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a b s t r a c t

In this paper we consider a Schelling-type segregation model with two groups of agents that

differ in some aspects, such as religion, political affiliation or color of skin. The first group

is identified as the local population, while the second group is identified as the newcomers,

whose members want to settle down in the city or country, or more generally a system, already

populated by members of the local population.

The members of the local population have a limited tolerance towards newcomers. On the

contrary, some newcomers, but not all of them, may stand the presence of any amount of

members of the local population. The heterogeneous, and partially limited, levels of tolerance

trigger an entry and exit dynamics into and from the system of the members of the two groups

based on their satisfaction with the number of members of the other group into the system.

This entry/exit dynamics is described by a continuous piecewise-differentiable map in two

dimensions. The dynamics of the model is characterized by smooth bifurcations as well as by

border collision bifurcations. A combination of analytical results and numerical analysis are

the main tools used to describe the quite complicated local and global dynamics of the model.

The investigation reveals that two factors are the main elements that preclude integration. The

first one is a low level of tolerance of the members of the two populations. The second one is an

excessive and unbalanced level of tolerance between the two populations. In this last case, to

facilitate the integration between members of the two groups, we impose an entry-limitation

policy represented by the imposition of a maximum number of newcomers allowed to enter

the system. The investigation of the dynamics reveals that the entry-limitation policy is useful

to promote integration as it limits the negative effects due to excessive and unbalanced levels

of tolerance.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In real-world situations, the integration of people who

differ for religion, color of skin, political opinions and any

other element of diversity is a complicated aspect that has

many implications and affects all aspects of the human be-
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ing’s life and of the global society in general, such as per-

sonal relations, social relations, economics, politics, and the

like. The main cause of non-integration (or segregation) is

the limited level of tolerance that groups of individuals who

share ideals, or are characterized by common features, have

towards individuals that do not belong to their cluster. More-

over, the assumption that residential segregation observable

in many U.S. cities, see, e.g. [1], is the output of a free interac-

tion of agents guided by their own discriminatory individual

choices, leads someone to think that individuals are totally

intolerant. Nevertheless, other ones can be the causes leading
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to segregation. As underlined earlier by Schelling, see [2] and

[3], and more recently in [1], [4], [5] and [6], a deep investiga-

tion of the real situation reveals that the segregation in many

U.S. cities does not reflect the desire of the people but is the

result of sets of integration preferences of the members of the

different groups that are limited and mutually incompatible.

In his seminal contribution, see [2], Schelling proposes

(sketches) two models to represent and describe the issue.

The first model is a primeval example of agent-based model-

ing1 that takes into account the point of view and the deci-

sions of every single individual involved. This model has been

extended and analyzed in many contributions, see e.g. [7,8]

and [9]. The second model is a two-dimensional dynamical

system that describes the entry/exit dynamics of the mem-

bers of two populations in a city or a country or more gener-

ally a system. This model considers individuals as members

of the two groups and describes the aggregate dynamics to

result from the interaction of the two groups and based on

adaptive mechanisms. Recently, see [10,11]–[12], this second

model has been proposed as a nonlinear two-dimensional

map. Compared to the agent-based models, this second setup

allows us to base the findings of the dynamics of segregation

on a solid mathematical ground and to use the last develop-

ments of the bifurcation theory, especially border collision

bifurcation theory, to describe the mechanisms that either

lead to segregation or promote integration. Nevertheless, the

second setup does not have the flexibility and the possibil-

ity to detail the preferences and the differences, especially

in terms of level of tolerance, of each single agent. However,

it can be used as a solid mathematical validation of the re-

sults of the more general agent-based models and can offer a

valid interpretation of some of the phenomena, at first sight

unexplainable, that can result due to the nonlinearity of the

entry/exit dynamics.

These Schelling-type models are mainly based on the sim-

ple assumption of homogeneous distributions of tolerances

of members of different groups. However, this is not always

the case in real-world situations where the heterogeneity of

the distributions of tolerances is a crucial aspect of the seg-

regation dynamics. An empirical analysis conducted in the

U.S.A. to study the propensity of individuals of different eth-

nic groups to live together in the same neighborhood reveals

distributions of tolerance of different shapes for the differ-

ent ethnic groups, see [1]. The main difference in the distri-

butions of tolerance among ethnic groups is related to the

maximum number of agents of the other groups that are

tolerated. In particular, from the empirical results reported

and commented in [1], it emerges that some ethnic groups

are characterized by a small fraction of individuals that can

stand the presence of any number of individuals of the other

groups, while some other ethnic groups can stand only a lim-

ited number of individuals of the other groups.

With the aim of capturing and describing the effect of this

heterogeneity, we imagine a city or a country populated by

two groups of individuals. One group is the local population,

which is characterized by a limited level of tolerance and
1 As suggested by an anonymous referee, Schelling’s contribution is de-

fined by Epstain and Axtell, see [7], as “an early and prescient example of

agent-based modeling in the social sciences”.
the second group are newcomers, which are characterized

by a subgroup of members that tolerate the presence of any

number of members of the other group. We normalize to one

the number of individuals of the local population and we

assume that the newcomers are in fewer numbers than the

individuals of the local population. The resulting tolerance

distributions and the adaptive dynamics describing the

entry/exit flows of the members of the local population and

of the members of the newcomers are similar to the one

proposed in [10].

The analysis of the model reveals that for both low lev-

els and large levels of tolerances the segregation equilibria

represent the only asymptotically stable fixed points of the

model. On the contrary, for intermediate levels of tolerance

an equilibrium of non-segregation can be asymptotically sta-

ble. However, this equilibrium always coexists with at least

another asymptotically stable equilibrium of segregation.

The results can partially appear counter-intuitive, espe-

cially the fact that the dynamic investigation of the model

reveals that segregation can be caused by an excess of tol-

erance. Nevertheless, this phenomenon has a simple and

straightforward explanation in terms of mutually incompati-

ble sets of preferences as suggested by Schelling. Indeed, the

high levels of tolerance of newcomers, which combined with

the high, but in any case limited, tolerance levels of the indi-

viduals of the local population, boost the first ones to enter

in a massive way and force the last ones to leave the city or

the country where they live.

In order to provide a valid solution to the segregation

caused by large levels of tolerances, we introduce entry-

limitation constraints which apply to the newcomers. These

entry restrictions represent an entry-limitation policy im-

posed by regulators that turns out to promote integration

between individuals of the two populations. Indeed, such

an exogenous control reduces the risk of massive entry

and exit dynamics, typical of emotional or impulsive re-

actions, resulting from unbalanced levels of tolerance be-

tween members of the local population and newcomers, that

threaten the possibility to have integration. For obvious rea-

sons, the entry-limitations can be imposed only to the new-

comers. Indeed, it is difficult to imagine that a regulator

can force part of the local population to leave the region in

which it lives and moves to another place for the sake of

integration.

Due to the introduction of the entry-limitations a new

asymptotically stable equilibrium of integration (or non-

segregation) can appear through a border collision bifurca-

tion. Moreover, the entry-limitations have the effect of reduc-

ing the amount of chaos in the dynamics of the system. This

occurs through a sequence of border collision bifurcations.

Indeed, the entry-limitations have the effect of introducing a

further curve of non-differentiability in a map that is already

piecewise differentiable.

This characteristic of the map makes the model interest-

ing also from a mathematical point of view. Indeed, the in-

vestigation reveals the existence of border collision bifurca-

tions, see e.g. [13–30] and [31] for theory and applications

in economics and social sciences, both of codimension-one

and codimension-two, which combined with smooth bifur-

cations of different types (as saddle-node bifurcations and
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sequences of flip, or period doubling, bifurcations), see e.g.

[32], generate complex dynamics.

