collision bifurcations started many
years ago. In particular, the bifurcations involv-
ing discontinuous piecewise linear maps were stud-
ied by Leonov already more than fifty years ago,
see [Leonov, 1959, 1962], although his pioneering
works were known only to a few researchers, among
whom are Mira (see [Mira, 1987] and references
therein), Maistrenko (see [Maistrenko et al., 1993,
1995, 1998]), and their collaborators.

The BCBs have been widely studied in the last
years, mainly because of their relevant applications
in engineering (electrical and mechanical). Several
works were motivated by models describing particu-
lar circuits or models for secure communications [di
Bernardo et al., 1999; Banerjee & Grebogi, 1999;
Banerjee et al., 2000a, 2000b; Feely et al., 2000;
Fournier et al., 2001; Halse et al., 2003; Zhusub-
aliyev & Mosekilde, 2003; Zhusubaliyev et al., 2006,
2007].

In particular, the bifurcation structure associ-
ated with one-dimensional maps having one discon-
tinuity point and increasing/decreasing functions in
the two partitions has been the object of recent
studies. See [Avrutin et al., 2006; Avrutin & Schanz,
2006; Avrutin et al., 2006; Gardini & Tramontana,
2010], where the so-called increment structure is
described. While considering increasing/increasing
functions in two partitions (as our map F ) the so-
called period adding structure occurs. As this term
is used in the literature in different ways, it is worth

to recall that we are using it to refer to the fol-
lowing bifurcation structure: between two period-
icity regions (bounded by BCB curves) associated
with the existence of cycles with periods p1 and
p2, there exists a periodicity region associated with
the existence of a cycle with period p1 + p2, and
similarly between the regions with periods p1 and
p1 + p2, there exist regions with periods 2p1 + p2

and p1 + 2p2, and so on, ad infinitum. The overall
bifurcation structure is self-similar, and the rotation
numbers of the orbits involved in this structure form
the well-known Farey-tree [Hao, 1989], or the Stern–
Broccot tree, depending on the used definition of
the rotation numbers. Several results were already
proved by Leonov [1959, 1962] (also called boxes in
file bifurcations in [Mira, 1987]), and a remarkable
result was there presented, showing how a recursive
process also works for the formulas giving the equa-
tions of the BCB curves, which can be explicitly
computed in the piecewise linear case. An improve-
ment of this method is given in [Gardini et al., 2010]
and its generalization in [Avrutin et al., 2010].

It is worth to emphasize that in all the cited
works the period adding structure was reported
and investigated in piecewise linear maps with
only one discontinuity point (as map F ). By con-
trast, in the present work we prove that this struc-
ture also occurs in maps defined on many parti-
tions, involving in this case cycles whose periodic
points may be distributed among several partitions
(as map T ). Moreover, we shall also see that the
Leonov’s method can still be used.

The study of a discontinuous map with three
linear pieces was also involved in the model pre-
sented in [Bischi & Merlone, 2009] (related to the
works of [Schelling, 1973, 1978], rediscovered after
his Nobel Price in economics). That model (con-
sidered in [Bischi et al., 2009, 2010]) also dealt
with the BCBs involving periodic orbits belong-
ing to three linear pieces. However, it has partic-
ular restrictions in the parameters, leading to a
very specific behavior. By contrast, as we shall see,
the bifurcations occurring in the present model,
i.e. in the generic map T , are much more com-
plicated. To our knowledge, this is the first time
that such an analysis is performed in a piecewise-
linear model with two discontinuities, and we shall
give the analytic expressions of some BCB curves
of the map in (1), under the restrictions on the

2As it is proved in [Gardini et al., 2010] (see also [Leonov, 1959]), the existence regions of the stable cycles cannot overlap.
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parameters as given in (2). This is, however, just
a first step, as the complete bifurcation structure in
the eight-dimensional parameter space (also under
our restrictions) requires further studies.

The plan of the work is as follows. First, in
the next section we recall some relevant results of
the map F . Our presentation here is slightly differ-
ent from that in [Gardini et al., 2010] because we
introduce a new notation to characterize the BCB
curves, representing the colliding points. This nota-
tion refers not only to the periodic orbit undergo-
ing the BCB but also to the specific point of this
orbit which collides with the discontinuity point.
This new notation is more suitable for a general-
ization to maps with any number of partitions and
a generic discontinuity point, leading directly (as
we shall see) to the concatenation of the symbolic
sequences associated with the cycles. This will be
used in Sec. 3 where we prove a generalization of
the adding scheme and of Leonov’s approach, which
will keep the intrinsic power of the method, but can
also be applied to maps having more than one dis-
continuity.

This approach will be extensively used in Sec. 4,
where the BCB curves of the map T with two dis-
continuities will be determined. In fact, after the
analysis of the map F in the case of positive slopes
(and in the stable regime), a new discontinuity point
d1 < d2 is added and we shall apply the adding
scheme to the map T when the cycles have peri-
odic points in three pieces, and BCBs may occur
with both discontinuity points. We can immedi-
ately appreciate the dynamic difference between the
maps (F with one and T with two discontinuity
points), from the two-dimensional bifurcation dia-
gram shown in Fig. 2. The bifurcation curves in
Fig. 2(a) refer to the (d1, µR) and (d2, µR) param-
eter planes, and all the other parameters are fixed
at the values given above, in (3). For d2 > 1.8 the
bifurcation curves are those of the map F (i.e. the
regions and BCB curves refer to the (d2, µR) param-
eter plane), while for d1 < d2 = 1.8 (kept fixed) the
bifurcation curves are those of the map T (i.e. the
regions and BCB curves refer to the (d1, µR) param-
eter plane). In Fig. 2(b) we illustrate an enlarge-
ment of the upper part of Fig. 1(a).

We shall show how to analytically detect the
bifurcation curves related with the dynamics of the
map T , using the adding scheme in particular ways,
combining the existence of the two discontinuities.
The main point is the existence of intersecting BCB

Fig. 2. Bifurcation curves of the map T in the parameter
plane (d1, µR) and (d2, µR) as described in the text.

curves associated with the same discontinuity point
leading, as in the case of maps with only one dis-
continuity, to particular points which are called
big-bang bifurcation points, due to the existence of
infinitely many BCB curves issuing from them. See,
for example, the points P2 and P3 in Fig. 2(b) (and
infinitely many such points exist). Moreover, the
intersection of two BCB curves in which the col-
liding cycles are associated with two different dis-
continuity points, leads to a new kind of bifurcation
points, which are not issuing points of BCB curves,
but limit sets of a doubly infinite sequence of BCB
curves. See, for example, the points S2 and S3 in
Fig. 2(b) (and infinitely many such points exist).

In Sec. 4, we describe the BCB curves in sev-
eral subsections: first those close to the border
d2 = 1.8 then the periodicity tongues having tri-
angular shape (three boundaries of BCB curves)
and finally those having quadrilateral shape (four
boundaries of BCB curves).

A final remark in this Introduction refers to the
fact that we have not defined the maps F and T in a
point of discontinuity. This was done intentionally,

1250068-4



April 3, 2012 17:14 WSPC/S0218-1274 1250068

Period Adding in Piecewise Linear Maps with Two Discontinuities

because (as also remarked in [Gardini et al., 2010]
and [Avrutin et al., 2010]) this value is not relevant
in the analysis of the BCB curves, as the main role
is given by the two limiting values of the linear maps
involved in the discontinuity points, which play the
role of critical points. A different but equivalent way
to the purpose of analyzing the bifurcation curves,
would be to use a bi-valued function in each discon-
tinuity point, by using the values of the two func-
tions defined on each side of a discontinuity point
as values at the discontinuity point.

2. Bifurcation Curves of the Map F

In this section, we give the analytical expressions
of the bifurcation curves of the map F , which we
rewrite for convenience:

x′ = F (x) =

{
fL(x) = aLx+ µL if x < d2

fR(x) = aRx+ µR if x > d2

(5)

as a function of all the parameters, under the
restrictions 0 < aL < 1, 0 < aR < 1 and
aLd2 + µL < aRd2 + µR [as qualitatively shown in
Fig. 1(b)]. The discontinuity point is x = d2 (and in
Fig. 2, is shown a two-dimensional bifurcation dia-
gram for d2 > 1.8).In order to find all the families
of possible stable cycles, in a simple way, we shall
use the Leonov approach, improved as described in
[Gardini et al., 2010].

Let us first consider the fixed points of the two
branches. The fixed point P ∗

L of the left branch fL

is given by P ∗
L = µL

1−aL
and exists when it is located

in the proper domain, that means for d2 >
µL

1−aL
.

Otherwise it does not exist, also called a virtual
fixed point. When it exists then it clearly attracts at
least all points on the left side of d2. The fixed point
P ∗

R of the right branch fR is given by P ∗
R = µR

1−aR

and exists when d2 <
µR

1−aR
, otherwise it is virtual.

When it exists, then it attracts at least all the points
on the right side of d2. Thus in the range

µR

1 − aR
< d2 <

µL

1 − aL
(6)

which we are interested in, no fixed point exists.
This means that the jump at the discontinuity
point d2 determines the absorbing interval I =
[Xm,XM ] inside which the asymptotic dynamics
are confined:

I = [Xm,XM ],

Xm = aRd2 + µR, XM = aLd2 + µL

(7)

where the upper boundary XM of the absorbing
interval is given by the value of the left function at
the point of discontinuity fL(d2) = aLd2 +µL > d2,
and the lower boundary Xm by the value of the
right function at the same point: fR(d2) = aRd2 +
µR < d2.

As already remarked in the Introduction, notice
that the value which is assumed at the discontinuity
point x = d2 is of no importance in the description
of the possible dynamics, as in any case, points close
to d2 on the left (resp. right) side behave as the
point XM (resp. Xm). Thus the two values fL(d2)
and fR(d2) play the role of critical points indepen-
dently of which value is assumed for F (d2).

It is easy to see that any point outside I will
be mapped inside I in a finite number of iterations.
Therefore the attractor existing inside I represents
a global attractor of the map F . This attractor is
generally given by a cycle (in limiting cases corre-
sponding to a set in the parameter space with a zero
Lebesgue measure, there exist dense periodic points,
or quasiperiodic trajectories dense in the absorbing
interval, or an invariant Cantor set). The period of
the cycle may be any integer number. Moreover,
also many cycles with the same period may exist,
but with a different number of periodic points on
the two sides of the discontinuity point d2.

