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Properties of the different configurations of Julia sets J , generated by the complex map TZ :
z′ = z2 − c, are revisited when c is a real parameter, −1/4 < c < 2. This is done from a
detailed knowledge of the fractal bifurcation organization “box-within-a-box”, related to the real
Myrberg’s map T : x′ = x2 − λ, first described in 1975. Part I of this paper constitutes a first
step, leading to Part II dealing with an embedding of TZ into the two-dimensional noninvertible
map T : x′ = x2 + y − c; y′ = γy + 4x2y, γ ≥ 0. For γ = 0, T is semiconjugate to TZ in the
invariant half-plane (y ≤ 0). With a given value of c, and with γ decreasing, the identification of
the global bifurcations sequence when γ → 0, permits to explain a route toward the Julia sets.
With respect to other papers published on the basic Julia and Fatou sets, Part I consists in the
identification of J singularities (the unstable cycles and their limit sets) with their localization
on J . This identification is made from the symbolism associated with the “box-within-a-box”
organization, symbolism associated with the unstable cycles of J for a given c-value. In this
framework, Part I gives the structural properties of the Julia set of TZ , which are useful to
understand some bifurcation sequences in the more general case considered in Part II. Different
types of Julia sets are identified.
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1. Introduction

This paper is the first part of a double publication
devoted to a study of a common basis: the fractal
bifurcation organization called “box-within-a-box”
(translation of “bôıtes embôıtées” in French). In the
simplest case this configuration is generated by the

one-dimensional quadratic map. This paper involves
the real Myrberg’s noninvertible map x′ = x2 − λ,
inside the interval −1/4 ≤ λ ≤ 2. The first
description of the box-within-a-box organization
was given in [Gumowski & Mira, 1975] and [Mira,
1975] before the introduction of the word “fractal”.
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Quoting these publications Guckenheimer [1980]
called it “embedded boxes”. Further to these pub-
lications, the books by Gumowski and Mira [1980a,
1980b], Mira [1987], Mira et al. [1996] have fur-
nished more elaborated presentations of this topic.

The identification of the fractal “box-within-a-
box” organization of the one-dimensional quadratic
map was made on the following bases: the Myr-
berg’s results [1963], and a nonclassical bifurcation
resulting from the merging of two singularities of
different nature, an unstable periodic point with a
rank-r image of the minimum of x′ = x2 − λ, r =
2, 3, . . . [Mira, 1975].

The Myrberg’s results can be summarized as
follows.

• All the bifurcations values occur into the interval
−1/4 ≤ λ ≤ 2.

• The number Nk of all possible cycles having the
same period k, and the number Nλ(k) of bifur-
cation values giving rise to these cycles, increases
very rapidly with k.

• The cycles having the same period k differ from
each other by the type of cyclic transfer (per-
mutation) of one of their points by k successive
iterations by T . These permutations were defined
by Myrberg using a binary code constituted by
a sequence of (k − 2) signs [+,−]. More or less
explicitly the Myrberg’s papers give an extension
of this notion to the case k → ∞, and to general
orbits (iterated sequences).

• For λ < λ(1)s = 1, 401155189, . . . , the number
of singularities (cycles) is finite. For λ ≥ λ(1)s,
the number of singularities is infinite, and the
situation is chaotic (stable, or unstable chaos).
The parameter λ(1)s is a limit point of bifurcation
values of period doubling of cycles of period 2i,
i = 0, 1, 2, . . . , (Myrberg cascade is called “spec-
trum” by Myrberg [1963], and called Feigenbaum
cascade after Feigenbaum [1978]).

• The following cascades of bifurcations: “stable
period k2i cycle → unstable period k2i cycle +
stable period k2i+1 cycle”, i = 0, 1, 2, 3, . . . ,
k = 1, 3, 4, . . . , occurs when λ increases. When
i → ∞, the bifurcations have a limit point λj

(k)s,

λ(1)s < λj
(k)s < 2, j characterizing the permuta-

tion of the period k cycle.
• It is possible to classify all the cycles of binary

codes via an ordering law (Myrberg’s ordering
law).

• A binary code can be associated with the λ-value
resulting from accumulation of bifurcations such

that i → ∞, or k → ∞. This rotation sequence
satisfies the ordering law.

All these fundamental results have passed over
in silence, as they are unknown to the wide pub-
lic, and not cited in contemporary papers deal-
ing with this subject (subject quite popular since
1978). Most parts of these results are now very
often attributed to authors who rediscovered them
after, using other forms of quadratic map such as
the logistic map, or maps of the unit interval.

When c is real, this first part of the double pub-
lication shows how the knowledge of this bifurca-
tion organization permits a better understanding
of some “microscopic” properties of the Julia set J ,
created by the complex map TZ , z′ = z2−c, where c
is a real parameter. Its two-dimensional real form is:

TZ :
{

x′ = x2 − y2 − c

y′ = 2xy
(1)

By introducing a second parameter γ, from a
situation where the Julia set does not exist, the
second Part will explain some bifurcation routes,
leading to different configurations of Julia sets J
generated by TZ , when γ → 0. This is made by an
“indirect” embedding of TZ into a two-dimensional
family of noninvertible maps T :

T :
{

x′ = x2 + y − c

y′ = γy + 4x2y
(2)

with −1/4 ≤ c ≤ 2, γ ≥ 0. This embedding is
not a “direct” one because its link with TZ is not
obtained by equating directly the parameter γ to
zero. Indeed the maps family is characterized by the
fact that T γ=0 is semiconjugate to TZ in the invari-
ant half-plane {(x, y) : y ≤ 0} (cf. [Agliari et al.,
2003, 2004]), i.e. T γ=0 ◦h = h◦TZ , where h(x, y) =
(x,−y2). In this half-plane T γ=0 is equivalent (i.e.
semiconjugate) to the two-dimensional map TZ .
Then the properties of the different Julia set config-
urations, obtained for fixed values of parameter c,
are also revealed from a bifurcation study when γ
decreases from 1 to 0. For γ = 0 the basin boundary
in y ≤ 0 is a fractal set nowhere smooth, except for
particular values of c at which J is a circle (c = 0),
or a segment (c = 2).

Remind that if T is a map, X ′ = TX, a period
k cycle is a set of k consecutive points satisfying
the relations T kX = X, T rX �= X, 0 < r < k.
In the case of a general complex map z′ = ϕ(z)
(not specially a polynomial one) a Julia set includes
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the points of all unstable cycles of any period k =
1, 2, . . . , their limit sets, and their increasing rank
preimages (some properties of this set are recalled
below). The cycle multipliers (eigenvalues) of the
two-dimensional quadratic map TZ , are real and
equal, S1 = S2 = S. The paper shows that each
of these cycles located on the x-axis is exactly iden-
tified by the symbolism (k; j), or a more elaborated
one called “embedded representation” (cf. Sec. 2.2),
where j characterizes the cycle points permutation
by k iterations (cf. Sec. 2.1). As for the cycles with
y �= 0, they have the same characterization, because
progressively they belong to y = 0 when c increases
until c = 2.

The Julia set J of TZ is a perfect set, clo-
sure (derived set, or set of the limit points, E′)
of the set E of all the unstable periodic points
(cf. [Julia, 1918; Fatou, 1919, 1920], see also [Blan-
chard, 1984], the books of selected papers edited
by Devaney and Keen [1988], Beardon [1991] and
Devaney [1994]). The source of the fundamental
results concerning J properties are the works of
Julia and Fatou. Often the papers published after,
quoting these authors, do not mention their exact
contribution, which makes fuzzy the contributions
after those authors. In this paper, the corresponding
page numbers of the original French publications
are given, when necessary. Regarding this point,
in order to facilitate the reading of the Julia and
Fatou papers, it is important to indicate the follow-
ing two basic original symbolisms. Set J is called
E′ by Julia and F (with a rounded type) by Fatou.
The map is written z′ = ϕ(z) in Julia, z′ = R(z) in
Fatou.

In relation with the published papers, it is
worth to note that sometimes the same word has
different meanings according to the mathematical
“schools”, which is a source of misunderstanding
and mix-up. So in the classical nonlinear mechanic
field, and also for R. Thom (see his book Sta-
bilité Structurelle et Morphogénèse [1972]), a basin
of attraction is related to an asymptotically sta-
ble stationary state i.e. an attractor, and not to a
semi-stable state (or “neutral” as denoted by other
authors).

This text also uses the term “chaotic attrac-
tor” or “chaotic intervals” (behavior on the x-axis)
as attracting sets, and the term “basin” in any case
of chaotic attractors. This vocabulary requires an
explanation. Indeed in the case of a cycle, “basin
of attraction” is classically used when it is a topo-
logical attractor (with eigenvalue |S| < 1) and it

is not used when it is neutral (|S| = 1) even if it
attracts almost all the points of a domain. Gener-
ally “chaotic intervals”, or a “critical chaotic set”
are not topological attractors, even if they attract
almost all the points of a domain, thus the term
“basin of attraction” (as for the neutral cycle) can-
not be strictly used.

We remind that an attractor (or topological
attractor) A of a map T is defined as an invari-
ant set for which there exists a neighborhood U
such that lim T n(U) = A, which is not the case
when |S| = 1. If this attractor has a “domain of
influence” of positive measure it is called “attractor
in Milnor sense”. As for a topological attractor,
for an attractor in the Milnor sense we shall use
the term “basin” (which for a topological attractor
means basin of attraction). Similarly when we have
a chaotic attractor, it is generally an “attractor in
Milnor sense”. It is the case for the map restricted to
the x-axis, when the boundary of a “cyclical chaotic
interval” includes a repelling cycle, so it cannot
be an attractor, but only an “attractor in Milnor
sense”. For the two-dimensional map the basin does
not exist, the Julia set (a dendrite) becoming the
boundary of the domain of diverging orbits.

The notion of critical point, which plays a fun-
damental role in the study of a complex map z′ =
ϕ(z), also must be clarified. Originally in the papers
of Julia, Fatou, and the other authors of the French
school of iteration (end of the 19th century, and
beginning of the 20th one), this notion is related
to the inverse map. A critical point of the inverse
of the map (as explicitly written in these papers) is
the image C of a point such that dϕ/dz = 0 (for
example see [Julia, 1918, p. 51]). From the second
half of the 20th century, in the most part of the
papers published in English a critical point is pre-
sented as a point satisfying dϕ/dz = 0, without any
reference to the inverse map. Following the volumi-
nous literature existing on noninvertible maps, this
paper uses the definition of the French school of
iteration (which is the Julia–Fatou one). So in this
paper a critical point, or a rank-one critical point, is
a point for which at least two coincident rank-one
preimages exist. The forward images of a critical
point are also called critical points, clearly of higher
rank.

The Julia set J has also other properties result-
ing from the previous ones given above.

(i) J is completely invariant (i.e. forward and
backward invariant) so that it includes all the
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increasing rank images and all the increasing
rank preimages of any of its points.

(ii) J is also given by the closure of the set of all
the preimages of any of its points. Thus, a for-
tiori, all the increasing rank preimages of E are
everywhere dense on J .

(iii) For a polynomial map, in the (x, y) plane J
constitutes the boundary of the basin of the
point at infinity (z = ∞), i.e. it bounds the
domain of divergent orbits [Fatou, 1920, p. 85].
Indeed, making the variable change z = 1/Z,
the point at infinity is now Z = 0, with a mul-
tiplier (eigenvalue) S = 0, point also called
superstable or superattracting.

(iv) In the case of the map TZ with −1/4 < c <
2 generally J is also the basin boundary of
an attracting set on the x-axis. Here “gener-
ally” is related to the fact that in this interval
of c-values particular bifurcations values are
excluded, giving situations in which the basin
does not exist. Here two cases, developed in
Sec. 3, are possible. The first one is related to a
basin, in the Julia–Fatou sense, toward a point,
or a cycle (also called neutral) located on J ,
its multiplier being |S| = 1. In the second case
(dendrite) J is the boundary of the basin of the
point at infinity, but does not separate another
basin. We recall that the set of c-values giving
rise to a dendrite is a set of positive Lebesgue
measure.

It is worth noting that the last paragraph
(p. 73) of Chapter 4 in [Fatou, 1920] underlines the
interest of finding, in the general case, the necessary
and sufficient condition for a “continuous” variation
of J , when the parameters vary, this independently
of the local behavior of the attractor. In the par-
ticular case of the quadratic maps family TZ , with
c real, the box-within-a-box organization gives the
solution of the Fatou problem. Indeed the qualita-
tive properties of J change when a (k; j) (unsta-
ble) cycle first with y �= 0 belongs to y = 0, after
crossing a c bifurcation value for which the cycle
multiplier (eigenvalue) is |S| = 1. For each of the
(k; j) cycles, this paper shows that the knowledge of
the box-within-a-box bifurcations organization per-
mits to define a c-open interval associated with an
attracting (k; j) cycle, where J has such a continu-
ous behavior. Such an open interval is bounded by
c-values such that |S(k; j)| = 1. This gives a first
step to discern between the J properties. Inside each

interval the multiplier S(k; j) = 0 separates two
different local behaviors near the (k; j) attracting
cycle: S > 0 with a regular convergence of orbits,
S < 0 with an “alternate” convergence.

For the clarity of this paper, we also have to
define two qualifiers, specifically used in this paper,
which are related to the properties of the Julia set
J . The first one is the J structure, which is only
related to the identification of the localization of
the (k; j) unstable cycles in the plane, i.e. of well-
defined subsets of the Julia set J . The propositions
in Sec. 4 provide such information. At this step the
J outline is not yet considered. The second qualifier
is the J shape directly related to its outline. So a
same J structure can correspond to different shapes,
which can be identified from a numerical simula-
tion. For example, in the interval −1/4 < c < 3/4
(related to the attracting fixed point), J has the
same structure, but with a continuous evolution of
four shapes described in Sec. 5.3. This shape evolu-
tion depends on the distance of the period 2 cycle
(y �= 0, which attains y = 0 for c ≥ 3/4) from the
x-axis.

This paper, as the numerous others published
since 1965, does not pretend to give new fun-
damental results with respect to the Julia and
Fatou contribution, which defined the basic situa-
tions without a computer help. The purpose of the
paper is only to show how the bifurcations sym-
bolism related to the box-within-a-box organization
(described in Sec. 2) permits to obtain a first order-
ing of the Julia sets generated by (1), when c is real,
−1/4 ≤ c ≤ 2. Incidentally, we note that the sec-
tion of the Mandelbrot set by the real axis, obtained
numerically and shown in many relatively recent
papers, is well identified by the box-within-a-box
organization.

