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Abstract

We study the structure of the 2D bifurcation diagram for a two-parameter family of piecewise smooth unimodal
maps f with one break point. Analysing the parameters of the normal form for the border-collision bifurcation of
an attracting n-cycle of the map f, we describe the possible kinds of dynamics associated with such a bifurcation. Emer-
gence and role of border-collision bifurcation curves in the 2D bifurcation plane are studied. Particular attention is paid
also to the curves of homoclinic bifurcations giving rise to the band merging of pieces of cyclic chaotic intervals.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The interest towards piecewise smooth dynamical systems has been recently increased due to numerous applications
in engineering, radiophysics, economics, and other sciences (see, for example, [16] and references therein). It is known
that for piecewise smooth dynamical systems we can in general distinguish between two types of bifurcations: One in-
cludes the bifurcations which occur in smooth dynamical systems (either local, related to the eigenvalues crossing the
unit circle, or global, such as, for example, homoclinic bifurcations), while the other is the so-called border-collision

bifurcation [13]. This bifurcation occurs when a trajectory collides with one of the boundaries separating regions in
which the function changes its definition. In general, crossing such a boundary, there is a discontinuous change in
the derivative, and this may cause an abrupt transition in the structure and stability of attracting and repelling invariant
sets. As a result, we may have a transition from an attracting cycle to another attracting cycle of any period, or to a
cyclical chaotic attractor of any period.

The study of the bifurcations associated with piecewise smooth systems started with the works by Feigen (in the dec-
ade 1970–1980), whose results were expounded and reworked in [3], with new proofs. In that paper some analytical
conditions are given related to possible consequences of a border-collision bifurcation in n-dimensional piecewise
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smooth systems. In that literature the bifurcations associated with the border points are called C-bifurcations (see also
[4]). While the term border-collision bifurcation was introduced by Nusse and Yorke [13,14]. In these papers the authors
examine bifurcation phenomena for 1D and 2D piecewise smooth maps and state explicitly which border-collision
bifurcation does occur depending on the parameters. Their approach allows to classify border-collision bifurcations
according to the right and left side derivatives of the map evaluated at border-crossing fixed point for the bifurcation
parameter value. In [1] it is proposed to study the border-collision phenomena by means of a so-called normal form,
which is the piecewise linear approximation of the map in the neighborhood of the border point. In that paper the
authors give a classification of the border-collision bifurcations depending on two parameters of such a normal form,
which are indeed the right and left side partial derivatives mentioned above.

Given that the normal form is a piecewise linear map, it becomes very useful the analysis of the bifurcation sequences
allowed in such maps, performed in [8] for a unimodal piecewise linear map with one break point, that is, for so-called
skew-tent maps. It that paper analytical expressions for all the bifurcation curves are derived, and, in particular, it is
shown that for piecewise linear maps one of the most relevant characteristics is the absence of cascade of period-dou-
bling bifurcations of periodic orbits, which are instead organized in a period-adding sequence. The transitions are re-
duced to a few cascades of band merging bifurcations of cyclical chaotic intervals caused by the homoclinic
bifurcations of the relevant cycles. Similar kind of analysis for a bimodal piecewise linear map with two break points
is performed in [9].

Following the economic model proposed in [2], we study the dynamic properties of a two-parameter family of piece-
wise smooth unimodal maps with one break point, namely, we consider the map f defined as
f : x 7! f ðxÞ ¼
f1ðxÞ ¼ rx; for 0 6 x < �x;

f2ðxÞ ¼ axð1� xÞ; for �x 6 x 6 1;

�
�x ¼ 1� r

a
; ð1Þ
where a and r are real parameters: a > 3 and 1 < r < a.
Examples of 1D unimodal piecewise smooth maps, described in the literature, belong mainly to the class of piecewise

monotone maps with an extremum in the break point (see, for example, [6,12,14]). While the map (1) allows two pos-
sibilities: (1) For a < 2r the map f has a maximum at xc = 1/2, xc > �x; (2) For a P 2r the map f has a maximum at the
break point �x. Our purpose is to compare the bifurcation structure of the (r, a)-parameter plane in these two cases, and
to investigate the emergence and role of border-collision bifurcation curves. In order to show which kinds of the border-
collision bifurcations are allowed, we apply to the map f the methods and results developed in [8,14,1] (see Section 2.1).
We conclude that for a < 2r an attracting n-cycle of the map f can undergo either �period-doubling�, or �fold�, or �sub-
critical period-doubling� border-collision bifurcation (we use the inverted commas in order to emphasize that these
bifurcations differ from those which occur for smooth maps). While the case a > 2r is richer: Besides the �fold� and �per-
iod-doubling�, it is possible to have a border-collision bifurcation from an attracting n-cycle to an attracting kn-cycle,
k = 3, . . . , l, where l!1 as n!1, as well as to a cyclic chaotic interval of period 2kn, kn, or n, for n P 3, or to a cyclic
chaotic interval of period 2in, i = 0,1, . . . , for n = 2.