The paper is organized as follows. Section 2 introduces

the model and some of its general properties. Section 3 iden-

tifies the possible fixed points of the model, and the bifur-

cations leading to their existence, providing results about

their asymptotic stability and investigates the possible bifur-

cations of the fixed points themselves. Section 4 describes

the global dynamics of the model without entry-limitations

by means of numerical tools and analytical results. Section 5

investigates the effect of the entry limitations. Section 6

concludes.

2. The model setup

Let us consider a neighborhood, or a district, populated by

agents belonging to two groups denoted as local population

and the newcomers. The members of these two groups de-

cide to enter or exit the neighborhood according to their level

of satisfaction, which depends on the number of members of

the other group currently present in the neighborhood itself.

Let us denote by x1 and by x2 the number of members of the

local population and of the newcomers, respectively, that live

in the neighborhood. Specifically, the entry and exit dynam-

ics is regulated by a simple adjusted mechanism according to

which members of both groups exit the neighborhood when

the presence of the members of the other group exceeded

the maximum tolerated number and enter otherwise. The

speed at which the entry and exit dynamics occur is regu-

lated by an adjustment parameter, here indicated by γ 1 for

the local population and by γ 2 for the newcomers, that we

assume to depend on the socioeconomic conditions of the

residential area (or neighborhood, or district) at stake. For

example, housing market conditions can speed up or slow

down the movements of people in and out of the neighbor-

hood. The entry and exit dynamics can be formalized in a

dynamical model. In particular, the modeling framework to

analyze is the following piecewise smooth two-dimensional

map (x′
1
, x′

2
) = T(x1, x2) defined as follows:

T :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x′

1 =
{

0
F1(x1, x2)
N1

if F1(x1, x2) ≤ 0
if 0 ≤ F1(x1, x2) ≤ N1

if F1(x1, x2) ≥ N1

x′
2 =

{
0
F2(x1, x2)
K2

if F2(x1, x2) ≤ 0
if 0 ≤ F2(x1, x2) ≤ K2

if F2(x1, x2) ≥ K2

(1)

with

F1(x1, x2) = x1[1 + γ1(x1R1(x1) − x2)]

F2(x1, x2) = x2[1 + γ2(x2R2(x2) − x1)] (2)

and

R1(x1) = τ1

(
1 − x1

N1

)
R2(x2) = τ2

(
N2

x2

− 1

)
(3)

where N1 represents the size of the local population, which

we assume to be the larger of the two, and we normalize to

one, i.e. N1 = 1. The numerosity of the second population, the

newcomers, is indicated by N and for obvious reasons it is
2
assumed to be smaller than the local population. Normaliz-

ing the size of population two to the size of the local popula-

tion, we have that

0 < N2 ≤ N1(= 1). (4)

The two functions Ri(xi) represent the level of tolerance

of the two populations that depend on the level-of-tolerance

parameters τ i. In particular, the maximum number of mem-

bers of the newcomers (of the local population) tolerated by

x1 (x2) members of the local population (of the newcomers)

is given by x1R(x1) (x2R(x2)).

The first tolerance function R1 is based on the assumption

that members of the local population have heterogeneous

and limited degrees of tolerance. On the contrary, the toler-

ance function of newcomers’ population is based on the fact

that a small part of the members of this population is not

disturbed by the presence of the other population and can

bear any number of people of the other population living in

their own neighborhood. This modeling choice is supported

by empirical evidence, see [1].

The unlimited entry of newcomers in a neighborhood can

generate the reaction of the local population, that can decide

to move to another neighborhood. This can boost an entry-

exit dynamics in the system that can be described by means

of an adjustment mechanism as the one indicated by the map

T in (1).

The rulers can decide to limit the entry of the newcomers

imposing entrance limitations for them. In order to under-

stand the possible effects of this “anti-segregation policy”, we

introduce a constraint, represented by the parameter K2 with

0 < K2 ≤ N2 (5)

which allows newcomers to enter the neighborhood only in

a limited number.

As indicated above, the parameters γ 1(>0) and

γ 2(>0) indicate how fast each population reacts to the

tolerated/non-tolerated levels of members of the other

population entering/exiting the neighborhood. We assume

that this reactivity depends on real estate or housing market

conditions, labor flexibility, local bureaucracy and munici-

pality and so we are led to assume the same value for both

the populations, i.e. γ = γ1 = γ2. We also assume that the

tolerance parameters are positive, thus

γ > 0, τ1 > 0, τ2 > 0. (6)

In explicit form the functions Fi defining map T are as fol-

lows:

F1(x1, x2) = x1

[
1 + γ

(
x1τ1

(
1 − x1

N1

)
− x2

)]
F2(x1, x2) = x2[1 + γ (τ2N2 − τ2x2 − x1)]. (7)

From the definition of map T it is clear that any point of

the plane in one iteration is mapped in the rectangle D given

by

D = [0, N1] × [0, K2] (8)

and an orbit cannot escape from it. Moreover, the range D

of the map is divided in several regions, whose shape and

size depend on the parameters. In the different regions the

system changes its definition, although continuously. The
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Fig. 1. Phase space of map T, and range D marked, for the following values of the parameters: γ = 1.5, τ1 = 1.5, τ2 = 3, N1 = 1, N2 = 0.5 and K2 = 0.45. Panel

(a), some regions �i . Panel (b), representation of the fixed points and their basins of attractions. In green the basin of attraction of the fixed point of segregation

Q1. In azure the basin of attraction of the fixed point of segregation Q2. In red the basin of attraction of the natural fixed point of non-segregation P+ . In gray is

the basin of attraction of fixed point O. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
boundaries of these regions are sets of non-differentiability

for map T and are defined by the following curves:

BC1 : x2 = 1

γ

[
1 + γ x1R1(x1) − N1

x1

]
= 1

γ
+ τ1x1

(
1 − x1

N1

)
− N1

γ x1

where F1(x1, x2) = N1

BC2 : x1 = 1

γ

[
1 + γ x2R2(x2) − K2

x2

]
= 1

γ
+ τ2(N2 − x2) − K2

γ x2

where F2(x1, x2) = K2

(9)

and by the curves Fi(x1, x2) = 0 which, as it is immediate, are

given by xi = 0, and two more curves given by:

BC1,0 : x2 = 1

γ
[1 + γ x1R1(x1)] = 1

γ
+ τ1x1

(
1 − x1

N1

)
where F1(x1, x2) = 0, x1 �= 0

BC2,0 : x1 = 1

γ
[1 + γ x2R2(x2)] = 1

γ
+ τ2(N2 − x2)

where F2(x1, x2) = 0, x2 �= 0. (10)

An example is shown in Fig. 1a.

The curves of non-differentiability defined in (9) and (10)

divide the phase plane into the following nine regions:

�1 = {(x1, x2)|0≤F1(x1, x2)≤N1 and 0≤F2(x1, x2)≤K2}
�2 = {(x1, x2)|F1(x1, x2) ≤ 0 and 0 ≤ F2(x1, x2) ≤ K2}
�3 = {(x1, x2)|F1(x1, x2) ≤ 0 and F2(x1, x2) ≤ 0}
�4 = {(x1, x2)|F1(x1, x2) ≤ 0 and F2(x1, x2) ≥ K2}
�5 = {(x1, x2)|F1(x1, x2) ≥ N1 and 0 ≤ F2(x1, x2) ≤ K2}
�6 = {(x1, x2)|F1(x1, x2) ≥ N1 and F2(x1, x2) ≤ 0}
�7 = {(x1, x2)|F1(x1, x2) ≥ N1 and F2(x1, x2) ≥ K2}
�8 = {(x1, x2)|0 ≤ F1(x1, x2) ≤ N1 and F2(x1, x2) ≤ 0}
�9 = {(x1, x2)|0 ≤ F1(x1, x2) ≤ N1 and F2(x1, x2) ≥ K2}

(11)
also shown in Fig. 1a, in each of which, as remarked above,

map T takes a different definition, given explicitly as follows:

(x1, x2) ∈ �1 :
(
x′

1, x′
2

)
= (F1(x1, x2), F2(x1, x2))

(x1, x2) ∈ �2 :
(
x′

1, x′
2

)
= (0, F2(x1, x2))

(x1, x2) ∈ �3 :
(
x′

1, x′
2

)
= (0, 0)

(x1, x2) ∈ �4 :
(
x′

1, x′
2

)
= (0, K2)

(x1, x2) ∈ �5 :
(
x′

1, x′
2

)
= (N1, F2(x1, x2))

(x1, x2) ∈ �6 :
(
x′

1, x′
2

)
= (N1, 0)

(x1, x2) ∈ �7 :
(
x′

1, x′
2

)
= (N1, K2)

(x1, x2) ∈ �8 :
(
x′

1, x′
2

)
= (F1(x1, x2), 0)

(x1, x2) ∈ �9 :
(
x′

1, x′
2

)
= (F1(x1, x2), K2)

(12)

and since the map is continuous, at a border point between

two different regions the applied functions take the same

value.