After this introduction, Sec. 2 is devoted to a
rundown of the box-within-a-box bifurcation orga-
nization of the Myrberg’s map x′ = x2−c. Section 3
is devoted to the Julia sets generated by TZ . Some
general Julia and Fatou results are reminded, with
a particular view concerning the polynomial map
TZ . The propositions about the structure identifi-
cation of the Julia set are given in Sec. 4, from the
bifurcation values of the Myrberg’s map, and the
intervals they define, inside which the J evolution is
continuous. From this information Sec. 5 describes
five well defined types of Julia sets, and their shape
evolution inside intervals where the J evolution is
continuous.
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2. Box-Within-a-Box Bifurcations
Organization of Unimodal Real
Maps. Rundown

2.1. Some basic properties

A unimodal map is a one-dimensional noninvertible
map, x′ = f(x, λ) (λ is a real parameter), defined
by a function f with only one extremum. Here x
is assumed to be real, and that the x-axis is made
up of two open intervals: Z2, each point of which
has two distinct rank-one preimages, and Z0 each
point of which has no real preimage. Such a map is
said of Z0−Z2 type. In particular, a quadratic map
belongs to this type for correctly chosen parame-
ter values. The fractal “box-within-a-box” (transla-
tion of “bôıtes embôıtées” in French) bifurcations
structure, or “embedded boxes” according to Guck-
enheimer [1980], was first identified in the case of
unimodal maps with negative Schwarzian deriva-
tive [Gumowski & Mira, 1975] and [Mira, 1975]. A
more complete presentation is given in the books
Gumowski and Mira [1980], Mira [1987], Mira et al.
[1996]. The basic fractal bifurcation organization is
generated by the simplest case of unimodal maps,
given by the quadratic map:

T : x′ = x2 − λ (3)

Here x is a real variable, and for this map, called
Myrberg’s map [Myrberg, 1963], the real parameter
c of the mapT (2) is written λ. The inverse map T−1

is defined by x = ±√
x′ + λ. So the x-axis is made

up of the intervals Z2 (x′ > −λ), Z0 (x′ < −λ). The
rank-one image C = T (C−1) of the ordinate mini-
mum C−1 (x = 0) of the map function is the rank-
one critical point (in the Julia–Fatou sense), x(C) =
−λ. It has two merging rank-one preimages at
T−1(C) = C−1, C separating Z0 and Z2. A rank-r
critical point Cr−1 is obtained after r iterations of
C−1 (or equivalently r − 1 iterations of C, consid-
ered as the rank-one critical point C0 ≡ C). The
set of increasing rank critical points is denoted by
Ec and its limit set by E′c, (derived set of Ec). The
map T is characterized by the following properties.

(a) The parameter interval Ω1 = [λ(1)0 , λ
∗
1], λ(1)0 =

−1/4, λ∗1 = 2, called overall box contains all the
bifurcations values of (3). In the interval −1/4 <
λ < 2 the map possesses a unique attractor, which
in the simple cases is an asymptotically stable (or
attracting) fixed point, or an attracting period k
cycle, or a chaotic attractor. The value λ(1)0 =
−1/4 corresponds to a fold bifurcation giving rise

to two fixed points qi, i = 1, 2, with multiplier (or
eigenvalue) S = 2x(qi): q1 always unstable (S > 1),
and q2 (S < 1, attracting when −1 ≤ S < 1). In
the interval λ < λ(1)0 = −1/4 no real fixed point
exists. The value λ = λ∗1 = 2 is a basic nonclassi-
cal bifurcation related to the merging of the unsta-
ble fixed point q1 with the rank-two critical point
C1 = T (C) = T 2(C−1) = q1. For this parameter
value x(C1) = x(q1) = 2, x(C) = x(q−1

1 ) = −2,
T−1(q1) = q1 ∪ q−1

1 . When 0 < λ < λ∗1 the invari-
ant segment [q−1

1 , q1] is the closure of the basin of
the absorbing segment CC1 , containing the unique
attractor.

For the parameter value 0 < λ < λ∗1 = 2 the
segment CC1 is absorbing, an absorbing segment
(d′) being bounded by two critical points, such that
the increasing rank images of any point of its neigh-
borhood U(d′), from a finite number of iterations,
enter into (d′) and cannot get away after entering.

For the parameter value λ = λ∗1 the segment
CC1 is chaotic and merges with [q−1

1 , q1], x(q−1
1 ) =

x(C) = −2, x(q1) = x(C1) = 2. All the possible
cycles have been created, and they belong to CC1 .
Then CC1 is invariant but not absorbing. From
an initial condition x0, −2 < x0 < 2, the map
generates a bounded orbit, belonging to the inter-
val [q−1

1 , q1], which is very sensitive to very small
changes of x0. The repelling cycles constitute a real
set E which is dense in the whole interval [−2, 2]
(as well as their preimages of any rank), that is, the
derived set (set of limit points) E′ = [−2, 2] is per-
fect (see more details in [Julia, 1918; Gumowski &
Mira, 1980; Mira, 1987]).

When λ > 3/4 the fixed point q2 is always
repelling with S(q2) < −1, and a period 2 cycle
appeared from q2. This cycle, made up of two
points q2i, i = 1, 2, has the multiplier S(q2i) =
4 − 4λ, attracting (|S(q2)| < 1) if 3/4 < λ < 5/4.
The value λ = λb1 = 3/4 is a flip bifurcation.
Increasing values of λ generate a sequence of flip
bifurcations λ = λbm for period 2m cycles, m =
1, 2, . . . , with an accumulation value limm→∞ λbm =
λ1s 
 1.401155189. At this particular bifurca-
tion value λ = λ1s, the corresponding attractor is
an invariant set with Cantor like structure called
critical attractor Acr (see, among others, [Guck-
enheimer & Holmes, 1983]). When λ < λ1s the
number of repelling (or unstable) cycles is finite,
each cycle has a period 2m which has been cre-
ated after crossing through the value λbm. When
λ = λ1s + ε, ε > 0, ε → 0, infinitely many repelling
period 2i cycles (i = 0, 1, 2, . . .) exist, the ones
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created by the above sequence of flip bifurcations.
The parameter interval ω1 ≡ [λ(1)0 ;λ1s] is called
the Myrberg spectrum, denomination used in this
text. It corresponds to the sequence (cascade) of
period doubling bifurcations from the fixed point
q2 (i = 0).

(b) The number Nk of all possible cycles having
the same period k, and the number Nλ(k) of bifur-
cation values leading to these cycles, increase very
quickly with k (cf. pp. 93–97 of [Mira, 1987] for the
relations giving Nk and Nλ(k)). Cycles with the
same period k differ from each other by the per-
mutation (cyclic transfer) of their points by succes-
sive iterations of T . Each k-cycle can be identified
by the symbolism (k; j), j being an index charac-
terizing this permutation. Afterward j will be sim-
ply called “permutation” in place of “permutation
of the cycle points via k iterations”. Let (k; j) be
one of such cycles. It can be generated from two
basic bifurcations: either a fold one, or a flip one.
The fold bifurcation generates two basic cycles at
λ = λj

(k)0
: (k; j)S>1 and (k; j)S<1, k �= 2. With

increasing values of λ, a cascade of flip bifurcations
is created from the cycle (k; j)S<1, giving rise to a
sequence of (k2i; ji)S<1 cycles with accumulation,
when i → ∞, at a value λj

ks, λ1s < λj
ks < 2.

Here ji is the permutation related to the related
period 2i cycle, generated in the interval ω1. Myr-
berg also calls “spectrum” the parameter interval
ωj

k = [λj
(k)0

;λj
ks], k = 1, 3, 4, . . . . The interval ωj

k

is made up of parameter intervals corresponding
to attracting cycles of period k2i, i = 0, 1, 2, . . . .
In ωj

k the flip bifurcation of a (k2m−1; jm−1) cycle
is denoted λj

kbm, m = 1, 2, . . . . The cycle sym-
bolisms (k; j) and (k2i; j, pi) are related to what
is called a nonembedded representation in [Mira,
1987] and [Mira et al., 1996]. This symbolism, which
identifies precisely every cycle, is of wide interest
and importance in the description of the complex
dynamics of one-dimensional unimodal maps. The
complex and fractal behaviors can be described
also with other analytical tools, as for instance, the
kneading theory or symbolic dynamics. Neverthe-
less such theories do not identify the cycles gener-
ated by the map, and so are not able to explain
their origin in the complex bifurcations organiza-
tion, as the parameter λ increases from λ(1)0 =
−1/4 to λ∗1 = 2. For a given value λ = λg of
λ, the “box-within-a-box” bifurcation organization
permits the identification of all the cycles born for
λ < λg.

For λ > λ∗1 = 2, [q−1
1 , q1] ⊂ CC1 , the only

attractor is the point at infinity, and no other bifur-
cation takes place. The derived set E′ (without the
point at infinity) constitutes the nonwandering set
E′ ⊂ [q−1

1 , q1]. The map T has generated all the
possible cycles, which are real and repelling, and
E′ is an invariant Cantor set (and thus totally dis-
connected). This set, which constitutes the basin
boundary of the fixed point at infinity, is every-
where disconnected (discontinuous in [Fatou, 1919,
p. 260]).

The situation equivalent to the one at λ∗1 (but
now with an absorbing set inside CC1) is met for
each (k; j) cycle with multiplier S > 1 (thus gener-
ated by a fold bifurcation), for a value λ = λ∗jk . In
this case λ∗jk is the least λ-value such that the criti-
cal points Ck = T k(C), Ck+1, . . . , C2k−1 merge into
k points of the (k; j) cycle with S > 1. Consider-
ing the map T k, for k intervals bounded by critical
points of well-defined rank, the value λ∗jk reproduces
qualitatively the situation of T when λ = λ∗1. So
similarly to the case λ = λ∗1, when λ = λ∗jk the
map T gives rise to k nonconnected intervals con-
stituting a k-cyclic chaotic segment denoted CHj

k
which attracts almost all (i.e. except for a set of
zero Lebesgue measure) the points of ]q−1

1 , q1[\CHj
k.

CHj
k is made up of the k cyclic chaotic segments

CCk , C1Ck+1 , . . . ,Ck−1C2k−1 .

(c) The permutation (cyclic transfer) of one of the
points of a (k; j) cycle, via k successive iterations
by T , can be defined either in a binary form (Myr-
berg’s rotation sequence), or a decimal one (deci-
mal rotation sequence) [Mira, 1987]. Each rotation
sequence is associated with a well-defined index
j = 1, 2, . . . , Nλ(k). These rotation sequences are
ordered according to the Myrberg’s ordering law
[Myrberg, 1963; Mira, 1987], and the index j gives
not only the place of any cycle in this ordering,
but also the birth order of the bifurcations, when
λ increases from λ(1)0 = −1/4. Note that a nec-
essary and sufficient condition for a permutation
of k integers to be one of a cycle generated by a
unimodal map is given in pp. 136–138 of [Mira,
1987].

2.2. Description of the bifurcations
organization

The bifurcations organization described here in
the case of (3), concerns the whole family of uni-
modal maps (i.e. Z0 − Z2 ones) with negative
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Schwarzian derivative, which are topologically con-
jugated with (3) in some correctly chosen parameter
range. Globally the organization is characterized by
the existence of a parameter interval Ω1 = [λ(1)0 , λ

∗
1]

(overall box ), inside which all the possible bifur-
cations occur. This overall box contains intervals
reproducing the Ω1 properties in a configuration
of “Russian dolls” type. Out of Ω1 no bifurcation
occurs. Ω1 is generated from the two basic period
k = 1 cycles, i.e. the fixed points q1 and q2. Taking
into account the Myrberg spectrum ω1 related to
the fixed point q2 (S < 1), the box Ω1 is defined by:

Ω1 = [λ(1)0 , λ
∗
1] = ω1 ∪ ∆1 ∆1 = ]λ1s, λ

∗
1]

The description of the box-within-a-box organiza-
tion implies a specific symbolism. So considering the
cycle (2i; pi) generated inside the spectrum ω1, the
symbol “2i” is not used for cycles of even period
born from a fold bifurcation, or a flip bifurcation
related to a basic cycle appearing out of ω1. So
with such a symbolism the period 22 is different
from the period 4, 23 �= 8, and 23 �= 4.21, 4.21 being
the period of the cycle born from the flip bifurca-
tion of the period 4 cycle which appears from a
fold bifurcation λ1

(4)0
∈ ∆1. Cycles different from

(2i; pi) can appear only for λ ∈ ∆1. The interval
λ < λ(1)0 = −1/4 corresponds to the absence of
fixed points (except the point at infinity), or cycles,
and every orbit is divergent. For λ > λ∗1 = 2 all the
possible period k cycles have been created. They are
repelling, and the map has the properties indicated
in Sec. 2.1.

Two basic cycles (k; j) (k = 3, 4, . . .), issued
from the same fold bifurcation, one with S > 1, the
other with S < 1, generate a parameter interval,
provisionally denoted Ω̂k, having the same behav-
ior as Ω1, Ω̂k ⊂ ∆1. The box Ω̂k is denoted Ωj

k,
if k is a prime number, or if it is not contained in
another interval Ω̂k′, k being a multiple of k′. Then
Ωj

k is called rank-one box, or box (k; j) (embedded
representation) with:

Ωj
k = [λj

(k)0
, λ∗jk ], Ωj

k = ωj
k ∪ ∆j

k ⊂ ∆1,

∆j
k = ]λj

ks, λ
∗j
k ]

The index k is the basic period (or rank-one basic
period) of all the cycles generated in the box Ωj

k,
and j the basic permutation (or rank-one basic per-
mutation) of the points of these cycles. The interval
ωj

k is the spectrum (k; j), and includes the Myr-
berg’s cascade (or period doubling cascade of flip

bifurcations) generated from the basic (k; j)-cycle
of the box with S ≤ −1. Considering T k the box
Ωj

k reproduces all the bifurcations contained in the
box Ω1, in the same order (self similarity property),
for a set of cycles (of the map T ) having periods
multiple of k (but not all the possible cycles with
these periods). Let Ωj1

k1
be one of such boxes. Inside

Ωj1
k1

it is possible to define rank-two boxes Ωj1,j2
k1.k2

=
[λj1,j2

(k1.k2)0
, λ∗j1,j2

k1.k2
] ⊂ ∆j1

k1
, related to two (k1.k2; j1, j2)

basic cycles, which for (T k1)k2 reproduce in the
same order all the bifurcations of the box Ωj1

k1
, and

so those of Ω1:

Ωj1,j2
k1.k2

= [λj1,j2
(k1.k2)0

, λ∗j1,j2
k1.k2

]

= ωj1,j2
k1.k2

∪ ∆j1,j2
k1.k2

⊂ ∆j1
k1

,

∆j1,j2
k1.k2

= ]λj1.j2
(k1.k2)s

, λ∗j1,j2
k1.k2

]

All the cycles generated inside Ωj1,j2
k1.k2

have a rank-
one basic period k1, a rank-one basic permutation
j1, a rank-two basic period k1k2 and a rank-two
basic permutation (j1, j2). Similarly, from a cou-
ple of basic cycles (k1, . . . , ka; j1, . . . , ja), one with
S < 1, the other with S > 1, rank-a boxes embed-
ded into a rank-(a − 1) box are defined:

Ωj1,...,ja

k1,...,ka
= [λj1,...,ja

(k1,...,ka)0
, λ∗j1,...,ja

k1,...,ka
]

= ωj1,...,ja

k1,...,ka
∪ ∆j1,...,ja

k1,...,ka
⊂ ∆j1,...,ja−1

k1,...,ka−1

with cycles having rank-p basic periods, p = 1, . . . , a,
and rank-p basic permutations. Moreover Ωj1,...,ja

k1,...,ka
⊂

Ωj1,...,ja−1

k1,...,ka−1
, a = 1, 2, . . . . The boundary parameter

λ∗j1,...,ja

k1,...,ka
of each of these boxes (a = 1, 2, . . .) corre-

sponds to the merging of well-defined critical points
with a repelling basic cycle having the multiplier
S > 1. Boxes Ωj1

k1
, . . . ,Ωj1...,ja

k1,...,ka
. . . are called boxes of

first kind. The representation of these boxes is given
in Fig. 1(a), with the enlargement in Fig. 1(b).