2.1. First level of complexity

Our next step is to describe which cycles exist,
depending on the values of the parameters. We
explicitly describe the steps keeping all five param-
eters (i.e. including the discontinuity point d2). To
find the possible stable cycles we look for fixed
points of the iterated map. As one can see, the iter-
ated function is again piecewise linear and consists
of pieces defined by appropriate compositions of the
functions fL and fR. Then the simplest cycles to
analyze are those called Leonov of first level of com-
plexity (also known in the literature as principal
cycles or maximal cycles). These cycles are charac-
terized by one point in one partition, say on the
left side of the discontinuity point (L) and all the
other points in the other region, on the right side
of d2 (R). For such a cycle of period (n + 1) let
us denote the related periodic points as x∗0 < d2,
and x∗1 > · · · > x∗n > d2. Then x∗0 is a fixed
point of the map fn

R ◦ fL(x)and the cycle exists as
long as

Xm ≤ x∗0 ≤ d2 (8)
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The equalities denote the BCB leading to the
existence of the periodic orbit.

From the iterated map:

fn
R ◦ fL(x) = an

R(aLx+ µL) + µR
(1 − an

R)
(1 − aR)

(9)

and by using the equation x = fn
R ◦fL(x) we obtain

the periodic point:

Xm ≤ x∗0

=
1

1 − aLan
R

[
an

RµL + µR
(1 − an

R)
(1 − aR)

]
≤ d2. (10)

The two BCB curves bounding the region of exis-
tence of the cycle, say periodicity region ΠLRn , can
be both deduced from the two equations associ-
ated with (10). Moreover, the inequalities denote
on which side of the bifurcation curve the region
ΠLRn exists. So that, from x∗0 ≤ d2 we get:

ΠLRn : µR ≤ [d2(1 − aLa
n
R) − an

RµL](1 − aR)
(1 − an

R)
(11)

and from Xm ≤ x∗0, that is (aRd2 + µR) ≤ x∗0,
we get:

ΠLRn : µR ≥ [d2(1 − aLa
n
R) − an−1

R µL](1 − aR)
(1 − an−1

R ) + aLa
n−1
R (1 − aR)

.

(12)

Clearly the related equalities give the BCB curves
in the parameter space, and we notice that the peri-
odic point of the cycle is colliding with the dis-
continuity point d2 from the left side in the first
curve and from the right side in the second one.
In this work, however, we are not only interested
in the BCB curves, but also explicitly in the char-
acteristics of the colliding points, from which we
can detect the BCB curves. To this end, notice
that in the first bifurcation curve (obtained from
the equality in (11)) the colliding point is exactly
x∗0, associated with the symbolic sequence LRn,
which means that the BCB curve can be detected
by using the composite function with that sym-
bolic sequence, and the periodic point is the solu-
tion of the equation fn

R ◦ fL(x) = x. For the second
BCB curve [obtained from the equality in (12)] the
point colliding with d2 is x∗n, associated with the
first letter in the symbolic sequence RLRn−1. There-
fore, the corresponding BCB curve can also be cal-
culated by using the composite function built up
according to the sequence RLRn−1 and the equation

fn−1
R ◦fL ◦fR(d2) = d2. So let us give a name to the

BCB curves reflecting the colliding point, as this
will be used later:

ΦLRn : µR =
[d2(1 − aLa

n
R) − an

RµL](1 − aR)
(1 − an

R)
(13)

ΦRLRn−1 : µR =
[d2(1 − aLa

n
R) − an−1

R µL](1 − aR)
(1 − an−1

R ) + aLa
n−1
R (1 − aR)

.

(14)

As one can see, in this notation the side of the
collision is directly reflected by the first letter
in the symbolic sequence. These BCB curves are
straight lines in the parameter plane (d2, µR). For
the parameters fixed as in (3) the straight lines of
Eqs. (13) and (14) are the boundaries of the prin-
cipal regions of periods 2, 3, 4 . . . for d2 > 1.8, in
Fig. 2(a), above the region of the 2-cycle [better
visible in the enlargement of Fig. 2(b)], which accu-
mulate on the line of equation

ΦR : µR = d2(1 − aR) (15)

above which there is the existence region of the fixed
point P ∗

R.
There also exist “symmetric cycles”, associ-

ated with the symbolic sequence RLn. For these
cycles we can order the periodic points as x∗0 > d2,
x∗1 < · · · < x∗n < d2, reasoning as above. Thus,
to determine the BCB curves associated with these
cycles, it is enough to replace R and L with L andR,
respectively, in the equations given in (13) and (14),
obtaining:

ΦRLn : µL =
[d2(1 − aRa

n
L) − an

LµR](1 − aL)
(1 − an

L)
(16)

ΦLRLn−1 : µL =
[d2(1 − aRa

n
L) − an−1

L µR](1 − aL)
(1 − an−1

L ) + aRa
n−1
L (1 − aL)

(17)

and, after rearranging, we have:

ΦRLn : µR =
1
an

L

[
d2(1 − aRa

n
L) − µL

(1 − an
L)

(1 − aL)

]
(18)

ΦLRLn−1 : µR = an
L

[
(aLd2 + µL)(1 − aRa

n
L)

− µL
(1 − an

L)
(1 − aL)

]
. (19)

1250068-6



April 3, 2012 17:14 WSPC/S0218-1274 1250068

Period Adding in Piecewise Linear Maps with Two Discontinuities

Now the periodic point x∗0 collides with d2 from
the right side, so that the associated symbolic
sequence is RLn, giving the BCB curve ΦRLn ,
while the periodic point colliding with the discon-
tinuity from the left side is x∗n, having the sym-
bolic sequence LRLn−1, and the curve is denoted
by ΦLRLn−1 . These curves, straight lines in the
parameter plane (d2, µR), give the boundaries
of the principal regions of periods 2, 3, 4 . . . for
d2 > 1.8, below the region of the 2-cycle, shown
in Fig. 2(a) (the other parameters are fixed as
in (3)). The boundaries of the region of the 2-
cycle shown in Fig. 2 for d2 > 1.8 are obtained
for n = 1 from both families of the first level of
complexity.

2.2. Second level of complexity

It is already known that for any integer n ≥ 1,
between the periodicity regions of the cycles of first
level of complexity ΠLRn and ΠLRn+1 of the map
F , there exist two infinite sequences of periodicity
regions of cycles of the second level of complexity,
Π(LRn)mLRn+1 and ΠLRn(LRn+1)m , for any m ≥ 1,
which accumulated on the boundaries of the peri-
odicity regions of first level between which they are
located. The BCB curves can be computed following
the approach discussed in [Gardini et al., 2010] by

applying the change of variable y = x−d2. However,
let us show the application of Leonov’s method
also in a map with a generic discontinuity point,
computing the BCB curves of second complexity
level.

Between the curves ΦLRn and ΦRLRn we can
consider the composite functions associated with
the symbolic sequence of the related colliding points
LRn and RLRn, say

TL = fn
R ◦ fL, TR = fn

R ◦ fL ◦ fR (20)

which are applied to points on the left and the right
of the discontinuity point d2, respectively. These
maps are still linear, say TL = ALx + BL and
TR = ARx+BR, where

AL = aLa
n
R,

BL = an
RµL + µR

(1 − an
R)

(1 − aR)

AR = aLa
n+1
R ,

BR = an
RaLµR +BL.

(21)

Then we can use the equations of the first level of
complexity for the map defined by TL for x < d2

and TR for x > d2. One family of periodicity regions
(having ΦLRn as limit set) is bounded by the BCB
curves given (from (13) and (14)) by:

ΦTLT m
R

: BR =
[d2(1 −ALA

m
R ) −Am

RBL](1 −AR)
(1 −AR

m)
(22)

ΦTRTLT m−1
R

: BR =
[d2(1 −ALA

m
R ) −Am−1

R BL](1 −AR)
(1 −Am−1

R ) +ALA
m−1
R (1 −AR)

. (23)

Noting that ΦTLT m
R

= ΦLRn(RLRn)m ,ΦTRTLT m−1
R

= ΦRLRnLRn(RLRn)m−1 = ΦRLRn−1(RLRn)m , and substitut-
ing the explicit expressions of the coefficients in (21) we have the BCB curves of second complexity level
in explicit form:

ΦLRn(RLRn)m : an
R(µL + aLµR) + µR

(1 − an
R)

(1 − aR)

=

[
d2(1 − aLa

n
R(aLa

n+1
R )m) − (aLa

n+1
R )m

(
an

RµL + µR
(1 − an

R)
(1 − aR)

)]
(1 − aLa

n+1
R )

1 − (aLa
n+1
R )m

(24)

and

ΦRLRn−1(RLRn)m : an
RaLµR + an

RµL + µR
(1 − an

R)
(1 − aR)

=

[
d2(1 − aLa

n
R(aLa

n+1
R )m) − (aLa

n+1
R )m−1

(
an

RµL + µR
(1 − an

R)
(1 − aR)

)]
(1 − aLa

n+1
R )

(1 − (aLa
n+1
R )m−1) + aLan

R(aLa
n+1
R )m−1(1 − aLa

n+1
R )

(25)
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which can also be written as

ΦLRn(RLRn)m : µR = d2(1 − aR) +
d2(1 − aL) − µL

aLH
′

1 +H ′ +
1 − an

R

(1 − aR)an
R

(26)

and

ΦRLRn−1(RLRn)m : µR = d2(1 − aR) +
d2(1 − aL) − µL

aLH
′′

1 +H ′′ +
1 − an

R

(1 − aR)an
R

(27)

where

H ′ =
1 −Am

L

(1 −AR)Am
R

, H ′′ = AR +
1 −Am−1

R

(1 −AR)Am−1
R

. (28)

Similarly from (16) and (17) we obtain, after substitution and rearranging:

ΦLRn+1(LRn)m : µR = d2(1 − aR) +
d2(1 − aL) − µL

aL

1 + S′′ +
1 − an

R

(1 − aR)an
R

(29)

ΦRLRn(LRn)m : µR = d2(1 − aR) +
d2(1 − aL) − µL

aL

1 + S′ +
1 − an

R

(1 − aR)an
R

(30)

where

S′ =
1 −Am

L

(1 −AL)Am
L

,

S′′ = AR +
1 −Am−1

L

(1 −AL)Am−1
L

(31)

giving the explicit equations of the second family of
BCB curves of second level, having ΦRLRn as limit
set. Clearly, companion families of second level,
between the BCB curves ΦRLn and ΦLRLn , also
exist, and the related BCB curves can be obtained
from the equations above, exchanging L and R and
vice versa. A few bifurcation curves of second com-
plexity level of map F in the plane (d2, µR) are
drawn in Fig. 2(b) (a few more in Fig. 7(b) of
Sec. 4.1).

In this work we are mainly interested in the
bifurcations occurring in the map with two dis-
continuity points, and in the following we shall
refer to the enlargement of Fig. 2(b). However, it
is clear that similar reasoning can be repeated in
the regions below, by self-similar behavior. In fact,
as it is immediate to see from Fig. 2(a), the bifur-
cation structure between the periodicity regions of
the 2-cycle and that of the fixed point in the R side

are repeated (with an obvious change in the peri-
ods) between any pair of regions ΠRLn+1 and ΠRLn ,
below the one here considered.