The peculiarity of the case a < 2r is the existence of infinitely many regions of bistability in the (r, a)-parameter
plane, which are bounded by fold, period-doubling and border-collision bifurcation curves. This phenomenon has
been already described in [15], and we recall briefly these results in Section 2.2. While Section 2.3 is devoted to
the bifurcation structure of the (r, a)-parameter plane in case a > 2r. The main difference of this case is the predom-
inance of parameter values corresponding to chaotic attractors, which become open 2D subsets, bounded by border-
collision and homoclinic bifurcation curves, while for a < 2r such parameter values form only 1D subsets (curves of
zero measure).
2. Bifurcation structure of the parameter plane

Let us first derive some simple propositions for the map f defined in (1). In the considerations given below we assume
(r, a) 2 R = {(r, a) :a > 3, 1 < r < a}.

It is easy to show that the point of the local extremum (maximum) of the function (1) is the break point �x for a P 2r,
and the critical point xc = 1/2 for a < 2r. Using this property we get the condition for the interval I = [0,1] to be trap-
ping for the map f (i.e., f(I) � I):

Proposition 1. If (r, a) 2 D � R, where
D ¼ fðr; aÞ : r < 2; a 6 r2=ðr � 1Þg [ fðr; aÞ : r P 2; a 6 4g;
then the interval I is trapping for f.
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In the (r, a)-parameter plane the curves a = r2/(r � 1) (for r < 2) and a = 4 (for r P 2), at which the interval I is
invariant (i.e., f(I) = I), correspond to the so-called boundary crisis bifurcation (homoclinic bifurcation of the origin).
If the (r, a)-parameter point is taken above these curves then almost all the trajectories of the map f go to infinity
and the surviving set is an invariant Cantor set K � I called a chaotic repellor.

We investigate the parameter range in which the interval I is trapping, i.e., we take the parameter values (r, a) 2 D

and, thus, f : [0,1]! [0,1].
Regarding the map f given in (1) the results known for the logistic map are applied (for some fixed r) if the absorbing

interval J of the map f is included in the interval where this map is defined by the logistic function only, i.e., if J � ½�x; 1�;
that is if f 2ðxcÞP �x. The last inequality is satisfied under the condition stated in the following:

Proposition 2. If
Fig. 1.
n, n 6
r P rlðaÞ ¼def a4=16� a3=4þ a; ð2Þ
then the absorbing interval J = [f2(xc), f(xc)] of the map (1) is included in ½�x; 1�.

Thus, a parameter region Dl � D, for which (2) is satisfied, has the ‘‘logistic’’ bifurcation structure (see Fig. 1) in the
following sense: In order to comment a 1D bifurcation diagram, if we fix a parameter point (r, a) = (r*, a*) 2 Dl and
move it increasing a, up to the point (r*, a**) 2 rl(a), then we get the 1D bifurcation diagram of the logistic map for
a 2 [a*, a**].

Answer to the question of how many attracting cycles of the same period n exist, can be get from the theory of sym-
bolic dynamics (see [10,5]), or from the description of the ‘‘box-within-a-box’’ bifurcation structure (see [11]). Now we
recall only that the logistic map has k attracting cycles of the same period n for different values of a, where the corre-
sponding values of the pair (k, n) are (1,2), (1,3), (2,4), (3,5), (5,6), (9,7), (16,8), . . . These k different attracting n-cycles
are ordered on a according to the order of their symbolic sequences.

Let Pn denote a region in the (r, a)-parameter plane such that for (r, a) 2 Pn the map (1) has an attracting cycle of
period n (note that we use the same notation Pn for different regions of the same periodicity, that is, there exist k dif-
ferent regions Pn). Fig. 1 presents a 2D bifurcation diagram of the map f in the (r, a)-parameter plane, where the regions
Pn are shown by different gray tonalities for different n, n 6 24. Obviously, the lower boundary of a periodicity region
Pn \ Dl corresponds either to a fold bifurcation (giving rise to a new periodicity ‘‘box’’), or to a period-doubling bifur-

cation, while its upper boundary is a period-doubling bifurcation curve.
2D bifurcation diagram of the map f in the (r, a)-parameter plane. The regions Pn corresponding to attracting cycles of period
24, are shown by different gray tonalities for different n.
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Let Db � D denote an (r, a)-parameter region defined as
Db ¼ fðr; aÞ : a=2 6 r 6 rlðaÞg;
where rl(a) is given in (2). For (r, a) 2 Db we have xc P �x and �x 2 J (i.e., both the functions f1 and f2 are involved in the
absorbing interval). And let Dr � D be a region (see Fig. 1) defined as
Dr ¼ fðr; aÞ : a > 2rg;
so that for (r, a) 2 Dr we have xc < �x, and the point of the extremum of f is the break point �x.
Our purpose is to describe the bifurcation structure of the regions Db and Dr in order to show the emergence and role

of the border-collision bifurcation curves which form, together with the fold and period-doubling bifurcation curves, the
boundaries of the periodicity regions. To proceed we describe in the next section the different kinds of border-collision
bifurcations which an attracting n-cycle of the map f can undergo.

