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Abstract

We revisit the model of endogenous credit cycles by Matsuyama (2013, Sections 2–4). First, we show 
that the same dynamical system that generates the equilibrium trajectory is obtained under a much simpler 
setting. Such a streamlined presentation should help to highlight the mechanism through which financial 
frictions cause instability and recurrent fluctuations. Then, we discuss the nature of fluctuations in greater 
detail when the final goods production function is Cobb–Douglas. For example, the unique steady state 
possesses corridor stability (locally stable but globally unstable) for empirically relevant parameter val-
ues. This also means that, when a parameter change causes the steady state to lose its local stability, its 
effects are catastrophic and irreversible so that even a small, temporary change in the financial friction 
could have large, permanent effects on volatility. Other features of the dynamics include an immediate tran-
sition from the stable steady state to a stable asymmetric cycle of period n ≥ 3, along which n − 1 ≥ 2
consecutive periods of gradual expansion are followed by one period of sharp downturn, as well as to a 
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robust chaotic attractor. These results demonstrate the power of the skew-tent map as a tool for analyzing 
a regime-switching dynamic economic model.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The idea that market mechanisms are fundamentally unstable is not new. Indeed, the earliest 
mathematical models of business cycles, those proposed by Hicks, Kaldor, Kalecki, Goodwin, 
etc., may be viewed as attempts to capture such an idea. Recent events have also renewed interest 
in the Kindleberger–Minsky hypothesis that financial frictions can be a source of macroeco-
nomic instability and volatility. Yet, following the seminal work of Bernanke and Gertler (1989)
and Kiyotaki and Moore (1997), a vast majority of macroeconomic research on financial fric-
tions study propagation mechanisms of exogenous shocks in the presence of financial frictions, 
within a theoretical setting that ensures the stability of the steady state. Nevertheless, there ex-
ist some micro-founded, intertemporal general equilibrium models, in which financial frictions 
are responsible for making the unique steady state unstable, thereby creating persistent volatility 
without exogenous shocks; see, e.g., Aghion et al. (1999), Azariadis and Smith (1998), Mat-
suyama (2007, 2008, 2013) and Myerson (2012, 2014).1

The present paper builds on one such model developed by Matsuyama (2013, Sections 2–4), 
which generates endogenous fluctuations of borrower net worth and aggregate investment. This 
model considers an overlapping-generations economy in which entrepreneurs arrive sequentially 
with their endowments of inputs, which are used to produce the final good. Upon arrival, they 
first sell their endowments of inputs to acquire some net worth that is used later to finance their 
own projects or to lend to finance the projects run by others. There are two types of invest-
ment projects, the Good and the Bad. The Good projects generate capital, which produces the 
final good using inputs supplied by the next generations of entrepreneurs who might undertake 
projects of their own. By competing for these inputs, more Good projects drive up the price of 
these inputs, thereby improving the net worth of next generations of entrepreneurs. In contrast, 
the Bad projects are independently profitable as they directly generate the final good. Without 
generating demand for any inputs, these projects do not improve the net worth of next genera-
tions of entrepreneurs. Furthermore, the Bad projects are subject to borrowing constraints due 
to the limited pledgeability of their revenue so that the entrepreneurs need to have enough net 
worth of their own to finance them. The unique equilibrium path of this economy, governed by a 
one-dimensional nonlinear piecewise smooth map, may fluctuate persistently for almost all ini-
tial conditions. With a low net worth, all the credit flows to finance the Good, even when the Bad 

1 See also Favara (2012), Figueroa and Leukhina (2013), Martin (2008), and Reichlin and Siconolfi (2004). There is 
also a literature on dynamic models of financial frictions that generate multiple equilibrium trajectories, some of which 
exhibit “expectations-driven” fluctuations. In these models, such fluctuating equilibrium trajectories co-exist with an 
equilibrium trajectory that does not fluctuate. In contrast, the models cited here generate fluctuations along the unique 
equilibrium trajectory for almost all initial conditions.
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projects are more profitable than the Good projects. This over-investment to the Good creates 
a boom, which generates pecuniary externalities to the next generation of the entrepreneurs by 
improving their net worth. With their net worth improved, these entrepreneurs are able to finance 
the Bad projects. Credit flows are redirected from the Good to the Bad. This change in the com-
position of credit flows at the peak of the boom causes a deterioration of borrower net worth. The 
whole process repeats itself. The equilibrium path oscillates, as the Good breed the Bad and the 
Bad destroy the Good. Such instability and persistent volatility occur whenever the Bad projects 
are sufficiently profitable but come with an intermediate degree of pledgeability. This implies, 
among other things, that an improvement in the financial system could lead more volatility.

Note that this model shares the same observation with a vast majority of macroeconomic 
research of financial frictions that started with Bernanke and Gertler (1989). That is, in the pres-
ence of financial frictions, saving does not necessarily flow into the most profitable investment 
projects, and this problem can be alleviated (aggravated) by a higher (lower) borrower net worth. 
What separates this model from the majority of the literature is the assumption on the set of 
profitable investment projects that compete for credit. In the Bernanke and Gertler model, for ex-
ample, all the profitable investments contribute equally to improve net worth of other borrowers 
and the only alternative use of saving, storage, is unprofitable, subject to no borrowing constraint, 
and generates no pecuniary externalities to the next generation of entrepreneurs. This means that, 
when an improved net worth allows more saving to flow into the profitable investments, saving is 
redirected towards the investments that generate pecuniary externalities, which further improve 
borrower net worth. This mechanism thus generates persistence of a low borrower net worth, 
causing a slow recovery and prolonged recessions in their model (and many others in the liter-
ature). The model with Good and Bad projects differs from Bernanke and Gertler and others in 
that not all the profitable investments have the same demand spillover effects. Some profitable in-
vestments, which are subject to the borrowing constraints, do not improve the net worth of other 
borrowers. This means that, when an improved net worth allows more saving to flow into such 
profitable investments, saving may be redirected away from the investments that generate pecu-
niary externalities, which causes a deterioration of borrower net worth. This is the mechanism 
behind macroeconomic instability, and volatility.2

This mechanism, – an easy credit extended to the Bad projects during the boom can be re-
sponsible for a subsequent bust –, captures the popular idea, “successes breed crises.” And it 
is consistent with the evidence of “credit booms gone bust,” found by Mendoza and Terrones
(2008) and Schularick and Taylor (2012) and many others, showing that credit growth is the best 

2 Needless to say, the two mechanisms, the one implying persistence and the other volatility, are not mutually exclusive 
and can be usefully combined. Indeed, Matsuyama (2013, section 5) presented a hybrid model, which allows for three 
types of projects, the Good, the Bad, and the Ugly. Only the Good improve the net worth of other borrowers; neither the 
Bad nor the Ugly improve net worth of other borrowers. The Bad are profitable but subject to the borrowing constraint. 
The Ugly are unprofitable but subject to no borrowing constraint (as storage in the Bernanke–Gertler model). Thus, when 
the net worth is low, the Good compete with the Ugly, which act as a drag on the Good, thereby adding persistence in the 
macro dynamics. When the net worth is high, the Good compete with the Bad, which destroy the Good, causing insta-
bility and volatility. By combining the two effects, this hybrid model generates intermittency phenomena. That is to say, 
relatively long periods of small and persistent movements are punctuated intermittently by seemingly random-looking 
behaviors. Along these cycles, the economy exhibits asymmetric fluctuations; it experiences a slow process of recovery 
from a recession, followed by a rapid expansion, and, possibly after a period of high volatility, plunges into a recession. 
This extension also serves another purpose. It demonstrates that we do not need to assume that more productive projects 
with tighter borrowing constraints to have less demand spillovers on average. What is needed for instability and endoge-
nous volatility is that some productive projects with less spillovers can be financed only at a higher level of borrower net 
worth.
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predictor of the likelihood of a financial crisis. In fact, it resembles the financial instability hy-
pothesis of Kindleberger (1996) and Minsky (1982), which also emphasizes that an economic 
expansion often comes to an end due to the changing nature of credit and investment at the peak 
of the boom. Kindleberger (1996; Appendix B) offered a catalogue of financial boom-and-busts 
in history, with a long list of investments, such as precious metals, foreign bonds, new technology 
stocks, real estate and many others, that attracted the attention of investors at the peak of each 
boom and triggered the crisis that followed. According to Kindleberger and Minsky, this oc-
curs because, after the periods of expansion, people become more driven by “euphoria,” “greed,” 
and “manias,” which causes more credit to be extended to finance some activities of “dubious” 
characters. The model with Good and Bad projects, in contrast, does not rely on any form of ir-
rationality. Instead, a higher borrower net worth at the peak of a boom enables projects with less 
pecuniary externalities to compete for credit, thereby diverting credit away from projects with 
more pecuniary externalities, which make it impossible to sustain the boom. In this regard, it is 
more similar in spirit to recent studies by Favara (2012), Figueroa and Leukhina (2013), Martin
(2008), and Reichlin and Siconolfi (2004), which also generate recurrent volatility through en-
dogenously changing composition of credit in fully specified intertemporal general equilibrium 
models without relying on the irrationality of agents.

Our contribution in this paper is twofold. First, we reformulate the model of Matsuyama 
(2013, Sections 2–4) and show that the same, one-dimensional nonlinear piecewise smooth map 
that governs the equilibrium trajectory of the economy, can be derived under a much simpler 
setting. Such a streamlined presentation should help to highlight the key mechanism that causes 
instability and recurrent fluctuations in the model of Good and Bad projects, by focusing on the 
essentials.3

Second, we discuss in detail the nature of fluctuations under the additional assumption that 
the production function of the final good sector is Cobb–Douglas. With this assumption, the 
map has four parameters, the share of capital in the Cobb–Douglas production function (α), the 
fixed investment size of the Bad projects (m), the rate of return of the Bad projects (B); and the 
pledgeability of the Bad projects (μ). In fact, when the Bad projects are sufficiently profitable 
(i.e., for a sufficiently high B), the last two enter the equation only through their product, μB , 
the pledgeable rate of return of the Bad projects, so that the map has only three parameters, α, m, 
and μB . We characterize the dynamics in terms of these parameters. To summarize our findings,

i) For fixed values of α and m, the unique steady state is unstable and the equilibrium trajectory 
exhibits permanent fluctuations for almost all initial conditions for an intermediate range 
of μB .

ii) As μB enters this instability range from above the unique steady state loses its local stability 
via a subcritical flip bifurcation for empirically relevant values of α < 0.5.4 Before such a 
subcritical flip, the (locally) stable steady state co-exists with a stable period-2 cycle, along 

3 Remark 2 below explains the differences between the original and present formulations of the model in detail. The 
original formulation in Matsuyama (2013) has many additional ingredients, which are included mostly to demonstrate 
the robustness of the mechanism and to clarify the assumptions that are essential from those that are merely simplifying. 
While useful, it has a drawback of obscuring the mechanism.