Boxes of second kind can be defined as follows.
Consider another type of bifurcation parameter λ∗,
now defined from a repelling cycle with S < −1,
born from a flip bifurcation. The first and largest
box is Ω21 ≡ [λb1, λ

∗
21 ] ⊂ Ω1, λ∗21 (k = 1) corre-

sponding to C2 ≡ q2 (S < −1), λ∗21 
 1.543689013.
Similarly boxes Ω2m ≡ [λbm, λ∗2m ], λ∗2m (k = 1),
corresponding to critical points merging with the
period 2m−1 cycle (S < −1) from rank 2m+1, can
be defined with

Ω2m ⊂ Ω2m−1 ⊂ · · · ⊂ Ω21 ⊂ Ω1
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Fig. 1. Fractal “box-within-a-box” (or embedded boxes) bifurcations structure. (a) General view. (b) Enlargement of the box

of first kind Ωj1
k1

. (c) Box of second kind Ω21 .

Then each interval [λ∗2m+1 , λ
∗
2m ] ⊂ Ω2m contains

boxes, self-similar with Ω1, denoted

Ωpm,j1,j2,...,ja

2mk1,k2,...,ka
⊂ ∆pm,j1,j2,...,ja−1

2mk1,k2,...,ka−1
, a = 1, 2, . . .

Each of such boxes is defined from the basic
cycle (2mk1, k2, . . . , ka; pm, j1, j2, . . . , ja) with the

rank-one basic period 2m, and the rank-one basic
permutation pm of the period 2m cycle generated
inside ω1. For λ = λ∗2m the map T gives rise to
m nonconnected intervals constituting a m-cyclic
chaotic segment denoted CHpm

2m . With the box-
within-a-box symbolism, note that a period 2mk1
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is not a k12m cycle because they are not generated
in the same box. The box-within-a-box symbolism
implies a cycle identification related with a well-
defined box.

Considering now a box Ωj1
k1

, bifurcations λ =
λ∗j1,pm

k12m , m = 1, 2, . . . , k1 = 1, 3, 4, . . . , can be
defined in an equivalent way. They are charac-
terized by the fact that the critical points, from
the rank k12m+1, merge into the unstable period
k12m−1 cycle (S < −1). Considering the flip bifur-
cation λ = λj1

k1bm, generating the attracting cycle
(k12m; j1, pm), the interval λj1

k1bm ≤ λ ≤ λ∗j1k12m

defines a box of second kind, denoted Ωj1
k12m ⊂

Ωj1
k1

. When m → ∞, the two boundaries of Ωj1
k12m

tend toward λj1
k1s, with λ∗j1k12m > λj1

k1s. Here k1 is
the rank-one basic period of all the Ωj1

k12m cycles,
j1 the corresponding rank-one basic permutation,
k12m the rank-two basic period, (j1, pm) the rank-
two basic permutation, pm being the permutation
related to the period 2m cycle of the ω1 spectrum.
For λ = λ∗j1k12m the map T gives rise to km non-
connected intervals constituting a km-cyclic chaotic
segment denoted CHj1,pm

k12m .
Other boxes of the second kind of embedded

versions can be defined, for example:

Ωj1,j2,...,ja,pm

k1,k2,...,ka2m = [λj1,...,ja

k1,...,kabm, λ∗j1,j2,...,ja

k1,k2,...,ka2m ]

⊂ Ωj1,j2,...,ja

k1,k2,...,ka

from the cycle (k1, k2, . . . , ka2m−1; j1, j2, . . . , ja, pm)
with S = −1, and

Ωj1,j2,...,jr−1,pm,jr+1,...,ja

k1,k2,...,kr−1.2m.kr+1,...,ka
= [λj1,j2,...,jr−1,pm,jr+1,...,ja

k1,k2,...,kr−1,krbm,kr+1,...,ka
,

λ
∗j1,j2,...,jr−1,pm,jr+1,...,ja

k1,k2,...,kr−1,2m,kr+1,...,ka
]

⊂ Ωj1,j2,...,ja

k1,k2,...,ka

from the cycle (k1.k2, . . . , kr−1.2m−1.kr+1, . . . , ka;
j1, j2, . . . , jr−1, pm, jr+1, . . . , ja) with S = −1. More
complex boxes, with several periods 2q in the ki

sequences characterizing a cycle period, can be
defined.

Figure 1 represents the fractal “box-within-a-
box” (or embedded boxes) bifurcations structure,
with self-similarity properties. The organization of
the set Ω1 is similar to that of its parts (the above
defined boxes), even if these parts are infinitesimal.

2.3. Properties

Consider the map (3) and increasing values of the
parameter λ. In this case, the multiplier S of a cycle

(k; j)S>1 increases, and the multiplier S of a cycle
(k; j)S<−1 decreases. So these cycles become more
and more repelling, and they cannot disappear by
bifurcation. The following properties result from the
fractal box-within-a-box organization:

(a) Let [k, j] (nonembedded representation), k =
1, 3, 4, . . . , be the given basic cycle of the box
Ωj

k with S < 1. For λ ≥ λj
ks the spectrum ωj

k
has generated an invariant set with Cantor like
structure Cs[k, j], made up of all the repelling
(k2i, ji)-cycles, i = 0, 1, 2, . . . , with multiplier
S < −1, and their limit set, born from the flip
bifurcations of ωj

k.
(b) Let (k1; j1) be the basic cycle (S < 1) of

the rank-one box Ωj1
k1

. For λ ≥ λ∗j1k1
the

box Ωj1
k1

has generated an invariant set with
a Cantor like structure Cs [k1, j1]. This frac-
tal set is made up of infinitely many Cantor
like sets, Cs [k1k2; j1, j2], . . . ,Cs [k1k2, . . . , ka;
j1, j2, . . . , ja] (embedded representation) . . . ,
a = 1, 2, . . . ,∞, generated from the infinitely
many boxes embedded into Ωj1

k1
.

(c) For λ ≥ λ∗j1k1
the map T (thus not only the

box Ωj1
k1

as in (b)) has generated infinitely
many invariant sets with Cantor like structure
related to the infinitely many boxes created for
λ < λ∗j1k1

.
(d) For λ < λj1

(k1)s the map has generated infinitely
many invariant sets with Cantor like structure
related to the infinitely many boxes created for
λ < λj1

(k1)0
.

(e) For λ ≥ λ∗1, T has generated all the possible
cycles (which are repelling), created from the
infinitely many boxes embedded into the over all
box Ω1, and all belong to an invariant set with
Cantor like structure included in the interval
[q−1

1 , q1].
(f) For any λ ≥ λ1s the map T has generated a

Cantor like invariant set on which the restriction
of T is chaotic, which includes infinitely many
repelling cycles defined from the properties
(a)–(d).

Properties (a)–(d) describe a “microscopic”
view of the generation of Cantor like structures,
while (e)–(f) give the global result of such a genera-
tion. When the map variable is complex, z′ = z2−c,
the properties (a)–(d) have the interest of detecting
what are the subsets of the Julia set J which become
real when the real parameter c increases, and the J
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subsets, located out of the real axis, which are just
about to become real.

For any λ ≥ λ1s denote Λ∗λ the fractal invari-
ant set belonging to [q−1

1 , q1] which includes all the
unstable cycles created for values of the parameter
lower than λ (whose bifurcation organization is well
defined and represented in Fig. 1) together with all
their preimages and limit points. When λ1s ≤ λ <
λ∗1 from any initial point x0 ∈ [q−1

1 , q1]\Λ∗λ, after
a number N(x0) of iterations (the number depend-
ing on the initial point) the trajectory enters an
ε-neighborhood of the unique attracting set exist-
ing in CC1 . Then when the point x0 is sufficiently
close to Λ∗λ, N(x0) may be quite high and the orbit
(discrete trajectory) possesses a chaotic transient.
When λ > λ∗1, and x0 ∈ ]q−1

1 , q1[\Λ∗λ, N(x0) denotes
the number of iterations occurring in the interval
]q−1

1 , q1[, after which the point is mapped outside
]q−1

1 , q1[ and the orbit diverges tending toward infin-
ity. When the point x0 is close to Λ∗λ then N(x0)
may be quite high and the trajectory possesses a
chaotic transient.

As remarked above, on the x-axis, the repelling
cycles, their increasing rank preimages, and their
limit points, have a fractal organization when
λ ≥ λ1s. For each point of the parameter λ-axis,
λ ≥ λ1s, the fractal structure of the map sin-
gularities is completely identified from the box-
within-a-box bifurcation organization. Consider λ ∈
ωj

k, with λ sufficiently near λj
(k)0 so that the

map has an attracting cycle (k; j). For the map
T k this cycle gives k attracting fixed points Pi,
i = 1, . . . , k, each of which with an immedi-
ate basin d0(Pi), and a total nonconnected basin
d(Pi) =

⋃
n>0(T

−k)nd0(Pi). The total basins d(Pi)
have a fractal structure. The set Λ∗λ constitutes a
strange repeller, which belongs to the boundary of⋃k

n=1 d(Pi).

2.4. Limit sets of boxes and
resulting properties

Let λ > λ1s. Consider the critical set Ec (i.e. the
orbit of the critical point) Ec = {T n(C), n ≥ 0}, its
derived set E′c, the set E of repelling cycles (|S| >
1), and its derived set E′. The set E′ contains sets
of accumulation points of increasing classes in the
Pulkin’ sense [1950]. So E belongs to the class 1, a
limit point of class p being accumulation point of
points of class q < p (also see [Mira, 1987, pp. 99–
100]). The situation p → ∞ is characteristic of a
fractal set.

Adapting the Fatou’s results [1919] to the case
of a real variable, the following properties can be
deduced [Mira, 1987, pp. 156–160]:

(i) When T has an attracting cycle (|S| < 1), a
point of the critical set Ec or its derived E′c
does not belong to the set E of repelling cycles
(|S| > 1), or to its derived set E′.

(ii) When E ∪ E′ contains points of Ec ∪ E′c, then
some bifurcation occurs, giving either a neutral
cycle with |S| = 1, or some chaotic attracting
set, say for λ = λ̂. In this last case T gener-
ates either a critical attractor Acr or k-cyclic
chaotic segments (k ≥ 1) in the interval CC1

(for k = 1 the chaotic interval is bounded by the
critical points C and C1). For example, λ∗jk (or
any closure of a box of first kind), λ∗j

k2i (or any
closure of a box of second kind) and λj

ks (Myr-
berg’s limit point of flip bifurcations sequence)
are particular λ̂ values. When λ = λ∗jk , k points
of Ec and their increasing rank images merge
into k points of E. When λ = λ∗j

k2i , k2i points
of Ec and their increasing rank images merge
into k2i points of E. When λ = λj

ks the whole
set E′c coincides with the critical attractor Acr

and belongs to E′.

From these considerations, a first set of prop-
erties related to the different types of limit sets
of sequences of rank-one boxes Ωh

r (r = 3, 4, . . .)
can be given (more details are given in [Mira, 1987,
pp. 156–160, 166–174]).

(a) Consider a rank-one box of first kind Ωj
k =

[λj
(k)0

, λ∗jk ], k = 3, 4, . . . , and its boundaries. For

λ < λj
(k)0

the parameter value λj
(k)0

(at which
the set E′c consists in the (k; j) neutral cycle)
is a limit point of rank-one boxes of first kind
Ωj′

k′ with k′ → ∞. For λ > λ∗jk the value λ∗jk is a
limit point of rank-one boxes Ωj′′

k′′ with k′′ → ∞.
For λ < λ∗jk , λ∗jk is a limit of a subset of rank-a
boxes, a > 1, embedded into Ωj

k. The value λ∗jk
is such that Ec includes the repelling (k; j)S>1

cycle (i.e. C is either periodic or preperiodic),
the set Ec is without accumulation points.

(b) Inside each Ωj
k box the bifurcation values λj

ks

is a limit point for λ > λj
ks of λ∗j

k2i values when
i → ∞, and for λ < λj

ks of the flip bifurcations
generated in the interval ωj

k. The value λj
ks is

such that the whole set E′c coincides with the
critical attractor Acr (i.e. the invariant set with
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Cantor like structure Λ∗λ ⊂ [q−1
1 , q1]). Moreover

the critical point C belongs to the set E′c and
the set E′c belongs to E′.

(c) Parameter values of type λ̂, denoted λ̃, exist as
limit of boxes Ωh

r , without belonging to a box
boundary. For example λ̃ 
 1.89291098791 for
which q2 ≡ C3 (and similar values exist for each
k ≥ 3 at which q2 ≡ Ck, [Mira, 1982, 1987]).
Then CC1 is an absorbing chaotic segment, giv-
ing rise to a nonclassical invariant measure (cf.
[Couot & Mira, 1983; Mira, 1987, pp. 156–160,
166–174], see also [Thunberg, 2001] and refer-
ences therein). At such particular bifurcation
values (in which the attracting set of the map
is a chaotic interval, or cyclical chaotic inter-
vals) the set Ec includes a repelling cycle (i.e.
C is either periodic or preperiodic, the set Ec

is without accumulation points).
(d) Due to the self-similarity property, (a)–(c) also

recur for embedded rank-a boxes, a > 1, with
adaptations related to their rank, for example,
now CC1 contains some cyclic chaotic segment
giving rise to a nonclassical invariant measure.

We note that for λ = λ∗jk the cyclic chaotic
segment CHj

k, made up of the k segments CCk ,
C1Ck+1 , . . . ,Ck−1C2k−1 , contains all the cycles cre-
ated inside the Ωj

k box, and their limit sets. Its com-
plementary part CC1\CHj

k inside CC1 contains all
the repelling cycles created for λ < λj

(k)0. A value

λ̃, limit of boxes Ωh
r , is such that CC1 contains all

the cycles created for λ < λ̃, except the point q1

(period one cycle).
We end this section summarizing briefly the

properties of this family of maps, as λ varies in the
interval −1/4 ≤ λ ≤ 2.

For any value of λ almost all the points x
of the interval ]q−1

1 , q1[ (i.e. apart from at most
a set of points of zero Lebesgue measure) have
the same asymptotic behavior, which sometimes is
called metric attractor Aλ, due to this property, and
independently on its nature. This metric attractor
Aλ can only be one of the following three typolo-
gies ([Blockh & Lyubich, 1991], see also [Sharkovsky
et al., 1997]):

(1) a k-cycle (of any period k ≥ 1, either stable
(|S| < 1), or neutral (|S| = 1));

(2) a critical attractor (Acr) with Cantor like struc-
ture, of zero Lebesgue measure;

(3) k-cyclic chaotic intervals, k ≥ 1.