2.1. Border-collision bifurcation of an attracting n-cycle

Let ci,j denote an attracting cycle of period n = i + j, i P 0, j > 0, of the map f, such that i points of the cycle belong
to the segment ½0;�xÞ and j points belong to ½�x; 1�. A repelling n-cycle is denoted c0i;j and a superstable n-cycle (i.e., such
that xc is a point of the cycle and, thus, its eigenvalue equals 0) is denoted eci;j. If the numbers i and j are not specified we
write cn, c0n and ecn, respectively. Let Gn denote a cyclic chaotic interval of period n.

If a point of the n-cycle of the map f collides with the break point under the change in the parameters, we say that a
border-collision (BC henceforth) occurs for this cycle. It is generally accompanied with discontinuous change in the
derivative of f(x) at this point. Moreover, if after such a collision the orbit index [14] of the border-crossing cycle
changes, i.e., there is a qualitative change in the dynamics of the map, we say that a border-collision bifurcation

(BCB henceforth) occurs for the cycle. Recall that a cycle has the orbit index 1 if its eigenvalue k is jkj < 1, �1 if
k > 1 and 0 if k < �1.

Note that for (r, a) 2 Pn \ Dl all the points of the corresponding attracting cycle cn are on the right of �x, that is we
have the attracting cycle c0,n of the logistic map f2. Decreasing r the distance between �x and the leftmost periodic point is
decreasing so that at some value of r we have the first BC for the cycle c0,n. If after such a collision the cycle remains
attracting, that is the map f has the attracting cycle c1,n�1, we can vary the (r, a)-parameter values in such a way that one
more point of the cycle collides with �x approaching it from the right.

Suppose a BC occurs for the point x1 of the attracting cycle cn = {x1, . . . ,xn}. In other words, let x1 be a border-cross-

ing fixed point of the corresponding map fn : fn(x1) = x1. To specify the related parameter variation let Bn denote a curve
in the (r, a)-parameter plane given by
Bn ¼ fðr; aÞ : f nð�xÞ ¼ �xg;
corresponding to the BC of x1.

BC Assumption. Let the (r, a)-parameter point cross Bn transversely at some point ðr�; a�Þ 2 Bn in such a way that cn

is attracting before the collision. Suppose also that the BC occurs only for one point of the cycle.

To see which kind of BCB can occur for cn, we apply to the map fn the Theorem 3 stated in [14]: The result of the BC
depends on the left and right side derivatives of fn at x ¼ �x and (r, a) = (r*, a*), denoted a and b, respectively:
a ¼ lim
x!�x�

d

dx
f nðxÞ; ð3Þ

b ¼ lim
x!�xþ

d

dx
f nðxÞ. ð4Þ
Moreover, we can write the normal form (see [1])
gðx; eÞ ¼
axþ e; x 6 0;

bxþ e; x P 0;

�
ð5Þ
where e is a bifurcation parameter such that as e varies through 0, the local bifurcations of the piecewise linear map g

and the piecewise smooth map fn are of the same kind, that is, the BC occurring for the cycle cn of the map f at
ðr; aÞ ¼ ðr�; a�Þ 2 Bn, is of the same kind as the BC of the fixed point of the map g occurring at e = 0.

The dynamics of the piecewise linear map g, called skew-tent map, is well studied (see [8,14,1]). It is defined by the
slopes a and b of the linear functions. All possible kinds of BC of the fixed point are classified according to the partition
of the (a, b)-parameter plane into subregions with qualitatively the same dynamics. These results are summarized in



Fig. 2. The partition of the (a, b)-parameter plane into the regions with qualitatively the same dynamics of the map g at e < 0 (for
b > a) and at e > 0 (for b < a). Corresponding BCB of the fixed point of g, occurring at e = 0 as e varies from e > 0 to e < 0, are shown
schematically (the same kind of BCB occur for b < a as e varies from e < 0 to e > 0): The thick and dashed lines indicate attracting and
repelling cycles, respectively; the thin lines correspond to the border point.
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Fig. 2. It has been studied in detail the case 0 < a < 1, b < �1, as well as a < �1, 0 < b < 1 (see the dashed regions in
Fig. 2), which are qualitatively the same cases due to the symmetry of the (a, b)-parameter plane with respect to a = b. It
has been shown that for e > 0 (e < 0, respectively), all trajectories are bounded and the map g can have an attracting
cycle qk of any period k P 2, as well as a cyclic chaotic interval Qm of any period m P 1. It means that varying e
through 0 from e < 0 to e > 0 (from e > 0 to e < 0, respectively) we can have the BCB from the attracting fixed point
to any one of such attractors. The region a > 1, a/(1 � a) < b < �1 (and a < �1, 1 < b < a/(a + 1)) includes subregions
corresponding to the transition from no attractor to a cyclic chaotic interval Qm of period m = 2k, k = 0, . . . , l, where
l!1 as (a, b)! (1,�1) ((a, b)! (�1,1), respectively).