Let us first describe, in the next section, how
the adding scheme can be used in a generalized
context (as we shall do in Sec. 4 with two disconti-
nuities).

3. Adding Scheme for a Map
on Many Partitions

In the case of a map with one discontinuity point, a
commonly used way to describe the period adding
structure is based on the symbolic dynamics. In this
case, the procedure is as follows: denote sequences
corresponding to cycles with periods p1 and p2 as
σ and ρ, and the corresponding existence regions
as Π(σ) and Π(ρ). Then, between Π(σ) and Π(ρ)
there exists the region Π(σρ), between Π(σ) and
Π(σρ) there exists the region Π(σ2ρ), and so on. It
is easy to see that both the addition of the peri-
ods of the involved cycles and the Farey-addition3

of the corresponding rotation numbers are direct
consequences of the concatenation of the symbolic
sequences. The infinite directed graph consisting of
all sequences corresponding to the cycles in a period

3Defined by the rule a
b ⊕ c

d = a+c
b+d .
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adding structure is also called the (Farey-tree like)
symbolic sequence adding scheme, and the sequences
σ and ρ defining the starting nodes of this graph as
its starting sequences.

As remarked in the introduction, an impor-
tant result regarding the symbolic sequence adding
scheme was contributed already by Leonov [1959].
He introduced an interior structuring of the sym-
bolic sequence adding scheme based on the follow-
ing recursive process. Let σ and ρ be the starting
sequences (in fact, Leonov considered only the case
σ = L and ρ = R, but this does not represent any
restriction of the generality). Then the sequences
from the two infinite families {σnρ |n > 0} and
{σρn |n > 0} are called the sequences of the first
level of complexity. The key point of the recursive
structuring is to note that for any k ≥ 0 between
two subsequent sequences �n and �n+1 of the kth
level of complexity there exist two infinite families
{(�n)m�n+1 |m > 0} and {�n+1(�n)m |m > 0}
[the sequences of these families are called sequences
of the (k + 1)th level of complexity]. The advan-
tage of this recursive structuring of the symbolic
sequence adding scheme is due to the fact that it
can be used not only for determining the sequences
involved into the symbolic sequence adding scheme
but also for the calculation of the correspond-
ing bifurcation curves. For the particular case of
piecewise linear maps the resulting expressions
can be written in explicit form. This calculation
procedure is reported with some simplification com-
pared with the original Leonov’s approach (avoid-
ing an unnecessary coordinate transformation) in
[Gardini et al., 2010] and then, in a generalized
form (not related to the period adding bifurcation
structures) in [Avrutin et al., 2010]. It is demon-
strated in these works that it is much more effi-
cient than the usual calculation procedures and
allows to explicitly obtain much more bifurcation
curves.

Up to now, this technique has only been applied
to maps with one discontinuity point (as map F ), so
that the existing cycles have periodic points which
belong to the two partitions of the map. In our
case, the map T has three linear pieces, and we
shall describe the bifurcation structure associated

with cycles having periodic points in all three
partitions.

The main point in the use of the adding scheme
is to recognize when it can be applied. That is,
given any two cycles (with periods p1 and p2 and
related sequences σ and ρ), when can we say that
these can be used as starting sequences to get the
complete adding scheme? Our theorem answers this
question. We give sufficient conditions to apply
the adding scheme to discontinuous maps, indepen-
dently of the number of discontinuity points. Then
the complete binary tree can be computed, associ-
ated with the existence of related periodic orbits.
Also the Leonov’s method for the computation of
the BCB curves still works. However, it is worth to
note that in the case of two or more discontinuity
points, the cycles so determined in the complete tree
have no longer a direct relation with the rotation
numbers.4

3.1. Main theorem

As already mentioned, until now the applicabil-
ity of the symbolic sequence adding scheme for
the description of the period adding structures was
known for maps defined on two partitions. Below,
we demonstrate that the number of partitions on
which the map is defined is not significant. In
fact, the sufficient condition for the occurrence of
the period adding structure following the symbolic
sequence adding scheme is related with the exis-
tence of two stable cycles undergoing border colli-
sion bifurcations at the same parameter values and
colliding with the same discontinuity. Thus, it is not
necessary to have a map f with only one disconti-
nuity. The main point is that two BCB curves of
stable cycles, characterized by collisions on oppo-
site sides of the same discontinuity point, are inter-
secting [as qualitatively shown in Fig. 3(c)]. Then
infinitely many BCB curves issue from the intersec-
tion point P, which is a so-called big bang bifurcation
point. Let us prove the following.

Theorem 1. Let x′ = f(x) be a piecewise linear
map whose components have slopes all belonging
to the interval (0, 1), and assume the existence of
two BCB curves ΦL and ΦR in a parameter plane,

4When dealing with maps defined on many partitions the concept of rotation number needs to be basically reconsidered. For
example, for a k-periodic orbit of the map T considered in this work associated with three partitions labeled L, M and R
we can define the number of periodic points in the three partitions, say nL, nM , nR, with k = nL + nM + nR, and also the
fractions ni/k (for i = L, M, R). However, it must still be investigated whether this is useful and how. This argument is not
considered in this work.
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Fig. 3. Qualitative description of the map T in (33), and qualitative representation of the parameter plane, under the
assumptions of the theorem, as explained in the text.

boundaries of two overlapping periodicity regions,
intersecting at a point P, and related to the collision
with a discontinuity in x = d of two different
cycles of f from the left and right, respectively.
Then infinitely many BCB curves originate from
the point P . The symbolic sequences corresponding
to the orbits undergoing these BCBs can be deter-
mined using the adding scheme with the starting
sequences L and R.

Let us consider two different periodicity
regions, Π(pl) and Π(pr), as qualitatively shown in
Fig. 3(c), having an overlapping region. For param-
eters belonging to the boundary ΦL the cycle has
a periodic point x∗l (of period pl) colliding with the
discontinuity point x = d from the left, while at the
other BCB curve ΦR the periodic point x∗r (of period
pr) collides with d from the right. Let us define as TL
(resp. TR) the composite function which gives the
periodic point colliding with d from the left (resp.
right):

TL(x) = fσpl
◦ · · · ◦ fσ1(x)

TR(x) = fρpr
◦ · · · ◦ fρ1(x)

(32)

where σi (with i = 1, . . . , pl) and ρj (with j =
1, . . . , pr) are the suitable letters, giving the
symbolic sequence of the colliding point of the cycles
with periods pl and pr for map f . It is worth to
emphasize that we are not making any assump-
tions regarding the specific letters in the symbolic
sequence σ and ρ except for the first letters in
these sequences. By our assumptions, the first let-
ter in L = σ1 · · · σpl

, that is σ1, must correspond
for f to the partition located directly on the left
side of the discontinuity point d. Similarly, the first
letter in R = ρ1 · · · ρpr corresponds to the parti-
tion located directly on the right side of the dis-
continuity point d. All other letters σi (with i =
2, . . . , pl) and ρj (with j = 2, . . . , pr) may be arbi-
trary and correspond to any partition of f . By
our definition the composite functions TL and TR
collapse periodic points of f to fixed points, that
means TL(x∗r) = x∗r and TR(x∗l ) = x∗l . As a conse-
quence, when the parameters belong to the BCB
curve ΦL (resp. ΦR) we have TL(d) = d (resp.
TR(d) = d).

Then, we consider the map T defined via the
two functions TL and TR as follows:
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x′ = T (x),

T (x) =




TL(x) = fσpl
◦ · · · ◦ fL(x)

= Alx+Bl if x < d

TR(x) = fρpr
◦ · · · ◦ fR(x)

= Arx+Br if x > d

(33)

where Al ∈ (0, 1) and Ar ∈ (0, 1). Considering the
qualitative shape of a composite map, for exam-
ple, TL(x), when the parameters cross the related
periodicity regions we can state that the shape of
the map defined by TL (resp. TR) for x < d (resp.
x > d) is locally (in a neighborhood of the disconti-
nuity point x = d) as reported in Fig. 3(a), where we
have used blue (resp. red) colors for the branches.
The figure shows the shapes of the functions in the
three possible situations when the fixed points exist,
collide, and do not exist. Crossing the BCB curves
through an arc γ (resp. η) as shown in Fig. 3(d), the
shapes of the composite functions change as shown
in Fig. 3(a).

When a parameter point belongs to the over-
lapping region Π(pl)∩Π(pr) both cycles exist, while
inside the nonoverlapping parts of the regions Π(pl)
and Π(pr) only one of these cycles exists, and they
both do not exist when a parameter point belongs
to the region between the two curves ΦL and ΦR.

At the point P where the two BCB curves
ΦL and ΦR are intersecting we have both (Bl +
Ald) = d and (Br + Ard) = d, thus the map
T is continuous at the point x = d. In the two-
dimensional parameter plane (Br, Bl) the point P
corresponds to (Br, Bl) = (Br, Bl) where Br =
d(1 −Ar) and Bl = d(1 −Al).

From the continuity of T in x = d when the
parameters are in P, we have that considering a
point between the periodicity regions, in a neigh-
borhood of P, the qualitative shape of the map
is as shown in Fig. 3(b). That is, we necessar-
ily have (Bl + Ald) > d and (Br + Ard) < d.
Therefore, we can define an absorbing interval I =
[TR(d), TL(d)] = [Br + Ard,Bl + Ald], inside which
the map (with two increasing branches) is confined.
According to our assumptions no unstable cycle can
exist, thus the attracting set in I can be a periodic
orbit or there exist quasiperiodic orbits or an Invari-
ant Cantor set.

The proof of Theorem 1 is performed in three
steps. First, we prove the existence of a region

associated with a two cycle of T , then, in Step 2 we
prove that the arguments can be repeated, showing
the existence of two infinite families of periodicity
regions associated with cycles having the symbol
sequence LRm, for any m > 1, having ΦR as limit
set, and RLm, m > 1, having ΦL as limit set. These
two families are of first level of complexity. Then
in Step 3 we state that all the complexity levels
exist.

Step 1. Let us first show that moving the param-
eter point along an arc (g) as qualitatively shown
in Fig. 3(c), close enough to P , we must necessar-
ily cross the periodicity region of a 2-cycle of T . To
prove this, let us consider the second iterate of T ,
i.e. the map T 2 given by{

TR ◦ TL(x) = ArAlx+ (Br +ArBl) if x < d

TL ◦ TR(x) = ArAlx+ (Bl +AlBr) if x > d

(34)

then the graph of T 2 on the left side of d is a line
(with positive slope and smaller than those of T )
connecting the points ((Br + Ard), TR ◦ TL(Br +
Ard)) and (d, TR ◦ TL(d)), where

TR ◦ TL(d) = ArAld+ (Br +ArBl)

TR ◦ TL(Br +Ard) = ArAl(Br +Ard)

+ (Br +ArBl).