In the case (1) the generic omega limit set ω(x)
is equal to the omega limit set of the critical point
C, and the trajectory of C tends to the k-cycle,
stable or neutral Aλ, ω(C) = Aλ. In the case in
which S = 0 we have Ec = Aλ and E′c = ∅ while
when |S| ≤ 1 and S �= 0 we have Aλ = E′c and
Ec ∩ E′c = ∅, so that E′c ∩ J �= ∅ when |S| = 1.

In the case (2) the generic omega limit set ω(x)
is equal to ω(C) = E′c (that is Acr = E′c) and C ∈
E′c (so that Ec ⊂ E′c).

In the case (3) the critical point C is either peri-
odic or preperiodic, merging into a repelling cycle
(|S| > 1), which is called a critical periodic orbit.
Thus Ec consists in a finite set of points, which are
not limit point of critical points, however the crit-
ical periodic orbit belongs to the chaotic intervals
Aλ, so that Ec ∩ E �= ∅ and Ec ∩ Aλ �= ∅.

Let us define as λp the set of parameter val-
ues in the box Ω1 ([−1/4; 2]) at which the typol-
ogy (1) occurs, λcr and λch respectively the set of
parameter values in the same interval [−1/4, 2] at
which the typology (2) and (3) respectively occurs.
Then it is important to notice that the set λp con-
sists of infinitely many nontrivial intervals having a
fractal structure in the interval [−1/4, 2] and dense
in it (i.e. λp = [−1/4, 2]). These intervals are the
Myrberg spectra without their boundary λj

ks. The
set λcr is a completely disconnected set of zero
Lebesgue measure while the set λch is a completely
disconnected set of positive Lebesgue measure (for
the proofs we refer to [Thunberg, 2001] and ref-
erences therein). Thus the set in which we have
chaotic attracting sets, above denoted with λ̂, is
given by their union, that is, λ̂ = λcr ∪ λch and
is a set of positive Lebesgue measure.

As recalled in the previous sections, when the
parameter λ varies in the interval −1/4 ≤ λ ≤ 2
sequences of “boxes” occur, with the related bifur-
cations. Each box of the first kind is opened by a
fold bifurcation giving rise to a pair of cycles, such
a box of first kind closes when the cycle with S > 1
becomes critical for the first time (i.e. the first time
that a critical point merges in it, at its first homo-
clinic bifurcation). Inside each box of first kind the
cycle with S < 1 starts an infinite sequence of flip
bifurcations, each of which opens a box of second
class which closes when it becomes critical for the
first time (i.e. at its first homoclinic bifurcation).
Such sequences of boxes have a fractal structure due
to the self-similar property. All the boundaries of
boxes of first or second class are bifurcation values.
At all the opening values the map is of typology
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(1), while all the closure values are global (homo-
clinic) bifurcations (belonging to the set λch), and
the map is of typology (3). Inside each box of first
kind there exists a limit value of boxes of second
kind at which the map is of typology (2) (for exam-
ple, those previously denoted as λj

ks belonging to
the set λcr). Particular bifurcation values of λ are
those which are limit points of other bifurcation val-
ues (for example, boundaries of boxes of first class),
such bifurcation values belong to the set λch and
the map is of typology (3). In particular, when the
critical point C is periodic or preperiodic (to an
unstable cycle) the map is of typology (3).

Remark. The results related to the above item
(c) (i.e. to typology 3) are generally attributed
to [Misiurewicz, 1981], the parameter values λ∗1,
λ∗21 ,λ

∗j
k , λ̂, λ̃ and their embedded forms being called

“Misiurewicz points” by Blanchard [1984], or other
authors. Nevertheless these values were identified
before, from the years 1975, without using the
same language (cf. [Gumowski & Mira, 1975, 1980a,
1980b; Mira, 1975, 1976, 1978, 1979, 1982, 1987;
Couot & Mira, 1983]). This identification permitted
the ordering of the Myrberg spectra in the frame-
work of the fractal “box-within-a-box” bifurcations
organization.

2.5. General occurrence of the
embedded boxes organization

As already remarked in Sec. 2.1 the embedded boxes
organization generated by the Myrberg’s map T (3)
also occurs for other types of unimodal maps. Par-
ticularly in the case of the general form of quadratic
map y′ = ay2 + 2by + c, a linear change of variable
y = αx + β leads to (3) with λ = b2 − ac − b,
aα = 1, aβ = −b. Moreover, particular classes
of bimodal maps (maps with two extrema, i.e.
Z1 − Z3 − Z1 maps) create such bifurcations orga-
nization related to each of the two possible attrac-
tors (cf. [Gumowski & Mira, 1980, pp. 401–418]).
For multimodal maps locally this organization may
also exist.

The fractal embedded boxes organization
described in Secs. 2.1–2.3 shows that if the Myr-
berg’s map has a cycle with a period different from
2i, i = 0, 1, 2, . . . , that is for λ > λ1s, then T has
already generated infinitely many repelling cycles
which belong to a strange repeller (as stated in
Sec. 2.3). This property may occur also in multi-
modal maps. It gives a test permitting to state the

presence of a strange repeller, and also the existence
of any homoclinic trajectory of a repelling cycle
permits to state this existence (and an homoclinic
explosion of a repelling cycle occurs whenever a crit-
ical point is merging with a repelling cycle, which
corresponds to the existence of chaotic dynamics
on intervals). In the case of a two-dimensional map
T , such a dynamic behavior may occur on a one-
dimensional manifold, in which case we can say that
it contains a strange repeller, generated by the one-
dimensional map resulting from the restriction of T
to this manifold.

3. Julia Set Properties from the
Box-Within-a-Box Ones

3.1. Some basic general Julia Fatou
results

The introduction has already recalled some basic
properties (cf. (i) to (iii)) of the Julia set J gener-
ated by a complex map z′ = ϕ(z) (not necessarily a
quadratic polynomial). In particular J is a perfect
set including the set E of all the unstable cycles of
any period k = 1, 2, 3, . . . , their derived set (or set
of limit points) E′ (Julia notation), J ≡ E′. This
section gives more properties denoted below (P1)–
(P7). In this framework it is reminded (see (iii) in
Sec. 1) that the point at infinity is an attracting
fixed point with multiplier S = 0 (being also a crit-
ical point), when ϕ(z) is a polynomial.

(P1) The basin of an attracting fixed point (or
a cycle) is either simply connected (as it is
always the case for the point z = ∞ when
the map is polynomial), or nonconnected with
infinite order (i.e. made up of infinitely many
nonconnected components). The basin of z =
∞ is bounded by the Julia set J . Generally J
is nowhere differentiable [Julia, 1918; Fatou,
1920].

(P2) If more than two attracting fixed points, or
cycles, exist, at most one of these attractors
can have a simply connected basin, the other
basin being made up of infinitely many dis-
tinct domains [Fatou, 1920, p. 79].

(P3) When a fixed point z∗ is such that its mul-
tiplier is |S| = 1, it always belongs to the
Julia set J . The point z∗ is a limit point
for the increasing rank images of the criti-
cal point related to the branch of the inverse
map ϕ−1(z) related to this point, i.e. z∗ ∈ E′c
(cf. Sec. 2.1). The convergence toward z∗ is
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called “singular”. Then the Julia set J has a
numerable set of points where the tangent can
be defined [Julia, 1918, pp. 52–53, 222–243;
Fatou, 1919, p. 163, Chaps. II and IV].

(P4) The basin of an attracting fixed point (or a
cycle) always contains a critical point [Julia,
1918, p. 129]).

(P5) Let α be an attracting fixed point of the map
z′ = ϕ(z), and D0 its immediate basin, sup-
posed to be simply connected. If the bound-
ary ∂D0 of D0 does not include a point image
of a critical point of the inverse map ϕ−1, or
limit of increasing rank preimages of a critical
point, ∂D0 has no tangent at any of its points,
except when ∂D0 is a circle, or a straight line,
or an arc of circle, or a segment of straight
line [Fatou, 1920, p. 240].

(P6) The structure of J is self-similar (now called
fractal) (cf. [Julia, 1918, p. 49], and [Fatou,
1920]).

(P7) J is either a simple closed Jordan curve, or
made up of infinitely many closed Jordan
curves (Cu) and their limit points [Julia, 1918,
p. 52]. In this last case J contains double
points everywhere dense on J . Each point of a
(Cu) curve is a limit point of curves external
to the one considered, their dimensions tend-
ing toward zero.

3.2. General properties of the
quadratic map TZ, c being real

Let us recall some other particular features of J gen-
erated by the quadratic polynomial map TZ in the
interval c ≥ −1/4. They were proved by Julia [1918]
and Fatou [1919, 1920], and differently presented by
Blanchard [1984], Devaney [1986]. The parameter λ
of the real map x′ = x2−λ in Sec. 2 is now denoted
c, and the cycles multipliers of the two-dimensional
map TZ are real and S1 = S2 = S.

(a) Except the cases c = 0, c = 2, the Julia set J
is a fractal set (cf. Sec. 3.1, P3).

(b) For c = 0 J is the circle with radius 1 (i.e. the
circle |z| = 1 in the complex representation), on
which the map TZ is topologically conjugated
with the map of the circle into itself f(θ) = 2θ,
θ ∈ [0, 2π] (cf. [Julia, 1918, p. 103; Fatou, 1920,
p. 226]).

For c = 2J is the interval [−2, 2] [Julia,
1918, p. 52, 186].

(c) For c > 2, the critical point C belongs to
the domain of divergent trajectories, then J is

the complementary set of this domain, and is
everywhere disconnected [Fatou, 1920, p. 84].
J is a Cantor set (on which the map is topolog-
ically conjugated with the shift map [Devaney,
1986]).

(d) For any c > −1/4 the restriction of TZ to J is
a chaotic map [Devaney, 1986]).

(e) For −1/4 ≤ c < 3/4 J is made up of a sim-
ple (i.e. without multiple points) Jordan closed
curve (cf. (P7) and [Julia, 1918, p. 52, 188–
213]), fractal for c �= 0. The shape of J in the
interval −1/4 ≤ c < 0 is sometimes called petal-
like. For 3/4 ≤ c < c1s 
 1.401155189, J is
a closed continuous curve, which may have a
parametric representation as x = f(t), y = g(t),
having multiple points everywhere dense on
itself. J is made up of infinitely many curves,
each one being a simple closed Jordan curve (cf.
(P7) and [Julia, 1918, p. 52, 220–222]).

(f) The last paragraph (p. 73) of Chapter 4 in
[Fatou, 1920] notices that, when J (denoted F
by Fatou) contains points of Ec ∪E′c, the corre-
sponding parameter of the map can be related
to what is a bifurcation (even if this word is
not used). Indeed Fatou says that examples
show this situation, which is in the parame-
ter space a boundary separating two regions
where J varies continuously (for polynomials,
see also the contribution of Douady in the book
edited by Devaney [1994]). Fatou also notes
that, in the general case, it would be interest-
ing to find the necessary and sufficient condi-
tion for a continuous variation of J when the
parameters vary. When c is a real parameter,
the knowledge of the box-within-a-box organi-
zation permits to define the boundaries sepa-
rating c intervals where J varies continuously,
as this will appear below.

Among the situations E′c ⊂ J consider the
particular case for which a fixed point, or cycle
(limit of increasing rank critical points), z∗ ∈ J
has a multiplier |S| = 1 (Secs. 3.4 and 3.5),
thus with only a basin toward this cycle of J ,
attractor in the Milnor sense on the x-axis. This
case is a bifurcation one, as indicated in Sec. 2.
Except this case, when J contains points of
Ec ∪ E′c the corresponding situations are given
by the values c = ĉ (cf. Sec. 2.4, λ becom-
ing now the parameter c). For example, such
values are c∗jk , or c̃, for which a rank-r crit-
ical point (belonging to Ec) Cr−1, C0 ≡ C,
merges with a point of a repelling cycle, and
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cj
ks (limit of period doubling bifurcations), and

their embedded forms in rank-a boxes, a > 1.
For such c-values J is not the basin boundary
of an attracting set on the x-axis different from
the point at infinity, and its shape nowadays
is called a dendrite, see for example [Devaney,
1986] for c = c∗21 
 1.543689013 (C2 ≡ q2). In
such cases J is made up of a “base”, the seg-
ment [q−1

1 , q1] of the x-axis, and an “arbores-
cent” subset of J for y �= 0.

(g) In the special case c = 0 the Julia set J of TZ

is a circle, with the fixed point q2 (multiplier
S = 0) as center. For −1/4 ≤ c < 0, J has
a shape presenting infinitely many bumps (see
below Fig. 10), called above “petal like”. When
c > 0 first (i.e. before another shape change)
the J shape appears as made up of infinitely
many spikes (see below Fig. 11), the continuous
evolution of the J shape occurring through the
circle case.

3.3. Specific properties of TZ related
with the box-within-a-box ones

We turn now to more specific properties of the two-
dimensional map TZ (1), in the interval −1/4 ≤
c ≤ 2. From TZ(x, y) = TZ(−x,−y) the symme-
try property of the map, with respect to the origin,
results. Thus the preimages of any point different
from the origin are symmetric with respect to (0, 0),
as all the backward invariant sets, in particular J .
This two-dimensional map TZ has only one rank-
one critical point, C = TZ(0, 0) = (−c, 0) belong-
ing to the x-axis. This axis is an invariant set (the
restriction to y = 0 is the Myrberg’s map), thus all
the critical points of any rank, images of C, belong
to the x-axis. The same is not true for the preim-
ages. Indeed it is easy to see that all the points
of the plane, different from (0, 0), possess two dis-
tinct rank-one preimages. Only the points of the x-
axis (x, 0) with x > x(C) = −c have two distinct,
symmetric, rank-one preimages belonging still to the
x-axis (they are those related to the Myrberg’s map).
All the other points of the plane have two distinct
rank-one preimages not belonging to the x-axis (and
symmetric with respect to the origin). In particu-
lar, it is the case of the points (x, 0) with x < x(C),
which have two distinct rank-one preimages belong-
ing to the y-axis. For example, with −1/4 ≤ c ≤ 2
consider the two rank-one preimages of the segment
[q−1

1 ,−c] on the x-axis, where q−1
1 is the preim-

age of the repelling fixed point q1, different from

this point. Such preimages give the two symmet-

ric segments of the y-axis, 0 ≤ y ≤
√

−(q−1
1 + c)

and −
√

−(q−1
1 + c) ≤ y ≤ 0. Notice that the width

of the segment [q−1
1 ,−c] (and that of its rank-one

preimages) decreases as c increases, and tends to
zero, which occurs for c = 2 with q−1

1 = −c = −2.
Due to the fact that all the critical points

belong to the x-axis, it follows that the attractor of
the map TZ at finite distance (related to the orbit of
the critical point C) can only belong to the x-axis,
and so it is the attractor of the Myrberg’s map.
Divergent orbits always exist, thus the Julia set J
bounds the basin of divergent trajectories, and may
be also the boundary of the attractor on the x-axis.
For the map TZ all the possible cycles always exist
in the plane, at any value of c. Depending on the
parameter value, some of them may be on the x-
axis, and all the other outside (necessarily repelling,
thus belonging to J).