Using the above approach we can classify the possible kinds of BCB which an attracting cycle cn of the map f can
undergo for (r, a) 2 Db:

Proposition 3. Let in the BC Assumption ðr; aÞ ¼ ðr�; a�Þ 2 Bn � Db. Then depending on the parameters there can be one

of the four results of the collision: (1) The bifurcation does not occur and the cycle cn remains attracting (BC); (2) The

reverse �fold � BCB; (3) The �period-doubling� BCB; (4) The �subcritical period-doubling� BCB.

First note that at (r, a) = (r*, a*) we have cn ¼ f�x; f ð�xÞ; f 2ð�xÞ; . . . ; f n�1ð�xÞg. To prove the proposition we have to esti-
mate the corresponding parameters a and b (see (3) and (4)) of the map fn related to the cycle cn at (r, a) = (r*, a*):
a ¼ f 01ð�xÞP ¼ r�P;

b ¼ f 02ð�xÞP ¼ ð2r� � a�ÞP;
where
P ¼
Yn�1

i¼1

f 0ðf ið�xÞÞ.
The cycle cn is supposed to be attracting before the collision, thus, jbj < 1. For (r, a) = (r*, a*) 2 Db we have
(2r* � a*) > 0. Thus, depending on the sign of P there are two cases (see Fig. 2):

(1) If P > 0 then a > 0, 0 < b < 1, which corresponds either to the BC (for a < 1) or to the reverse �fold� BCB (for
a > 1);

(2) If P < 0 then a < 0, �1 < b < 0, which corresponds either to the BC (for a > �1), or to the �period-doubling� BCB
(for a < �1, b > 1/a), or to the �subcritical period-doubling� BCB (for b < 1/a).
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In a similar way it can be shown that for (r, a) 2 Dr we have the possibilities indicated in Fig. 2 for a > 0, �1 < b < 0
and a < 0, 0 < b < 1. The last case gives great variety of possible BCB, namely, it includes the (a, b)-parameter regions
corresponding to the BCB cn) ckn for any k P 2, as well as cn) Gmn for any m P 1.

As an example, let us state precisely which kinds of BCB the attracting cycle c0,2 of the map f can undergo. From the
equality f2ðf1ð�xÞÞ ¼ �x we obtain the BCB curve B2:
Fig. 3.
region
B2 ¼ ðr; aÞ : a ¼ a2ðrÞ ¼def 1þ r þ r2

r
; 1 < r 6 r0

� �
;

where r0 ¼ ð
ffiffiffi
6
p
þ

ffiffiffi
2
p
Þ=2 is the r-coordinate of the point d0(r0, a2(r0)) which is the intersection point of B2 and the per-

iod-doubling bifurcation curve a ¼ 1þ
ffiffiffi
6
p

(see Figs. 1 and 5). At ðr; aÞ 2 B2 we have c0;2 ¼ f�x; r�xg;
�x ¼ ð1þ rÞ=ð1þ r þ r2Þ. The parameters a and b of the corresponding normal form g are
a ¼ f 01ð�xÞf 02ðr�xÞ ¼ 1� r � r2 < �1;

b ¼ f 02ð�xÞf 02ðr�xÞ ¼ ð1� r � r2Þðr2 � r � 1Þ=r2 P �1;
so that the expression for the curve B2 in the (a, b)-parameter plane is
L2 ¼ ða; bÞ : b ¼ b2ðaÞ ¼
def�4a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 4a
p

þ a� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 4a
p

� 1
� �2

; �1 6 b < 1

( )
.

Now it can be seen which regions of the (a, b)-parameter plane the curve L2 crosses, and we can conclude about the
BCB of the cycle c0,2: See Fig. 3 in which the corresponding bifurcation curves of the map g at e < 0 are plotted using
their analytical expressions derived in [8]. One has to pay attention that the considered map g is the normal form for the
map f2, so, if the fixed point of the map g has BCB to an attractor of period n, then for the map f it corresponds to the
BCB of the cycle c0,2 to an attractor of period 2n.

Let pi(ai, b2(ai)), i = 1, . . . , be the intersection points of the curve L2 and the bifurcation curves of the map g in the
(a, b)-parameter plane (see Fig. 3), and let di(ri, a2(ri)) be the corresponding points of B2 in the (r, a)-parameter plane
(the points di, i = 0,1, . . . , 8, are indicated in Figs. 5, 9, 11). Then, based on the analytical expressions of the bifurcation
curves for the map g (see [8]), we can state

Proposition 4. The following BCB occurs for the attracting cycle c0,2 of the map f at a = a2(r), r 2 (1, r0):

fc0;2; c
0
1;3g ) c01;1 (the �subcritical period-doubling� BCB) for r 2 (r1, r0);
A part of the (a, b)-parameter plane of the map g at e < 0, where qk denotes the region of attracting cycle of period k = 2,3;
s denoted Qm correspond to the m-cyclic chaotic intervals; the curve L2 is related to the BCB of the cycle c0,2 of the map f.