(35)

Notice that if the parameter point moves along a
path as (g) in Fig. 3(c), from a point belonging to
ΦL (where (Bl + Ald) = d and (Br + Ard) < d)
approaching the other BCB curve, the value of
(Bl + Ald) increases, (Bl + Ald) > d, and once
that parameter point reaches the curve ΦR we
have (Br + Ard) = d. Thus the parameter point
(Br, Bl) must cross the quadrant along a path (G)
as schematically shown in Fig. 3(e).

Then the sufficient conditions which guarantee
that T 2 has a fixed point on the left side are:

TR ◦ TL(d) = (Br +ArBl)

+ArAld < d (36)

TR ◦ TL(Br +Ard) = (Br +ArBl)

+ArAl(Br +Ard)

> (Br +Ard). (37)

This second condition is fulfilled for Bl + Al(Br +
Ard) > d, that is, for (Bl+AlBr)+ArAld > d. Thus
both the inequalities in (36) and (37) are satisfied
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when

−AlBr + d(1 −ArAl)

< Bl <
1
Ar

[−Br + d(1 −ArAl)] (38)

which is a cone crossing the quadrant of interest
of the plane (Br, Bl) (as Al < 1 and 1

Ar
> 1), as

qualitatively shown in Fig. 3(e), so that this region
must necessarily be crossed from the arc (G).

Clearly we get analogous results for the map
TL ◦ TR(x). It is enough to replace R and L with L
and R, respectively, and exchange the inequalities,
to see that the conditions are satisfied in the same
region, and thus also a fixed point for TL ◦TR exists
on the right side of d.

Summarizing, under the given assumptions, we
have seen that between the two boundaries ΦL

and ΦR a 2-cycle of T exists, with periodic points
given by the fixed point equations TR ◦ TL(x) =
x and TL ◦ TR(x) = x. Notice that the two
equations

ΦLR : Bl = −AlBr + d(1 −ArAl) (39)

ΦRL : Bl =
1
Ar

[−Br + d(1 −ArAl)] (40)

give the BCB curves of the 2-cycle of T . In fact, the
parameters at which a BCB occurs for the 2-cycle
are given by TR ◦ TL(d) = d, which corresponds to

the first equation, and by TL ◦ TR(d) = d, which
corresponds to the second one.

Moreover, from the fact that when the param-
eter point is on ΦL (where (Bl +Ald) = d) we have
TR ◦ TL(Br + Ard) < TR ◦ TL(d) < d, we can state
that in the region between ΦL and the periodicity
region of the 2-cycle this sign is kept, and thus the
BCB at which we have TR ◦TL(d) = d (BCB where
the boundary d collides from the left side) corre-
sponds to the boundary of the periodicity region of
the 2-cycle farthest from ΦL, as shown in Figs. 3(c)
and 3(d). The other one is clearly a BCB where the
boundary d collides from the right side.

Thus the symbolic sequence of the 2-cycle so
obtained is LR (or RL as it is cyclic invariant), how-
ever it is important to recall that the BCB curve of
equation TR ◦TL(d) = d is associated with the peri-
odic point having symbolic sequence LR while the
other BCB curve of equation TL ◦ TR(d) = d to the
symbolic sequence RL. In terms of the starting sym-
bolic sequences associated with the original map
f , to get the symbolic sequence of the new cycle
we have to concatenate the two starting sequences,
substituting the symbolic sequence σ1 · · · σpl

to L
and ρ1 · · · ρpr to R, so that LR = σ1 · · · σpl

ρ1 · · · ρpr

and RL = ρ1 · · · ρprσ1 · · · σpl
.

Step 2. Now, considering the periodicity region of
the 2-cycle determined above, say Π(LR), along a
path crossing Π(LR) as shown in Fig. 4: the shape

Fig. 4. Qualitative description of the map T 2 at different points of the parameter plane crossing the periodicity region Π(LR).
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Fig. 5. Qualitative representation in the parameter plane of the periodicity regions, as explained in the text.

of the map T 2 changes as schematically shown in
the same picture. It follows that when considering
a point close enough to P between the BCB curves
ΦL and ΦRL as shown in dark green in Fig. 5(a),
then the branches of the map defined as

TL(x) = Alx+Bl if x < d

TL ◦ TR(x) = ArAlx+ (Bl +AlBr) if x > d

(41)

have the qualitative shape reported in the green
rectangle of Fig. 5(b). Here, we can use the same
arguments considered above (in Step 1), to prove
that a 2-cycle of this map must exist in a proper
periodicity region between the two starting BCB
curves. The region of existence of this 2-cycle cor-
responds, for the map in (33), to a cycle of period
3 with symbolic sequence RL2 (and for the origi-
nal map f , it is obtained substituting the symbolic
sequence σ1 · · · σpl

to L and ρ1 · · · ρpr to R). The
two BCB curves at the boundaries are given by:

ΦRL2 : T 2
L
◦ TR(d) = d

ΦLRL : TL ◦ TR ◦ TL(d) = d.
(42)

Similarly, considering a point close enough to
P between the BCB curves ΦLR and ΦR as shown
in light green in Fig. 5(a), the branches of the map
defined as

TR ◦ TL(x) = ArAlx+ (Br +ArBl) if x < d

TR(x) = Arx+Br if x > d

(43)

have the qualitative shape reported in the green
rectangle of Fig. 5(c), and as before we can state
that a 2-cycle of this map must exist in a proper
periodicity region between the two starting BCB
curves. The region of existence of this 2-cycle cor-
responds, for the map T in (33), to a cycle of
period 3 with symbolic sequence LR2 (and for
the original map f it is obtained by substituting
the symbolic sequence σ1 · · · σpl

to L and ρ1 · · · ρpr

to R). The two BCB curves at the boundaries are
given by:

ΦLR2 : T 2
R
◦ TL(d) = d

ΦRLR : TR ◦ TL ◦ TR(d) = d.
(44)

Thus the two green regions shown in Fig. 5(d)
have been proved to exist, with the symbolic
sequence as given above.

It is clear that we can continue reasoning in a
similar way. In each step we construct new maps
analogous to (41) and (43) and prove for these
maps the existence of a 2-cycle as well as the loca-
tion of the corresponding region in the parameter
space. That is, considering (for any k ≥ 1) the map
defined as

TL(x) if x < d, T k
L
◦ TR(x) if x > d (45)

we can prove the existence of a 2-cycle, leading to
a cycle of period (k+ 2) of T . Similarly considering
(for any k ≥ 1) the map defined as

T k
R
◦ TL(x) if x < d, TR(x) if x > d. (46)
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So we are led to find two families of periodic-
ity regions, associated with cycles of T having the
symbolic sequence RLm (accumulating on the BCB
curve ΦL) for any m ≥ 1 and LRm (accumulat-
ing on the BCB curve ΦR) for any m ≥ 1 (for
m = 1 the two families give the same periodicity
region).

Between the two BCB curves ΦL and ΦRL we
have the two BCB curves ΦLRL and ΦRL2 in the
order shown in Fig. 5(d); between the two BCB
curves ΦLR and ΦR there exist two BCB curves
ΦLR2 and ΦRLR; between the two BCB curves ΦL
and ΦRL2 we have the two BCB curves ΦLRL2 and
ΦRL3 in the order shown in Fig. 5(d), and so on
iteratively.

Summarizing, we have that for any m ≥ 1 the
cycles of the family LRm exist and the two BCB
curves of the periodicity region ΠLRm (accumulat-
ing on the BCB curve ΦR) are given by the following
equations:

ΦLRm : Tm
R

◦ TL(d) = d (47)

ΦRLRm−1 : Tm−1
R

◦ TL ◦ TR(d) = d (48)

and similarly for m > 1 the cycles of the family
RLm exist and the two BCB curves of the period-
icity region ΠRLm are given by (changing L and R

into R and L, respectively)

ΦRLm : Tm
L

◦ TR(d) = d (49)

ΦLRLm−1 : Tm−1
L

◦ TR ◦ TL(d) = d. (50)

So far we have proved for the map (33), the exis-
tence of the periodicity regions of cycles associ-
ated with symbolic sequence with the first level of
complexity.

Step 3. Then we can continue in a similar way:
between any pair of subsequent periodicity regions
of first level, close enough to P , the shape of
the map is the same and we can repeat the two
steps described above and summarized in Fig. 5.
For example, between the two periodicity regions
ΠLRn and ΠLRn+1 , we have to consider the two
BCB curves given by ΦLRn (on which the n-cycle
has a periodic point colliding from the left side
of d) and by ΦRLRn (on which the (n + 1)-cycle
has a periodic point colliding from the right side
of d). This means that we have to consider the
function T n

R
◦ TL(x) for x < d, and the func-

tion T n
R
◦ TL ◦ TR(x) for x > d, and via Steps 1

and 2 used above, we obtain the existence of the
two families of periodicity regions (between ΦLRn

and ΦRLRn) of cycles of second level of complex-
ity, with symbolic sequences LRn(RLRn)m and
RLRn(LRn)m.

The process can be continued iteratively, as
at each step the new periodicity regions so cre-
ated are between the two starting ones, leaving
an empty space where we can continue. Thus the
process can never end, leading to the BCB curves
of any complexity level, always bounding period-
icity regions associated with a stable cycle of the
map T .

Apart from the periodicity regions, the resid-
ual set (limit set of BCB curves) corresponds to
parameters associated with irrational rotation num-
bers and an invariant Cantor set. We have so proved
our theorem, leading to the existence of a whole fan
of periodicity regions issuing from the crossing point
P , bounded by BCB curves of any complexity level,
densely filling the region between the curves ΦL
and ΦR.

The reader can realize that the structure of
Fig. 5(d) is that one observed in Fig. 2 issuing from
the points P2 and P3, and this will be discussed in
Sec. 4. Let us first show, in the next subsection, that
Leonov’s approach can be applied to compute the
explicit equations of the BCB curves.

3.2. BCB curves and Leonov’s
method

We recall that under our assumptions, moving the
parameters along the path (g) as in Fig. 3(c), the
map T in (33) has the qualitative shape described in
Fig. 3(b), then the existence of the stable cycles was
also proved in a theorem by [Keener, 1980]. How-
ever, it is worth to note that the theorem proved
above not only guarantees the existence of the
period adding structure issuing from the intersec-
tion point of two border collision bifurcation curves
but also provides us with an analytical framework
for the calculation of the border collision bifurcation
curves bounding the periodicity regions forming this
structure. Indeed, since the map we are considering
is piecewise linear, the implicit equations of first
complexity level in (47) and (48) can be written
also in explicit form:

ΦLRm : Br =
[d(1 −AlA

m
r ) −Am

r Bl](1 −Ar)
(1 −Am

r )
(51)
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ΦRLRm−1 : Br =
[d(1 −AlA

m
r ) −Am−1

r Bl](1 −Ar)
(1 −Am−1

r ) +AlA
m−1
r (1 −Ar)

.