For example, for −1/4 ≤ c < 3/4 only the
two fixed points of TZ belong to the x-axis, all the
other k-cycles, k > 1, (which are repelling) have
their ordinate y �= 0, and belong to the Julia set
J (here made up of a simple Jordan closed curve).
Clearly, as all these cycles of period k > 1 have ordi-
nates y �= 0, the same property also occurs for all
their preimages of any rank. While for the two fixed
points on the x-axis, only a subset of their increas-
ing rank preimages also exists with y �= 0 from a
certain rank.

As said in Sec. 1 two qualifiers, related to the
Julia set J properties, can be used. The first one
is the J structure, which identifies the set of (k; j)
unstable cycles belonging to y = 0, and the one
belonging to y �= 0, this without any relation with
the J outline. The second qualifier is qualitative,
and concerns the J shape directly related to its
outline. This last qualifier is essentially related to
the numerical simulation of J , but qualitatively
depends on the ordinate (y �= 0) of the first cycle
which will attain the x-axis from a c-increase.

The structure and the shape of J change as
the parameter c increases, starting from the value
c = −1/4 [case of Fig. 7(a)]. As c increases, the
positions of the repelling cycles with y �= 0 (and
thus the Julia set J) changes continuously as long as
no bifurcation occurs on the x-axis, which involves
the dynamics of the Myrberg’s map x′ = x2 − λ.
Thus every bifurcation occurring in the Myrberg’s
map, also implies a bifurcation in the structure of
J . Generally the bifurcations of the Myrberg’s map
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involve the appearance of cycles on the x-axis, or
better: the transition of cycles already existing in
the plane (outside the x-axis, on the set J), to the
x-axis. Thus J can have continuous changes only
in the interval of values corresponding to the exis-
tence of an attracting cycle on the x-axis, where no
bifurcation occurs. Stated in other words, when c
increases, all the bifurcations of the Julia set J are
associated with bifurcations of the Myrberg’s map,
and often correspond to transitions of cycles from
y �= 0 to the x-axis, from which they can never
escape. Now consider the properties of the Myr-
berg’s map mentioned in Sec. 2.4, by emphasizing
the related properties of the Julia set J .

For any value of c, −1/4 ≤ c ≤ 2 the struc-
ture of J is related to the structure of the unique
metric attractor Ac existing on the x-axis for the
Myrberg’s map:

(P′1) When Ac is a stable k-cycle (of any period
k ≥ 1, |S| < 1), then J changes continuously
in the interval of c for which −1 < S < 1 (as
described in Secs. 5.3 and 5.4). The values
S = +1 and S = −1 are bifurcation values
for J , described in Secs. 5.1 and 5.2.

(P′2) When Ac is a critical set Acr (with Cantor
like structure of zero Lebesgue measure on
the x-axis), or when Ac consists of k-cyclic
chaotic intervals (y = 0), k ≥ 1, then J is at
a bifurcation value and it is a dendrite.

In the case (P′1) when the cycle is stable, (|S| <
1), then the trajectory of the critical point C is
either periodic (superstable case), or tends to the
stable k-cycle, and no point of Ec∪E′c belongs to J .
In this case J separates two basins: the basin of Ac,
and the basin of divergent trajectories (the point at
infinity being also an attractor for TZ). When the
cycle is neutral (|S| = 1) then J is at a bifurcation.
One has Ac = E′c which is the neutral k-cycle, and
Ec ∩E′c = ∅ but now the periodic orbit E′c belongs
to J (E′c ⊂ J). In this neutral case J separates the
basin of the point at infinity (domain of divergence),
and a basin toward Ac, which is a set of positive
measure also for TZ , in the two-dimensional phase
plane.

The set of parameter values of the interval
[−1/4; 2], where a continuous variation of J occurs,
is related to intervals inside the Myrberg’s spectra,
which are contained in all the boxes of first and
second kind, in a self-similar way (Sec. 2.4). Each
one of such intervals is bounded by two consecutive

bifurcations of a given spectrum. So the continuous
variations of J occur in infinitely many nontrivial
intervals having a fractal structure in [−1/4; 2] and
dense in it.

As already noticed, in the case (P′2) the den-
drite structure of J is related to two different situ-
ations, in each of which the invariant set Ac of the
Myrberg’s map has chaotic dynamics, and J is the
boundary of the basin of divergent trajectories but
not the boundary of an attractor on the x-axis (the
invariant set Ac in fact belongs to J itself). The
two different situations, related to the two different
kinds of chaotic sets on the x-axis, have different
properties in terms of limit sets of the critical point
of the map TZ . When c belongs to ccr ⊂ ĉ, then
Ac is a critical set Acr (cf. Sec. 2.5 for the defini-
tion of Acr and ccr) with a Cantor like structure of
zero Lebesgue measure. Then Acr = E′c, C ∈ E′c
so that Ec ⊂ E′c ⊂ J . While when c belongs to
cch ⊂ ĉ (cf. Sec. 2.4), then Ac consists of k-cyclic
chaotic intervals, the critical point C is either peri-
odic or preperiodic, merging into a repelling cycle
(|S| > 1), which is called a critical repelling periodic
orbit. Thus Ec∩J �= ∅. The set of parameter values
ĉ = ccr∪cch, for which the case (P′2) of the dendrite
structure of J occurs, is a completely disconnected
set of positive Lebesgue measure.

When the case of (P′1) occurs, the so-called
filled Julia set (or filled-in Julia set) −Γ(J) is the set
of all points (x, y) that have a bounded orbit (i.e.
nondiverging trajectories). It is given by the clo-
sure of the basin of the stable (or neutral) k-cycle
on the x-axis. The frontier of −Γ(J) is J . Clearly in
the cases in (P′2) the filled Julia set −Γ(J) reduces
to the dendrite J .

The properties of J , issued from the knowledge
of the box-within-a-box organization, comes from
the fact that the subset of E (repelling cycles of the
map TZ) belonging to the x-axis for −1/4 ≤ c < 2,
their preimages and limit sets, can be well identified
by the symbolism described in Sec. 2, and such sets
are involved in any bifurcation of J . We recall that
all such bifurcations are of codimension two for the
map TZ because we have always S1 = S2 (a pair
of cycles from the region y �= 0 reaches the x-axis
when S = +1, a cycle from the region y �= 0 merges
with a cycle on the x-axis when S = −1). The
bifurcation values of the parameter c, defined by
the box-within-a-box organization, permit to bound
intervals where J changes continuously. So five dif-
ferent types of structure of the Julia set J can be
identified, for c-values in the interval −1/4 ≤ c < 2.
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Three types are related to the c bifurcation val-
ues, and two to intervals where J has a continuous
change, i.e. intervals corresponding to the existence
of an attracting cycle on the x-axis, where no bifur-
cation occurs.

The first type occurs at each fold bifurcation
(S = +1) on the x-axis. For c = c(1)0 = −1/4, it
will be considered of class A. For c = c j

(k)0
, or more

generally c j1,...,ja

(k1,...,ka)0
fold bifurcations giving rise to

a pair of cycles of period k1, k2, . . . , ka, it will be
considered said of class B.

The second type occurs at each flip bifurcation
on the x-axis (S = −1) belonging to a Myrberg
spectrum. For c = cbm ∈ ω1, it will be considered
of class A. For c = c j

kbm
∈ ω j

k , or more generally
c j1,...,ja

(k1,...,ka)bm
∈ ω j1,...,ja

k1,...,ka
, m = 1, 2, 3, . . . , it will be

considered of class B.
The third type occurs when J changes con-

tinuously in intervals c(1)0 < c < cb1, c(1)0 =
−1/4, cb1 = 3/4. It will be considered of class
A. For c j

(k)0
< c < c j

kb1
, k ≥ 3, or more gen-

erally c j1,...,ja

(k1,...,ka)0
< c < c j1,...,ja

(k1,...,ka)b1
, at which TZ

has an attracting cycle on the x-axis with multi-
pliers −1 < S < 1, it will be considered of class
B. Its immediate basin boundary is made up of k
(k = 1, 2, . . .), or k1, . . . , ka, simple (i.e. without
multiple points) Jordan closed curves. For k > 2
the points of these curves are accumulation of other
such curves.

The fourth type occurs when J changes contin-
uously in intervals cbm < c < cb(m+1), m = 1, 2, . . . .
Then it will be considered of class A. For c j

kbm
< c <

c j
kb(m+1)

, k ≥ 3, or more generally c j1,...,ja

(k1,...,ka)bm
< c <

c j1,...,ja

(k1,...,ka)b(m+1)
, at which TZ has an attracting cycle

on the x-axis with multipliers −1 < S < 1, it will be
considered of class B. For k = 1 (cbm < c < cb(m+1))
J is made up of infinitely many closed Jordan curves
(Cu) and their limit points. In this last case J con-
tains double points everywhere dense on J . Each
point of a (Cu) curve is a limit point of curves exter-
nal to the one considered, their dimensions tending
toward zero [Julia, 1918, p. 52].

The fifth type, corresponds to the dendrite
structure of J , at each value of c belonging to the
set ĉ = ccr ∪ cch (which includes values such as c∗jk ,
c j
ks, c̃ and their embedded forms in rank-a boxes,

a > 1), except for the value c = 2.
So the “class A” indicates that the considered

parameters belong to the first Myrberg spectrum.

With the “class B” they belong to embedded spec-
tra ωj

k, or ωj1,...,ja

k1,...,ka
. A given type associated with one

of the two classes (except the fifth type) is related
to a well defined structure (in Sec. 1 sense) of the
Julia set, as it will be shown in Sec. 4.

3.4. Consequences

It is worth to note another remarkable property
of the so-called filled Julia set −Γ(J) in the cases
defined by (P′1), and of the Julia set J in the cases
defined by (P′2) (see above) for c ∈ [−1/4, 2]. In the
case (P′1) −Γ(J) is given by the closure of the set
of all the preimages of the segment [q−1

1 , q1] on the
x-axis. In the case (P′2) J is also given by the clo-
sure of the set of all the preimages of the segment
[q−1

1 , q1] on the x-axis, that is:

−Γ(J) = Cl




⋃
n≥0

T−n
Z ([q−1

1 , q1])


 in the cases (P′1)

(4)

J = Cl




⋃
n≥0

T−n
Z ([q−1

1 , q1])


 in the cases (P′2)

(5)

where Cl denotes the closure of the set. Indeed con-
sidering the segment [q−1

1 , q1] of the x-axis, and
the arborescent set of its increasing rank preim-
ages, the property stated above is clearly true when
c = 2 as in this case for any n ≥ 0 we have
T−n

Z ([q−1
1 , q1]) = [q−1

1 , q1] = J. When c ∈ [−1/4, 2[
the subset [q−1

1 ,−c[ of the segment [q−1
1 , q1] is the

one from which all the preimages have y �= 0. So the
two rank one preimages of the segment [q−1

1 , q1] on
the x-axis are: the segment itself and the segment on

the y-axis with −
√
−(q−1

1 + c) ≤ y ≤
√

−(q−1
1 + c),

intersecting the other at the origin. Then all the
increasing rank preimages consist of arcs issuing
from (or crossing) the further preimages of the ori-
gin (on the x-axis and on the y-axis occurring when-
ever a preimage of some rank of the origin is a
point belonging to [q−1

1 ,−c]). The rank-one preim-
ages of this first segment on the y-axis consist of two
arcs issuing from (or transversally crossing) the two
points of the x-axis belonging to T−1(x = 0) (which
are the same points of T−1

Z (0, 0)) and symmetric
with respect to the x-axis. And so on. Consider-
ing

⋃
n≥0 T−n

Z ([q−1
1 , q1]) we get infinitely many arcs

which belong to the filled Julia set, or to J , because
all such points do not have divergent trajectories.
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Thus considering the closure of this set we get the
whole filled Julia set, or the whole Julia set J . In
fact, it is enough to consider the closure of the
preimages of the point q1 to get the whole frontier J ,
and thus the equality is obviously true in (5) when
J is a dendrite. Otherwise in the cases (P′1), the
set J (clearly contained in Cl(

⋃
n≥0 T−n

Z ([q−1
1 , q1])))

is the frontier of a basin, and is necessarily on the
boundary of the set, which thus consists in the filled
Julia set −Γ(J).

We remark that the width of the first segment
on the y-axis belonging to the rank-one preimage

of [q−1
1 , q1] is 2

√
−(q−1

1 + c) and tends to zero as
c increases towards 2. Thus the structure of J is
more and more “contracted” on the x-axis, as c
increases. Moreover, at each value of c, say c = c,
all the repelling cycles of the Myrberg’s map (cycles
of TZ with y = ∅ belonging to J) belong to the
subset J ∩ [q−1

1 , q1], with the subset of their increas-
ing rank preimages on the x-axis and their limit
points. While the part of the Julia set J with y �= ∅
includes all the other repelling cycles of TZ (as all
exist in the plane at any value of c) and still out-
side the x-axis. It is clear that such cycles and
their preimages (all with y �= ∅) are only limit
points of the preimages of the interval [q−1

1 , q1]. All
such repelling cycles belonging to J (but not to the
x-axis) will enter the x-axis at higher values of the
parameter c, at the other bifurcations occurring for
c > c in the Myrberg’s map.

4. Propositions on the Julia Set
Structure

4.1. Generalities

It is recalled that the notion of structure is only
related to the identification of the position of (k; j)
unstable cycles and their limit sets in the plane, i.e.
to the geometrical situation of well defined subsets
of the Julia set J , this without any relation with the
J outline (or shape). So a same structure of J can
correspond to different shapes, which can be iden-
tified from a numerical simulation. Until now only
a coarse view of the plane situation of the unsta-
ble cycles has been given for a non “bifurcated”
c = cg parameter value: the ones located on the
x-axis, generated for all the bifurcations of the inter-
val c(1)0 ≤ c < cg, the ones having y �= 0, which
are associated with the bifurcations of the interval
cg < c < c∗1. The purpose of this section is to refine
the identification of J subsets in y �= 0.