4 In the language of the dynamical system theory, a bifurcation occurs when an infinitesimal change in the parameter 
values of a system causes a qualitative (topological) change in its properties. Bifurcations may be classified according to 
the types of qualitative changes caused. Subcritical flip is one particular type of bifurcation. Border-collision is another. 
Their main economic implications are explained briefly in the remainder of this paragraph and in detail in Section 4.2.
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with an unstable period-2 cycle, whose stable set separates their basins of attraction.5 This 
implies corridor stability, to use the terminology of Leijonhufvud (1973). That is, the steady 
state of the economy is locally stable but globally unstable so that it is self-correcting against 
small shocks but not against large ones.6 Furthermore, when the steady state loses its local 
stability via a subcritical flip, the effects are catastrophic and irreversible. This suggests, 
among other things, that a temporary credit crunch shock, captured by a one-time reduc-
tion in the pledgeability parameter, would have a permanent effect on the volatility of the 
economy.

iii) As μB enters this instability range from below the unique steady state loses its local stability 
via a border collision bifurcation. After this bifurcation, this dynamics is characterized by 
one of the following three types of asymptotic behaviors, depending on the parameter values; 
i) a stable cycle of period 2; ii) a stable asymmetric cycle of period n ≥ 3, along which the 
economy experiences n − 1 ≥ 2 consecutive periods of gradual expansion, followed by one 
period of sharp downturn,7 or iii) a robust chaotic attractor.

Perhaps the significance of the findings listed under iii) needs to be elaborated. Many existing 
examples of chaos in economics are not attracting, particularly those relying on the Li–Yorke 
theorem of “period-3 implies chaos.” This theorem states that, on the system defined by a con-
tinuous map on the interval, the existence of a period-3 cycle implies the existence of a period-n
cycle for any n ≥ 2, as well as the existence of an aperiodic (chaotic) trajectory. However, the 
trajectory can be chaotic only for a set of initial conditions that is of measure zero. For chaos 
to be observable, it has to be attracting, so that at least a positive measure of initial conditions 
would converge to it. Furthermore, most existing examples of chaotic attractors in economics 
are not robust (i.e., they do not exist for an open region of the parameter space), because the set 
of parameter values for which a stable cycle exists is dense, and the set of parameter values for 
which a chaotic attractor exists is totally disconnected (although it may have a positive measure). 
Moreover, a transition from the stable steady state to chaos often requires an infinite cascade of 
bifurcations, as these are general features of a system generated by everywhere smooth maps, 
which most applications assume.8 In contrast, the present model generates a robust chaotic at-
tractor and a transition from the stable steady state to a stable cycle n-cycle (n ≥ 3) or to a robust 
chaotic attractor can be immediate, because it is a “regime-switching” model, characterized by a 
piecewise smooth system.

5 In the language of the dynamical system theory, the set of initial conditions that converge to an attractor (that is, an 
attracting invariant set, such as an attracting steady state, an attracting period-2 cycle, a chaotic attractor, etc.) is called 
its basin of attraction, and the set of initial conditions that converge to an invariant set, which is not necessarily attracting 
(such as an unstable steady state, an unstable period-2 cycle, etc.) is called its stable set.

6 While many economists are aware of the possibility that nonlinear dynamic models could generate endogenous 
fluctuations in the absence of exogenous shocks, very few seem to be aware that corridor stability is another implication 
of nonlinearity; see Benhabib and Miyao (1981) for a valuable exception. Our demonstration of corridor stability should 
at least provide the reader with a caution against the common practice of studying dynamic models by linearizing around 
the steady state.

7 Confusions sometimes occur as the word “period” is used differently in the dynamical system theory. In their lan-
guage, “period” means the duration of a cycle. That is, “a period-n cycle” or “an n-cycle,” is defined as “a cycle whose 
period is n,” or “a cycle that repeats itself every n-th iteration.” In this paper, we use “period” as a unit of time, following 
the common usage of this word in economics. Thus, “a period-n cycle” or “an n-cycle” can be defined as “a cycle whose 
duration is n periods,” or “a cycle that repeats itself every n-th period”.

8 In an early survey on chaos in economics, Baumol and Benhabib (1989, see p. 97) discussed these limitations of 
smooth dynamical systems. Yet, the message seems to have been lost among the economics profession.
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We are able to show these findings thanks to recent advances in the theory of piecewise smooth 
dynamical systems, which have many properties that are quite distinct from (and in many ways, 
much simpler than) those defined by smooth (that is, C∞, such as polynomial) maps. These 
mathematical tools should find wide applications, given that many dynamic macro models of 
financial frictions are regime-switching, which naturally make the system piecewise smooth. In 
particular, it should be relatively easy to obtain in many regime-switching models something 
analogous to our results summarized in iii) above, because they rely only on the fact that, when 
the unique steady state of a unimodal map is sufficiently close to its kinked peak, it can be ap-
proximated by a piecewise linear map, called the skew-tent map, for which a complete analytical 
characterization is available. Needless to say, a rigorous treatment of these materials is beyond 
the scope of this paper, as it requires substantial prior knowledge of the dynamical system theory. 
Nevertheless, we hope that our non-technical, heuristic exposition and “cookbook” presentation 
of how to use it, written in the economist friendly language, serves as a useful introduction to 
this branch of mathematics for the economics audience.9

The rest of the paper is organized as follows. Section 2 offers a reformulation of the endoge-
nous credit cycles model with Good and Bad projects, and derives the dynamical system that 
generates the equilibrium trajectory. Section 3 offers the typology of the dynamic behaviors for 
the general case, and a preliminary bifurcation analysis. Section 4 provides a more detailed bifur-
cation analysis for the Cobb–Douglas case. We also look at the transient behaviors of this system 
numerically. Section 5 concludes.

2. Reformulating the model of credit cycles with good and bad projects

Time is discrete and extends from zero to infinity (t = 0, 1, 2, . . .). The basic framework used 
is the Diamond (1965) overlapping generations model with two period lives. There is one final 
good, the numeraire, which can be either consumed or used as inputs into investment projects. 
The final goods sector uses constant returns to scale technology, Yt = F(Kt , Lt), where Kt is 
physical capital and Lt is labor. Let yt ≡ Yt/Lt = F(Kt/Lt , 1) ≡ f (kt ), where f (kt ) satisfies 
f ′(k) > 0 > f ′′(k), f (0) = 0 and f ′(0) = ∞. For simplicity, physical capital is assumed to 
depreciate fully in one period. The factor markets are competitive and thus the factor rewards 
for physical capital and for labor are equal to ρt+1 = f ′(kt+1), which is decreasing in kt+1, and 
wt = f (kt ) − ktf

′(kt ) ≡ W(kt ) > 0, which is increasing in kt .
At the beginning of each period, a unit measure of homogeneous agents arrives and stays 

active for two periods. During the first period (when they are “young”), each agent supplies 
inelastically one unit of labor to the final goods sector to earn wt = W(kt ), so that Lt = 1. They 
consume only during the second period (when they are “old”). Thus, the young agents save all 
of the earnings, hence wt = W(kt ) is also equal to their net worth at the end of period t , as well 
as the aggregate supply of the credit in the economy.

At the end of their first period, the agents allocate the net worth to maximize their consumption 
in their second period. In addition to lending to the other agents in the same cohort at the gross 
rate of return, rt+1, they have access to two types of investment projects; the Good and the Bad. 
The Good projects convert one unit of the final good at the end of period t into one unit of 
physical capital, which becomes available and used in the final goods sector in period t + 1. 

9 For an overview of the theory of dynamical systems defined by piecewise smooth one-dimensional maps, see Avrutin 
et al. (2015). Sushko et al. (2015) provides a detailed analysis of the skew-tent map. Gardini et al. (2008) applies the 
skew-tent map to characterize the growth cycle model of Matsuyama (1999).
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Thus, the gross rate of return of this project is equal to ρt+1 = f ′(kt+1). The Bad projects are 
indivisible, and each agent can run at most one Bad project, which transforms m > 0 units of the 
final good in period t into mB units of the final good in period t + 1, where B is the profitability 
of the Bad projects. Due to the fixed investment size, m > 0, each agent who wants to run this 
project needs to borrow m −wt > 0 at the rate equal to rt+1. (We will later impose the parameter 
restrictions to ensure that wt < m holds along the equilibrium path.)

The agents always have options of lending to the others at rt+1 and of investing into the Good 
projects to earn the rate of return ρt+1 = f ′(kt+1), which ensures that rt+1 = f ′(kt+1). Some 
young agents may run the Bad projects. This happens whenever they are both willing to run the 
projects and able to finance them. By running Bad projects, they can consume mB − rt+1(m −
wt) = m(B − rt+1) + rt+1wt . By not running Bad projects, they consume rt+1wt = f ′(kt+1)wt . 
Thus, the young agents are willing to run the Bad projects if and only if:

B ≥ rt+1 = f ′(kt+1). (1)

We shall call (1) the Profitability Constraint for the Bad projects or simply PC.
Even if PC holds, the agents may not be able to invest in the Bad projects due to the borrowing 

constraint. The borrowing limit exists because borrowers can pledge only up to a fraction of the 
project revenue for the repayment, μmB , where 0 < μ < 1.10 Knowing this, the lender would 
lend only up to μmB/rt+1. The agents can thus borrow to run the Bad projects if and only if:

μmB ≥ rt+1(m − wt). (2)

We shall call (2) the Borrowing Constraint for the Bad projects or simply BC. For some young 
agents to invest in the Bad projects both BC and PC must be satisfied. Notice that BC is tighter 
than PC for wt < wμ ≡ (1 − μ)m, and PC is tighter than BC for wt > wμ.