(52)

Clearly Eqs. (49) and (50) can easily be obtained
by using the symmetric property, and are given
explicitly by:

ΦRLm : Bl =
[d(1 −ArA

m
l ) −Am

l Br](1 −Al)
(1 −Am

l )
(53)

ΦLRLm−1 : Bl =
[d(1 −ArA

m
l ) −Am−1

l Br](1 −Al)
(1 −Am−1

l ) +ArA
m−1
l (1 −Al)

.

(54)

Moreover, besides the BCB curves of the periodic-
ity regions of cycles of first level, we can have the
explicit equations of the BCB curves of any level
of complexity. This can be obtained, for example,
following Leonov’s approach (as proposed in [Gar-
dini et al., 2010]), which consists of a map on the
coefficients leading from BCB curves of a level k to
those of the next level k + 1 (also the more general
map replacement technique, as proposed in [Avrutin
et al., 2010], can be used, having the same purpose,
and leading to the same results).

Once we have obtained the first two families of
BCB curves of first complexity level (for example,
given in (51) and (52)), considering two subse-
quent periodicity regions ΠLRn and ΠLRn+1 , the
two subsequent BCB curves are given by ΦLRn and
ΦRLRn , so that the map as in (33) can be considered
defined via the two functions T̃L and T̃R as follows,
T̃L(x) = T n

R
◦ TL(x) and T̃R(x) = T n

R
◦ TL ◦ TR(x).

That is:

x′ = T (x),

T (x) =

{
T̃L(x) = Ãlx+ B̃l if x < d

T̃R(x) = Ãrx+ B̃r if x > d

(55)

where the coefficients are given by:

Ãl = AlA
n
r , B̃l = An

rBl +Br
(1 −An

r )
(1 −Ar)

Ãr = AlA
n+1
r , B̃r = An

rAlBr + B̃l.

(56)

All the results of the BCB curves previously
obtained can now be used, substituting the new
coefficients Ãl, B̃l, Ãr and B̃r to the old ones Al,
Bl, Ar and Br. This leads to two infinite families
of BCB curves of second complexity level. For

the periodicity regions ΠLRn(LRn+1)m the bound-
ary is given by the BCB curves ΦLRn(RLRn)m and
Φ(RLRn)LRn(RLRn)m−1 from (51) and (52):

ΦLRn(RLRn)m :

B̃r =
[d(1 − ÃlÃ

m
r ) − Ãm

r B̃l](1 − Ãr)
(1 − Ãm

r )
(57)

Φ(RLRn)LRn(RLRn)m−1 :

B̃r =
[d(1 − ÃlÃ

m
r ) − Ãm−1

r B̃l](1 − Ãr)
(1 − Ãm−1

r ) + ÃlÃ
m−1
r (1 − Ãr)

(58)

and substituting in (57) the expressions given
in (56) the BCBs of second level are obtained as
a function of the parameters of the map in (33).
Similarly, from (53) and (54) we can obtain the
boundaries of the periodicity regions ΠLRn+1(LRn)m

of the second infinite family. This mechanism
can be repeated iteratively as a map of the
coefficients.

4. Bifurcation Curves of the Map T

In this section, we consider the map T with two
discontinuity points d1 and d2, with d1 < d2, and
the other parameters as given in (2). In order
to simplify our reasoning we shall consider this
new discontinuity point d1 as a parameter which
is varied: it is decreased starting from d2. When
d1 = d2 the map T reduces to F , and the dynamics
are known, as recalled in Sec. 2. Thus we consider
d1 < d2, and assume that the second discontinuity
point is fixed at d2 = d2. We illustrate the bifur-
cation curves of the map T in the same figure, as
shown in Fig. 2, for d1 < d2 = 1.8. That is, the
bifurcation curves of the map T as a function of
the parameters d1 and µR are those corresponding
to the boundaries of the different colored regions in
the left part of Fig. 2, i.e. the region characterized
by d1 < d2 = 1.8. In this case, among the param-
eters that are kept fixed and given in (3), there
is also the value of the upper discontinuity point:
d2 = d2 = 1.8.

In order to obtain the analytical expressions
of the bifurcation curves, we proceed by steps,
analyzing different regions of the phase plane in
Fig. 2(b) in the next subsections. First consider-
ing the periodicity regions connected with d2 = 1.8
(involving only two branches of function T ), then
considering the periodicity regions having trian-
gular shape (involving three branches of T ), and
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finally the periodicity regions having quadrilateral
shape (also involving three branches of T ).

As the map T has two discontinuities, our nota-
tion must be extended in order to allow us to dis-
tinguish between BCBs caused by the collisions of
a cycle with d1 and with d2. In the following, in the
range d1 < d2 we shall use φ to denote BCB curves
due to collision with d1 while with ψ we denote
those due to collision with d2 (so that in this sec-
tion the notation Φ refers to F whereas φ and ψ
refer to T ).

4.1. Periodicity regions associated
with L and R branches only

Let us start describing what occurs to the bifurca-
tion curves already existing for the map with only
one discontinuity point (i.e. map F and the related
bifurcation curves shown in Fig. 2 for d2 > 1.8)
when a new discontinuity is introduced in d1 < d2.
When d1is close enough to d2, all the periodicity
regions associated with the cycles existing for F
also exist for T, but keeping fixed d2 their bound-
aries are changed. Even if a third branch of the map
is introduced, the cycles of the map T associated
with the periodicity regions coming from those of
the map F are such that the related cycles have
periodic points belonging only to the first and third
branches (denoted by the letters L and R respec-
tively), i.e. the cycle has no periodic points in the
middle region (denoted by M). This case is clearly
simple to analyze. The example associated with a
3-cycle LR2 is shown in Fig. 6. Therefore, the BCBs
of a cycle associated with the symbolic sequence
LRn occur due to the collision of the periodic point
in L with the discontinuity point d1 and by the colli-
sion of the smallest point inR with the discontinuity
point d2. Hence, the upper boundary of its existence
region is the same curve that we have already cal-
culated in Sec. 2. The equation of this BCB is given
by (13), which we rewrite for convenience, because
now it is a function of the discontinuity point d1

(and not of d2):

φLRn : µR =
[d1(1 − aLa

n
R) − an

RµL](1 − aR)
(1 − an

R)
.

(59)

For n = 2 we have the upper boundary of the region
ΠLR2 of the 3-cycle in Fig. 7 [the shape of the map
at this BCB is shown in Fig. 6(a)].

We know that for the map F the region of exis-
tence for d2 > d2 = 1.8 closes when the last periodic

(a)

(b)

Fig. 6. BCB of a 3-cycle. (a) BCB due to the merging of x∗
0

with d1. (b) BCB due to the merging of x∗
2 with d2.

point x∗n in the R side reaches the discontinuity
point d2, and its equation ΦRLRn−1 is given by (14).
Also now, for the map T in (1), the BCB giving
the boundary of the existence region (i.e. border
collision causing the disappearance of the cycle)
occurs when the last periodic point of the cycle
in the R side reaches the discontinuity point d2

[Fig. 6(b) shows this BCB for the 3-cycle]. That
is, the lower boundaries of such a periodicity region
in the parameter plane (d1, µR) are the same curves
that we have already found for the map (4), with
the fixed value for d2, i.e. d2 = d2 (d2 = 1.8 in our
examples):

ψRLRn−1 : µR =
[d2(1 − aLa

n
R) − an−1

R µL](1 − aR)
(1 − an−1

R ) + aLa
n−1
R (1 − aR)

.

(60)

This curve is a horizontal straight line in the param-
eter plane (d1, µR). The shape of the map T when
the parameters are in the upper and the lower
points of the region of the 3-cycle crossed by the
vertical hatched line in Fig. 7(b), for d1 < d2, are
shown in Figs. 6(a) and 6(b), respectively.

The periodicity regions in the parameter plane
(d1, µR) bounded by the curves whose equations are
given above, in (59) and (60), exist up to their inter-
section. In the case of the periodicity regions of
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(a)

(b)

Fig. 7. Enlarged part of Fig. 1, with BCB curves obtained
analytically in (b).

first level of complexity given above, the intersec-
tion point between the upper and the lower bound-
aries can be calculated using Eqs. (59) and (60) and
is given by:

d1 =
an

RµL

(1 − aLan
R)

+
[d2(1 − aLa

n
R) − an−1

R µL](1 − an
R)

[(1 − an−1
R ) + aLa

n−1
R (1 − aR)](1 − aLa

n
R)
.

(61)

For n = 2, 3, . . . , i.e. for the periods 3, 4, 5, . . . see
the main regions in Fig. 7.

What we have explained above (the equations
of the BCB curves of the first level of complex-
ity) also holds for all the regions of any level of
complexity existing on the right side of d2 for
the map F . For example, the periodicity regions
associated with cycles of the second level of com-
plexity computed in Sec. 2 in (26) and (27) are
used to obtain the BCB curves of T . So the
upper boundary is given by the following BCB
curves:

φLRn(RLRn)m :

µR = d1(1 − aR) +
d1(1 − aL) − µL

aLH
′

1 +H ′ +
1 − an

R

(1 − aR)an
R

(62)

and the lower horizontal line by:

ψRLRn−1(RLRn)m :

µR = d2(1 − aR) +
d2(1 − aL) − µL

aLH
′′

1 +H
′′ +

1 − an
R

(1 − aR)an
R

(63)

so that their intersection point is obtained when d1

satisfies the following equation:

d1(1 − aR) +
d1(1 − aL) − µL

aLH
′

1 +H ′ +
1 − an

R

(1 − aR)an
R

= d2(1 − aR) +
d2(1 − aL) − µL

aLH
′′

1 +H ′′ +
1 − an

R

(1 − aR)an
R

. (64)

Also for the other pairs of regions of the second level
of complexity [from Eqs. (29) and (30)] we have now
regions with the upper boundary given by

φLRn+1(LRn)m :

µR = d1(1 − aR) +
d1(1 − aL) − µL

aL

1 + S′ +
1 − an

R

(1 − aR)an
R

(65)

and the lower horizontal line by

ψRLRn(LRn)m :

µR = d2(1 − aR) +
d2(1 − aL) − µL

aL

1 + S′′ +
1 − an

R

(1 − aR)an
R

(66)
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so that their intersection point is obtained when d1

satisfies the following equation:

d1(1 − aR) +
d1(1 − aL) − µL

aL

1 + S′ +
1 − an

R

(1 − aR)an
R

= d2(1 − aR) +
d2(1 − aL) − µL

aL

1 + S′′ +
1 − an

R

(1 − aR)an
R

. (67)

Some of these regions of second level of complexity
are drawn, in color, in Fig. 7(b). Similarly we can
reason for all the other bifurcation curves of the
map T , involving only the L and R branches.