3. Fixed points of the model

Regarding the fixed points of the map, satisfying

T(x1, x2) = (x1, x2), as we shall see in this section, we have

to take into account the possible internal fixed points, which

we call “natural fixed points of non-segregation”, as the fixed

points P− and P+ showed in Fig. 1b, as well as constrained

fixed points, belonging to the boundary of the range D. These

constrained fixed points are of two different kinds: those

which belong to the coordinate axes, and thus represent the

extinction of one population, as the fixed points Q1 and Q2 in

Fig. 1b, which are called “fixed points of segregation” among

which we also have to include the origin O = (0, 0) which

is a “fixed point of extinction”, and a second kind belonging

to the upper border of the rectangle D, as the points P− and

P+ in Fig. 2, which are called “artificial fixed points of non-

segregation”.

Summarizing, in this section we are going to determine

the conditions for the existence of all the possible fixed

points of the segregation model in (1), each of which has a

specific socioeconomic meaning, and are classified as in the

following definition:

Definition 1. The possible fixed points of map T are denoted
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Fig. 2. Phase space of map T, and range D for the values of the parameters as in Fig. 1 and K2 = 0.35 in (a), K2 = 0.2 in (b). The colors of the basins have the same

meaning as in Fig. 1, and in white the basin of attraction of P+ .

1

1. Q1 and Q2: “ fixed points of segregation”;

2. P− and P+ : “natural fixed points of non-segregation”;

3. P− and P+ : “artificial fixed points of non-segregation”;

4. O: “fixed point of extinction”.

It is clear that we shall also investigate, when possible,

their local and global stability, both via the support of the

theory and some numerical tools, as already used in Figs. 1

and 2.

We can immediately see that the coordinate axes are in-

variant. In fact, considering a point (x1, 0) on the x1 axis we

have that T(x1, 0) belongs to the x1 axis, and

T1(x1, 0) =
{

0 if F1(x1, 0) ≤ 0
F1(x1, 0) if 0 ≤ F1(x1, 0) ≤ N1

N1 if F1(x1, 0) ≥ N1

(13)

where

F1(x1, 0) = x1

[
1 + γ x1τ1

(
1 − x1

N1

)]
. (14)

Considering the restriction t1(x1) ≡ T1(x1, 0) we have that

t1(x1) = x1 is satisfied for x∗
1

= 0 (representing the origin O

of T), and x∗
1

= N1 which represents the fixed point

Q1 = (N1, 0) (15)

of T belonging to the x1 axis and corner point of the range

D. Regarding its local stability, since F1(x1, 0) = N1 for x1 =
N1 and x1 =

√
N1
γ τ1

, satisfying

√
N1
γ τ1

< N1 for γ N1τ 1 > 1,

we have that on the right side of x∗
1

= N1 the map t1 is

smooth when γ N1τ 1 > 1 and constant otherwise, while on

its left side the map is either constant (when γ N1τ 1 > 1)

or smooth. Moreover, from d
dx1

t1(x1) = 1 + 2γ τ1x1 − 3
γ τ1
N1

x2
1

we have d
dx1

t1(N1) = 1 − γ τ1N1 < 1 so that this fixed point

is attracting on its left side, since for γ τ 1N1 < 1 it is also
d

dx1
t1(N1) > −1.

It is worth noting that for the two-dimensional map T this

fixed point is a corner point of D, so that its local dynamic be-

havior outside the invariant axis depends on the behaviors in

the other regions �5 and �1 belonging to its neighborhood,

and we shall return to this fixed point later. While consider-

ing the origin we have d
dx1

t1(0) = 1 and d2

d2x1
t1(x1) = 2γ τ1 −

6
γ τ1
N1

x1 leads to d2

d2x
t1(0) = 2γ1τ1 > 0 so that the fixed point
1

x∗
1

= 0 is repelling on its right side, that is, the origin (0, 0) is

repelling along the x1 direction.

For the second axis we have T(0, x2) = (0, T2(0, x2))
where

T2(0, x2) =
{

0 if F2(0, x2) ≤ 0
F2(0, x2) if 0 ≤ F2(0, x2) ≤ K2

K2 if F2(0, x2) ≥ K2

(16)

and

F2(0, x2) = x2[1 + γ τ2(N2 − x2)]. (17)

Considering the restriction t2(x2) ≡ T2(0, x2) it follows that

x∗
2

= 0 is a fixed point of t2 (representing the origin O of T),

and since K2 ≤ N2 also x∗
2

= K2 is another fixed point of the

restriction t2(x2) on the x2−axis, so that

Q2 = (0, K2) (18)

is a fixed point of T. Concerning the stability of these fixed

points of t2(x2), from d
dx2

t2(x2) = 1 + γ τ2(N2 − 2x2) we have

d
dx2

t2(0) = 1 + γ τ2N2 > 1 so that x2 = 0 is repelling for t2

(and thus the origin (0, 0) is repelling for T). While regard-

ing the other fixed point x∗
2

= K2, it is superstable for the

restriction when K2 < N2. For K2 = N2 we have d
dx2

t2(N2) =
1 − γ τ2N2 < 1 so that as long as γ τ 2N2 < 1 holds, leading to

d
dx2

t2(N2) > −1, this fixed point attracts the points smaller

than x∗
2 on the border of D.

As a fixed point of T, we notice that also Q2 is a border

point of D. The curve BC2, 0 intersects the x2−axis in the point

(0, 1/γ ) and assuming K2 ≤ N2 ≤ 1/γ the region �4 does not

intersect D.

For K2 < N2 the fixed point Q2 is internal to the region

�9 ∩ D, while for K2 = N2 it is on the border of region �9.

Thus, for K2 < N2 the fixed point Q2 is also a fixed point of

the map on the straight line x2 = K2 defined as

x′
1 = x1

[
1 − γ K2 + γ x1τ1

(
1 − x1

N1

)]
(19)

whose derivative in x1 = 0 (corresponding to Q2) is given by

(1 − γ K2) < 1 and it is attracting when the derivative is pos-

itive, (1 − γ K2) > 0 for K2 ≤ 1
γ . However, also (1 − γ K2) < 0

leads to stability because by definition of map T, the con-

straint brings the iterated point on the axis x = 0.
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So the segregation equilibria always exist. At Q1 = (N1, 0)
the local population survives and newcomers’ population

exits the district definitely, at Q2 = (0, K2) newcomers’ popu-

lation survives and the local population exits the district def-

initely. Also O = (0, 0) is an equilibrium (at which both pop-

ulations exit the district definitely), and as remarked above,

it is a locally repelling fixed point of T. However, by definition

all the points of the region �3 are mapped into the origin,

and when �3 has a portion in D then we have a typical case

of overshooting. That is, there exists a positive set of points

in D and outside a small neighborhood of O, which taken as

initial conditions (i.c. henceforth for short) lead to the exit of

both populations. This occurs when the parameters are such

that F1(N1, K2) < 0 and F2(N1, K2) < 0 which are satisfied for

1 − γ K2 < 0

1 + γ K2τ2(N2 − K2) − γ N1 < 0. (20)

Regarding the fixed points on the axes we can therefore

state the following:

Proposition 2. The map T can have the following fixed points

on the coordinate axes:

• Q1 = (N1, 0) always exists and it can be either locally stable

or locally unstable. It is stable when τ1 < 2
γ N1

and unstable

otherwise;

• Q2 = (0, K2) always exists and it is stable for K2 < N2;

• O = (0, 0) always exists and it is locally unstable, but it

has a basin of attraction of positive measure in D when

�3 ∩ D �= ∅.