Another description of the filled Julia set −Γ(J)
in the cases (P′1) is obtained by considering the
immediate basin, denoted d0(Ac) ⊂ (y = 0) of the
Myrberg’s real map x′ = x2 − c. The boundary
∂d0(Ac) of d0(Ac) belongs to J , then clearly

−Γ(J) = Cl


 ⋃

n≥0

T−n
Z (d0(Ac))


 (6)

and J is the boundary of −Γ(J).
Using the box-within-a-box symbolism, the

above properties can be presented as follows. Con-
sider the restriction of TZ to the x-axis, that is the
Myrberg’s map T (x′ = x2 − c), and for c j

(k1)0
<

c < c j
kb1 the stable basic cycle (k1; j1) of the box

Ωj1
k1

. The corresponding k1 stable fixed points of
the map T k1 have as immediate basins the open
segments dn

0 (k1; j1) ⊂ (y = 0), n = 1, 2, . . . , k1,
bounded by the associated (k1; j1) unstable fixed
points of T k1 , with S > 1, and some well defined
of their preimages until the rank k (Sec. 2.3). The
boundaries of the other parts of the total basins
(on y = 0) are made up of all the repelling cycles,
created on the x-axis for c < c j1

(k1)0 (the lower

boundary of the box Ωj1
k1

), their derived set, the
increasing rank preimages (on y = 0) of all these
points. Inside each of the immediate basins of the
k1 stable fixed points of T k1, and on their bound-
ary, the dynamics reproduces the behavior inside
the basin (and on its boundary) of the stable fixed
point q2 with −1 < S < 1, obtained when c(1)0 =
−1/4 < c < c1b1 = 3/4. An equivalent property
occurs in the intervals cbm < c ≤ cb(m+1) (belong-
ing to the spectrum ω1), for a period 2m cycle, and
c j1
k1bm

< c ≤ c j
k1b(m+1) (interval belonging to ωj1

k1
) a

period k12m cycle.
When we consider the points of the two-

dimensional phase plane of TZ , with −1/4 < c <
3/4, the Julia set J is made up of all the unstable
cycles of any period (belonging to the plane with
y �= 0, and entering the x-axis when the parameter
c belongs to Ω1), their limit points and their increas-
ing rank preimages. The set J is the basin boundary
of the fixed point q2 (first cycle of the Myrberg spec-
trum ω1, with multiplier |S| < 1). The basin is an
open simply connected domain.

We note that the permutation of the abscis-
sae of a cycle (k; j) with y �= 0, whatever be
c < c j

(k)0, is also that of the Myrberg’s map. Indeed
when c increases each cycle attains the x-axis, hence
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permitting to identify the cycle from the Sec. 2
data. The only difference is for a cycle (k2m; j, pm)
resulting from a flip bifurcation, for which each of
the k2m−1 pairs of its points have the same abscissa.
This is due to the flip bifurcation on the x-axis,
coming from the merging of a pair of cycles from
the region with y �= 0 with a stable cycle of period
k/2 on the x-axis. From this property, even in this
case the permutation of the cycle abscissae permits
to identify the period k2m cycle.

Due to the properties of self-similarity, for
c j
(k)0 < c < c j

kb1 the immediate basin D0(k; j) of the
stable (k; j) cycle has a boundary ∂D0(k; j), which is
a subset of the Julia set J . The set ∂D0(k; j) limits k
domains, which are the immediate basins Dn

0 (k; j),
n = 1, 2, . . . , k, of the k stable fixed points of T k

Z .
Each one, with its boundary ∂Dn

0 (k; j), reproduces
locally the dynamics obtained for −1/4 < c < 3/4,
Dn

0 (k; j) ∩ (y = 0) = dn
0 (k; j), and for ∂dn

0 (k; j),
the boundary of dn

0 (k; j), ∂Dn
0 (k; j) ∩ (y = 0) =

∂dn
0 (k; j). For c j1

(k1)0 ≤ c < c j1
k1b1 the repelling

cycles on the x-axis are those created for c < c j1
k1b1,

property which results from the box-within-a-box
organization.

Definition 4.1

(a) The Julia set J , or one of its subset, is said to
have the Julia–Fatou configuration (A1) when
it is a simple closed Jordan curve.

(b) The Julia set J , or one of its subset, is said
to have the configuration (A2) in the following
conditions. (i) It is a continuous closed curve,
but having double points everywhere dense on
itself. (ii) It is the union of infinitely many
curves (Cu) with their limit points, each (Cu)
being a simple closed Jordan curve. (iii) Each
point of a (Cu) curve is a limit point of curves
external to the one considered, their dimensions
tending toward zero.

These two configurations are described in p. 52
of [Julia, 1918] and proved in pp. 158–175, (also see
of [Fatou, 1920, p. 91]). A configuration (A1) differ-
ent from the one obtained for c = −1/4 [see below
Fig. 7(a)] is represented in Fig. 2 at c = 0.72. A con-
figuration (A2) is represented in Fig. 3, at c = 1.22.

4.2. First interval of a Myrberg
spectrum

From the Julia–Fatou results, and the above con-
siderations, for the intervals c(1)0 = −1/4 < c <

cb1 = 3/4, and c j
(k)0 < c < c j

kb1, the J structure
(in the sense defined in Sec. 1) is now well identi-
fied by the following propositions on the Julia set
structure:

Proposition 1a. Let c be the parameter value of the
interval c(1)0 = −1/4 < c < cb1 = 3/4.

(i) The Julia set J is the basin boundary of the
stable fixed point q2.

(ii) J contains all the unstable cycles, and their
limit sets, generated inside the box Ω1. J∩(y =
0) = q1 ∪ q−1

1 , T−1(q1) = q1 ∪ q−1
1 , and so con-

tains only one unstable cycle, the fixed point
q1(S > 1).

(iii) J has the Julia–Fatou configuration (A1), i.e.
it is a simple closed Jordan curve.

Proposition 1a′. Let c be the fold parameter value
c(1)0 = −1/4, Proposition 1a holds changing the sta-
ble fixed point q2, into the neutral fixed point.

Propositions 1a and 1a′ result from the above
considerations. Figure 2 represents the Julia filled
set for c = 0.72. This figure shows the positions of
the cycles (21; p1) (α1, α2), (22; p2) (η1, η2, η3, η4),
the period 3 cycle (σ1, σ2, σ3) generated in the box
Ω1

3, and the period 6 cycle (six blue points σ1,1
21.3

) of
the box Ω1,1

21.3
⊂ Ω21 . The evolution of these cycles

will be followed in the next figures.
The symbolism of the following proposition is

defined in Sec. 2.2 dealing with boxes of first kind.

Proposition 1b. Let c be the parameter of the
interval c j1

(k1)0 < c < c j1
k1b1, generating the sta-

ble cycle (k1; j1), k1 = 3, 4, . . . , (multiplier −1 <

S < 1). Let J̃j1
k1

be the J subset of all the unsta-
ble cycles with a rank-one basic period k1, a rank-
one permutation j1, generated inside the interval
c j1
(k1)0 ≤ c ≤ c∗j1k1

(box Ωj1
k1

). Let D0(k1; j1) be the
immediate basin of the stable cycle (k1; j1).

(i) All the cycles, and their limit sets, generated
for c < c j1

k1b1, belong to the J subset J∩(y = 0).
(ii) J̃j1

k1
⊂ J belongs to the immediate basin bound-

ary ∂D0(k1; j1) of the stable cycle (k1; j1).
(iii) Except the unstable cycle (k1; j1) (multiplier

S > 1) all the J̃j1
k1

cycles have an ordinate
y �= 0.

(iv) The unstable cycles entering the x-axis for c >

c∗j1k1
are such that y �= 0. They are limit points

of the increasing rank preimages of J̃j1
k1

. Out of
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Fig. 2. The Julia filled set for c = 0.72, related to a Julia–Fatou configuration (A1). The Julia set J bounds the basin toward
the stable fixed point q2 (−1 < S < 0). The points α1, α2 are those of the period two cycle (21; p1). This figure also represents
the period four cycle (22; p2) (points η1, η2, η3, η4), the period three cycle (σ1, σ2, σ3), entering the x-axis when c is in the box

Ω1
3, and the period six cycle (six blue points σ1,1

21.3
) when c is in the box Ωp1,1

21.3
⊂ Ω21 . The Julia set J presents infinitely many

excrescences with a “base” having a decreasing length, tending toward zero for c → cb1 = 3/4. The origin of such excrescences
is due to the fact that when c → cb1 the two points (y < 0 and y > 0) of the unstable period 21 cycle α1 ∪α2 ∈ J tend toward
the stable fixed point q2 on the x-axis. This creates locally, in the basin of q2, a narrow vertical section bounded by α1 and
α2, the increasing rank preimages of which are related to the fractal set of excrescences. When c = cb1 the period two cycle
merges with q2, the section length becoming equal to zero, which leads to the basic Julia–Fatou configuration (A2).

the D0(k1; j1) closure, J̃j1
k1

itself belongs to the
limit set of these increasing rank preimages.

(v) Each component ∂Dn
0 (k1; j1), n = 1, 2, . . . , k1,

of ∂D0(k1; j1) has the Julia–Fatou configura-
tion (A1), i.e. it is a simple closed Jordan
curve. The unstable cycles generated for c <
c j1
k1b1 (on the x-axis) belong to the limit set of

the increasing rank preimages of ∂Dn
0 (k1; j1),

which intersect y = 0 symmetrically.
(vi) The above properties recur for the first interval

c j1,...,ja

(k1,...,ka)0
< c < c j1,...,ja

(k1,...,ka)b1 of every spectrum

ωj1,...,ja

k1,...,ka
of embedded first kind boxes Ωj1,...,ja

k1,...,ka
.

When c j1
(k1)0 ≤ c < c j1

k1b1, first we note that each
boundary ∂dn

0 (k1; j1) ≡ ∂Dn
0 (k1; j1) ∩ (y = 0) is

made up of one of the k1 points of the unstable
(k1; j1) cycle (with S > 1) and, among its rank-
k1 preimages, the nearest preimage of this cycle
point. For c = c∗j1k1

we note that each component
of CHj1

k1
(Sec. 2.2), k1-cyclic chaotic segment on

the x-axis, is bounded by the same points. The
statement (i) results from the above considerations.
The claims, (ii), (iii) are directly due to the k1

periodicity, associated with the permutation j1, of
the immediate basin boundary ∂D0(k1; j1). Indeed
according to the box-within-a-box cycles organiza-
tion, except the cycles generated inside the box Ωj1

k1

(c j1
(k1)0 ≤ c ≤ c∗j1k1

) no other cycle multiple of k1

with a basic period k1, and a basic permutation j1

(cf. Sec. 2.2) can exist on ∂D0(k1; j1). For c = c∗j1k1
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Fig. 3. Interval cb1 < c < cb2, c = 1.22, basic Julia–Fatou configuration (A2). The filled Julia set is the basin toward the
stable period 21 cycle α1 ∪ α2. The set Rdp1 is made up of the unstable fixed point q2 and its increasing rank preimages. The

colored points are those of the unstable cycles defined in Fig. 2. The period four cycle (22; p2) (points η1, η2, η3, η4), and the

period six cycle (six blue points σ1,1
21.3

) belong to the immediate basin boundary of the stable period 21 cycle. The period three
cycle (σ1, σ2, σ3) belongs to the remaining part of the basin boundary.

all the CHj1
k1

unstable cycles (k1, . . . , ka; j1, . . . , ja),
a = 1, 2, . . ., with a period multiple of k1 comes from
unstable cycles (y �= 0) which entered the x-axis for
a c-value, c j1

(k1)0 ≤ c < c∗jk . Indeed when c increases

in the interval c j1
k1b1 ≤ c < c∗j1k1

, the unstable cycles
of J̃j1

k1
∩ (y �= 0) are those which progressively enter

on the x-axis, more precisely in the intervals defined
by the boundaries of the former dn

0 (k; j) (now being
not basin parts). The point (ii) also reflects the self
similarity property between J for −1/4 < c < 3/4,
which contains all the unstable cycles generated in
Ω1, and J̃j1

k1
which for c j1

(k1)0 < c < c j
k1b1 contains all

the unstable cycles generated inside the box Ωj1
k1

.
About the other points of Proposition 1b, it is clear
that the cycles generated for c > c∗jk are limit points
(y �= 0) of the increasing rank preimages of J̃j1

k1
,

and out of the Dn
0 (k1; j1) closure, each point of

J̃j1
k1

is a limit of a J subset made up of increasing

rank preimages of J̃j
k . As J is a simple closed Jor-

dan curve for c(1)0 = −1/4 < c < cb1 = 3/4 (cf.
[Julia, 1918; p. 52]), J̃j1

k1
belongs to k1 simple closed

Jordan curves in the interval c j
(k)0 ≤ c < c j

kb1.
Points (iii)–(vi) are justified by properties given
in Secs. 3.3 and 3.4, by self similarity properties
related to the immediate basin between the inter-
vals c(1)0 < c < cb1, c j

(k)0 < c < c j
kb1, and their

embedded forms.

Proposition 1b′. Let c be the fold parameter value
c = c j1

(k1)0. Proposition 1b holds changing the sta-
ble cycle (k1; j1) into the neutral cycle (k1; j1),
and adapting the boundaries of the parameter
intervals.

This Proposition results from the above con-
siderations, when c → c j1

(k1)0 from decreasing c

values.
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4.3. Interval bounded by the two
first flip bifurcations of the
basic Myrberg spectrum ω1

The symbolism of this section is defined in Sec. 2.2
dealing with boxes of second kind. The basic Myr-
berg spectrum is ω1, defined by c(1)0 = −1/4 < c <
c1s = 1.401, . . . . The subinterval of ω1 here consid-
ered is cb1 = 3/4 < c < cb2 = 5/4, bounded by
the two first consecutive flip bifurcations. In this
interval the attractor is the stable cycle (21; p1),
located on the x-axis. With the box-within-a-box
symbolism, consider that 2m denotes the period of
a cycle born from the bifurcation S = −1 (so 22 �= 4,
23 �= 8, . . .), and that a period denoted 2mk is differ-
ent from the period denoted k2m. As shown by Julia
and Fatou, the Julia set J has the Julia–Fatou con-
figuration (A2), called here basic configuration (A2)
(cf. Fig. 3), bounded on the x-axis by the unstable
fixed point q1 and its rank-one preimage q−1

1 differ-
ent from q1 (T−1(q1) = q1 ∪ q−1

1 ).

Proposition 2(a1). Let c be the parameter value
inside the interval cb1 = 3/4 < c < cb2 = 5/4,
inside the spectrum ω1, interval bounded by the two
first consecutive flip bifurcations and generating the
stable cycle (21; p1). Let J̃21 be the J subset of all the
unstable cycles (i.e. with their limit sets), generated
inside the interval cb1 < c ≤ c∗21 (box of second
kind Ω21), cycle which has a rank-one basic period
21 associated with the permutation p1.

(i) J ∩ (y = 0) contains q1 ∪ q 1
1 ∪ q2, and the

subset of all the increasing rank preimages of
q2, located on (y = 0).

(ii) J̃21 ⊂ J belongs to the immediate basin bound-
ary ∂D0(21; p1) of the stable period 21 cycle.
The point q2 is common to the two components
∂Dn

0 (21; p1), n = 1, 2, of ∂D0(21; p1).
(iii) The J cycles different from the J̃21 ones belong

to (y �= 0), and enter the x-axis for c in the
interval c∗21 < c < c∗1 = 2.

(iv) The Julia set J has the Julia–Fatou con-
figuration (A2). The set J is connected but
bounds nonconnected open domains. Among
these domains 21 of them belong to the imme-
diate basin ∂D0(21; p1) of the stable period 21

cycle.