Summarizing: All periodicity regions existing for the
map F also exist for the map T in a suitable region
of the complete parameter space and, as we will see
below, the related cycle may be the unique one for T,
or it may coexist with another cycle whose periodic
points also involve the middle branch M . The peri-
odicity regions of these cycles are, in our figures, all
those starting in the range d2 > d2 and entering in
the range d1 < d2 with a horizontal line as lower
boundary.

4.2. Coexistence

As already mentioned in the Introduction, with two
discontinuity points, our map may have coexisting
cycles. The discontinuity points behave as critical
points in the smooth case, and each discontinuity
point may be associated with at least one attracting
set. In the cases considered in this paper, with pos-
itive slopes and smaller than 1 (which implies that
the invariant sets may only be attracting cycles or
an invariant Cantor set), each discontinuity point
may be associated with only one attracting cycle.
In fact, it is known that two different attracting
cycles may be associated with the two extrema at
one discontinuity point only when the two branches
of the map are one increasing and one decreasing
(see [Avrutin & Schanz, 2006; Avrutin et al., 2006;
Gardini & Tramontana, 2010]). Thus in the param-
eter regions considered in this paper, the map T can
have at most two coexisting cycles. A few hatched
regions, which are the simplest cases of coexistence,
are clearly shown in Fig. 7(a), and we can see that
there exist several other overlapping regions, asso-
ciated with the coexistence of two different cycles
of T .

The coexistence for itself is not so unexpected.
However, the overlapping of two regions leads, in
the parameter space, to the intersection of two dif-
ferent BCB curves. On each curve, a periodic point
of a cycle collides with one discontinuity point.
Thus at each crossing point we have only two
possibilities:

(j) either the two cycles of T are colliding with the
same discontinuity point, or

(jj ) one cycle of T collides with d1 and the other
with d2.

In the case (j) the intersection point is a big-
bang bifurcation point at which Theorem 1 can be
applied. Thus a complete set of periodicity regions
issues from such a point, and knowing the sequences
of the colliding cycles we are able to predict the
sequences of everything that emerges there. The
bifurcation points denoted as P2 and P3 in Fig. 7
are of such kind.

In the case (jj ) the intersection point plays a
different role. No periodicity region issues from it.
However, an intersection of two BCB curves leads to
four regions: one of overlapping (associated with the
coexistence of the two cycles), two regions of single
existence, and one region in which both cycles do
not exist. In our case (where repelling cycles can-
not exist) this region clearly cannot be empty. The
two regions of single existence have one side which
is the limit set of infinitely many BCB curves. Thus
their intersection leads to a new kind of bifurca-
tion point, limit sets of a doubly infinite sequence
of other periodicity regions. This bifurcation point
(at which two cycles collide) is a limit set of a dou-
bly infinite sequence of BCB curves. The points
denoted as S2 and S3 in Fig. 7 are of this kind,
as well as all the points associated with the other
overlapping regions shown in Fig. 7, except for P2

and P3.
Let us now start with the simplest cycles. The

lower region of the 2-cycle called 2a in Fig. 7(a)
refers to the 2-cycle with periodic points in the
L and R branches. This region is bounded by the
bifurcation curve described in the previous subsec-
tion: it is given by the upper boundary of the region
of the first level of complexity obtained from the
curve in (59) with n = 1, that is, the straight
line

φLR : µR = d1(1 − aLaR) − aRµL for d1 < d2.

(68)
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The upper region [with the number 1 in Fig. 7(a)] is
the region of stability of the fixed point P ∗

R = µR
1−aR

of the right branch. Its region in the parameter
plane (d2, µR) is bounded below by the straight
line

ΦR : µR = d2(1 − aR) for d2 > d2 (69)

and by the horizontal line

ψR : µR = d2(1 − aR) for d1 < d2 (70)

in the parameter plane (d1, µR).
In Fig. 7(a) we also see another region asso-

ciated with a 2-cycle, called 2b, which is related
with periodic points to the two branches L and M .
From the condition x = fM ◦ fL(x) = aM (aLx +
µL)+µM , we have the periodic points of this 2-cycle,
that is:

x∗L =
aMµL + µM

1 − aLaM
,

x∗M = fL(x∗L) = aL
aMµL + µM

1 − aLaM
+ µL

(71)

and it exists when x∗L < d1 and d1 < x∗M (and
clearly also x∗M < d2). It follows that one boundary
of the existing region of this 2b-cycle is given by
x∗M = d1, that is,

φML : d1 = d∗1, d∗1 = aL
aMµL + µM

1 − aLaM
+ µL (72)

[the vertical line in Fig. 7(a) at d1 = d∗1 � 1.61644,
as it is independent of µR], and the other boundary
is given by x∗L = d1, that is

φLM : d1 =
aMµL + µM

1 − aLaM
(73)

(which is not in the parameter range of our figure).
As it is easy to see in Fig. 7(a), the vertical strip

of the 2b-cycle intersects the regions of several other
coexisting cycles (hatched regions): the fixed point,
the 3-cycle of first level of complexity, the 2a-cycle
of first level of complexity, and more intersections
exist for lower values of the parameter µR [with all
the families of the first level of complexity below the
2a-cycle as shown in Fig. 2(a)].

In Fig. 7(b) the point P2 given by the intersec-
tion between φML and φLR satisfies the assumptions
of Theorem 1 at the discontinuity point x = d1.
In fact, the periodic point of the 2-cycle 2a is col-
lides from the left side of d1 while the periodic point
x∗M of the 2-cycle 2b is collides from the right side

of d1. Thus we know that from this bifurcation
point, a set of infinitely many other BCB curves
will emerge, in a proper adding structure, and the
related starting sequences in order to apply Theo-
rem 1 are L = LR and R = ML (which we shall use
in the next subsection).

Similarly the point P3 given by the intersection
between φML and φLRR satisfies the assumptions of
the theorem at the discontinuity point x = d1. In
fact, the periodic point of the 3-cycle of T having
symbolic sequence RLR is collides from the left side
of d1 while the periodic point x∗M of the 2-cycle 2b
is collides from the right side of d1. So the related
starting sequences in order to apply Theorem 1 are
L = LRR and R = ML.

The intersection of the bifurcation curve φML

with the BCB curves ψR given above and ψRLR

(given in (60) for n = 2) leads to the points S2

and S3, respectively.
Besides the overlapping regions associated with

the coexistence with the 2b-cycle, it is clear that
infinitely many regions of coexistence exist in the
strip bounded by the vertical lines d1 = d∗1 �
1.61644 and d1 = d2 = 1.8. This region in the mid-
dle is associated with cycles having periodic points
also in the middle branch M , and we have infinitely
many overlappings in regions both with triangular
and quadrilateral shapes, a few of which are shown
in Fig. 7.

As we have seen, all the BCB curves in the
strip (d∗1, d2) issuing from d2 are of triangular shape
and a portion is overlapped with different triangular
regions issuing from P2. For example, in Fig. 7(b)
see the overlapping between the region of a 4-cycle,
involving periodic points in the L and M branches,
and the region of a 5-cycle, involving periodic points
in the branches L and R. As we shall see below,
all the BCB curves in the strip (d∗1, d2) issuing
from P2 are of triangular shape and one corner is
overlapped with different other regions: the fan on
the right side of the periodicity region of the 4-
cycle with regions coming from d2, while the fan
of triangular shape on the left side of the same
region has a corner overlapped with periodicity
regions having quadrilateral shape. All the period-
icity regions of quadrilateral shape have two oppo-
site corners which overlap with two other different
regions. See, as an example, the period 7 region
shown in Fig. 7(a) in the middle region. These peri-
odicity regions will be explained in the following
subsections.
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4.3. Periodicity regions issuing
from P2

We can see the parameter region in the strip (d∗1, d2)
as the interaction of two maps having both one
discontinuity point (in different places). That is, as
we have seen above, when the parameter d1 is far
from d2 (for d1 < d∗1, as defined in (72)) we have
cycles associated only with the first two branches of
the map, i.e. with fL(x) and fM(x) and the discon-
tinuity d1. When no periodic point belongs to the
branch R then we exactly have the dynamics asso-
ciated with a map having only one discontinuity
point. In this case, with the obvious changes in
the parameters, we can repeat all what we have
described in Sec. 2 for the map with only one discon-
tinuity (clearly using the branches L and M instead
of L and R and discontinuity point d1 instead of
d2). By contrast, when the parameter d1 is between
d∗1 and d2, then we are in a parameter region truly
new, where, apart from the cycles already described
in Sec. 4.1, the cycles have periodic points in all the
three branches of T .

Here we shall characterize the BCB issuing
from the intersection points of two different BCB
curves, as the point P2 already described in Sec. 4.2.
Clearly we can reason similarly for the intersec-
tion point P3, and for the infinitely many simi-
lar points existing at lower values of µR, as shown
in Fig. 2(a).

As already remarked, considering the bifurca-
tion point P2, given [from the intersection of φML

and φLR in Eqs. (68) and (72)] by:

P2 = (d∗1, d
∗
1(1 − aLaR) − aRµL),

d∗1 = aL
aMµL + µM

1 − aLaM
+ µL

(74)

we are in the proper situation to apply the adding
scheme described in Sec. 3, and the related starting
sequences are L = LR and R = ML.

As an example, in Fig. 8 we show the bifur-
cation occurring when a parameter point crosses
from the region of bistability through P2 to the
right side, where the 2-cycles do not exist. Con-
sider the regions ΠLR and ΠML. Taking a point in
the overlapping region, then the two 2-cycles coex-
ist, as shown in Fig. 8(a). The 2a-cycle has peri-
odic points {y∗L, y∗R}, while the 2b-cycle has periodic
points {x∗L, x∗M} with x∗L < y∗L. Their basins are
separated by the two discontinuity points d1 and d2

and their preimages. If the parameters are changed
so that (d1, µR) belongs to the opposite side of the
crossing, where both the 2-cycles do not exist, then,
as we know from Sec. 3, infinitely many distinct
periodicity regions exist. In Fig. 8(b) we show an
example with an attracting 4-cycle (which is the
main periodicity region between φML and φLR).

In order to determine the two lateral bound-
aries of the BCB curves of the periodicity regions
issuing from P2 and having a triangular shape, we
follow the steps described in Sec. 3. Considering as
ΦL the BCB curve φLR and as ΦR the BCB curve
φML, we can use the map defined in (33) with the

(a) (b)

Fig. 8. (a) Two coexisting cycles of period 2, at the parameters’ values given in (3) and µR = 0.5, d1 = 1.585, d2 = 1.8.
(b) A unique 4-cycle existing at µR = 0.67, d1 = 1.65, d2 = 1.8.
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composite functions TL and TR given by

TL(x) = fR ◦ fL(x) = Alx+Bl,

Al = aLaR, Bl = aRµL + µR

(75)

TR(x) = fL ◦ fM(x) = Arx+Br,

Ar = aLaM , Br = aLµM + µL.
(76)

Then, all the infinite families (of first level of com-
plexity) of periodicity regions of cycles having the
symbolic sequence LRm and RLm for any m ≥ 1
lead to a fan of regions issuing from P2, between
the two starting BCB curves φLR and φML.