Concerning the internal fixed points, they may exist be-

longing to region �1 given by the solutions of:{
x1R1(x1) = x2

x2R2(x2) = x1
(21)

when admissible (i.e. belonging to region �1 ∩ D). In the

phase plane these points belong to the intersection of the two

reaction curves:

φ1 : x2 = x1R1(x1), φ2 : x1 = x2R2(x2) (22)

that is:

φ1 : x2 = x1τ1

(
1 − x1

N1

)
φ2 : x1 = τ2(N2 − x2) (23)

whose solutions must satisfy the following equation:

x2
1 − N1

(
1 + 1

τ1τ2

)
x1 + N1N2

τ1

= 0 (24)

leading to two possible fixed points of non-segregation

P− =
(
x∗

1−, x∗
2−

)
, P+ =

(
x∗

1+, x∗
2+

)
(25)

where

x∗
1± = N1

τ1τ2 + 1

2τ1τ2

±
√(

N1
τ1τ2 + 1

2τ1τ2

)2

− N1N2

τ1

x∗
2± = N2 − x∗

1±
τ2

= N2 − N1
τ1τ2 + 1

2τ1τ 2
2

∓ 1

τ2

√(
N1

τ1τ2 + 1

2τ1τ2

)2

− N1N2

τ1

(26)
with x∗
1− < x∗

1+. This pair of real solutions exists for 1
τ2

>√
4N2τ1

N1
− τ1, which is satisfied obviously for

4N2
N1

< τ1, or,

more generally, it is satisfied when

τ2 < τ SN
2 , τ SN

2 = 1√
4N2τ1

N1
− τ1

. (27)

We have so proved the following:

Proposition 3. At τ2 = τ SN
2

, that is,

(SN) : τ2 = 1√
4N2τ1

N1
− τ1

(28)

a saddle-node bifurcation occurs and the two merging fixed

points P− = P+ =
(
x∗

1
, x∗

2

)
have coordinates given by

x∗
1 = N1

2

(
1 + 1

τ1τ2

)
, x∗

2 = N2 − x∗
1

τ2

(29)

and a pair of natural fixed points of non-segregation P− =(
x∗

1−, x∗
2−

)
and P+ =

(
x∗

1+, x∗
2+

)
exist for τ2 < τ SN

2
, given in (26),

which are real for T when belonging to the region �1 ∩ D.

In Fig. 3 are shown a few examples of the bifur-

cation curves τ2 = τ SN
2

associated with the appear-

ance/disappearance of the pair of fixed points of non-

segregation P− and P+. These fixed points can be either a

saddle and an attracting node or a saddle and a repelling

node, and both cases may occur in the phase space of interest

for us. It is worth noting that the coordinates of the fixed

points of non-segregation P− and P+ are independent of the

value of γ . However, their local stability is influenced by γ .

For the complete understanding of the real existence of

the natural fixed points of non-segregation we have to show

that after the occurrence of the saddle-node bifurcation (τ2 <

τ SN
2

as shown above) they do not become virtual, which can

occur both via a border collision due to the merging with

the fixed point Q1 and via a border collision with the upper

boundary of D. This is associated with the appearance of the

other fixed points introduced above, the artificial fixed points

of non-segregation, that we are going to determine below.

To this purpose, let us notice that the reaction curve φ2 is

the straight line x1 = τ2(N2 − x2) while the reaction curve φ1

is a concave parabola always crossing through the points O

and Q1. Moreover, it can be seen that the three curves φ1, BC1

and x1 = N1 (boundary of D) all intersect at the fixed point

Q1. Similarly, the three curves φ2, BC2 and x2 = K2 (boundary

of D) all intersect at the point Q given by:

Q = (x1,m, K2), x1,m = τ2(N2 − K2) (30)

(see the point Q in Figs. 1 and 2). In fact, x2 = K2 intersects

BC2 (of equation x1 = 1
γ + τ2(N2 − x2) − K2

γ x2
) at the point

x1,m = τ2(N2 − K2), and also x2 = K2 intersects φ2 (of equa-

tion x1 = τ2(N2 − x2)) at the same point. For K2 = N2 we have

Q = Q2 while when K2 < N2 the point Q is on the upper

boundary of D and �9 ∩ D �= ∅, as in the example shown in

Fig. 1a.

The above observation leads to determine the artificial

fixed points of non-segregation which may occur only when

K2 < N2, when there is a portion �9 ∩ D which is mapped

into the line x = K , where the map is given in (19) for
2 2



136 D. Radi, L. Gardini / Chaos, Solitons and Fractals 79 (2015) 130–144

Fig. 3. Two-dimensional bifurcation diagram in the parameter plane (τ1, τ2) at γ = 1.5 for different values of N2 and no entry constraints, i.e. K2 = N2. Panel (a),

N2 = 0.3, Panel (b), N2 = 0.5, Panel (c), N2 = 0.8. The red region represents the set of values of (τ1, τ2) for which the equilibrium Q1 has a basin of attraction of

positive measure in D. The azure region indicates that the only stable fixed point of map T is Q2. For points in the yellow region the equilibrium P+ is stable. The

magenta region corresponds to a stable 2-cycle. Other colors represent stable cycles of higher periods and the white region indicates the presence of a chaotic

attractor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
0 ≤ x1 < x1, m and in this case other possible constrained fixed

points are those obtained as intersection of the line x2 = K2

with the reaction curve φ1, when belonging to region �9. So

let us determine the solutions of K2 = x1τ1(1 − x1
N1

) obtaining

x1± = N1

2
±

√(
N1

2

)2

− N1K2

τ1

(31)

leading to two possible fixed points:

P− = (x1−, K2), P+ = (x1+, K2). (32)

As already noticed, the natural fixed points of non-

segregation P− and P+ exist when they belong to the proper

region �1, otherwise a fixed point is called virtual (i.e. it is

not a true fixed point for the map), and by their definition

the fixed points P− and P+ can become virtual colliding (in a

border collision) with the fixed point Q1 or colliding with the

upper boundary of D in the point Q.

From the expressions of the coordinates of the fixed

points we have that for x1,m = τ2(N2 − K2) < x∗
1− < x∗

1+ < N1

both the natural fixed points of non-segregation P− and P+
exist inside the region �1 ∩ D.

Then a border collision occurs when there is the merging

P+ = Q1. This leads to the conditions x∗
1+ = N1 and x∗

2+ = 0,

from which (by using x∗
2+ = N2 − x∗

1+
τ2

= 0) it is immediate to

get τ2 = N1
N2

.

Moreover, considering that the saddle-node bifurcation

occurs at τ2 = τ SN
2

, we have that at the intersection point of

the two curves (saddle node τ2 = τ SN
2

and border collision)

the merging P− = P+ = Q1 occurs. By using the expression in

(28) and τ2 = N1
N2

we obtain that this occurs at τ1 = N2
N1

. We

have so proved the following:

Proposition 4. The border collision bifurcation at which P+ col-

lides with Q1 takes place for

τ2 = τ ∗
2 and τ1 > τ ∗

1 (33)

where

τ ∗
2 = N1

N2

, τ ∗
1 = 1

τ ∗ = N2

N1

. (34)

2

The bifurcation point
(
τ ∗

1
, τ ∗

2

)
is a codimension-two point

at which the saddle node and the border collision occur

simultaneously:P− = P+ = Q1.