Consider the immediate basin boundary
∂D0(21; p1), of the stable period 21 cycle, and the
basin boundary of each of the 21 stable fixed points
generated by T 21

Z . The boundary ∂D0(2m; pm) is

made up of two components ∂Dn
0 (21; p1), n = 1, 2,

with ∂D1
0(2

1; p1) ∩ ∂D2
0(2

1; p1) = q2. The state-
ment (i) results from Sec. 3 considerations. The
assertion (ii) is directly due to the 21 periodicity
of ∂D0(21; p1), associated with the permutation p1.
Indeed 21 and p1 are respectively the rank-one basic
period and the rank-one basic permutation for all
the cycles generated in the interval cb1 ≤ c ≤ c∗2m

(box of second kind Ω21). No other cycle with an
even period 21+r, r = 0, 1, 2, . . . , and a permuta-
tion p1+r, exists in this interval. For c = c∗21 , J̃21

belongs to the two-cyclic chaotic segment CH p1

21 ,
having q2 as common point. All its unstable cycles
(generated inside Ω21), now with y = 0, come from
unstable cycles (y �= 0) which entered the x-axis
for a c-value, cb1 < c < c∗21 . It is clear that the
other unstable cycles of J with y �= 0 are gener-
ated in the interval c∗21 < c < c∗1 (point (iii) of
Proposition 2a). The total basin of the stable period
21 cycle is nonconnected, but with a connected
boundary J .

As shown by Julia and Fatou, J is made up
of the union of infinitely many closed curves (Cu)
and so has the Julia–Fatou configuration (A2) (cf.
Sec. 4.1) limiting nonconnected open areas (cf.
Fig. 3). The points set Rdp1 = Cl(

⋃
r≥0 T−r(q2))

corresponds to contacts between these curves, the
points of which are dense on J . On the x-axis
J ∩ (y = 0) is made up of q2 and its increasing rank
preimages, tending toward q1 ∪ q−1

1 , which belong
to Rdp1 ∩ (y = 0). The points of Rdp1 belong to
the connected basin boundary ∂D(21; p1) of the sta-
ble period 2 cycle located on y = 0. Each of these
points separates two bordering (adjacent) noncon-
nected parts of the total basin D(21; p1).

For y �= 0 the shape of J∩(y = 0) is reproduced
on the fractal set of arcs given by T−r

Z ([q−1
1 , q1]) for

r > 0. It is clear that the other unstable cycles
of J with y �= 0 are those becoming stable in the
interval c∗21 < c < c∗1 (point (iii) of Proposition 2a).
The total basin of the stable period 2m cycle is non-
connected, but with a connected boundary J . Point
(iv) is due to the properties of self-similarity of the
embedded boxes.

Figure 3 is obtained from Fig. 2 after the merg-
ing of the two points α1, α2 of the unstable cycle
(21; p1) into the stable fixed point q2, the cycle
(21; p1) becoming stable on the x-axis, and q2 unsta-
ble. It results in a breaking of the of the simply
connected basin Fig. 2 into pieces separated by the
set of Rdp1 points. Figure 3 illustrates the properties
described in the Proposition. So the unstable period
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six cycle (six blue points σ1,1
21.3

) of the box Ω1,1
21.3

⊂
Ω21 , as all the unstable cycles of Ω21 are located
on the immediate basin boundary ∂D0(21; p1) of
the stable cycle (21; p1). The unstable period three
basic cycle (three red points σi, i = 1, 2, 3), gener-
ated in the box Ω1

3 out of Ω21 , belongs to the total
basin boundary, but does not belong to ∂D0(21; p1).
The sequence of bordering (adjacent) nonconnected
parts of the total basin intersecting the y-axis, is
made up of decreasing open domains on both sides
of y = 0, symmetrical with respect to y = 0, with

ordinates −
√
−(q−1

1 + c) < y < −
√

−(q−1
1 + q2)

and
√

−(q−1
1 + q2) < y <

√
−(q−1

1 + c). Their
boundaries form two plaits, first rank preimages of
boundaries of basin parts on both sides of the x-
axis, with −(q−1

1 +c) ≤ x ≤ q2. The increasing rank
preimages of ∂D0(21; p1) give rise to the J configu-
ration (A2). Remark that these parts belong to J
subsets constituting well defined levels of “strata”
starting from the immediate basin.

4.4. Interval bounded by the two
first flip bifurcations of a
Myrberg spectrum ωj

k

Proposition 2(b1). Let c be the parameter value
inside the interval c j1

k1b1 < c < c j1
k1b2, of the spec-

trum ωj1
k1

, k1 = 3, 4, . . . , generating the stable cycle
(k121; j1, p1). Let J̃j1,p1

k121 be the J subset of all the

unstable cycles, generated inside the interval c j1
k1b1 <

c ≤ c∗j1
k121 (box of second kind Ωj1,p1

k121 ). Let Ĵj1
k1

be the J subset of all the unstable cycles, gener-
ated inside the interval c∗j1

k121 < c ≤ c∗j1k1
, located

inside the box of first kind Ωj1
k1

. Let ∂D0(k121; j1, p1)
be the immediate basin boundary of the stable point
of the cycle (k121; j1, p1), made up of k121 compo-
nents ∂Dn

0 (k121; j1, p1), n = 1, 2, . . . , k121.

(i) The subset J ∩ (y = 0) is made up of all the
unstable cycles, their limit sets, born in the
interval c(1)0 ≤ c ≤ c j1

k1b1.
(ii) J̃j1,p1

k121 ⊂ J belongs to the immediate basin
boundary ∂D0(k121; j1, p1). Each point of the
unstable cycle (k1; j1)S<−1 (located on the
x-axis) is common to ∂Dn

0 (k121; j1, p1) and
T k1

Z [∂Dn
0 (k121; j1, p1)]. This situation gives rise

to a J subset J̃j1
k1

made up of k1 pairs ∂Dr
0 of

connected sets, r = 1, . . . , k1, J̃j1
k1

=
⋃k1

r=1∂Dr
0.

(iii) Each pair ∂Dr
0 is linked with a subset Ĵ(j1k1

)r of
Ĵj1

k1
. As ∂Dr

0 the set Ĵj1
k1

=
⋃k1

r=1 Ĵ(j1k1
)r and the

set J̃j1
k1

∪ Ĵj1
k1

are periodic of period k1, asso-
ciated with the permutation j1. Each of the
k1 elements ∂Dr

0 ∪ Ĵ(j1k1
)rof the set J̃j1

k1
∪ Ĵj1

k1

has the basic Julia–Fatou configuration (A2)
of Fig. 3, bounded on the x-axis by a point of
the unstable cycle (k1; j1)S>1 and its rank-k1

preimage the nearest to this cycle point.
(iv) The unstable cycles generated for c∗j1k1

< c ≤ c∗1
are such that y �= 0, and are limit points of the
increasing rank preimages of J̃j1

k1
∪ Ĵj1

k1
. The set

J̃j1
k1

∪ Ĵj1
k1

itself belongs to the limit set of these
increasing rank preimages.

(v) The above properties recur for each interval
c j1,...,ja

(k1,...,ka)b1
< c < c j1,...,ja

(k1,...,ka)b2 of the spec-

trum ωj1,...,ja

k1,...,ka
of the embedded box of first kind

Ωj1,...,ja

k1,...,ka
.

The property (i) results from considerations
given in the previous section. As for (ii) it is
directly due to the k121 periodicity, with the per-
mutation (j1, pm), of the immediate basin bound-
ary ∂D0(k121; j1, p1). Indeed according to the
box-within-a-box cycles organization, except the
cycles generated inside the box Ωj1,p1

k121 (c j1
k1b1 < c ≤

c∗j1,p1

k121 ) no other cycle multiple of k1 with a rank-two
basic period k121, and a rank-two basic permutation
(j1, p1) (cf. Sec. 2.2) exists on the immediate basin
boundary. For point (iii) it is clear that J̃j1

k1
∪ Ĵj1

k1

is periodic with the period k1 and the permuta-
tion j1. Due to the self-similarity property, each of
its k1 elements reproduces the situation of points
(ii)–(iv) of Proposition 2(a1). The situations of the
present points (iv) and (v) are also due to the pro-
perties of self-similarity. The J subset J̃j1

k1
∪Ĵj1

k1
must

belong to a subset of the limit points of the increas-
ing rank preimages of J̃j1

k1
∪ Ĵj1

k1
, clearly out of the

domain bounded by its external boundary, the other
increasing rank preimages having as limit set the
unstable cycles, and their limit sets, entering the
x-axis for c in the interval c∗j1k1

< c ≤ c∗1.

4.5. Interval bounded by two
consecutive flip bifurcations of
the Myrberg spectrum ω1

The interval considered here is defined by cbm <
c < cb(m+1) (⊂ ω1), m = 2, 3, . . . , inside which the
map gives rise to the stable cycle (2m; pm). As a
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first step, starting from Fig. 3 let us compare its
configuration with the ones in Figs. 4–6, obtained
respectively for c-values of the interval with m =
2, 3, 4. In these figures, due to their informative and
“central” illustrative role, the following basic cycles
are represented:

The (2m; pm) cycles, m = 0 (fixed point q2), m = 1
(points α1 ∪ α2), m = 2 (ηi, i = 1, . . . , 4), and for
m = 3, 4, the corresponding stable cycle on the x-
axis, are light blue colored.

The unstable period six cycle (six points σ1,1
21.3

) gen-
erated with S < 1 in the interval c∗22 < c < c∗21

containing the box Ω1,1
21.3

⊂ Ω21 , i.e. one of the two
period three cycles of T 2

Z generated in the box Ω21 .

The unstable period 12 cycle (12 points) generated
with S < 1 in the interval c∗23 < c < c∗22 containing
the box Ω1,1

22.3
⊂ Ω22 , i.e. one of the two period three

cycles of T 2
Z generated in the box Ω22 .

The unstable period 3 basic cycle (three points σi,
i = 1, 2, 3) generated with S < 1 in the box Ω1

3 out
of Ω21 .

With the above mentioned cycles these figures
illustrate an evident first property: the immedi-
ate basin boundary ∂D0(2m; pm) of the stable cycle
(2m; pm) (on the x-axis) being periodic of period 2m,
∂D0(2m; pm) contains all the unstable cycles enter-
ing the x-axis for c in the interval cbm < c ≤ c∗2m

(box of second kind Ω2m), then with a rank-one

(a)

Fig. 4. Interval cb2 < c < cb3, c = 1.34, the filled Julia set is a basin toward the stable period 22 cycle (22; p2) (points ηi,
i = 1, . . . , 4). (a) The Julia set J contains the set Rdp1, now accumulation of points of the set Rdp2, made up of the unstable

period 21 cycle α1 ∪ α2, and its increasing rank preimages. The blue points are those of one of the two period 12 basic cycles
(22.3; p2, 1) of the box Ωp2,1

223
contained in the interval c∗23 < c < c∗22 . They are located on the immediate basin boundary

∂D0(2
2; p2) of the stable cycle (22; p2). The six green points σ1,1

213
, located in the rank-one J layer, are those of the period 6

basic cycle of the box Ωp1,1
213

contained in the interval c∗22 < c < c∗21 . The three red points σ1
3 , located in the rank-two layer,

are those of the cycle (3; 1), generated inside the box Ω1
3 located inside the interval c∗21 < c < c∗1 = 2. (b) Enlargement of the

rank-two layer containing a point of the cycle (3; 1).
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(b)

Fig. 4. (Continued )

basic period 2m associated with the permutation
pm. Let J̃2m be this subset of J .

A second property appears from the visible
“central” basic configuration (A2) located on both
sides of the y-axis, which reproduces Fig. 3 that
was generated for m = 1, and which surrounds two
points of the stable (2m; pm) cycle. This configura-
tion is repeated 2m−1 times.

Now a Rdph set is defined from the unstable
cycles (2q; pq) ∈ J ∩ (y = 0), q = 0, 1, . . . ,m − 1,
born in the interval c(1)0 = −1/4 ≤ c ≤ cbm. On
the x-axis each point of a (2h−1; ph−1) cycle is an
accumulation point of a subset of increasing rank
preimages of a point of the cycle (2h; ph), 0 < h <
m. Each of the unstable cycles (2h−1; ph−1), 0 ≤ h ≤
m (the cycle (20; p0) is the fixed point q2), belonging
to y = 0 and generated for c < cbh, gives rise to a
set Rdph of multiple points of J :

Rdph =
⋃
r≥0

T−r[(2h; ph)]

Note that here the closure of
⋃

r≥0 T−r[(2h; ph)]
is not considered. For m = 1 the points set belongs
to Rdp1 =

⋃
r≥0 T−r(q2), defined in the previous sec-

tion, and separating two bordering (adjacent) non-
connected parts of the total basin D(21; p1).

Two different kinds of Rdph sets can be distin-
guished:

The first is related to points of Rdpm which sep-
arate two bordering (adjacent) nonconnected parts
of D(2m; pm). They are generated from the points
of the unstable cycle (2m−1; pm−1) located on
the x-axis, and their increasing rank preimages.
Each component ∂Dn

0 (2m; pm) of the immediate
basin boundary of one of the 2m stable fixed
points of T 2m

Z , has a common point (a point of
the cycle (2m−1; pm−1)) with the immediate basin
T 2m−1

Z [∂Dn
0 (2m; pm)] of another fixed point of T 2m

Z .
This gives rise to the 2m−1 pairs of connected sets
∂Dr

0m r = 1, . . . , 2m−1, via a common point of
the unstable cycle (2m−1; pm−1). We shall say that
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the two immediate basin boundaries ∂Dn
0 (2m; pm)

and T 2m−1

Z [∂Dn
0 (2m; pm)], have a strong linkage,

or are strongly linked, through the unstable cycle
(2m−1; pm−1). Similarly their increasing rank preim-
ages generate sequences of plaits of the total basin
which are strongly linked inside a J subset, having
the basic configuration (A2) of Fig. 3.

The second kind of Rdph sets is related to the points
of Rdp(m−1) ∈ ∂D(2m; pm), 0 ≤ h < m, a subset of

which limits a J subset denoted Ĵ
(A2)
2m−1 , having the

basic configuration (A2) of Fig. 3. It is the case of
each of the 2m−1Ĵ

(A2)
2m−1 surrounding two points of

the stable cycle (2m; pm). We shall say that each
of the Rdp(m−1) points introduces a strong linkage

between two adjoining Ĵ
(A2)
2m−1 , but a weak linkage

between plaits of strongly linked parts of the basin
D(2m; pm).

The third kind of Rdph sets is related to the points of
Rdph ∈ ∂D(2m; pm), 0 ≤ h < m−1, limit points of a
sequence of J subsets having the basic configuration
(A2) of Fig. 3. They produce weak linkage between
Ĵ

(A2)
2m−1 .

This last situation is due to the fact that when
c > cbm the points of each unstable period 2q cycle,
q < h < m − 1, belonging to the basin boundary
∂D(2m; pm) = J are limit points for a subset of
increasing rank preimages of the period 2h cycles
located on the x-axis.