To characterize the credit market equilibrium, it is useful to define R(wt), the maximal rate 
of return that a young agent with the net worth wt could pledge to the lender by running a Bad 
project without violating PC and BC. From (1) and (2), it is given by:

R(wt) ≡ B Min

{
μ

1 − wt/m
,1

}
=

{
μB

1−wt/m
if wt ≤ wμ

B if wt ≥ wμ.
(3)

The graph of this function is shown both in Fig. 1a and Fig. 2a. For wt < wμ, when BC is the 
relevant constraint, R(wt) is strictly increasing because a higher net worth eases BC, allowing 
the agents to credibly pledge a higher rate of return to the lender, when running the Bad projects. 
For wt > wμ, BC is no longer binding, hence R(wt) is flat at R(wt) = B .

We are now ready to describe the credit market equilibrium. Suppose that f ′(kt+1) = rt+1 <

R(wt). Then, both PC and BC would be satisfied with strict inequalities, which means that each 
young agent would be able to borrow and run a Bad project and would be strictly better off by 
doing so than by lending or investing into the Good projects. Thus, no agent would lend, and 
hence no agent could borrow, which is a contradiction. Thus, f ′(kt+1) = rt+1 ≥ R(wt) must 
hold in equilibrium. If f ′(kt+1) = rt+1 > R(wt), then at least PC or BC is violated, so that no 

10 See Tirole (2005) for the pledgeability approach to modeling financial frictions and Matsuyama (2008) for a variety 
of applications in macroeconomics. They also discuss various stories of agency problems that can be told to justify the 
assumption that the borrowers can pledge only up to a fraction of the project revenue. Nevertheless, its main appeal is 
the simplicity, which makes it suitable for studying dynamic general equilibrium implications of financial frictions.
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Fig. 1. Non-distortionary case: f ′(wμ) > B ⇔ wμ ≡ W(kμ) < wB ≡ W(kB).

agents would run the Bad projects. Only when f ′(kt+1) = rt+1 = R(wt), some Bad projects are 
initiated. Therefore,

f ′(kt+1) ≥ R(wt); Xt ≥ 0; [
f ′(kt+1) − R(wt)

]
Xt = 0, (4)

where 0 ≤ Xt < 1 denotes the measure of the Bad projects initiated in period t , as well as the 
measure of young agents running them. (The parameter restrictions that ensure wt < m also 
ensures Xt < 1, as shown later.) In addition, the condition that the aggregate credit supply equals 
the aggregate credit demand can be written as:

wt = kt+1 + mXt . (5)

The credit market equilibrium at the end of period t is given by kt+1 and Xt that solve (4) and 
(5) for a given wt = W(kt ).

From (4), we have f ′(kt+1) = R(wt), whenever Xt > 0. From (5), kt+1 = wt whenever 
Xt = 0. Thus, using wt = W(kt ), we obtain the dynamical system in kt as:

kt+1 = �(kt ) ≡
{

W(kt ) if kt ≤ kc

(f ′)−1(R(W(kt ))) if kt ≥ kc,
(6)

where kc is the critical level of k at which the credit starts flowing into the Bad projects and it is 
defined by f ′(W(kc)) ≡ R(W(kc)).
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Fig. 2. Distortionary case: f ′(wμ) < B ⇔ wμ ≡ W(kμ) > wB ≡ W(kB).

We are now ready to define an equilibrium of this economy, which is a sequence, {kt}∞t=0, that 
satisfies (6) for an exogenously given k0 > 0. To emphasize that it is a sequence, we often refer 
to it as an “equilibrium trajectory.”11

For the remainder of this paper, we assume:

(A1) There exists K̄ > 0 such that W(K̄) = K̄ and W(k) > k for all k ∈ (0, K̄).
(A2) K̄ < m.

Assumption A1 holds, e.g., for the Cobb–Douglas production, f (k) = A(k)α with α ∈ (0, 1). 
This assumption plays three different roles. First, it rules out an uninteresting case, where the 
dynamics of kt would converge to zero in the long run. Second, it implies that, in the absence of 
the Bad projects, the dynamics kt+1 = �(kt ) = W(kt ) would converge monotonically to K̄ , and 
hence any fluctuations generated by Eq. (6) could be attributed to the composition of the credit 
between the Good and the Bad. Third, under A1, kt ≤ K̄ implies kt+1 ≤ W(kt ) ≤ W(K̄) = K̄ , so 

11 In the language of the dynamical system theory, “an equilibrium” means a fixed point of the system, i.e., k∗ = �(k∗)

in (6). In this paper, we call it a “steady state,” following the standard terminology in economics.
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that the dynamical system (6) maps (0, K̄] into itself. Thus, for any initial value, k0 ∈ (0, K̄], the 
equilibrium trajectory of this economy can be obtained by iterating (6), and W(K̄) = K̄ can be 
interpreted as the maximal attainable net worth in this economy. Assumption A2 implies wt =
W(kt ) ≤ W(K̄) = K̄ < m, and hence that the young agents always need to borrow to run the 
Bad projects, and that only a fraction of the young agents run the Bad projects, Xt < wt/m < 1, 
as have been assumed.

Non-distortionary case Fig. 1a illustrates the credit market equilibrium for the case where 
f ′(wμ) > B or equivalently, wμ < (f ′)−1(B) ≡ wB ≡ W(kB). Under this condition, W(kc) ≡
wc = wB = W(kB) > wμ ≡ W(kμ), and Eq. (6) can be rewritten as:

kt+1 = �(kt ) ≡
{

�L(kt ) ≡ W(kt ) if kt ≤ kc = kB

�R(kt ) ≡ wB if kt ≥ kc = kB.
(7)

As shown in Fig. 1b, the map in Eq. (7) is piecewise smooth with one kink, kc = kB , which 
separates an upward-sloping left branch and a flat right branch. On the left branch, kt < kB , wt

is sufficiently small that the Good are more profitable than the Bad, even if all the credit flows 
to the Good, f ′(W(kt )) > B . Hence all the credit indeed flows to the Good. As kt increases 
and more credit flows to the Good, its profitability declines, and at kt = kB , it becomes as prof-
itable as the Bad, f ′(W(kB)) ≡ f ′(wB) ≡ B . At this point, BC is no longer binding because 
wB > wμ. Hence, an additional credit would flow to the Bad, which is why the map is flat, 
whenever f ′(W(kt )) < B , that is, on the right branch, kt ≥ kB . Note that in this case, BC is 
never binding along the equilibrium path. The aggregate credit is always allocated efficiently, 
flowing to the most profitable projects, thereby equalizing the profitability of the two projects 
whenever both attract some credit in equilibrium.

Distortionary case Fig. 2a illustrates the credit market equilibrium for the case where 
f ′(wμ) < B or equivalently, wμ > (f ′)−1(B) ≡ wB . Under this condition, wB < wc < wμ

or kB < kc < kμ, and Eq. (6) becomes:

kt+1 = �(kt ) =
⎧⎨
⎩

�L(kt ) ≡ W(kt ) if kt ≤ kc

�M(kt ) ≡ (f ′)−1(
μB

1−W(kt )/m
) if kc ≤ kt ≤ kμ

�R(kt ) ≡ wB if kt ≥ kμ,

(8)

where kc satisfies f ′(W(kc)) = μB
1−W(kc)/m

< B . As shown in Fig. 2b, the map is piecewise 
smooth with two kinks, kc < kμ which separate the following three branches.

• L: Left (upward) branch (0 < kt < kc). All the credit goes to the Good, either because PC 
fails (when kt < kB ), or because BC fails, even though PC holds with strict inequality (when 
kB < kt < kc). It is upward-sloping because a higher aggregate saving W(kt) would allow 
more credit to flow into the Good projects.

• M: Middle (downward) branch (kc < kt < kμ). Some credit goes to the Bad, because the 
net worth becomes high enough that the Bad can compete with the Good. It is downward-
sloping, because BC is still binding in this range so that a higher net worth makes it easier 
to finance the Bad, which bids up the equilibrium rate of return, thereby diverting the credit 
flows away from the Good.

• R: Right (flat) branch (kμ < kt ≤ K̄). The Bad are no longer borrowing-constrained. It is 
PC that is the binding constraint. Hence, the Good and the Bad are equally profitable. It is 
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flat because the Good are subject to diminishing returns, so that additional credit would flow 
into the Bad.

Note that the map has a hump over kB < kt < kμ, in which f ′(kt+1) < B holds. In this 
range, the Bad projects satisfy PC with strict inequality, implying an overinvestment to the Good. 
Although all young agents are eager to run the Bad projects, some of them are unable to do so 
due to BC. For kB < kt < kc, BC cannot be satisfied, hence Xt = 0 and no credit flows into the 
Bad. For kc < kt < kμ, BC holds so that Xt > 0 and some credit flows to the Bad, but BC is the 
binding constraint, causing an overinvestment to the Good (and an underinvestment to the Bad).

This completes the description of the model. Before proceeding to characterize the dynamics, 
a few remarks are in order. Those eager to see the characterization of the dynamics may want to 
skip them at first reading.

Remark 1. In this model, only a fraction of the young agents run the Bad projects, when 
rt+1 = R(W(kt )) holds (i.e., in M and R). In R, rt+1 = R(W(kt )) = B and PC is satisfied with 
equality. Thus, some young agents run the Bad projects while others do not, simply because they 
are indifferent. In M, rt+1 = R(W(kt )) < B , and BC is binding but PC is satisfied with strict 
inequality. In other words, all the young agents strictly prefer borrowing to run the Bad projects 
over lending their net worth to others. Thus, the equilibrium allocation necessarily involves credit 
rationing, where some of the young are denied credit. Those who denied credit cannot entice the 
potential lenders by promising a higher rate of return, because the lenders would know that the 
borrowers would not be able to keep the promise. It should be noted, however, that equilibrium 
credit rationing occurs in this model due to the homogeneity of the agents. It is possible to extend 
the model to eliminate the credit rationing without changing the essential features of the model. 
For example, suppose that the labor endowment of the agents is given by 1 + εz, where ε is a 
small positive number and z is distributed with the mean equal to zero, with no mass point and a 
bounded support. Then, the allocation of the credit in period t is determined by a critical value, 
zt , i.e., the agents, whose endowments are greater than or equal to 1 + εzt obtain the credit and 
run the Bad projects, and those whose endowments are less than 1 + εzt becomes the lenders. 
The model above can be viewed as the limit case, where ε goes to zero. What is essential for 
the analysis is that, when the borrowing constraint is binding for the marginal agents, a higher 
wt eases the borrowing constraint, which lowers the critical value, zt , allowing more agents to 
finance the Bad projects, which drive up rt+1. Thus, it is the borrowing constraint, not the equi-
librium credit rationing per se, that matters. The equilibrium credit rationing is nothing but an 
artifact of the homogeneity assumption, which is imposed to simplify the analysis.