Let us first consider the family LRm which
is involved in periodicity regions having as limit
set the BCB curve φML. In order to determine
the BCB curves on the two boundaries of these
regions, we can use Eqs. (51) and (52), with d = d1,
and the parameters Al, Bl, Ar and Br defined in
(75) and (76), respectively. Then, rearranging, we
obtain:

φ(LR)(ML)m :

µR =
d1(1 −AlA

m
r )

Am
r

− Br(1 −Am
r )

Am
r (1 −Ar)

− aRµL

φ(ML)(LR)(ML)m−1 :

µR =
d1(1 −AlA

m
r )

Am−1
r

− Br[(1 −Am−1
r ) +AlA

m−1
r (1 −Ar)]

Am−1
r (1 −Ar)

− aRµL.

The bifurcation curves φ(LR)(ML)m give the straight
lines representing the left boundaries of the period-
icity regions of the cycles of period k = 2 + 2m =
2(1 + m) which have the BCB curve φML as limit
set, as shown in Fig. 9(b) for m = 1, 2, 3. The curves
φ(ML)(LR)(ML)m−1 represent the right boundaries of
these periodicity regions.

Now consider the other family of cycles with
symbolic sequence RLm, from Eqs. (53) and (54),
with d= d1, and the parameters Al, Bl, Ar and Br

defined in (75) and (76), respectively, we obtain:

φ(ML)(LR)m :

µR =
[d1(1 −ArA

m
l ) −Am

l Br](1 −Al)
(1 −Am

l )

− aRµL (77)

Fig. 9. Enlarged part of Fig. 1, with BCB curves obtained analytically in (b).
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and:

φ(LR)(ML)(LR)m−1 :

µR =
[d1(1 −ArA

m
l ) −Am−1

l Br](1 −Al)
(1 −Am−1

l ) +ArA
m−1
l (1 −Al)

− aRµL. (78)

These bifurcation curves represent the straight lines
which bound the periodicity regions of the cycles of
period k = 2(1 + m) which have the BCB curve
φLR (upper boundary of the region of the 2a-cycle)
as limit set. A few of them are shown in Fig. 9(b).

Up to now, we have obtained both the lat-
eral boundaries of these periodicity regions, but we
still miss their upper boundaries. To calculate these
boundaries we have to note that a periodic point
belonging to the branch M may collide not only
with the discontinuity in d1 but also with d2.

Considering the family of cycles with symbolic
sequence RLm, i.e. (ML)(LR)m, the straight lines,
defined above as lower boundaries, all intersect the
vertical line d = d2, which means that the peri-
odic point in the region M (which, in this family,
is a unique point) collides with d2, thus the upper
boundaries of these periodicity regions are horizon-
tal straight lines of equation as in φ(ML)(LR)m but
with d1 replaced by d2. Therefore, we obtain for
these boundaries, the BCB curves:

ψ(ML)(LR)m :

µR =
[d2(1 −ArA

m
l ) −Am

l Br](1 −Al)
(1 −Am

l )

− aRµL. (79)

Let us now turn to the upper boundaries of the
family of cycles with symbolic sequence LRm =
(LR)(ML)m. In this case, the BCB occurs due to the
collision of the periodic point of the cycle belong-
ing to the branch M closest to d2, colliding with
d2. This colliding periodic point is the fixed point
of the function TL ◦ Tm

R
(x). Then from Tm

R
(x) =

Am
r x+Br

(1−Am
r )

(1−Ar) we have

TL ◦ Tm
R

(x) = Al

(
Am

r x+Br
(1 −Am

r )
(1 −Ar)

)
+Bl. (80)

The solution of Tm
R

◦ TL(x) = x satisfies

x(1 −Am
r Al) = AlBr

(1 −Am
r )

(1 −Ar)
+Bl (81)

and the corresponding BCB curves are given by:

d2(1 −Am
r Al) = AlBr

(1 −Am
r )

(1 −Ar)
+Bl (82)

therefore we obtain:

ψ(ML)m(LR):

µR = d2(1 −Am
r Al) −AlBr

(1 −Am
r )

(1 −Ar)

− aRµL. (83)

Clearly the intersection of the lines so defined
with the BCB curves φ(ML)(LR)(ML)m−1 completely
defines these periodicity regions having a triangular
shape.

We have this completely described the bound-
aries of two infinite families of periodicity regions
of the first complexity level issuing from point
P2. The boundaries of the regions which belong
to higher levels of complexity can be similarly
calculated.

A similar reasoning leads to the families of BCB
curves issuing from point P3, given by the intersec-
tion of the BCB curves φLR2 [from (59) for n = 2]
and φML [given in (72)], so, in the parameter plane
(d1, µR), we have

P3 =
(
d∗1,

d∗1(1 − aLa
2
R) − a2

RµL

(1 + aR)

)
,

d∗1 = aL
aMµL + µM

1 − aLaM
+ µL.

(84)

We can apply the steps described in Sec. 3, with
starting sequences L = LRR and R = ML. Then,
considering as ΦL the BCB curve φLRR and as ΦR
the BCB curve φML, we can use the map defined
in (33) with the composite functions TL and TR
given by:

TL(x) = f2
R ◦ fL(x) = Alx+Bl,

Al = aLa
2
R, Bl = µLa

2
R + aRµR + µR

(85)

TR(x) = fL ◦ fM(x) = Arx+Br,

Ar = aLaM , Br = aLµM + µL.
(86)

Then we can proceed iteratively, by using the same
formulas given in Sec. 3 with the new aggregate
parameters defined in (85) and (86). In Fig. 9
we have shown a few BCB curves of the families
ΦLRm = φ(LR2)(ML)m (left boundaries of the period-
icity regions, having as limit set the BCB φML) and
ΦRLRm−1 = φ(ML)(LR2)(ML)m−1 (right boundaries) of
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the first level of complexity, as well as of ΦRLm =
φ(ML)(LR2)m and ΦLRLm−1 = φ(LR2)(ML)(LR2)m−1 .

We remark that all the periodicity regions issu-
ing from P2 located on the right of the region
ΠMLLR, associated with the 4-cycle in the middle,
have a corner point on the line d2 = d2. Thus
all have a point in common with some periodicity
region existing on the right of this point, for the
map F , and belonging to a bistability region. The
situation for point P3 is similar.

All the periodicity regions of the families issuing
from P2 are below the boundary of the BCB curve
ψRLR. Similarly for P3, the upper boundary is the
BCB curve of the fixed point ψR.

Therefore, there are empty spaces in the
parameter region, which must be necessarily filled
with other periodicity regions. These regions have
quadrilateral shapes and are described in the next
subsection.

4.4. Quadrilateral periodicity
regions

Let us first remark that in the case of our map
T, with two discontinuity points, any periodicity
region cannot have more than four boundaries. In
fact, a periodicity region refers to a unique cycle,
and it can appear/disappear only via collision of a
periodic point with the border of definition of the
functions. So a periodic point may collide with d1

from the right or left side, and may collide with d2

from the right or left side. Thus the existence region
of a cycle can have at most four BCB curves.

In the part of the parameter space that we are
considering, there also are regions with quadrilat-
eral shapes. An example for such a region (with
period 7) is shown in Fig. 10.

In Theorem 1 proved in Sec. 3 we have
described infinite families issuing from a big-bang

Fig. 10. Quadrilateral periodicity region Π7.

bifurcation point, intersection of two BCB curves.
However, the quadrilateral regions are seemingly
not originating from such a point. To explain the
BCB curves bounding these regions we have to
recall that the overall parameter space of the system
we are investigating is eight-dimensional and the
bifurcation structure we can observe in our figures
represents only a two-dimensional cut across some
structure in this eight-dimensional space. Therefore
we can assume that at some place in this param-
eter space the BCB curve φML, located in our fig-
ures on the left side of the region with period 7 (a
collision from M side with d1) intersects the curve
φLR2LR, located on the right side of this region
(a collision from L side with d1). Then, from this
intersection point the complete period adding struc-
ture must originate. Depending on their size (in the
eight-dimensional parameter space) some regions
issuing from this intersection point may reach the
two-dimensional parameter subspace that we are
investigating. Especially, considering as starting
sequences R = ML and L = LR2LR, we can define
the composite functions

TL(x) =: fR ◦ fL ◦ fR ◦ fR ◦ fL(x)

TR(x) =: fL ◦ fM(x)
(87)

for the calculation of the BCB curves defining the
boundaries of periodicity regions for two infinite
families of cycles of the first complexity level. Then,
using Eqs. (51) and (52) we calculate the BCB
curves of cycles with symbolic sequence LRm and
RLRm−1, which give the BCB curves

φ(LR2LR)(ML)m , φ(ML)(LR2LR)(ML)m−1 (88)

defining the boundaries of the periodicity regions
forming the first family (for m → ∞ these curves
accumulate to the BCB curve R, i.e. φML). Simi-
larly, using Eqs. (53) and (54) we calculate the BCB
curves

φ(LR2LR)(ML)(LR2LR)m−1 , φ(ML)(LR2LR)m (89)

which define the boundaries of the periodicity
regions forming the second family, accumulating
for m → ∞ to the BCB curve φLR2LR. Note also
that the 7-cycle mentioned above belongs to both
these families for m = 1. A few periodicity regions
bounded by the curves in (88) and (89) are shown
in Fig. 11.

So far we have determined two boundaries of
each region belonging to the two families mentioned
above. Now the question arises which BCB curves
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Fig. 11. Enlarged portions of Fig. 9(a).

define the two other boundaries of each of these
regions. Clearly, when dealing with these bifurca-
tions, the symbolic sequences we determined so far
must remain the same (since they are associated
with the same cycles), but cyclically shifted in a
different way. Moreover, as we already mentioned
above, for each cycle there are only two points which
can collide with each discontinuity. Therefore, the
two other BCB curves must be caused by collisions
of some points of the cycles with the other discon-
tinuity, that means with d2.