The other possible border collisions occur when the natu-

ral fixed points of non-segregation P− and P+ collide with the

border point Q. That is:

− a border collision due to the merging P− = Q leads to the

disappearance of P− and appearance of the artificial fixed

point of non-segregation P− ;

− a border collision due to the merging P+ = Q leads to the

disappearance of P+ and appearance of the artificial fixed

point of non-segregation P+.

Considering the coordinates of the fixed points then

− when x1,m = τ2(N2 − K2) = x∗
1− a border collision occurs

due to the merging P− = Q;

− when x1,m = τ2(N2 − K2) = x∗
1+ a border collision occurs

due to the merging P+ = Q;

so that we have the following:

Proposition 5. The border collision at which P− merges with Q

takes place for x1,m = x∗
1− and K2 = x∗

2−, leading to the follow-

ing bifurcation condition:

τ2(N2 − K2) = N1
τ1τ2 + 1

2τ1τ2

−
√(

N1
τ1τ2 + 1

2τ1τ2

)2

− N1N2

τ1

.

(35)

The border collision at which P+ merges with Q occurs for

x1,m = x∗
1+ and K2 = x∗

2+, leading to the following bifurcation

condition:

τ2(N2 − K2) = N1
τ1τ2 + 1

2τ1τ2

+
√(

N1
τ1τ2 + 1

2τ1τ2

)2

− N1N2

τ1

.

(36)

Summarizing, we have that the possible occurrences for

the natural and artificial fixed points of non-segregation are

as described in the following:
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Proposition 6. Concerning the fixed points of non-segregation,

the following cases are possible:

(i) let x1,m = τ2(N2 − K2) < x∗
1− < x∗

1+ < N1, then both the

natural fixed points of non-segregation P− and P+ exist

inside the region �1 ∩ D;

(ii) let x1,m = τ2(N2 − K2) < x∗
1− < N1 < x∗

1+, then only P−
is inside the region �1 ∩ D while P+ is virtual, and this

can occur “after” the collision of P+ with Q1;

(iii) let τ2 = τ ∗
2 and τ1 = τ ∗

1 , then P+ = P− = Q1, and this cor-

responds to a codimension-two bifurcation as both the

saddle-node τ2 = τ SN
2

and the border collision with Q1,

x∗
2− = x∗

2+ = 0 and x∗
1− = x∗

1+ = N1 occur;

(iv) let x1,m = τ2(N2 − K2) < N1 < x∗
1− < x∗

1+, then both P+
and P− are virtual, outside region D;

(v) let x∗
1− < x1,m < x∗

1+ < N1, then only P+ is in region

�1 ∩ D while P− no longer exists (becomes virtual), and

there is the artificial fixed point of non-segregation P− =
(x1−, K2);

(vi) let x∗
1− < x∗

1+ < x1,m < N1 then both P− and P+ are

virtual while both the artificial fixed points of non-

segregation P− and P+ exist.

Regarding the stability of the natural fixed points of non-

segregation P− and P+ when they belong to the region �1 ∩ D

in which the map is smooth, by simple considerations we can

conclude that P− is crossed by at least an unstable manifold

while P+ is crossed by at least a stable manifold. Indeed, in-

side the region
{
(x1, x2)|x1 ∈

(
x∗

1−, x∗
1+

)
and x2 < x1R(x1)

}
that join P− and P+ (see Fig. 1a) it is such that F1(x1, x2)

> 0 and hence the state variable x1 moves from x∗
1− to-

wards x∗
1+. Moreover, we can investigate the local stability

making use of the Jacobian matrix evaluated at an equilib-

rium point P =
(
x∗

1
, x∗

2

)
not belonging to the boundary of D

given by

J(x∗
1, x∗

2) =
[

1 + γ τ1x∗
1

(
1 − 2

x∗
1

N1

)
−γ x∗

1

−γ x∗
2 1 − γ τ2x∗

2

]
(37)

and the characteristic polynomial takes the form

ρ(λ) = λ2 − Trλ + det (38)

with

Tr = λ1 + λ2 = 2 + γ τ1x∗
1

(
1 − 2

x∗
1

N1

)
− γ τ2x∗

2

det = λ1λ2 =
(

1 + γ τ1x∗
1

(
1 − 2

x∗
1

N1

))
(1 − γ τ2x∗

2)

−γ 2x∗
1x∗

2 (39)

where λ1, 2 are the roots of the characteristic equation

ρ(λ) = 0.

By the local analysis, via the eigenvalues, when the fixed

point P+ merges with Q1 it can be either a stable node or a

saddle. As P− is necessarily unstable, the fixed point P+ can be

locally attracting and may become unstable via a flip bifur-

cation when ρ(−1) = 0. The appearance of a stable 2-cycle

when one eigenvalue related to J(P+) crosses −1 has been

observed numerically.

We can summarize the results associated

with the local stability of the fixed points in the

following:
Proposition 7. The map T can have the following fixed points:

• P− = (x∗
1−, x∗

2−) , if it exists then it can be either a saddle or

an unstable node;

• P+ = (x∗
1+, x∗

2+) , if it exists then it can be either a stable node

or a saddle;

• P− = (x+
1−, K2) , if it exists then it can be either a saddle or a

repelling node;

• P+ = (x+
1+, K2) , if it exists then it can be either a stable fixed

point or a saddle.

3.1. Codimension-two bifurcation points

We have remarked above the occurrence of a

codimension-two bifurcation point, (τ ∗
1
, τ ∗

2
), at which

P+ = P− = Q1, so that both the saddle-node τ2 = τ SN
2

and the

border collision τ2 = τ ∗
2 take place. Other codimension-two

points can be noticed in Fig. 3.

One is associated with the flip bifurcation of P+ which

can occur when the border collision P+ = Q1 takes place. This

leads to the condition 1 + Tr + det = 0 when computed at

(x∗
1
, x∗

2
) = (N2, 0) and it is straightforward to get the follow-

ing condition:

τ2 = τ ∗
2 and τ1 = τ+

1 , where τ+
1 = 2

γ N1

. (40)

See the points (τ+
1

, τ ∗
2
) in Fig. 3.

In Fig. 3 we can notice one more codimension-two bifur-

cation point, denoted τ FSN
2

which is a contact point between

the saddle-node curve τ2 = τ SN
2

and the flip bifurcation curve

of the fixed point P+. To determine this point let us consider

that to have simultaneously a saddle-node (P− = P+) and a

flip bifurcation of P+ it is necessary to have two eigenvalues

at the bifurcation value, λ1 = 1 and λ2 = −1. Thus from the

condition Tr = λ1 + λ2 = 0 and τ2 = τ SN
2

we obtain:

τ1 = τ FSN
1 , τ FSN

1 =
γ N1

(
1 +

(
τ SN

2

)2
)

(
4τ SN

2
− γ N1 − γ N1

(
τ SN

2

)2
)
τ SN

2

(41)

and substituting τ SN
2

we obtain the bifurcation condition:

4τ1

√
N2τ1

N1

− 2τ 2
1 − 4γ N2τ1

√
N2τ1

N1

+ 2γ N2τ
2
1 + 2γ N2τ

2
1

+γ τ 2
1

√
N1N2τ1 − γ

√
N1N2τ1 = 0. (42)

We only have numerical evidence of the dynamic result

related to these bifurcations. Changing the parameters from

a codimension-two bifurcation point, the results may differ,

depending on the region in the parameter space in which the

parameters are moved.

From the analysis performed up to now, it emerges that

in the particular case without entry limitations, i.e. K2 = N2,

the point P+ can be the only stable equilibrium of non-

segregation. Moreover, there is a set of values of the param-

eters such that the equilibrium P+ is never feasible, given by

τ2 < τ ∗
2 . It means that, without entry limitations, a minimum

level of tolerance from newcomers, measured by the value

τ ∗
2
, is required to have the necessary condition for a stable

equilibrium of non-segregation.