762 I. Sushko et al. / Chaos, Solitons and Fractals 29 (2006) 756–770
c0;2 ) fc1;3; c
0
1;1g (the �period-doubling� BCB) for r 2 (r2, r1);

c0,2) G2 for r 2 (r5, r4);

c0;2 ) G22 for r 2 (r4, r3) [ (r6, r5);

c0;2 ) G23 for r 2 (r3, r2) [ (r7, r6);

c0;2 ) G2k�4 for r 2 (rk, rk�1), k P 8, where k!1 as r! 1.

Here we write fcn; c
0
mg to indicate that both cycles cn and c0m are involved in the BCB. In general, there can be infi-

nitely many repelling cycles bifurcating from the fixed point, like, for example, when the fixed point bifurcates to a cyclic
chaotic interval.

In a similar way the BCB of other attracting cycles of the map f can be investigated. As one more example, consider
the attracting cycle cn�2,2 (the existence of such an attracting cycle for the map f is shown in Section 2.2). From the
equality f n�2

1 ðf 2
2 ð�xÞÞ ¼ �x we obtain the BCB curve
Fig. 4.
region
f and
Bn ¼ ðr; aÞ : a ¼ anðrÞ ¼def 1� rnþ1

ð1� rÞrn�1
; r� < r < r��

� �
;

where r* and r** are r-coordinates of the intersection points of Bn with the curves corresponding to the fold and period-
doubling bifurcations of cn�2,2, respectively. The corresponding curve Ln is given by
Ln :
a ¼ ð1� 2r þ rnþ1Þ=ð1� rÞ;
b ¼ að2rn � rnþ1 � 1Þ=rn�2ð1� rÞ;

�
ð6Þ
where a < �1 and �1 < b < 1. It can be shown that if the (r, a)-parameter point crosses Bn transversely, cn�2,2 under-
goes either the �subcritical period-doubling� BCB to c0n�1;1, or the BCB to an attracting cycle cnÆk, k = 2, . . . , l, where
l!1 as n!1, or to a cyclic chaotic interval GnÆm, m = 2k, k, 1.

As an example, see Fig. 4 in which the curve L3 given by
L3 :
a ¼ f 01ð�xÞf 02ðr�xÞf 01ðf2ðr�xÞÞ ¼ 1� r � r2 � r3;

b ¼ f 02ð�xÞf 02ðr�xÞf 01ðf2ðr�xÞÞ ¼ að1� ð1þ r þ r2Þ=r3Þ;

(
ð7Þ
represents the BCB curve B3 of the attracting cycle c1,2. It can be seen that c1,2 can bifurcate to c3Æk, k = 2,3,4, or to
G3Æm, m = 2k, k, 1. Note that the only arc of L3 for �1 < b < 1 is related to the BCB of the attracting cycle c1,2. While
the arc of L3 for 1 < b < a/(a + 1) corresponds to the BCB from no attractor to Q1 for the map g. For the map f it is
A part of the (a, b)-parameter plane of the map g at e < 0, where qk denotes the region of attracting cycle of period k = 2,3,4;
s denoted Qm and Q0m correspond to the m-cyclic chaotic intervals; the curve L2 is related to the BCB of the cycle c0,2 of the map
L3 to the BCB of the cycle c1,2 (the dashed arc of L3 for 1 < b < a/(a + 1) corresponds to the BCB to G3).
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related to the BCB which gives rise to G3. The curve b = a/(a + 1) is related to the boundary crises for the map g, that is,
for the parameter values b > a/(a + 1) almost all trajectories of g go to infinity. While for the map f the arc of L3 for
b > a/(a + 1) has no relation to any bifurcation (the map f has a one-piece chaotic interval before and after intersection
of this arc).

2.2. Bifurcation structure of the region Db: Bistability

In this section we recall briefly some results (see [15] for the details) related to the bifurcation structure of the region
Db. Recall that for (r, a) 2 Db we have xc P �x, so the map f can have superstable cycles. The (r, a)-parameter values,
corresponding to the superstable cycles of the map f form a ‘‘skeleton’’ of the 2D bifurcation diagram, in the same
way as the values of a corresponding to the superstable n-cycles of the logistic map characterize periodic windows
of the 1D bifurcation diagram. The following proposition (given in [15]) describes the border-collisions which the super-
stable n-cycle of the map f can undergo under specified parameter variation:

Proposition 5. If the (r, a)-parameter point moves continuously from the right to the left inside Pn, starting from a point

(r, a) 2 (Pn \ Dl), following the corresponding superstable n-cycle of the map f, then this cycle undergoes b BC
1 We
critical
ec0;n ) ec1;n�1 ) � � � ) ecb;n�b;
after which a BCB occurs at a = 2r, when the critical point xc collides with �x. Here b equals to the number of symbols L in

the symbolic representation1 of ec0;n.