Remark 2. The model presented here differs in several ways from the one presented in Section 2 
of Matsuyama (2013). In that model, both the Good and the Bad are indivisible and subject to the 
borrowing constraints. The agents are not homogeneous; instead there are three types of agents, 
“the entrepreneurs,” “the traders,” and ‘the lenders”. Each entrepreneur has access to a Good 
project, which consists of paying the fixed cost to set up a firm when young and running it when 
old, which requires hiring some young agents as workers.12 Each trader has access to a Bad 

12 Setting up a firm allows each entrepreneur to produce the final good with y = ϕ(�), with ϕ′(�) > 0 > ϕ′′(�), where 
� is the number of workers per firm. By measuring capital by the equilibrium number of firms (also the measure of 
entrepreneurs undertaking the Good projects), the capital/labor ratio is k = 1/� and the final goods production per worker 
is f (k) = kϕ(1/k).
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project, which consists of hoarding or storing the final good for one period, without generating 
any demand for labor endowment held by the next generation of the agents. The lenders have 
access to neither the Good nor the Bad. These additional elements were introduced in part to help 
the narrative, in part to demonstrate the robustness of the key results, and in part to facilitate one 
of the extensions in that paper, which introduces a third type of projects, the Ugly.13 However, 
these are not essential elements of the mechanism that generates instability and fluctuations in 
that model. The present model offers a simpler presentation of the mechanism by removing all 
these complications.

Remark 3. As explained in Matsuyama (2013), the terminology, the Good and the Bad, re-
flects differential propensity to generate pecuniary externalities; the Good improve the net worth 
of future borrowers but the Bad do not. Hence, shifting the composition of the credit towards 
the Bad is bad for the next generations of the borrowers.14 Here, this key feature is introduced 
by assuming that the Good rely on the “labor” supplied by the next generation, while the Bad 
are independently profitable. “Labor” should not be literally interpreted. Instead it should be 
interpreted more broadly to include any inputs supplied or any assets held by potential future 
borrowers, who could sell them or use them as collaterals to ease their borrowing constraints. 
Beyond such differential general equilibrium prices effects, the mechanism does not require what 
these projects must be like. In more general settings, the projects that generate more pecuniary 
externalities than others need not be more “productive” or more “labor-intensive.” Furthermore, 
the other differences between the two – the Bad are indivisible and subject to the borrowing 
constraint, while the Good are not –, are not essential, as has been demonstrated in Matsuyama
(2013).

3. Dynamic analysis: general case

First, note that our dynamical system, (6), has a unique steady state, k∗ ∈ (0, K̄]. Depending 
on whether it is located in L, M, or R, we denote it by k∗

L, k∗
M or k∗

R . Fig. 3 offers a classification of 
this dynamical system in the parameter space, (μ, B), for a given m ∈ (K̄, f (K̄)). What separates 
these cases, illustrated by Figs. 4a–4e, is the relative magnitude of four critical values of k : kB

(the point at which the Bad become as profitable as the Good if all the credit goes to the Good), kc

(the point at which the Bad start attracting the credit), kμ (the point beyond which BC becomes 
irrelevant), and W(K̄) = K̄ (the maximal possible value of the net worth), as well as the stability 
of the steady state.

In Region A of Fig. 3, kc ≥ K̄ holds. In this case, the Bad never attract credit and all the 
credit goes to the Good, so that kt+1 = W(kt ) for kt ∈ (0, K̄]. Then, from the monotonicity of 
W and A1, kt converges monotonically to k∗

L = K̄ for any k0 ∈ (0, K̄], as shown in Fig. 4a. The 
condition, kc ≥ K̄ , can be rewritten as f ′(K̄) ≥ R(W(K̄)) = R(K̄) or

μB ≤ f ′(K̄)min{1 − K̄/m,μ} (9)

This condition is met either when B ≤ f ′(K̄) or when μB ≤ f ′(K̄)(1 − K̄/m). Thus, the Bad 
never attract credit, either when they are not very profitable (a small B) or have very low pledge-
able return (a small μB).

13 The two purposes of this extension are already discussed in footnote 2.
14 No welfare connotations are intended by this choice of the terminology. Indeed, the financial frictions here create 
inefficiency by causing an over (under)-investment into the Good (Bad).
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Fig. 3. Parameter configuration: K̄ ≡ W(K̄) < m < f (K̄). Assumption (A2), K̄ < m, ensures the existence of region A
above the horizontal line, B = f ′(K̄). The parameter restriction, m < f (K̄), ensures the existence of region E. The 
boundaries between A and B (BCLR), between B and C, between C and D/E-II (BCMR), between E-I and E-II (BCJ ) 
and between E-I and A (BCLM) are all issuing from the point, (μ, B) = (1 − K̄/m, f ′(K̄)). The boundaries between B
and C, between C and D (BCMR) and between E-I and E-II (BCJ ) are all asymptotic to μ = 1. The boundaries between
D and E (FBM) and between E-I and A (BCLM) are hyperbolae and asymptotic to μ = 0.

In the other four regions, kc < K̄ , so the Bad attract credit and hence kt+1 < W(kt ) for kt ∈
(kc, K̄]. In Region B of Fig. 3, kμ ≤ kB = kc < K̄ or

f ′(K̄) < B ≤ f ′((1 − μ)m
)
, (10)

holds. As already discussed before, this condition ensures that BC is never binding whenever the 
Bad attract some credit, and hence f ′(kt+1) = R(W(kt )) = B for all kt ∈ (kc, K̄]. The map is 
thus given by Eq. (8), which has two branches (upward in L and flat in R), as shown in Fig. 1b. 
In addition, kB = kc < K̄ ensures that the steady state is located on R. The dynamics is hence 
monotone and mapped into the steady state, k∗

R = wB in finite time, as shown in Fig. 4b.
In Regions C, D, and E, kμ > kc > kB holds. The map is thus given by Eq. (9), with three 

branches (upward L, downward M, and flat R), as shown in Fig. 2b. In Region C, kc < kμ < wB

or

f ′((1 − μ)m
)
< B < f ′(W−1((1 − μ)m

))
(11)

holds so that the map intersects with the 45◦ line in R, the flat branch. Hence, BC is not binding 
in the steady state. In this case, the state is mapped into k∗

R = wB in finite time, as in B, but, 
unlike B, it is not globally monotone. For k0 < kμ < k∗

R , the dynamics generally overshoots k∗
R

and is mapped into it from above, as shown in Fig. 4c.
In Regions D and E, kc < kμ and kμ > wB hold so that the map intersects with the 45◦ line 

in M. Thus, the Bad are active with the binding BC in a neighborhood of the steady state. By 
setting kt = kt+1 = k∗ in kt+1 = �M(kt ),
M
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Fig. 4. Phase diagrams.
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μB = f ′(k∗
M

)(
1 − W(k∗

M)

m

)
. (12)

The dynamics around k∗
M is oscillatory; it is locally stable in Fig. 4d and unstable in Fig. 4e. 

Differentiating kt+1 = �M(kt ) and then setting kt = kt+1 = k∗
M yields

1 + � ′(k∗
M

) = 1 − k∗
Mf ′(k∗

M)

m − W(k∗
M)

= m − f (k∗
M)

m − W(k∗
M)

.

Hence, the steady state k∗
M is locally asymptotically stable, −1 < � ′(k∗

M) < 0, if f (k∗
M) < m

and it is unstable, � ′(k∗
M) < −1, if f (k∗

M) > m. Since the right hand side of (12) is decreasing 
in k∗

M , the conditions for these two cases can be written as:

μB > f ′(f −1(m)
)(

1 − W(f −1(m))

m

)
and B > f ′(W−1((1 − μ)m

))
, (13)

and

f ′(K̄)(1 − K̄/m) < μB < f ′(f −1(m)
)(

1 − W(f −1(m))

m

)
and

B > f ′(W−1((1 − μ)m
))

, (14)

as illustrated by D and E in Fig. 3. (The existence of Region E is ensured by f (K̄) > m.)
In Region E, the equilibrium trajectory will eventually enter the interval, J ≡ [�(wc), wc]

for any k0 ∈ (0, K̄], and stay there forever. Furthermore, �(J ) = J . Hence, J is invariant and 
absorbing. If W(kc) = wc < kμ – this is not the case depicted by Fig. 4e –, wB = �(kμ) <
�(wc) < wc < kμ holds and hence J ≡ [�M(wc), wc] overlaps with (upward) L and (down-
ward) M, but not with (flat) R. This means that �(x) = k has at most two solutions for any 
k ∈ J , which means that the (unstable) steady state, k∗

M , has at most a countable number of pre-
images. In other words, the equilibrium trajectory exhibits persistent fluctuation for almost all 
initial values, k0 ∈ (0, K̄]. Some algebra yields that this condition, W(kc) = wc < kμ, is given by

f ′(K̄)(1 − K̄/m) < μB < f ′(f −1(m)
)(

1 − W(f −1(m))

m

)
and

μB > f ′(W−1((1 − μ)m
))(

1 − W−1((1 − μ)m)

m

)
, (15)

shown as E-I in Fig. 3, the sub-region of Region E above the dashed curve. On the other hand, 
in E-II in Fig. 3, sub-region of Region E below the dashed curve,

f ′(K̄)(1 − K̄/m) < μB < f ′(f −1(m)
)(

1 − W(f −1(m))

m

)
and

μf ′(W−1((1 − μ)m
))

< μB < f ′(W−1((1 − μ)m
))(

1 − W−1((1 − μ)m)

m

)
, (16)

W(kc) = wc > kμ holds. In this case, wB = �(kμ) = �(wc) < kμ < wc and the absorbing inter-
val, J = [wB, wc], overlaps also with (flat) R, as depicted in Fig. 4e. In this region, there exists a 
set of parameter values with measure zero, for which wB is a pre-image of the (unstable) steady 
state, k∗

M , or of a point of an unstable cycle and the set of pre-images of wB has a positive mea-
sure in J = [wB, wc]. Hence, for these parameter values, the equilibrium trajectory is mapped 
into the (unstable) steady state, k∗ , or an unstable cycle in finite times for a positive measure of 
M
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initial values, k0 ∈ J .15 However, for almost all parameter values in E-II, wB is not a pre-image 
of the (unstable) steady state, and hence the equilibrium trajectory exhibits persistent fluctuation 
for almost all initial values, k0 ∈ J .