In the next sections we make use of numerical tools to

describe the global dynamics of the model and to comment
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it from a socioeconomic point of view, with some emphasis

on the policy implications.

4. The dynamics of the model without entry limitations

As a starting point, let us analyze the dynamics of the

model by means of two-dimensional (2D for short) bifurca-

tion diagrams in the parameter plane of the two parame-

ters of tolerance, i.e. (τ 1, τ 2), where τ 1 and τ 2 vary in the

range [0.2, 5] . This range is set large enough to include al-

most all the bifurcations that occur as the two parameters

are changed. Setting γ = 1.5, N1 = 1 and K2 = N2 (i.e., no en-

try limitations for newcomers), the 2D bifurcation diagrams

are reported in Fig. 3 for different values of the parameter N2.

From Fig. 3 we note that for relative low values of τ 2,

i.e. τ2 < τ ∗
2
( = N1

N2
) indicated by the red region, whatever the

level of tolerance of the local population, the only stable fixed

points are the segregation ones, i.e. Q1 and Q2. Thus, if the

population of newcomers is characterized by low level of tol-

erance there are no possibilities to avoid segregation, at least

without external restrictions to the entry and exist dynamics.

The threshold level τ2 = τ ∗
2
( = N1

N2
) (border collision bifurca-

tion value at which P+ merges with Q1) represents the min-

imal level of tolerance required by newcomers under which

segregation occurs for sure and it is inversely related to their

numerosity.

As the value of τ 2 increases, we have a transition to three

possible scenarios. Which one of the three depends on the

level of tolerance of the local population, i.e. on the level of

τ 1. If τ 1 is small, specifically τ1 < τ ∗
1
( = 1

τ ∗
2

= N2
N1

), so that

the local population has a very limited level of tolerance to-

wards newcomers, increasing τ 2 we move from the red re-

gion, characterized by the two stable fixed points of segre-

gation Q1 and Q2, to the blue region, characterized by Q2 as

the unique stable fixed point. Indeed, the blue region in the

2D bifurcation diagrams represents situations such that the

local population is highly intolerant and is prepared to aban-

don its neighborhood as soon as a small number of newcom-

ers enter the district and settle in it. At the same time, the

newcomers have a high level of tolerance and so they stand

the presence of the local population and enter the district. In

the end, the local population can only leave the district and

the fixed point of segregation Q2 is the unique final stage of

the process.

On the contrary, if the local population is partially tolerant

towards the newcomers, specifically τ ∗
1 < τ1 < τ+

1
( = 2

γ N1
),

then as τ 2 increases from τ ∗
2

we experience a transition from

a region of segregation, the red region, to a region of non-

segregation, the yellow region (see Fig. 3). The yellow region

is the only region of the entire parameter space in which the

entry-exit dynamics of the segregation model is able to self-

converge to a stable equilibrium of non-segregation. This re-

gion indicates a situation for which both the local popula-

tion and the population of newcomers have neither a too low

level of tolerance that would prevent the coexistence nor a

too high level of tolerance that is responsible for entry/exit

overreactions by the members of the two populations that

threaten the coexistence.

It is worth noticing that by increasing further the level

of tolerance of the newcomers, the natural fixed point of
non-segregation P+ can either disappear through a saddle-

node bifurcation (from the yellow region to the blue region

crossing the saddle-node bifurcation curve τ2 = τ SN
2

), or P+
can become unstable via a flip bifurcation leading to a stable

2-cycle (from the yellow region to the magenta region cross-

ing the flip bifurcation curve ρ( − 1) = 0).

From the magenta region, a further increase of the level

of tolerance of the newcomers produces a sequence of pe-

riod doubling bifurcations after which a two-piece chaotic

attractor is observable. This route can be seen in the one-

dimensional (1D for short) bifurcation diagram of Fig. 4c

along the path marked by a vertical segment and an arrow in

Fig. 4a. The two disjoint chaotic sets are two separate chaotic

attractors for the second iterate of the map, i.e. map T2, each

with its own basin of attraction, as shown in Fig. 4d by the

white region and the red region. The structure of the two

basins of attraction of Fig. 4d indicates the presence of a frac-

tal frontier which includes a chaotic repellor. It is worth not-

ing that this chaotic repellor on the frontier of the basins

of T2 is not related to the forward sequence of bifurcations

leading to the chaotic sets. Instead, it is related to a sequence

of period doubling bifurcations of unstable cycles that starts

from the fixed point of non-segregation P−. That is the saddle

fixed point P− becomes a repelling node leading to a saddle

2-cycle on the frontier of B(Q2) the basin basin of attraction

of Q2. The saddle 2-cycle becomes a repelling node leading to

a saddle 4-cycle on the same frontier, and so on, leading to a

chaotic repellor on the frontier of B(Q2).

It is worth noting that at the values of the parameters

considered in Fig. 4d the two disjoint chaotic sets are very

close to the boundary of their basins and a slight increase in

τ 2 leads to the disappearance of the chaotic attractor. After

such a contact almost all the points in the phase space have

a trajectory which is convergent to Q2. However a chaotic

repellor persists (consisting of all the unstable cycles existing

in the chaotic region of Fig. 4d), and this leads to the phe-

nomenon of chaotic transient, which can be also very long,

before the convergence to Q2. An example is shown in Fig. 4b,

where a unique trajectory of T shows the “ ghost” of the old

attractor clearly visible for a large number of iterations before

converging to Q2, and also persists for a set of values of τ 1

and τ 2.

Of particular interest is also the bifurcation that occurs

when increasing τ 2 we move from the white region of the

2D parameter space of Fig. 3b to the upper red region. In the

white region the fixed point of segregation Q1 is locally un-

stable but not globally in D and a chaotic attractor exists, as

shown in Fig. 5a. Starting from this situation and increasing

τ 2 in such a way as to move from the red region to the white

region, the chaotic attractor disappears through a border col-

lision with the border x2 = 0 of D. As we know, all trajectories

in x2 = 0 of D (excluding the origin O) converge to Q1, thus

after the contact we observe that the basin of attraction of

Q1 becomes a large part of D, as shown in Fig. 5b, including

the unstable manifold of Q1 given by x1 = 1. So, also a trajec-

tory that starts on the unstable manifold converges in the end

to Q1.

This contact bifurcation (also known as “final bifurcation”

of the internal attractor) represents a phenomenon of over-

shooting. This dynamic scenarios underlines that an excess

of the level of tolerance by newcomers could be harmful and
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Fig. 4. Panel (a): 2D bifurcation diagram as in Fig. 3b. In Panel (c) the 1D-bifurcation diagrams of x1 (in red) and x2 (in magenta) along the vertical path marked

in Panel (a) at τ1 = 1.5, τ2 ∈ [0.2, 5], N2 = 0.5. Panel (d), phase space D with the basins for T2. Panel (b), “ghost attractor”, or chaotic transient, after the contact of

the attractor with its basin boundary. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Basins of attraction: Azure region is the basin of attraction of the segregation fixed point Q2, green region is the basin of attraction of the segregation fixed

point Q1, red region is the basin of attraction of the chaotic attractor at τ1 = 2.2, N2 = 0.5, γ = 1.5. Panel (a), τ2 = 4.54. Panel (b), τ2 = 4.6. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)
could prevent integration between the newcomers and the

local population.

The scenario is slightly different for τ1 > τ+
1

. In fact, in

this case a higher level of tolerance of the local popula-

tion prevents the stability of the natural fixed point of non-

segregation P+. In particular, as the level of tolerance of the
newcomers increases we have a transition from the red re-

gion, where only the two fixed points of segregation Q1 and

Q2 are stable, to the magenta region, where a stable 2-cycle

coexists with the stable fixed point of segregation Q2.