Obviously, the parameters of the normal form g given in (5) for all the BC (b in number) of ecn are a = b = 0. To see
that the collision of xc with �x indeed leads to a bifurcation, we note that in this case b = 0, but a can be, in general, any
real number. It can be shown (see Fig. 2) that there are three possibilities:

(1) The �period-doubling� BCB (a < �1): The superstable n-cycle becomes unstable while an attracting 2n-cycle
appears.

(2) The border-collision pair bifurcation (the �fold� BCB) occurring in the reverse order (a > 1): The point xc of the
superstable n-cycle and one point of the repelling n-cycle collide with the break point and both cycles disappear.

(3) The �pitchfork� BCB occurring in the direct (�1 < a < 0), or reverse order (0 < a < 1). In the last case, for exam-
ple, the point xc and one more point of the superstable n-cycle, as well as one point of the repelling n/2-cycle col-
lide simultaneously with the break point and the n/2-cycle becomes attracting. This BCB occurs, obviously, for
the same parameter values as the �period-doubling� BCB for the corresponding superstable n/2-cycle.

Examples of all the three kinds of BCB of the superstable cycles of the map f can be seen in Fig. 5, which is an en-
larged window of Fig. 1. The parameter paths corresponding to some superstable cycles are shown by the white curves.
It can be seen that at a = 2r the cycle ec0;2 undergoes the �period-doubling� BCB occurring at the same parameter values
as the reverse �pitchfork� BCB of the cycle ec1;3, while the cycle ec1;5 undergoes the reverse �fold� BCB.

To illustrate Proposition 5 we present in Fig. 6 the enlarged window I of Fig. 1, with the periodicity regions
P3, P6, P12, P24 related to the ‘‘3-box’’. Fold, period-doubling and border-collision bifurcation curves are shown by
dashed, thick and thin lines, respectively. The symbolic representation of the cycle ec0;3 is

P
¼ ðRLCÞ1, that is b = 1,

thus, under specified parameter variation this cycle undergoes one BC ec0;3 ) ec1;2, and then the �period-doubling�
BCB occurs at a = 2r giving rise to the cycles c3,3 and c02;1. The symbolic representation of the considered cycle ec0;6

is
P
¼ ðRL2RLCÞ1, b = 3, thus, it undergoes three BC ec0;6 ) ec1;5 ) ec2;4 ) ec3;3, and then the reverse �pitchfork�

BCB occurs at a = 2r giving rise to the attracting cycle c1,2.
Let us give one more example. It is known for the logistic map, that the symbolic representation of the last (ordered

on a) superstable n-cycle is (RLn�2C)1, i.e., b = n � 2, thus, under the parameter variation described above, such a cycle
undergoes n � 2 BC: ec0;n ) ec1;n�1 ) � � � ) ecn�2;2, and then the BCB occurs when xc collides with �x. By continuity, the
map f has the attracting cycle cn�2,2 existing for the parameter values taken from some neighborhood of those corre-
sponding to the superstable cycle ecn�2;2. The BCB of cn�2,2 is described at the end of Section 2.1 from where it follows, in
particular, that ecn�2;2 undergoes the �period-doubling� BCB.
refer to the symbolic representation of the superstable n-cycles fxign
i¼1 (see [10]), which starts from the first iteration of the

point xc, i.e., from x1 = f(xc). We write R if xi > xc, or L if xi < xc, or C if xi = xc, for i = 1, . . . ,n.



Fig. 5. An enlarged window of Fig. 1. The white curves correspond to the parameter paths of some superstable cycles; the thick
straight line a ¼ 1þ

ffiffiffi
6
p

is the period-doubling bifurcation curve of c0,2; the thin curves correspond to the BCB of the related cycles.
The dashed regions indicate bistability.

Fig. 6. The enlarged window I of Fig. 1.
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It is worth to emphasize that any periodicity region Pn, with its core corresponding to the superstable n-cycles, has
continuation through the whole region Db and intersects its left boundary a = 2r. The boundaries of Pn \ Db are formed
by curves corresponding to fold, period-doubling and border-collision bifurcations.
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Moreover, in the region Db there are infinitely many regions of bistability corresponding to two coexisting attractors.
As an example, two bistability regions B1 and B2 are shown in Fig. 6. To illustrate bifurcations which occur crossing
different boundaries of the bistability regions, we present in Fig. 7 two 1D bifurcation diagrams (the corresponding
parameter paths are indicated by the vertical straight lines with arrows in Fig. 6).