A First Look at Bifurcations:
Before proceeding, it would be instructive to see how the dynamical system changes its qual-

itative features, when the boundaries across these regions are crossed, as we move around the 
parameter space, (μ, B), for example, A → B → C → D → E-II → E-I → A, as indicated by 
the red arrows in Fig. 3. This also gives us the opportunity to introduce various types of bifurca-
tions informally to prepare the reader for a more detailed bifurcation analysis to come.

Let us start in Region A with B < f ′(K̄) and with μ very close to 1. Then, the upward L
branch covers the entire range, (0, K̄], and the steady state is given by k∗

L = K̄ , as shown in 
Fig. 4a. As we increase B , the flat R branch shifts down and moves left, causing the L branch 
to shrink. This causes the flat R branch to collide with k∗

L = K̄ , at which point the steady state 
undergoes a border collision bifurcation (BCB), BCLR, at the boundary between Regions A and 
B, where k∗

L = K̄ = k∗
R , which is given by:

BCLR : B = f ′(K̄).

Once we enter B, the steady state is now given by k∗
R = wB > kB > kμ, as shown in Fig. 4b. 

Now, as we decrease μ and cross the boundary between Regions B and C, given by B = f ′((1 −
μ)m) > f ′(K̄), we enter Region C, kB < kc < kμ < wB = k∗

R , where the downward M branch 
emerges, as shown in Fig. 4c. A further decrease in μ causes the downward M branch to shift 
right and collide with k∗

R = wB , where the steady state undergoes a BCB, BCMR, at the boundary 
of Regions C and D, where k∗

M = kμ = k∗
R , which is given by:

BCMR : B = f ′(W−1((1 − μ)m
))

> f ′((1 − μ)m
)
.

Once we enter D, the steady state is now k∗
M , and, with � ′(k∗

M) > −1, it is asymptotically 
stable as shown in Fig. 4d. Then, as we reduce μ further, the downward M branch continues to 
shift right and becomes steeper, causing k∗

M to lose its stability via a flip bifurcation, FBM , at the 
boundary between Regions D and E, where � ′(k∗

M) = −1, which is given by:

FBM : μB = f ′(f −1(m)
)(

1 − W(f −1(m))

m

)
for B > f ′(W−1((1 − μ)m

))
,

after which the steady state k∗
M is unstable with � ′(k∗

M) < −1. As we enter E below the dashed 
curve separating E-I and E-II, we are in E-II, as shown in Fig. 4e, where the absorbing inter-
val, J , covers all three branches. With a further decrease in μ, kμ collides with wc, hence the 
absorbing interval, J , at

BCJ : μB = f ′(W−1((1 − μ)m
))(

1 − W−1((1 − μ)m)

m

)
,

and we enter Region E-I, where the absorbing interval, J , covers only two branches, L and M. 
Finally, as we decrease in μ further, the downward M branch continues to shift right, causing k∗

M

to collide with K̄ and the system undergoes another BCB, BCLM , at the boundary of Region A
and E-I, where k∗

M = K̄ = k∗
L, which is given by:

15 An unstable invariant set that attracts a positive measure of the initial conditions is called a Milnor attractor.
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BCLM : μB = f ′(K̄)(1 − K̄/m),

after which we find ourselves again in Region A, as shown in Fig. 4a.16

Of particular interest among all the regions shown in Fig. 3 are regions D and E, i.e., when 
the Bad are sufficiently profitable, B > f ′(K̄) and their pledgeability, μ, is neither too high 
nor too low. In these regions, the pledgeability problem is significant enough (i.e., μ is not too 
high) that the credit continues to flow into the Good, even if its rate of return is strictly less 
than B . Of course, the agents are eager to take advantage of the low equilibrium rate of return 
by running the Bad projects, but some of them are unable to do so due to BC. If μ is not too 
low, an improvement in net worth would ease BC, which drives up the equilibrium rate of return. 
This in turn causes a decline in the investment into the Good, which reduces the net worth of the 
agent in the next period. When μ is relatively high (i.e., in region D), this effect is not strong 
enough to make the steady state unstable. When μ is relatively low (i.e., in region E), this effect 
is strong enough to make the steady state unstable and generate endogenous fluctuations. Thus, 
the following proposition may be stated.

Proposition 1 (Effects of μ). For any B > f ′(K̄), endogenous fluctuations occur (almost surely) 
for an intermediate range of μ.

Endogenous credit fluctuations thus occur when the Bad are sufficiently profitable and when 
their pledgeability problem is large enough that the agents cannot finance it when their net worth 
is low, but small enough that they can finance it when their net worth is high.

Region D is also of some interest, because the local convergence toward the steady state is 
oscillatory. If the economy is hit by recurrent shocks, the equilibrium dynamics exhibit consider-
able fluctuations even in a neighborhood of the steady state.17 A quick look at Fig. 3 verifies that 
a sufficiently high B ensures that the economy is in Region D. Thus, another proposition may be 
stated.

Proposition 2 (Effects of B). For any μ ∈ (0, 1), the dynamics around the steady state is oscilla-
tory for a sufficiently high B .

The intuition behind this result is easy to grasp. When the agents are sufficiently eager to run 
the Bad projects (because they are sufficiently profitable), their borrowing constraint becomes 
binding in the presence of financial frictions. A higher net worth in the current period eases the 
borrowing constraint, which drives up the equilibrium rate of return, which reduces the credit 
flow to the Good, which leads to a lower net worth in the next period.

As already pointed out, persistent fluctuations occur for almost all initial conditions every-
where in E-I, while this is true only for almost all parameter values in E-II. However, this is not 
the only significant difference between the two regions. It turns out that the types of fluctuations 

16 If we reduce μ at a value of B higher than indicated by the red arrow, the system can skip E-II and move directly 
from D to E-I via a flip bifurcation, as it crosses FBM . If we reduce μ at a value of B lower than indicated by the red 
arrow, the system can skip D and move directly from C to E-II via a border-flip bifurcation, as it crosses BCMR, where 
wB = k∗

M
= kμ = k∗

R
and � ′(k∗

M
) < −1.

17 In addition, endogenous fluctuations may occur in region D, because the local stability of the unique steady state 
does not guarantee the global stability. Indeed, as seen in Section 4.2, a stable period-2 cycle can coexist with the stable 
steady state near the boundary of D and E on the side of region D.
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Fig. 5a. Map restricted on the absorbing interval, J , above BCJ .

observed in E-I and E-II are totally different in nature. Those observed in E-II display certain 
peculiar features due to the presence of the flat branch in the absorbing interval. Though these 
features are mathematically quite intriguing, their economic significances are not obvious.18 For 
this reason, we focus on E-I in this paper, leaving a detailed analysis of E-II in our companion 
paper, Sushko et al. (2014a).

With our focus on E-I, where the absorbing interval overlaps only with L and M, we may 
rewrite Eq. (6), by restricting it to J ≡ [�M(wc), wc], as follows:

kt+1 = �J (kt ) =
{

�L(kt ) ≡ W(kt ) if �M(wc) ≤ kt < kc

�M(kt ) ≡ (f ′)−1(
μB

1−W(kt )/m
) if kc ≤ kt ≤ wc,

(17)

which has one kink, separating the upward L branch and the downward M branch, as shown in 
Fig. 5a. Notice that the parameters, μ and B , enter in Eq. (17) only through its product, μB , the 
pledgeable rate of return. Hence, if we restrict our attention to this region, we can classify the 
dynamical system into three cases in the parameter space, (m, μB) as follows.

Proposition 3 (Effects of μB). For a sufficiently large B , our map, Eq. (6), when restricted to its 
absorbing interval, J ≡ [�M(wc), wc], is reduced to Eq. (17), which depends solely on m, μB

and f (•). Furthermore, for m < f (K̄),

i) For μB < f ′(K̄)(1 − K̄
m

), the map is in Region A, where the Bad never attract credit and all 
the credit goes to the Good, and kt monotonically converges to k∗

L = K̄ .

ii) For f ′(K̄)(1 − K̄
m

) < μB < f ′(f −1(m))(1 − W(f −1(m))
m

), the map is in Region E-I, where 
the equilibrium path persistently fluctuates around k∗

M for almost all initial conditions.

iii) For μB > f ′(f −1(m))(1 − W(f −1(m))
m

), the map is in Region D, where the equilibrium path 
oscillates and converges towards k∗

M locally.

18 For example, if a Bad project generates mε > 0 units of physical capital in addition to mB units of the final good, the 
right branch becomes increasing, no matter how small ε > 0 is.
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Fig. 5b. Parameter configuration in (m,μB) above BCJ .

Fig. 5b illustrates Proposition 3, where E-I is now bounded by A from below and D from 
above, and its existence requires m < f (K̄). This shows that the unique steady state is unstable 
and endogenous fluctuations arise for an intermediate range of μB , that is, when the pledgeable 
rate of return of the Bad projects is neither too low nor too high. Note that the unique steady state 
loses its stability in different ways at the two ends of the instability range of μB . At the upper 
end (on the FBM curve), a decline in μB leads to the instability of the steady state via a flip 
bifurcation. At the lower end (on the BCLM curve), an increase in μB leads to the instability of 
the steady state via a BCB. Hence, the nature of fluctuations observed at these ends can be very 
different, as will be explained in the next section.