It is worth noticing that for values of τ 1 larger than a

suitable level, say τ1 > τ 1 > τ+
1

, all the cycles and chaotic
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Fig. 6. 2D bifurcation diagram in the (τ1, τ2) parameter plane at γ = 2 and no entry constraints, i.e. K2 = N2, for different values of N2: Panel (a), N2 = 0.3, Panel

(b), N2 = 0.5, Panel (c), N2 = 0.8. The red region represents the set of parameters at which the fixed point of segregation Q1 has a basin of attraction of positive

measure. The azure region indicates that the only stable fixed point of map T is the fixed point of segregation Q2 = (0, K2). The yellow region represents the set of

values for which equilibrium P+ =
(
x∗

1,+, x∗
2,+

)
is stable. The magenta one represents the region of a stable 2-cycle. Other colors represent stable cycles of higher

periods and white region indicates the presence of a chaotic attractor. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

Fig. 7. Parameters: τ1 = 1.5, τ2 = 3.8, N2 = 0.5, γ = 2. Chaotic attractor and

basins of attraction: In azure is the basin of attraction of the segregation

fixed point Q1 = (0, N2), in red is the basin of attraction of the chaotic at-

tractor and in green is the basin of attraction of the segregation fixed point

Q2 = (N1, 0). (For interpretation of the references to colour in this figure leg-

end, the reader is referred to the web version of this article.)
attractors that appear increasing τ 2 have at least one point

in the region �5 and so at least one point on the border of

the region D, x1 = N1 (that is to say: the attracting sets in-

volve some points of the boundary of D due to some border

collision bifurcation).

The dynamical scenario described so far occurs for all the

values of N2 indicated in Fig. 3, i.e. N2 = 0.3 (in this case to

observe all the transition to chaotic attractors up to the final

bifurcation it is necessary to plot the 2D parameter space for

τ 2 > 5), N2 = 0.5 and N2 = 0.8. However, it is possible to note

some differences. As N2 increases the yellow and magenta

regions decrease, indicating that the stability of the natural

fixed point of non-segregation and of the 2-period cycle be-

comes more sensitive to the tolerance parameters τ 1 and τ 2

when the population of newcomers increases. This is plau-

sible noting that the level of tolerance of the newcomers in-

creases also with their numerosity and we already observed

that for large values of tolerance the overshooting problems

occur. At the same time, the blue region increases and with it

the risk of segregation.

Interestingly, increasing N2 the chaotic region (white one)

and the region with cycles of high periods increase in size.

We can conclude that as the number of newcomers increases,

the dynamics become more sensitive to the values of the pa-

rameters of tolerance, and the regions, for which an attractor

of non-segregation exists, reduce in size, decreasing the pos-

sibility of avoiding segregation.

One more remark on this first case is shown in Fig. 3: The

dynamics is more sensitive to the level of tolerance of the

newcomers than to the level of tolerance of the local popu-

lation. In fact, whatever is the level of tolerance of the local

population we have segregation if the level of tolerance of

the newcomers is not high enough, i.e. if τ2 < τ ∗
2
, which can

be called the region of “intolerance” of the parameter space

(τ 1, τ 2), since in this region the limited level of tolerance of

the two populations prevents the coexistence in the district

of the two populations and only segregation is possible.

Moreover, for high levels of tolerance of newcomers

the overshooting always occurs and leads to segregation,
indicating that entry limitations are necessary in this case

to curb the massive entry-exit dynamics which generates

overshooting and prevent the coexistence. This policy will

be analyzed in more detail in the next section.

The dynamic framework here presented is quite rich and

complicated. Nevertheless, it describes most of the possible

dynamics that can occur with few exceptions documented in

the following. In particular, similar scenarios occur for larger

values of the adjustment parameter γ , see Fig. 6 for γ = 2.

However, for γ = 2 it is possible to observe a 2-pieces chaotic

attractor for the map T, in which a contact bifurcation leads to

a one-piece chaotic attractor (merging bifurcation). See the

example in Fig. 7, and compare with Fig. 4b,c. The fact that

in Fig. 7 the chaotic attractor persists after the contact bi-

furcation in a unique chaotic set and does not disappear is

due to the presence of the two internal fixed points of non-

segregation P− and P+. Indeed, although they are unstable,

their presence influences the global dynamics of the model.
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Fig. 8. 2D bifurcation diagram in the (τ1, τ2) parameter plane at γ = 0.7 and no entry constraints, i.e. K2 = N2, for different values of N2. Panel (a), N2 = 0.3,

Panel (b), N2 = 0.5, Panel (c), N2 = 0.8. The meaning of the colors is the same as in Fig. 6. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 9. Panel (a) 1D bifurcation diagram at τ1 = 6, τ2 ∈ (0.2, 7), γ = 0.7, N2 = 0.8. Panel (b), phase plane D = [0, 1] × [0, 0.8] at τ2 = 5.8 and basins of attraction:

The azure region is the basin of attraction of the segregation fixed point Q1 = (0, N2), the red region is the basin of attraction of the stable 6-cycle and the white

region the basin of attraction of the stable 4-cycle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
Despite the global bifurcation that is noteworthy, the nu-

merical investigation conducted did not underline any sub-

stantial difference in the dynamics of the model of segrega-

tion for the different parameter sets used in Fig. 6.

For the sake of completeness, it is worth considering a nu-

merical investigation for low values of the adjustment co-

efficient γ . Indeed, the particular economic conditions of

some national economies, as it can be a quite stuck real es-

tate market and an inflexible labor market, may imply val-

ues of the adjustment coefficient γ less than the unity. Let

us choose γ = 0.7 as a representative value.2 Comparing the

case γ = 0.7 with the cases γ > 1 considered above, we note

that the dynamic scenarios are not dissimilar at least for low

levels of τ .
2

2 Other choices of the value of γ in (0, 1) would lead to similar conclu-

sions.
Looking at Figs. 8 and 3 it is possible to note an increase of

the yellow region and a decrease of the size of the blue region

when γ is equal to 0.7. This can be explained observing that

a lower level of γ reduces the overreaction or overshooting

issues. Despite the many similarities, a substantial difference

observable for low level of γ is related to the white region,

indicating the existence of chaotic or high-periodic attrac-

tors, which disappears for N2 = 0.5 and it is observable with

limited extension only for N2 = 0.8. Notwithstanding the

reduction of the chaotic region in the parameter plane, the

dynamic scenarios in the phase space are quite complicated

even for γ < 1. Indeed, for γ = 0.7 we observe the coex-

istence of cycles of different periods, as depicted in Fig. 9,

where a stable 4-cycle coexists with a stable 6-cycle.

As a final remark on the global properties of the model,

let us underline that for high levels of the adjustment coef-

ficient the dynamics of the model can be characterized by

cycles of high periods or be chaotic at least for a quite large

range of values of (τ 1, τ 2). For low levels of the adjustment
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parameter the cycles or chaotic attractors are less frequent.

Nevertheless, other forms of complexity occur, such as

the coexistence of attracting cycles and quite complicated

structures of the related basins of attraction that indicate

high dependence on the initial conditions (similar to what

occurs in presence of chaos).