One more example of bistability is presented in Fig. 8 where one of the two branches of the 1D bifurcation diagram
of the map f is shown (the corresponding parameter path is indicated in Fig. 5 by the vertical straight line with an ar-
row): Increasing a in the indicated range we see the attracting cycle c0,2 (thick line) coexisting at first with the attracting
cycle c1,3 (thin lines) born via fold bifurcation together with the repelling cycle c01;3 (dashed lines). Then c0,2 coexists,
consequently, with all the cycles related to the period-doubling cascade of c1,3, and after with all other attractors, fol-
lowing the logistic bifurcation scenario (with periods multiplied by 4). One can see also that the first homoclinic bifur-
cation for c01;3 results in a boundary crises for 4-cyclic chaotic intervals. Then the period-doubling bifurcation of c0,2

gives rise to an attracting cycle c0,4, and, finally, the reverse �fold� BCB occurs for c0,4 and c01;3, after which they both
disappear.

2.3. Bifurcation structure of Dr: Homoclinic curves

In this section we present numerical results related to the bifurcation structure of the region Dr, main characteristic
of which is the predominance of the (r, a)-parameter values corresponding to chaotic attractors with respect to the
parameter values corresponding to the attracting cycles of the map f. Moreover, it is easy to check that for
a > (2r + 1) the map f is expanding for any point of I = [0,1], thus, in this case the map f cannot have any attracting
cycle. Recall that for (r, a) 2 Dr we have the extremum (maximum) of f at the break point �x.

First we comment Fig. 9 which is the enlarged window II of Fig. 1. As stated in Proposition 4, if the (r, a)-parameter
point crosses the BCB curve B2, given by a = a2(r), transversely in a point between the points d1 and d2 (see also Fig. 5),
then c0,2 bifurcates to c1,3, if it crosses between d3 and d2 then we have the BCB c0,2) G8, if it crosses between d4 and d3

then the BCB c0,2) G4 occurs. Increasing a the cycle c1,3 bifurcates to c2,6 due to the period-doubling bifurcation,
which then undergoes the BCB to the cyclic chaotic interval G8 (this fact can be verified by estimating the corresponding
parameters a and b given in (3) and (4)).

The points d3 and d4 correspond to the points p3 and p4 in the (a, b)-plane (see Fig. 3), belonging, respectively, to the
curves of the first homoclinic bifurcation of the repelling 2-cycle and the repelling fixed point of the map g. These bifur-
cations give rise to the pairwise merging of the pieces of the cyclic chaotic interval Q4 (Q2, respectively) resulting in the
chaotic interval Q2 (Q1). Thus, for the map f the points d3 and d4, by continuity, are starting points of curves (denoted
H4 and H2) corresponding to the first homoclinic bifurcation of the cycles c01;3 and c01;2, respectively. The curves H4 and
H2 are obtained numerically. Together with the BCB curves of c0,2 and c2,6 they form the boundaries of the regions
Fig. 7. One of the three branches of 1D bifurcation diagram of the map f at (a) r = 3.268, a 2 [3.84045,3.8408] (a crosssection of the
bistability region B1) and (b) r = 3.2714, a 2 [3.841,3.8416] (a crosssection of both the bistability regions B1 and B2).



Fig. 8. One of the two branches of the 1D bifurcation diagram of the map f at r = 1.95, a 2 [3.42,3.455].

Fig. 9. The enlarged window II of Fig. 1 shows the regions corresponding to the attracting cycles c0,2, c1,3, c2,6, c1,5 and c2,10, as well as
to the cyclic chaotic intervals G8, G4, G12, G6 and G2.
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corresponding to the cyclic chaotic intervals G8 and G4 of the map f (for the considered parameter range). To illustrate
all the bifurcations mentioned above we present in Fig. 10 one of the two branches of the 1D bifurcation diagram of the
map f at r = 1.55, a 2 [3.19,3.23] (this parameter path is indicated in Fig. 9 by the vertical straight line with an arrow).

In order to complete the consideration of the BCB of the cycle c0,2 let us comment Fig. 11 which is the enlarged
window III of Fig. 1. Referring again to Proposition 4 we state that if the (r, a)-parameter point crosses transversely
the BCB curve B2 in a point between dk and dk�1, k = 5,6, . . ., then the BCB c0;2 ) G2k�4 occurs, where k!1 as
(r, a2(r))! (1,3). Each the point pk in (a, b)-parameter plane (see Fig. 3), corresponding to the point dk, belong to
the curve of the first homoclinic bifurcation of 2k�5-cycle of the map g (see [8]). Thus, by continuity, the point dk is
a starting point for the curve of the first homoclinic bifurcation of the 2k�4-cycle of the map f. These curves, denoted
H2k�4 , are obtained numerically and shown in Fig. 11. If the (r, a)-parameter point crosses transversely through all the



Fig. 10. One of the two branches of 1D bifurcation diagram of the map f at r = 1.55, a 2 [3.19,3.23]. Dashed lines correspond to points
of the repelling cycles c01;2 and c01;3.