4. Dynamics analysis: Cobb–Douglas case

To make further progress and to understand the nature of fluctuations, we now turn to a special 
case where the production function is Cobb–Douglas: f (k) = A(k)α with α ∈ (0, 1), so that 
wt = W(kt ) = (1 − α)A(kt )

α . It turns out that it is more convenient to write the dynamics in wt , 
instead of kt . After the normalization, (1 − α)A = 1, wt = W(kt ) = (kt )

α and thus Eq. (6) can 
be written as:

wt+1 = T (wt ) ≡

⎧⎪⎨
⎪⎩

TL(wt ) ≡ (wt )
α if wt ≤ wc

TM(wt ) ≡ [ 1
μB

( α
1−α

)(1 − wt

m
)] α

1−α if wc ≤ wt ≤ wμ

TR(wt ) ≡ ( α
B(1−α)

)
α

1−α ≡ wB if wt ≥ max{wc,wμ},
(18)

where wc is given by (wc)
1−α ≡ α

μB(1−α)
Max{1 − wc

m
, μ}, satisfying TL(wc) ≡ TM(wc) and 

wμ ≡ m(1 − μ), so that TM(wμ) ≡ TR(wμ). Eq. (18) is thus a continuous piecewise smooth 
dynamical system, with four parameters, α, μ, m, B , with the restrictions, 0 < α, μ < 1, B > 0, 
and (1 − α)m < 1 < m. With the normalization, (1 − α)A = 1, W(K̄) = K̄ = 1, and hence T
maps (0, 1] into itself. From now on, we restrict T on (0, 1].
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4.1. Some preliminaries

As done in Fig. 3, the parameter space (μ, B) can be divided into regions, A, B, C, D, E-I, 
and E-II, for a given (α, m). In Region A, the dynamics converge to the unique steady state in L, 
w∗

L = 1. Its boundary with B is the BCB curve,

BCLR : B = α

1 − α
for μ ≥ 1 − 1

m

on which w∗
L = 1 = w∗

R holds. Its boundary with E-I is the BCB curve,

BCLM : μB = BCLM(α,m) ≡
(

α

1 − α

)(
1 − 1

m

)
for μ ≤ 1 − 1

m

on which w∗
L = 1 = wc = w∗

M holds. In Regions B and C, the dynamics converge to the unique 
steady state, w∗

R , located in R. The outer boundary of C (with D and E) is the BCB curve,

BCMR : B =
(

α

1 − α

)[
m(1 − μ)

]1−1/α for μ ≥ 1 − 1

m

on which w∗
M = wμ = w∗

R holds. In Region D, the unique steady state, w∗
M , located in 

M , is locally stable, because 0 > T ′(w∗
M) > −1. In Region E, it is locally unstable, be-

cause T ′(w∗
M) < −1. As we move from D to E, w∗

M loses its stability via a flip bifurcation, 
T ′(w∗

M) = −1. Thus, the boundary between D and E is given by the flip bifurcation curve,

FBM : μB = FBM(α,m) ≡
(

α2

1 − α

)[
(1 − α)m

]1−1/α

for B >

(
α

1 − α

)[
m(1 − μ)

]1−1/α
.

In Region E, bounded by BCLM (from the left), FBM (from the right) and BCMR (from below), 
the unique steady state, w∗

M , is unstable, and there exists an absorbing interval, J , whose upper 
bound is given by T (wc). In Region E-I, T (wc) ≤ wμ holds so that only the upward L-branch 
and the downward M-branch are involved when T is restricted on J = [T 2(wc), T (wc)], so that:

wt+1 = TJ (wt ) ≡
{

TL(wt ) ≡ (wt )
α for T 2(wc) ≤ wt ≤ wc

TM(wt ) ≡ [ α
μB(1−α)

(1 − wt

m
)] α

1−α for wc ≤ wt ≤ T (wc).
(19)

In Region E-II, T (wc) > wμ holds so that all three branches, including the flat R-branch is 
involved and J = [wB, T (wc)]. The boundary between E-I and E-II is given by T (wc) = wμ, 
i.e.,

BCJ : μB =
(

α

1 − α

)(
μ − 1 + [

m(1 − μ)
]1−1/α)

between BCLM and FBM .
As already mentioned, the types of fluctuations observed in E-I and E-II are totally different. 

In what follows, we will report some results from Sushko et al. (2014b; henceforth SGM), which 
conducts a detailed bifurcation analysis on E-I, particularly on the nature of transition as we 
move from D to E-I by crossing the FBM curve or from A to E-I by crossing the BCLM curve. 
For the analysis of E-II, as well as the transition between E-I and E-II, we refer to another 
companion paper of ours, Sushko et al. (2014a).
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Fig. 6. Crossing the FBM curve for α < 0.5: subcritical FB and fold BCB. (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

Fig. 7. Crossing the FBM curve for α > 0.5: supercritical FB and persistence BCB. (For interpretation of the references 
to color in this figure, the reader is referred to the web version of this article.)

4.2. Crossing the FBM curve: corridor stability19

Let us first describe what happens when we move from D to E-I and cross the FBM curve by 
decreasing μB . The left panels of Fig. 6 and Fig. 7 show the graphs of w∗

M , wc , T (wc), as well 
as period-2 cycles, as functions of μB . Also shown are the three critical values of μB:

• FBM(α, m), at which T ′(w∗
M) = −1 (the flip bifurcation of w∗

M occurring at the boundary 
between D and E-I);

• BC2(α, m), at which T 2(wc) = wc (the existence of the period-2 cycle, wc ↔ T (wc));

19 Much of this section is based on Section 4 of SGM.
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• FB2(α, m), at which (TM ◦ TL)′(w1) = −1, where w1 is given by (TM ◦ TL)(w1) = w1
(the flip bifurcation of the period-2 cycle that alternates between the L- and the M-branch, 
w1 = TM(w2) ↔ TL(w1) = w2).20

Fig. 6 illustrates the case of α < 0.5, for which BC2(α, m) > FBM(α, m) > FB2(α, m) holds. 
For μB > BC2(α, m), the unique steady state, w∗

M , is not only stable (as indicated by the solid 
line) but also globally attracting. At μB = BC2(α, m), the period-2 cycle, wc ↔ T (wc), is born 
via a fold BCB. On the right panel, this is depicted by the graph of T 2(w) in Red, which touches 
the 45◦ line at w = wc and w = T (wc). As μB declines further, this period-2 cycle is split into 
a pair of period-2 cycles, one stable (as indicated by the pair of the solid lines on the left panel), 
w1 = TM(w2) ↔ TL(w1) = w2, alternating between L and M, and one unstable (as indicated by 
the dashed curves on the left panel), oscillating within the M-branch.21 For FBM(α, m) < μB <

BC2(α, m), the stable steady state, w∗
M , co-exists with the stable period-2 cycle. Their basins of 

attraction are separated by the unstable period-2 cycle and its pre-images. Then, as μB continues 
to decrease and moves toward the boundary with E-I, the unstable period-2 cycle approaches and 
merges with the steady state, w∗

M , and disappears at the subcritical flip at μB = FBM(α, m). On 
the right panel, this is depicted by the graph of T 2 in Blue, which is concave in (wc, w∗

M ) and 
convex in (w∗

M, T (wc)) for α < 0.5 with w∗
M , the inflection point, being tangent to the 45◦ line.22

Upon entering E-I, the steady state w∗
M becomes unstable (as indicated by the dashed line), while 

the period-2 cycle alternating between M and L, w1 = TM(w2) ↔ TL(w1) = w2, remains stable. 
This continues, as long as FBM(α, m) > μB > FB2(α, m), i.e., until this period-2 cycle loses its 
stability via a flip bifurcation at μB = FB2(α, m).23

Fig. 7 illustrates the case of α > 0.5, for which FBM(α, m) > BC2(α, m) holds. Fig. 7 further 
assumes BC2(α, m) > FB2(α, m), which holds for α not too large. As shown on the left panel, the 
unique steady state, w∗

M , is globally attracting in D, i.e., for μB > FBM(α, m). Then, it undergoes 
a supercritical flip at the boundary with E-I, i.e., at μB = FBM(α, m). On the right panel, this is 
depicted by the graph of T 2 in Blue, which is convex in (wc, w∗

M ) and concave in (w∗
M, T (wc)) 

for α > 0.5 with w∗
M , the inflection point, being tangent to the 45◦ line. As μB < FBM(α, m), 

the steady state becomes unstable, which creates a stable period-2 cycle. This cycle oscillates 

20 Some algebra yields FB2(α, m) = (αγ 2/(1 + αγ ))((1 + αγ )/m)1/αγ , where γ = α/(1 − α). Generally, BC2(α, m)

can be defined only implicitly.
21 As shown on the right panel, T 2(w) = TM ◦ TL(w) is decreasing in w < wc and T 2(w) = T 2

M
(w) is increasing in 

w > wc ; T 2(w) has thus a kink at w = wc . Before this BCB, T 2(wc) > wc and, for α < 0.5, T 2 intersects with the 45◦
line only at w∗

M
, so there is no period-2 cycle, hence no cycle of any periodicity. At the BCB, where T 2(wc) = wc , the 

left derivative of T 2 at wc satisfies 0 > (TM ◦ TL)′(wc) > −1 and the right derivative satisfies (T 2
M

)′(wc) > 1. After 
this BCB, T 2(wc) < wc holds, thereby creating two intersections with the 45◦ line, one below wc and one above wc . 
The period-2 cycle alternating between L and M is stable because it corresponds to the first intersection where the slope 
of T 2 is less than one in absolute value. The period-2 cycle confined with M is unstable, because it corresponds to the 
second intersection where the slope of T 2 is greater than one.
22 Note that, when w∗

M
, as the fixed point of T , undergoes a flip bifurcation T ′(w∗

M
) = −1 to create a period-2 cycle 

of T , w∗
M

, as the fixed point of T 2, undergoes a pitchfork bifurcation, (T 2)′(w∗
M

) = 1, to create a new pair of the fixed 
points of T 2, neither of which is a fixed point of T .
23 This last statement, and the left panel of Fig. 6, assume m < 1 +α2/(1 −α) so that μB = FB2(α, m) > BCLM(α, m), 
which is necessary for the flip bifurcation of this period-2 cycle to occur in E-I. If m > 1 + α2/(1 − α), FB2(α, m) <
BCLM(α, m), and hence this period 2-cycle never undergoes a flip bifurcation, as μB declines. Instead, it shrinks and 
converges to w∗

L
= 1 and disappears at the BCLM curve. Indeed, we will show later that the period-2 occurs immediately 

after crossing the BCLM curve from A to E-I under the condition, m > 1 + α2/(1 − α). See also Fig. 10.
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entirely within the M-branch for FBM(α, m) > μB > BC2(α, m). Then, at μB = BC2(α, m), 
this cycle collides with the border with wc. On the right panel, this is depicted by the graph of 
T 2(w) in Red, with T 2(wc) = wc. When α is not too large and hence BC2(α, m) > FB2(α, m)

holds, one can show that the left derivative of T 2 at w = wc is less than one in absolute value. 
This ensures that, after the BCB, when T 2 intersects with the 45◦ line below w = wc, its slope 
is less than one in absolute value for BC2(α, m) > μB > FB2(α, m), so that the period-2 cycle 
alternating between M and L, w1 = TM(w2) ↔ TL(w1) = w2, is stable.24 This cycle then loses 
its stability at μB = FB2(α, m).25

What happens for the non-generic case of α = 0.5? In this case, the map is linear in 
the M-branch. The unique steady state, w∗

M , is stable and globally attracting, until μB =
FBM(1/2, m) = BC2(1/2, m) = 1/m, where w∗

M loses its stability via a degenerate flip, which 
creates a continuum of (not asymptotically) stable period-2 cycles, with any point in [wc, w∗

M) ∪
(w∗

M, T (wc)] being 2-periodic. For FBM(1/2, m) = BC2(1/2, m) > μB > FB2(1/2, m), there 
exists a stable period-2 cycle, alternating between M and L. This becomes unstable at μB =
FB2(1/2, m) = 3/(4m2).