The analysis conducted reveals that the dynamics of the

model is consistent with the results on segregation obtained

using an agent-based approach, see e.g. [7,8] and [9]. For ex-

ample the analysis conducted in [8] underlines that the level

of segregation depends on two main parameters, the level

of tolerance and the number of agents in the neighborhood

and concludes that for low levels of tolerance the probabil-

ity of having segregation is almost one while as the level of

tolerance increases the risk of segregation disappears. These

results are consistent with the dynamical scenarios unveiled

by the 2D bifurcation diagrams indicating that for low lev-

els of τ 1 and τ 2, the levels of tolerance of the local popula-

tion and of the newcomers respectively, segregation is the

only possible equilibrium of the model, see, e.g., Figs. 3, 6

and 8. Moreover, a suitable increase of τ 1 and τ 2 reduces

the risk of segregation. Another aspect underlined in [8] is

the number of vacancies, which in terms of the present pa-

per can be interpreted as the total number of the members

of the two populations (the maximum number of agents that

can live in the neighborhood) minus the number of agents of

these two populations that are inside the district. In partic-

ular, Gauvin, Vannimenus, and Nadal [8] point out that the

number of vacancies is proportional to the risk of segrega-

tion and for high level of vacancies the segregation is the

only possible output. The extent to which this occurs de-

pends on the levels of tolerance. Looking at the basins of at-

traction we realize that this behavior is confirmed by the an-

alyzed model as testified by the relatively large extension of

the azure region (basin of attraction of one of the segrega-

tion equilibria) for x1 + x2 small and its total absence in the

opposite case, see, e.g. Figs. 2, 4d and 5a. In analogy with the

results in [8], we also observe that for low levels of tolerance

the segregation is the only long-term solution for whatever

number of vacancies. In addition to this, the present analy-

sis underlines that a low number of vacancies and large lev-

els of tolerance can lead to segregation due to overshooting.

Moreover, [9] provides the interesting result that segregation

seems to be the only possible scenario when the sensitiv-

ity of the agents to switch to the desired output increases.

In analogy with [9], we observe that an increase of the ad-

justment parameter γ reduces the extension of the region of

the parameter space for which a stable equilibrium of non-

segregation exists. Compare the yellow region in Fig. 8 for

γ = 0.7 with the one in Fig. 6 for γ = 2. Moreover, the exam-

ples described in [7] underline that in some cases an increase

of the level of tolerance produces the unexpected result of

increasing the level of segregation. This aspect is observable

also in the current model for example when an increase of

the levels of tolerance causes the appearance of a basin of at-

traction of positive measure for one of the two segregation

equilibria despite its local instability. Thus, this unexpected

effect can be explained in terms of Milnor attractors appear-

ing through global bifurcations and it is associated with dy-

namics of overshooting, see, e.g., the green regions in Figs. 4d,

5a,b and 7.
5. The rule of entry constraints

In this section we analyze the effect of entry constraints

on the segregation dynamics. In particular, we are interested

in understanding the reduction of segregation that we can

have if we introduce an entry constraint for population two,

i.e. 0 < K2 < N2. The analysis is conducted by making use of

2D bifurcation diagrams with respect to K2 and τ 1 and with

respect to K2 and τ 2.

Let us start by considering the role of the constraints

at γ = 1.5, N2 = 0.5, τ2 = 3.5 and varying K2 in the range

[0, 0.5] and τ 1 in the range [0.2, 5]. As observable from

Fig. 10a, in case of no entry constraints, i.e. K2 = N2 = 0.5, the

system can only converge to the segregation equilibrium Q2

for low levels of tolerance of the local population, i.e. τ1 < τ̃1

with τ SN
2 (τ̃1, 1, 0.5) = 3.5, and to cycles of different periods

or chaotic attractors for τ1 > τ̃1. It is worth noting that if a

policymaker decides to impose an entry constraint for the

newcomers, i.e. K2 < N2, as K2 decreases, i.e. the entry lim-

itation becomes more and more stringent, the blue region

reduces and stable cycles of different periods undergo a se-

quence of border collision bifurcations that lead to a stable

2-cycle for sufficiently low level of K2. Moreover, the gray re-

gion, representing the stability of the artificial equilibrium

of non-segregation P+, appears for sufficiently low levels of

tolerance of the member of the local population, i.e. for low

levels of τ 1. The transition from the blue region, where the

system converges to segregation, to the gray region, where

the integration between the newcomers and the local popu-

lation becomes feasible, provides indication of the effective-

ness in increasing integration of the entry limitation policy.

From the analysis of the 2D bifurcation diagram of Fig. 10b,

we can conclude that limiting the number of newcomers al-

lowed to enter a district can reduce the risk of segregation.

A similar analysis can be conducted varying τ 2 instead of

τ 1. Such an investigation, for γ = 1.5, N2 = 0.5 and τ1 = 2,

is reported in Fig. 10c. From the figure it is possible to ob-

serve that without entry constraints the dynamics converge

to one of the two fixed points of segregation Q1 and Q2 as

indicated by the red region for both low and high levels of

tolerance of the newcomers. In case of low levels of toler-

ance by newcomers, specifically for τ2 < τ ∗
2

= N1
N2

, the intro-

duction of entry limitations cannot prevent segregation. This

is obvious as limiting the number of newcomers allowed to

enter the system has the same effect as reducing the level of

tolerance of the members of this population. Indeed, in both

cases the result is a lower number of newcomers entering the

system. It follows that the entry limitations do not result to

be useful in solving the problem of segregation if this is due

to low levels of tolerance by the member of the population.

On the contrary, for larger values of the levels of tolerance

of the newcomers, i.e. for τ2 > τ ∗
2 , the introduction of en-

try limitations for newcomers reduces the region of cycles or

chaotic attractors and the region of segregation. Note that the

red and white regions disappear as K2 decreases. Moreover,

the appearance of the gray regions indicates that an artifi-

cial fixed point of non-segregation is stable for certain values

of K2.

Regarding the constraint K2, another interesting effect is

its contribution in reducing chaos in the entry/exit dynam-

ics of the system. For example, as observable from the phase
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Fig. 10. Panel (a), 2D bifurcation diagram in the (τ1, τ2) parameter plane at N2 = K2 = 0.5, γ = 1.5 (as in Fig. 3b); Panel (b), 2D bifurcation diagram in the (τ1, K2)
parameter plane (τ1, K2) ∈ [0.2, 5] × [0, 5] at γ = 1.5 and τ2 = 3.5. Panel (c), 2D bifurcation diagram in the (τ2, K2) parameter plane (τ2, K2) ∈ [0.2, 5] × [0, 5],

with γ = 1.5 and τ1 = 2.

Fig. 11. Panel (a), 2D bifurcation diagram in the (τ2, K2) parameter plane as in Fig. 10c. Panel (b), 1D bifurcation diagram for K2 ∈ [0, 1] at τ2 = 4.8, τ1 = 1,

N2 = 0.5. Panels (c)−(e), phase plane D = [0, 1] × [0, K2] for different levels of the entry limitation K2. Transition from the stable equilibrium of non-segregation

P+ in panel (c), to a stable 2-cycle in panel (d) and to a chaotic attractor in panel (e).
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spaces depicted in Fig. 11, the stable chaotic attractor of

Fig. 11 b that exists for K2 = N2, disappears as K2 decreases

through a sequence of border collision bifurcations. More-

over, as K2 is small enough, the artificial fixed point of non-

segregation P+ becomes stable.

6. Conclusions

In this work we have analyzed in detail the global dy-

namics of a Schelling-type segregation model with heteroge-

neous distributions of tolerance similar to the one proposed

in [10]. In particular, we have provided an accurate descrip-

tion of the conditions that lead to segregation. Among these,

the most interesting is an excess of tolerance by members of

the two groups involved, namely local population and new-

comers. Then, these findings have been commented and dis-

cussed in terms of analogies and similarities with the ones

emerging from the agent-base modeling, see, e.g., [7]–[9].

In addition, a further extension of the model is proposed

by introducing entry-limitations for the newcomers as a

policy measure to prevent segregation. The entry-limitation

represents the maximum number of newcomers allowed to

enter the system. By a combination of analytical results and

numerical investigations we have discussed the effective-

ness of this policy in preventing segregation. In particular,

introducing the entry-restriction, we have found out that a

fixed point of non-segregation can appear stable through a

border collision bifurcation.

Other distributions of tolerance have been observed in

empirical analysis, see e.g. [1], some of them characterized

by a bimodal shape. An investigation of the model assuming

these distributions of tolerance can reveal scenarios and dy-

namics not observable in this setting. This line of research is

left for further studies.
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