Fig. 11. The enlarged window III of Fig. 1. The curve H2k�4 , k P 5, corresponds to the first homoclinic bifurcation of 2k�4-cycle of the
map f; the curve H1 is related to the first homoclinic bifurcation of the fixed point x*.
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curves H2k�4 , approaching the point (r, a) = (1,3), then we have an infinite cascade of period-doubling bifurcations for
the cyclic chaotic intervals G2 ) G22 ) G23 ) � � � The curve H1 corresponds to the first homoclinic bifurcation of the
fixed point x* = (1 � 1/a) and is given by the equality f 3ð�xÞ ¼ x�.

Now let us comment the bifurcation structure related to the region P6 corresponding to the attracting cycle c1,5 (see
Fig. 9). The lower boundary of this region, denoted B6, corresponds to the �fold� BCB giving rise to the cycles c1,5 and
c02;4. Note that a �fold� BCB can give rise also to two repelling cycles as we shall see below. The curve B6 is given by
B6 ¼ ðr; aÞ : f 5
2 ðf1ð�xÞÞ ¼ �x; r�2 < r < r�1

� �
;



Fig. 12. One of the 6 branches of 1D bifurcation diagram for the map f at r = 1.5, a 2 [3.2075,3.235]. Dashed lines correspond to
points of the repelling cycles c02;4 and c01;5.

Fig. 13. One of the 6 branches of 1D bifurcation diagram of the map f at r = 1.44, a 2 [3.174,3.192]. Lower dashed line corresponds to
a point of the repelling cycle c02;4 and the upper one to a point of c01;5, both born due to the �fold� BCB, which gives rise also to the cyclic
chaotic interval G12.
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where r�1 is the r-coordinate of the intersection point (denoted d�1 in Fig. 5) of B6 with the fold bifurcation curve, given
by f 6

2 ðxÞ ¼ x. While r�2 is the r-coordinates of the intersection point (denoted d�2 in Fig. 9) of B6 with the period-doubling
bifurcation curve of c1,5.

Let (r, a) 2 P6 and a be increasing. Then the cycle c1,5 undergoes the period-doubling bifurcation giving rise to the
cycle c2,10 which then undergoes the BCB to G12. The first homoclinic bifurcation of the cycle c01;5 (the related bifurca-
tion curve is denoted H6 in Fig. 9) gives rise to the pairwise merging of the pieces of G12 and results in the cyclic chaotic
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interval G6, which then bifurcate to G2 due to the first homoclinic bifurcation of c02;4 (the related curve is denoted H0
6).

As an example of such a sequence of bifurcations, Fig. 12 presents one of the 6 branches of 1D bifurcation diagram for
the map f at r = 1.5, a 2 [3.2075,3.235] (this parameter path is indicated in Fig. 9 by the vertical dashed straight line
with an arrow).

We can consider also the curve B6 for r < r�2, then the arcs ðd�3; d�2Þ and ðd�4; d�3Þ of B6 (see Fig. 9) correspond to the
�fold� BCB giving rise to two repelling cycles c01;5 and c02;4, and to the cyclic chaotic intervals G12 and G6, respectively.
Fig. 13 shows one of the 6 branches of 1D bifurcation diagram for the map f at r = 1.44, a 2 [3.174,3.192] illustrating
the �fold� BCB which results in G12, c01;5 and c02;4. To prove that such bifurcations occur one has to consider the curve L6

corresponding to B6 in the (a, b)-parameter plane (see (3) and (4)) to see which subregions this curve intersects.
3. Concluding remarks

In the present paper we have discussed the structure of the 2D bifurcation diagram of the unimodal piecewise
smooth map f given in (1), both in the case in which the map f has its extremum at the break point �x, and in case in
which the extremum is at a point different from �x, that is at xc = 1/2. Such a difference influences the dynamics of
the map: In the first case we have predominance of chaotic dynamics, with open regions in the parameter plane corre-
sponding to chaotic trajectories, while in the second case the dynamics are mainly periodic. Comparing the possible
kinds of border-collision bifurcations which an attracting n-cycle can undergo, we have seen that the first case gives rise
to more possibilities, such as the BCB to an attracting kn-cycle, k = 2, . . . , l, where l!1 as n!1, as well as to a
cyclic chaotic interval of period 2kn, kn, n. While in the second case either �period-doubling�, or �fold�, or �subcritical
period-doubling� BCB can occur.

An interesting and open problem is to describe the border-collision bifurcation of chaotic attractors, well as to clas-
sify bifurcations of codimension two involving the border-collision bifurcations, which occur for the parameter values
corresponding to the intersection of the border-collision bifurcation curves with other bifurcation curves (see [7] where a
strategy for such a classification is proposed in case of piecewise smooth systems of ordinary differential equations).
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