Of particular interest is the empirically relevant case of α < 0.5, illustrated in Fig. 6. For 
BC2(α, m) > μB > FBM(α, m), i.e., between the subcritical flip of the steady state and the fold 
BCB, the locally stable steady state co-exists with the locally stable period-2 cycle. And the 
basin of attraction of the steady state is bounded by the unstable period-2 points, suggesting 
that the steady state possesses the corridor stability a la Leijonhufvud (1973): i.e., it is stable 
and self-correcting against small shocks but unstable against large shocks. Furthermore, when a 
parameter change causes the steady state to lose its stability via the subcritical flip, its effects are 
both catastrophic and irreversible. They are catastrophic in the sense that, when the economy, 
initially located in the steady state, becomes dislocated due to the parameter change, it converges 
to the period-2 cycle that is far away from the steady state, causing it to fluctuate widely, no matter 
how small the parameter change is. In other words, the effects are discontinuous in the parameter 
change. Furthermore, these effects are irreversible in the sense that reversing the parameter to the 
original value and restoring the stability of the steady state do not allow the economy to return to 
the steady state, because the period-2 cycle remains stable.26 This suggests, among other things, 
that even a small, temporary credit crunch shock, captured by a small, one-time reduction in μ, 
could have large, permanent effects on the volatility.

Why do smaller values of α ensure the corridor stability? In other words, how does the unique 
steady state manage to maintain its local stability at least for a while when a decline in μB causes 
global instability of the dynamical system? The intuition is quite simple. In a neighborhood of 
the steady state, w∗

M , both the Good and the Bad projects are financed so that R(wt) = rt+1 =
f ′(kt+1) holds. As a small increase in the net worth wt would allow the agents running the Bad 
projects to offer a higher rate of return to the lender, this bids up the equilibrium rate of return, 
rt+1, which causes a decline in the capital-labor ratio, kt+1. However, with a small share of 

24 For α sufficiently close to one, BC2(α, m) < FB2(α, m). In this case, at the BCB, where T 2(wc) = wc , the left 
derivative of T 2 at w = wc is greater than one in absolute value. This implies that, immediately after the BCB, the 
period-2 cycle alternating between M and L is unstable and the dynamics converges to a chaotic attractor.
25 Again, this last statement, and the left panel of Fig. 7, assume m < 1 + α2/(1 − α) so that μB = FB2(α, m) >
BCLM(α, m). See also footnote 22.
26 For the supercritical case of α > 0.5 (shown in Fig. 7), the size of fluctuations along the stable period-2 cycle created 
by the flip increases continuously with the parameter. Thus, if the parameter change is reversed, the stable cycle shrinks 
and merges to the steady state, which allows the economy to return to it.
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capital in the final goods production, a small decline in kt+1 is enough to restore the equilibrium, 
which means that the negative effect on wt+1 = W(kt+1) is small, which dampens the effect of 
a small increase in wt .

4.3. Crossing the BCLM curve27

Let us now describe what happens immediately after an increase in μB leads to a transversal 
crossing of the BCLM curve from A to E-I, which causes w∗

L = 1 to disappear. This can be done 
by using the following piecewise linear map:

xt+1 = τ(xt ) =
{

τL(xt ) = axt + 1 if xt < 0
τR(xt ) = bxt + 1 if xt ≥ 0,

(20)

with

a = lim
w↑1

T ′(w) = α ∈ (0,1),

b = lim
w↓1

T ′(w) = − α

(1 − α)(m − 1)
≡ Bm(α) ∈ (−∞,−1), (21)

as an approximation of our map.28 Fig. 8a shows the graph of (20), while Fig. 8b shows the graph 
of the map, (17), to be approximated. The piecewise linear map, (20), is called the skew tent map, 
which has been fully characterized. See Sushko et al. (2015) for the detail. This map has quite 
rich dynamics. An attracting cycle of any period, as well as a robust chaotic attractor with any 
number of intervals, exists for an open region of the parameter space, (a, b), some of which can 
be seen in the bifurcation diagram in the (a, b) plane, shown in Fig. 9a (with Fig. 9b showing 
an enlargement of its boxed area). In Fig. 9a, the colored area with the number, 2, 3, 4, or 5, is 
the parameter region for the stable cycle with the number indicating its periodicity.29 It can be 
shown that the stable n-cycle visits the downward-sloping branch only every n-th period, such 
that x1 = τ(x0) < x2 < . . . < xn−1 < 0 < x0.30 In both Figs. 9a and 9b, the yellow area, marked 
as Q1, represents the parameter region for a chaotic attractor with one interval. Various white 
regions in Fig. 9b, marked as Qn,2n or Qn,n (n ≥ 2), are the regions of a chaotic attractor with 
multiple intervals (with the second subscript indicating the number of intervals). On a chaotic 
attractor with n intervals, a trajectory visits each interval every n−th period, but when it returns 
to the same interval, it never repeats the same value, so that the trajectory ends up filling each 
interval. Thus, to the naked eye, the trajectory looks like an n-cycle with random noises.31

Using (21), the bifurcation diagram of the skew tent map can be mapped into the bifurcation 
diagram in the (α, m) plane, as shown in Fig. 10. For example, the region of the stable period-2 
cycle for the skew tent map, {(a, b)| −1 < ab < −a}, shown in green, is mapped into {(α, m)|1 −

27 Much of this section is based on Section 3 of SGM.
28 In the language of the dynamical system theory, we use Eq. (20) as a normal form for a border collision bifurcation: 
see Sushko et al. (2015). Intuitively, as we approach BCLM from the interior of E-I, wc → 1, T (wc) → 1 and T 2(wc) →
1, hence, the absorbing interval, J = [T 2(wc), T (wc)], is sufficiently small near the BCLM curve, which allows us to 
linearize our map around wc .
29 From the Li–Yorke theorem, we know that there exist an n-cycle for any n ≥ 2 as well as a chaotic trajectory in 
the parameter region of the stable 3-cycle. However, the stable-3 cycle is a unique attractor in its region, to which the 
equilibrium trajectory converges from almost all initial conditions.
30 The upper boundary of the region of the stable n-cycle is given by b = − 1−an−1

(1−a)an−2 . For n ≥ 3, the stable n-cycle 
collides with the unstable n-cycle, also existing in the stable region, and disappears via a fold BCB at the upper boundary. 
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Fig. 8. Skew tent map as a border collision normal form.

Fig. 9. Bifurcation diagrams for skew tent map. In Fig. 9a, the numbers, 2, 3, 4, and 5, in the colored regions indicate 
the periodicity of stable cycles. The yellow region, Q1, indicates the region of a chaotic attractor with one interval. 
A magnification of the boxed area in Fig. 9a is shown in Fig. 9b. The white regions indicate the regions of a chaotic 
attractor with multiple intervals, with the second subscript indicates the number of intervals. See Sushko et al. (2015) for 
more detail. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

α + α2 < (1 − α)m < 1}, also shown in green.32 And the region of Qn,2n is mapped into the 
region of Gn,2n, etc. From Fig. 10, we can thus find out what happens after the disappearance 
of the steady state, w∗

L = 1, for generic values of (α, m). Note that, for any a ∈ (0, 1) and b ∈
(−∞, −1), the inverse of (21), α = a and m = 1 − a/[(1 − a)b], satisfies the model’s parameter 

The lower boundary of the region of the stable n-cycle is given by b = −a1−n. The stable n-cycle loses its stability via 
a degenerate flip bifurcation at this boundary.
31 The first subscript indicates how these chaotic attractors with multiple intervals are born. Starting from the region of 
the stable n-cycle, a reduction in b causes the n-cycle to lose its stability via a degenerate flip bifurcation, leading to a 
chaotic attractor with 2n intervals in Qn,2n . A further reduction in b causes a pairwise merging of these intervals via a 
merging bifurcation, leading to a chaotic attractor with n intervals in Qn,n . And a further reduction in b causes a sudden 
expansion of the size of these intervals, via an expansion bifurcation, leading to a chaotic attractor with one interval 
in Q1.
32 Notice that one of these conditions for the stable period-2 cycle holds automatically due to the model’s parameter 
restriction, (1 −α)m < 1. The other condition can be rewritten as m > 1 +α2/(1 −α), so that FB2(α, m) < BCLM(α, m), 
ruling out the possibility of the flip bifurcation of the period-2 cycle born at the FBM curve. See footnotes 22 and 24.
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Fig. 10. Bifurcation diagram for Eq. (19) upon Crossing the BCLM curve. This bifurcation diagram is obtained from the 
bifurcation diagram of the skew-tent map (see Fig. 9), by using Eq. (21). The number, 2, 3, and 4, in the colored areas 
indicate the periodicity of stable cycles. The yellow region with G1 indicates a chaotic attractor with one interval. The 
white regions indicate a chaotic attractor with multiple intervals (the second subscript indicates the number of intervals). 
With b < −1, the Red region for the skew tent map (the region of stable steady state) seen in Fig. 9a would map into 
Gray in this figure, which is outside of our parameter range. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

restrictions. Thus, an immediate transition from the stable steady state w∗
L = 1 to an attracting 

cycle of any period n ≥ 2, along which the trajectory visits the downward M branch once every 
n-th period and then visits the upward L branch for n − 1 consecutive periods, or to a robust 
chaotic attractor with any number of intervals can occur upon crossing the BCLM curve from 
A to E-I. In particular, in the stability region of cycle of period n ≥ 3 in Fig. 10, the economy 
converges to an asymmetric cycle, along which n − 1 consecutive periods of gradual expansion 
is followed by one period of sharp downturn, for almost all initial conditions in the neighborhood 
of the BCLM curve.