To determine the equations of the upper
and lower boundaries of the quadrilateral regions
located on the left of Π7, we have to note that
these regions are located below the BCB curve of
the 3-cycle ψRLR (where a collision with d2 from R
side occurs) and above the fan of regions with the
first complexity level issuing from P2, whose upper
boundaries are the BCB curves ψ(ML)m(LR) (where a
collision with d2 fromM side occurs). Hence, we can

assume that somewhere in the eight-dimensional
parameter space these bifurcations curves intersect
and the situation at the intersection point fulfills
the conditions of Theorem 1. Then we define the
composite map using

TL(x) =: fR ◦ fL ◦ (fL ◦ fM)m(x)

TR(x) =: fR ◦ fL ◦ fR(x)
(90)

that is, assuming L = (ML)m(LR) and R =
RLR, we calculate the BCB curves with symbolic
sequence LR i.e. (ML)m(LRRLR) for the upper
boundaries and RL i.e. (RLR)(ML)m(LR) for the
lower boundaries thus obtaining the BCB curves

ψ(ML)mLR(RLR), ψ(RLR)(ML)mLR (91)

completing the description of the quadrilateral
regions on the left of Π7 [see also Fig. 11(a)].

The next upper/lower boundaries we explain is
for the family located on right of Π7 [see Fig. 11(b)].
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We can see that (as for the considered boundary
of the 5-cycle) all of them reach the discontinuity
point colliding with d2, thus the upper boundaries
of these periodicity regions are horizontal straight
lines of equation as in φ(ML)(LR2LR)m but with d1

replaced by d2. Let us define these BCB curves as
ψ(ML)(LR2LR)m .

The related lower boundaries are associated
with the family of periodicity regions of the sec-
ond level between the 3-cycle and the 5-cycle,
which accumulate on the 5-cycle, having horizontal
boundaries colliding with d2, and associated with
cycles of symbolic sequence (RLR)(LR2LR)m−1,
thus let R = (RLR)(LR2LR)m−1. The added step
is with the fixed upper boundary of the 4-cycle,
that is, ψMLLR, a collision with d2 from M side,
say L = (MLLR). Then we apply the first adding
step to get RL i.e. (RLR)(LR2LR)m−1(MLLR) for
the lower boundaries. We have so obtained the BCB
curves

ψ(ML)(LR2LR)m , ψ(RLR)(LR2LR)m−1(MLLR) (92)

completing the quadrilateral regions on the right of
Π7 [see also Fig. 11(b)].

In order to show that our assumption of the
existence of intersection points which are not visi-
ble is realistic, we consider a different section of the
parameter space, in which the assumption in (90)
for m = 1 is evidenced, showing an intersection

between the two BCB curves ψMLLR (a collision
with d2 from M side) and ψRLR (a collision with
d2 from R side). We have considered the (aM , µR)
plane keeping fixed d1 = 1.7 and the other param-
eters as before, that is, aL = 0.9, aR = 0.4, µL = 1,
µM = 0.2, d2 = 1.8, as reported in Fig. 12.

In Fig. 12(a) we can see the same bifurcation
points as P ∗

2 and S∗
2 , which may be considered

similar to P2 and S2 of our previous figures, and
Fig. 12(b) shows the enlarged portion of interest,
which includes the value aM = 0.3 used in the pre-
vious figures [vertical line in Fig. 12(b)]. Here, in
Fig. 12(b), we can see that the periodicity region
Π7 of the 7-cycle, as well as the other regions that
we shall consider below, are issued from a big bang
bifurcation point P ∗ which cannot be seen in the
section (d2, µR) used before. It follows that in this
section, the two BCB curves ψMLLR and ψRLR (rep-
resenting a collision with d2 from the left and right
sides, respectively) are intersecting at the point P ∗
and we have the proper conditions to apply the
adding scheme.

Besides the families of regions located on the
left and on the right of the region Π7, there exist
also families of periodicity regions located above
and below the region Π7 (see Fig. 11). To determine
the upper and lower boundaries of these regions,
we consider that these intersect somewhere in the
parameter space, as shown at the point P ∗ in
Fig. 12(b), so that we can apply the adding scheme.

Fig. 12. Two-dimensional bifurcation diagram in the (aM , µR) parameter plane at aL = 0.9, aR = 0.4, µL = 1, µM = 0.2,
d1 = 1.7, d2 = 1.8.
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Consider the BCB curves ψRLR (thus say R = RLR)
and the BCB curve ψMLLR (say L = MLLR). Then
for the first family, above Π7, accumulating on R,
we consider the BCB curves associated with the
symbolic sequence LRm and RLRm−1 which, after
substitution, give

ψ(MLLR)(RLR)m , ψ(RLR)(MLLR)(RLR)m−1 . (93)

In this way, we obtain the horizontal boundaries of
the family (of first complexity level) of the periodic-
ity regions located above Π7. For the family of peri-
odicity regions located below Π7 accumulating on
L, i.e. the BCB curve ψMLLR, the horizontal bound-
aries are given by the BCB curves associated with
the symbolic sequence LRLm−1 and RLm, that is:

ψ(MLLR)(RLR)(MLLR)m−1 , ψ(RLR)(MLLR)m (94)

As one can easily see, for both families, the horizon-
tal boundaries of the region Π7 represent the special
case for m = 1.

So far we have determined the horizontal
boundaries of the two families of periodicity regions
located below and above Π7. Clearly, the remain-
ing two boundaries of each of these regions are
given by the BCB curves associated with collisions
of periodic points (of the same cycles) with the
discontinuity d1. To determine the BCB on the
left and right sides of the upper family, we con-
sider that (as before for the family having limit
set on the line d2 = d2) the family of second level
φ(LR2LR)(RLR)m−1 (collision from the L side with

d1, say L = (LR2LR)(RLR)m−1) accumulating on
the BCB ψRLR of the 3-cycle is involved together
with the BCB curve φML (collision from the M
side with d1, say R = ML), then adding LR =
(LR2LR)(RLR)m−1(ML) = LR(RLR)mML gives
the lateral BCB on the left side while adding RL =
(ML)(LR2LR)(RLR)m−1 = (MLLR)(RLR)m gives
the lateral BCB curve on the right side, thus we
obtain the BCB curves:

φ(LR2LR)(RLR)m−1(ML) = φLR(RLR)mML,

φ(ML)(LR2LR)(RLR)m−1 = φ(MLLR)(RLR)m

(95)

completing the quadrilateral regions above Π7

accumulating on ψRLR (the symbolic sequence is
clearly a cyclic sequence of those in (93)) [see also
Fig. 11(a)].

To determine the lateral boundaries of the BCB
curves of the lower family, below Π7, consider the
family of periodicity regions of the cycles having
symbolic sequence (MLLR)m−1(ML) accumulating
on the boundary of the 4-cycle, colliding with d1

from the right, defining R = (MLLR)m−1(ML)
and the boundary of the 5-cycle colliding with d1

from the left, defining L = (LR2LR), then adding
LR = (LR2LR)(MLLR)m−1(ML) gives the lat-
eral BCB curve on the left while adding RL =
(MLLR)m−1(ML)(LR2LR) = (MLLR)m(RLR)
gives the lateral BCB on the right, thus we obtain
the BCB curves:

φ(LR2LR)(MLLR)m−1(ML), φ(MLLR)m(RLR) (96)

(a) (b)

Fig. 13. (a) Enlargement of the white rectangle in Fig. 11(a). (b) Enlargement of the white rectangle in Fig. 11(b).
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(a)

(b) (c)

Fig. 14. (a) Two-dimensional bifurcation diagram of the map T in the parameter plane (d1, µR) as in Fig. 1(b). Along
the paths at (I) d1 = 1.7, and (II) µR = 0.824, the one-dimensional bifurcation diagram is reported in (b) and (c),
respectively.

completing the quadrilateral regions below Π7 accu-
mulating on ψMLLR (the symbolic sequence is
clearly a cyclic sequence of those in (94)) [see also
Fig. 11(b)].

Let us return to a few comments associated
with Fig. 11. As always in the period adding struc-
ture, all the quadrilateral regions so obtained are
disjoint from each other and disjoint from the peri-
odicity regions whose border is involved in the
adding scheme for the quadrilateral regions. We
have described above a first level of complexity,
with one index only m ≥ 1, but clearly all lev-
els of complexity exist. Moreover, each quadrilat-
eral region has two corners which are overlapped
with other periodicity regions, thus leading, each

overlapping, to two points having the same prop-
erties of points S2 and S3. See the enlargements
in Fig. 13.

We end the present section showing in Fig. 14
examples of one-dimensional bifurcation diagrams
representing the state variable x as a function of
one parameter only, along the paths (I) and (II) of
Fig. 14(a). Although it is not observable, infinitely
many periodicity regions are crossed.

5. Conclusions

In this work, we have investigated the border
collision bifurcation (BCB) curves occurring in a
one-dimensional piecewise linear map with two
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discontinuities, in the case of slopes all positive
and less 1. We have demonstrated that the period-
adding structures, known to occur in the case of
maps with one point of discontinuity, also occur in
the case of maps with many discontinuities, and
may be formed in this case by orbits containing
periodic points located in more than two partitions.
In Sec. 2 we have recalled and reformulated in a
suitable way the adding mechanism for a map with
only one discontinuity. In Sec. 3 we have proved
that independent of the number of partitions of
the map, an intersection of two BCB curves asso-
ciated with cycles colliding with the same point of
discontinuity leads to an organizing center in the
parameter space (big bang bifurcation point), from
which infinitely many BCB curves are issued. The
symbolic sequences of the cycles emerging at this
point can be calculated using the usual Farey-tree
like sequence adding scheme. Hereby the sequences
of the cycles simultaneously undergoing the BCBs
at the big bang bifurcation point act as the start-
ing sequences for the adding scheme. Moreover, we
have shown that the Leonov’s method for the calcu-
lation of bifurcation curves in piecewise linear maps
is applicable independently of the number of parti-
tions of the investigated map, and due to the linear-
ity of the components of our map, all the presented
results are analytically obtained.

In Sec. 4 we have applied the adding mecha-
nism described in Sec. 3 to determine several fam-
ilies of BCB curves of the map under study. This
mechanism has been used both for the description
of periodicity regions of triangular shape and of
quadrilateral shape. As whichever is the chosen sec-
tion of the eight-dimensional parameter space, a
periodicity region of a map with two discontinuity
points can have at most four BCB curves.

An open problem in the investigation of piece-
wise smooth maps defined on many partitions
regards the situation where the BCB curves of two
cycles intersect, but the cycles undergoing the BCBs
collide at different points of discontinuity (as the
points S2 and S3 and infinitely many others). The
question whether it is possible to predict the struc-
ture of the parameter space close to these points
remains for further studies. In the particular exam-
ple considered in this work we have demonstrated
that such points can be seen as bifurcation points
of a special type, representing limit sets of a dou-
bly infinite sequence of periodicity regions (and thus
BCB curves).

To conclude, we remark that Theorem 1 proved
in this work can also be applied to piecewise linear
maps with many partitions (more than two discon-
tinuities), the only assumption is that two differ-
ent stable cycles collide with the same discontinuity
point.

The dynamic behavior of our map T when the
slopes satisfy different conditions is a problem left
for further studies.
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