The reader might wonder why the periodicity of the stable cycle is higher with a larger α
and a smaller m. With a small m, even a small increase in wt in the downward branch, wt ∈
(1, m), causes a sharp increase in the pledgeable rate of return offered by the Bad projects, and 
hence a sharp increase in the equilibrium rate of return. In addition, a sharper contraction in 
the Good projects is required to compete with a given increase in the equilibrium rate of return 
with a larger α. For these reasons, an increase in wt in the downward branch causes a sharper 
decline in wt+1 = W(kt+1) with a larger α and a smaller m. Furthermore, a larger α implies more 
persistence in the process of capital accumulation, which implies that it takes longer to escape 
from the upward branch (i.e., it takes time to build up the net worth to the level that enables the 
agents to finance the Bad projects).

4.4. Inside region E-I33

Having seen what happens in E-I the moment after crossing the BCLM curve, the reader may 
wonder what happens as we move away from the BCLM curve and go deeper inside E-I. To 
answer this, we have prepared the two bifurcation diagrams, the one in the (m, μB)-plane for 

33 Much of this section is based on Section 5 of SGM.
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Fig. 11. Two bifurcation diagrams for Eq. (19): inside region E-I.

Fig. 12. Effects of μB : a typical bifurcation scenario (α = 1/3, m = 1.05).

α = 1/3 (Fig. 11a, with the right panel showing an enlargement of the boxed area on the left 
panel) and the other in the (α, μB)-plane for m = 1.05 (Fig. 11b).

For example, for α = 1/3, we know that we can find out what happens immediately after 
crossing the BCLM curve and how it depends on m by tracing the vertical line, α = 1/3, in 
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Fig. 10. This can be also seen by moving along the BCLM curve on Fig. 11a. Likewise, for 
m = 1.05, we know that we can find out what happens immediately after the BCLM curve and 
how it depends on α by tracing the horizontal line, m = 1.05, in Fig. 10. This can be also seen 
by moving along the BCLM curve on Fig. 11b.

Figs. 11a and 11b further tell us how these parameter regions of various attractors extend into 
the interior of E-I, as μB goes up and move away from the BCLM curve. Some of the bound-
aries of these regions are marked by the types of bifurcations occurring at these boundaries. On 
the right panel of Fig. 11a, FBn (n = 2 or 3) denotes the lower boundary of the stable n-cycle 
region, where the stable n-cycle loses its stability due to a flip bifurcation; BC2n (n = 2 or 3) 
denotes the fold BCB related to subcritical FBn; BC3 denotes the upper boundary of the stable 
3-cycle region, where the stable 3-cycle disappears due to a fold BCB; Hn (n = 1, 2 or 3) denotes 
the boundary between Gn,2n and Gn,n due to a merging bifurcation (i.e., a pairwise merging of 
chaotic intervals, caused by the homoclinic bifurcation of a unstable cycle with negative eigen-
value); H̃3 denotes the boundary between G3,3 and G1 due to an expansion bifurcation (i.e., 
a discontinuous increase in the size of the chaotic attractor, caused by the homoclinic bifurca-
tion of a unstable cycle with positive eigenvalue). See SGM for the derivation of the analytical 
conditions for these bifurcation curves.

Although this may not be visible in Figs. 11a and 11b, some of these parameter regions can 
overlap, which means a co-existence of a pair of attractors (due to the occurrence of subcritical 
bifurcations). To be able to see it more clearly, we have prepared Fig. 12a (with Fig. 12b showing 
an enlargement of the boxed area in Fig. 12a), in which the attractors (and some of the unstable 
cycles and the unstable steady state) are plotted against μB for α = 1/3 and m = 1.05. Figs. 12
thus show a bifurcation sequence, as we move along the vertical line, m = 1.05, in Fig. 11a, 
or equivalently, the vertical line, α = 1/3, in Fig. 11b. We have chosen α = 1/3 and m = 1.05
because this bifurcation diagram displays all different types of bifurcations discussed in a single 
sequence.

Let us start in D with a high μB . As seen in Fig. 12a, decreasing μB first leads to a fold BCB, 
which creates the stable 2-cycle. This co-exists with the stable steady state, until it becomes 
unstable via a subcritical flip bifurcation, as we enter E-I, after which the stable 2-cycle is the 
only attractor. Then, another BCB creates a chaotic attractor with 4 intervals. This co-exists with 
the stable 2-cycle, until it becomes unstable in a subcritical flip. Then, the chaotic attractor with 
4 intervals experiences a pairwise merging to become a chaotic attractor with 2 intervals via a 
merging bifurcation (where the unstable 2-cycle is seen colliding with the merging intervals via 
a homoclinic bifurcation). The chaotic attractor with 2 intervals then becomes a chaotic attractor 
with a single interval (where the unstable steady state is seen colliding with the merging intervals 
via a homoclinic bifurcation). Then, the chaotic attractor with a single interval disappears and 
a pair of 3-cycles, one stable and one unstable, is born via a fold BCB. After this, the stable 
3-cycle is the only attractor, until (now moving to Fig. 12b), a BCB creates a chaotic attractor 
with 6 intervals, which co-exist with the stable 3-cycle until the latter becomes unstable in a 
subcritical flip. Then, the chaotic attractor with 6 intervals experiences with a pairwise merging 
to become a chaotic attractor with 3 intervals (where the unstable 3-cycle born at the subcritical 
flip is seen colliding with the merging intervals via a homoclinic bifurcation). Then, the chaotic 
attractor with 3 intervals experiences a discontinuous increase in its size via an expansion bi-
furcation to become a chaotic attractor with one interval (where the unstable 3-cycle born at a 
fold BCB is seen colliding with the chaotic attractor via a homoclinic bifurcation). After this, the 
chaotic attractor with one interval is the unique attractor, which continuously shrinks its size and 
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disappears upon entering Region A. We summarize this bifurcation sequence schematically as 
follows:

w∗
M

BC2⇒ {
w∗

M,2
} FBM⇒ 2

BC4⇒ {2,G2,4} FB2⇒ G2,4
H2⇒ G2,2

H1⇒ G1
BC3⇒ 3

BC6⇒ {3,G3,6}
FB3⇒ G3,6

H3⇒ G3,3
H̃3⇒ G1

BCLM⇒ w∗
L.

Finally, let us end our discussion of the interior of E-I region with some numerical plots of the 
equilibrium trajectories to see what happens during the transient phase (Figs. 13). Again, we have 
set α = 1/3 and m = 1.05 and chosen values of μB from each of the parameter regions discussed 
above. Although we have chosen the initial condition fairly close to its attractor, these plots show 
that the convergence to the attractor is not immediate. Indeed, this model is capable of generating 
quite irregular fluctuations during the transient phase even in the parameter regions of stable 
cycles. For example, Fig. 13e shows the case where the equilibrium trajectory asymptotically 
converges to a stable 3-cycle. This plot shows that during the transient phase, the equilibrium 
trajectory looks more like an irregular 6-cycle, and to the naked eye, it is hardly distinguishable 
from the case of chaotic attractors with 6 intervals, illustrated in Fig. 13f. Yet, the asymmetry 
of fluctuations, the patterns of “up”, “up,” “down,” “up”, “up,” and “down,” can be seen clearly, 
which is what one should expect from our result in Section 4.3 that, upon crossing the BCLM

curve, the economy experiences two periods of expansion followed by one period of downturn 
along its only stable 3-cycle.

5. Concluding remarks

This paper studied a dynamic general equilibrium model with financial frictions, in which the 
economy fluctuates endogenously along its unique equilibrium trajectory. What generates fluc-
tuations is the changing composition of credit flows across heterogeneous investment projects, 
which we call the Good and the Bad. The Good require the inputs supplied by others. By gener-
ating demand for them, they improve net worth of other borrowers. The Bad are independently 
profitable, so that they generate less demand spillovers than the Good. Furthermore, the Bad are 
subject to the borrowing constraint so that the agents need to have a high level of net worth to 
be able to initiate the Bad projects. When the net worth is low, the agents cannot finance the 
Bad, and all the credit goes to the Good, even when the Bad are more profitable than the Good. 
This over-investment to the Good creates a boom, leading to an improved net worth. The agents 
are now able to invest into the Bad. This shift in the composition of the credit from the Good to 
the Bad at the peak of the boom causes a decline in net worth. The whole process repeats itself. 
Endogenous fluctuations occur because the Good breed the Bad and the Bad destroy the Good. 
Such instability and persistent volatility occur when the following two conditions hold. First, 
the Bad projects need to be highly profitable so that the agents are always eager to run them. 
Second, the Bad projects come with an intermediate degree of pledgeability, so that the agents 
cannot finance them when their net worth are low, but they can when their net worth are high. 
This implies, among other things, that an improvement in the financial system could lead to more 
volatility.

Although this mechanism was already discussed in Matsuyama (2013, Sections 2–4), many 
additional ingredients of the model, which were introduced to demonstrate the robustness of the 
mechanism and to clarify the assumptions that are essential from those that are merely simpli-
fying, had unfortunately ended up obscuring the mechanism. In this paper, we have shown that 
the same dynamical system that governs the equilibrium trajectory can be obtained by a much 
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Fig. 13. Some trajectories (α = 1/3, m = 1.05).

simpler setting, which should help to highlight the mechanism through which financial frictions 
cause instability and persistent fluctuations. It should also help to make this model more useful 
as a building block for future research.

Furthermore, we discussed in greater detail the nature of fluctuations observed for the case 
where the production of the final good is Cobb–Douglas. For example, the unique steady state 
possesses the corridor stability, which means that it is locally stable but globally unstable. This 
also suggests that, when a parameter change causes its local stability, the effects are catastrophic
and irreversible. Furthermore, the dynamics may be characterized by an immediate transition 
from the stable steady state to a stable asymmetric cycle of period n ≥ 3, along which n − 1 ≥ 2
consecutive periods of gradual expansion are followed by one period of sharp downturn, or by 
an immediate transition to robust chaotic attractors. We are able to show these results thanks to 
recent advances in the theory of piecewise smooth (i.e., regime-switching) dynamical systems, 
which have many properties that are quite distinct from and much simpler than those defined by 
smooth dynamical systems. In particular, we demonstrated how the skew-tent map provides a 
powerful tool for characterizing a regime-switching system. Although a rigorous presentation of 
these tools was well beyond the scope of this paper, we have strived to make it accessible to the 
economics audience. We hope that our non-technical, heuristic exposition, and “cookbook” pre-
sentation of how to use it, written in the economist-friendly language, serves as an introduction to 
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Fig. 13. (continued)

this branch of mathematics, which should provide powerful tools for analyzing regime-switching 
nonlinear dynamic economic models.
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