It is worth noting that for c > cbm each unsta-
ble cycle (2g; pg), g > m, y �= 0, is symmetric with

(a)

Fig. 5. Interval cb3 < c < cb4, c = 1.385. (a) The filled Julia set is a basin toward the stable period 8 cycle (23; p3). A new
set Rdp3 has been created. It is made up of the unstable period 4 cycle (22; p2) (points η1, η2, η3, η4) and its increasing rank

preimages having the set Rdp2 as limit set. Now the blue points of the basic cycle (22.3; p2, 1) have moved from the immediate

basin boundary of the x-axis to the rank-one layer of the Julia set. The cycles σ1,1
213

, σ1
3, are located on the rank two and three

layers, respectively. (b) Enlargement of the rank-two layer containing a point of the cycle (3; 1).
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(b)

Fig. 5. (Continued )

respect to the x-axis, i.e. it is made up of 2g−1 cou-
ples of points, the two points of each couple having
the same abscissa. When c = cbg the 2g−1 couples
merge into the stable (2g−1; pg−1) cycle of the x-
axis, and for c > cg they turn into the (2g; pg)
cycle of the x-axis, stable for cbg < c < cb(g+1). For
c > cb(g+1), becoming unstable the (2g; pg) cycle
gives rise to the Rdp(g−1) set.

Let us return to Fig. 4(a) (m = 2). The imme-
diate basin boundary ∂D0(22; p2) contains all the
unstable cycles, and their limit sets, generated in
the interval cb2 ≤ c ≤ c∗22 (box Ω22). Among them
the unstable period twelve cycle (12 blue points)
entering the x-axis (with S < 1) when c is in the box
Ω1,1

22.3
⊂ Ω22, are represented. This figure also shows

a “central” configuration (A2) on both sides of the
y-axis, with an outline equivalent to Fig. 3, bounded
by a subset of the Rdp1 points (weak linkage), made
up of the fixed point q2 and a subset of its increasing
rank preimages. These points limit a set, denoted
Ĵ

(A2)1
2m−1 for which the (Cu) curves of the basic con-

figuration (A2) have Rdp2 points (strong linkage)

as multiple points, and bound nonconnected basin
parts, organized in plaits with decreasing size, when
the distance increases from the immediate basin of
the stable fixed points η1, η3 of T 22

Z . The same sit-
uation takes place for the set denoted Ĵ

(A2)2
21 , con-

taining the immediate basin boundary of the fixed
points η2, η4 of T 22

Z . These two (A2) basic configura-
tions have a strong linkage, giving rise to the couple
←→
K2m−1 =

←→
K21 = Ĵ

(A2)1
21 ∪ Ĵ

(A2)2
21 , having the point

q2 ∈ Rdp1 in common. They intersect the x-axis at
the intervals I1

1 and I1
2 [cf. Fig. 4(a)]. This shows

that
←→
K21\∂D0(22; p2) contains all the cycles, gener-

ated in the interval c∗22 < c < c∗21 which belongs to
the box of second kind. Ω2m−1 ⊃ Ω2m . Among them
the unstable period 6 cycle (six green colored points
σ1,1

21.3
) entering the x-axis (with S < 1) when c is in

the box Ω1,1
21.3

⊂ Ω21 , is represented in Fig. 4(a).
So for m = 2 three layers containing well

identified unstable cycles and their limits can be
identified: ∂D0(22; p2),

←→
K21\∂D0(22; p2), and the
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remaining part of J which contains the cycles
becoming stable in the interval c∗21 < c ≤ c∗1 (see
the period three cycle σ1

3 , red points in Fig. 4(a)).
For m = 3, Fig. 5 shows 22 basic configu-

rations (A2) Ĵ
(A2),r
22 , r = 1, . . . , 22. Each Ĵ

(A2),r
22

contains two components of the immediate basin
boundary of the stable cycle (23; p3), and is adja-
cent to another Ĵ

(A2),r′
22 through a point of the

(21; p1) cycle. The set
←→
K22 =

⋃22

r=1 Ĵ
(A2),r
22 is peri-

odic with period 22. Two components K̂i
21 of

←→
K22

can be associated such as K̂i
21 = Ĵ

(A2),i
22 ∪ Ĵ

(A2),t+i
22 ,

i = 1, 21 = 2m−2, t = 21, Ĵ
(A2)t+i
22 = T t+i

Z [Ĵ (A2)i
22 ],

obtained from a linkage via a point of the cycle

(21; p1) (points α1, α2 of the x-axis) belonging to

the Rdp2 set.
←→
K21 =

⋃21

i=1 K̂i
21 is a set of period 21,

←→
K21 ∩ (y = 0) = I2

1 ∪ I2
2 .

On the x-axis, the two components K̂i
21 of

←→
K21 are weakly linked through a subset S21 of
increasing rank preimages of

←→
K21 having the fixed

(a)

Fig. 6. Interval cb4 < c < cb5, c = 1.3965. (a) The filled Julia set is a basin toward the stable period 16 cycle (24; p4). A
new set Rdp4 has been created. It is made up of the unstable period 8 cycle (23; p3) of the x-axis, and its increasing rank

preimages having the set Rdp3 as limit set. Now the blue points of the basic cycle (22.3; p2, 1) have moved from the rank-one

layer to the rank-two layer of the Julia set. The cycles σ1,1
213

, σ1
3 , are located on the rank three and four layers, respectively.

(b) Enlargement of a part of the filled Julia set.
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(b)

Fig. 6. (Continued )

point q2 (i.e. a cycle (2m−3; pm−3) belonging to the
Rdp1 set) as limit point. The union of these com-

ponents is the set
←→
K20 intersecting the x-axis on a

segment I3. We have: ∂D0(23; p3) ⊂ ←→
K22 ⊂ ←→

K21 ⊂
←→
K20 .

A first layer is the immediate basin boundary
∂D0(23; p3), which contains all the points of the
unstable cycles with a basic period 23, and their
limit sets, generated inside the interval cb3 < c ≤ c∗23

(box of second kind Ω23), then with a rank-one basic
period 23 associated with the permutation pm.

The second layer is
←→
K22\∂D0(23; p3) which con-

tains all the points of the unstable cycles, and their
limit sets, generated inside the interval c∗23 < c ≤
c∗22 (inside the box of second kind Ω2m−1).

The third layer is
←→
K21/

←→
K22 . It contains all

the points of the unstable cycles, and their limit

sets, generated inside the interval c∗22 < c ≤ c∗21

(inside the box of second kind Ω21).

A fourth layer
←→
K20/

←→
K21 contains the cycles

becoming stable in the interval c∗21 < c ≤ c∗1.

Notations. Let c be the parameter value inside
the interval cbm < c < cb(m+1) (∈ ω1), m = 2, 3, . . . ,
which gives rise to the stable cycle (2m; pm).

Ĵ
(A2),r
2m−1 , r = 1, . . . , 2m−1, is the J subset reproducing

the Fig. 3 outline (basic (A2) configuration) but
bounded by a subset of Rdp(m−1) points, increasing
rank preimages of the unstable cycle (2m−2; pm−2)
(y = 0). A subset of Ĵ

(A2),r
2m−1 contains two elements

of the immediate basin boundary of the stable cycle
(2m; pm).
←→
K2m−1 =

⋃2m−1

r=1 Ĵ
(A2),r
2m−1 is a set of period 2m−1.
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Two components of
←→
K2m−1 are associated such as

K̂i
2m−2 = Ĵ

(A2),i
2m−1 ∪ Ĵ

(A2),t+i
2m−1 , i = 1, . . . , 2m−2, t =

2m−2, Ĵ
(A2),t+i
2m−1 = T t+i

Z [Ĵ (A2),i
2m−1 ], obtained from a

linkage via a point of the cycle (2m−2; pm−2) of the
x-axis belonging to the Rdp(m−1) set.
←→
K2m−2 =

⋃2m−2

i=1 K̂i
2m−2 contains the set of unstable

cycles with the basic period 2m−2.

Recursively 2m−s rank-s subsets of the Julia set J ,
denoted K̂i

2m−s (s ≤ m, m > 1, i = 1, . . . , 2m−s),
are defined. Each one made up of the association of
two neighboring sets K̂i

2m−(s−1)weakly linked from
a point of the cycle (2m−s; pm−s) of the x-axis
belonging to Rdp(m−s+1), and also by the subset of
increasing rank preimages of these neighboring sets
having the point of the cycle (2m−s; pm−s) as accu-
mulation point.
←→
K2m−s =

⋃2m−s

i=1 K̂i
2m−s contains the set of unstable

cycles with the basic period 2m−s.

∂D0(2m; pm) ⊂ ←→
K2m−1 ⊂ · · · ⊂ ←→

K2m−s

Ls
2m is the rank-s layer of J , defined by (m ≥ 3,

s = 1, 2, . . . ,m):

Ls
2m =

←→
K2m−s\←→K2m−(s−1)

Then:

Each K̂i
2m−s bounds a subset of the basin of the

stable (2m; pm) cycle on the x-axis, which contains
2s points of this cycle.

Ls
2m contains all the cycles, and their limits, created

in the interval c∗
2m−(s−1) < c ≤ c∗2m−s .

Figure 6 illustrates the situation for m = 4.

When m = ∞, c = c1s = limm→∞ c∗2n =
limm→∞ cbm, the Julia set J is a dendrite. Infinitely
many layers with associated families of cycles result
as limit of the above situations when m → ∞. The
basins D0 and D now do not exist, ∂D0 degenerates
into the Cantor set on the x-axis, made up of the
limit of the stable cycle (2m; pm) when m → ∞. In
this case the segment [q−1

1 ; q1] of the x-axis is the
limit of infinitely many layers.

Proposition 2(a2). Let c be the parameter value
inside the interval cbm < c < cb(m+1)(⊂ ω1),m =
2, 3, . . . , which gives rise to the stable cycle
(2m; pm), and the J subsets Ĵ

(A2)
2m−1 ,

←→
K2m−s defined

above.

(i) The cycles (2q; pq) ∈ J ∩ (y = 0), q = 0, 1,
2, . . . ,m−1, are unstable and born in the inter-
val c(1)0 = −1/4 ≤ c ≤ cbm.

(ii) Each component ∂Dn
0 (2m; pm), n = 1, 2, . . . ,

2m, of the immediate basin boundary ∂D0(2m;
pm) of the stable period 2m cycle (2m; pm), has
a common point with T 2m−1

Z [∂Dn
0 (2m; pm)]. The

boundary ∂D0(2m; pm) contains all the unsta-
ble cycles generated inside the interval cbm <
c ≤ c∗2m (box of second kind Ω2m).

(iii) The J subset Ĵ
(A2)
2m−1 contains all the cycles with

a basic period 2m−1, generated in the interval
c∗2m < c < c∗2m−1 .

(iv) The J layer Ls
2m contains all the cycles created

in the interval c∗
2m−(s−1) < c ≤ c∗2m−s . The last

layer Lm
2m contains all the cycles created in the

interval c∗21 < c ≤ c∗1 = 2.

4.6. Interval bounded by two
consecutive flip bifurcations of
the Myrberg spectrum ωj

k

Let c be the parameter value inside the inter-
val c j1

k1bm < c < c j1
k1b(m+1) (spectrum ωj1

k1
) m =

2, 3, . . . , k1 = 3, 4, . . . , bounded by two consecu-
tive flip bifurcations, generating the stable cycle
(k12m; j1, pm). Considering the map T k1, as in
Sec. 4.5, Rj1

k1dph sets are defined from the unstable
(k12h; j1, ph), 0 ≤ h ≤ m, cycles of the x-axis

Rj1
k1dph =

⋃
r≥0

T−r[(k12h; j1, ph)].

It is the same for the following sets:

Ĵ
j1(A2)r
k12m−1 , r = 1, . . . , k12m−1, is the J subset repro-

ducing the Fig. 3 outline but bounded by a subset
of Rj1

k1dp(m−1) points, increasing rank preimages of
the unstable cycle (k12m−2; j1, pm−2) (y = 0). A
subset of Ĵ

j1(A2)r
k12m−1 contains two components of the

immediate basin boundary ∂D0(k12m; j1, pm).
←→
Kj1

k12m−1 =
⋃2m−1

r=1 Ĵ
j1(A2)r
k12m−1 contains unstable cycles

with the basic period k12m−1.

Two components of
←→
Kj1

k12m−1 are associated such

as K̂i
k12m−2

j1 = Ĵ
j1(A2)i
k12m−1 ∪ Ĵ

(A2)t+(i−1)
2m−1 , i =

1, . . . , k12m−2, t = 2m−2, Ĵ
j1(A2)t
k12m−1 = T t

Z [Ĵ (A2)1
2m−1 ] from

a linkage by a point of the cycle (k12m−2; j1, pm−2)
of the x-axis belonging to the Rj1

k1dp(m−1) set.
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←→
Kj1

k12m−2 =
⋃k12m−2

i=1 K̂i
j1

k12m−2 contains unstable
cycles with the basic period k12m−2.

Recursively k12m−s rank-s subsets of the Julia

set J , denoted K̂i
j1

k12m−s (s ≤ m, m > 1, i =
1, . . . , k12m−s), are defined. Each one is made
up of the association of two neighboring sets

K̂i
j1

k12m−(s−1) weakly linked from a point of the
cycle (k12m−s; j1, pm−s) of the x-axis belonging to
Rj1

k1dp(m−s+1), and also by the subset of increasing
rank preimages of these neighboring sets having the
point of the cycle (k12m−s; j1, pm−s) as accumula-
tion point.
←→
Kj1

k12m−s =
⋃k12m−s

i=1 K̂i
j1

k12m−s contains unstable
cycles with the basic period k12m−s.

2∂D0(k12m; j1, pm)⊂←→Kj1
k12m−1 ⊂ · · · ⊂←→Kj1

k12m−s .

Lj1,s
k12m is the rank-s layer of J defined by (m ≥

3, s = 1, 2, . . . ,m)

Lj1,s
k12m =

←→
Kj1

k12m−s\
←→
Kj1

k12m−(s−1) .

Proposition 2(b2). Let c be the parameter value
inside the interval c j1

k1bm < c < c j1
k1b(m+1), m =

2, 3, . . . , k1 = 3, 4, . . . , bounded by two consecu-
tive flip bifurcations, generating the stable cycle
(k12m; j1, pm). Let Ĵ

j1(A2)
k12m−1 ,

←→
Kj1

k12m−s the J subsets
defined above

(i) The subset J∩(y = 0) contains all the unstable
cycles, and their limit sets, born in the interval
c(1)0 ≤ c < c j1

k1b(m+1).
(ii) Each component ∂Dn

0 (k12m; j1; pm), n = 1,
2, . . . , k12m, of the immediate basin boundary
∂D0(k12m; j1; pm) of the stable period k12m

cycle (k12m; j1, pm), has a common point with
T k12m−1

Z [∂Dn
0 (k12m; j1, pm)]. ∂D0(k12m; j1, pm)

contains all the unstable cycles generated
inside the interval c j1

k1bm < c ≤ c j1∗
k12m (box of

second kind Ω j1
k12m).

(iii) The J subset Ĵ
j1(A2)
k12m−1 contains the closure of

all the cycles generated in the interval c j1∗
k12m <

c < c j1∗
k12m−1 .

(iv) The J layer Lj1,s
k12m contains all the cycles cre-

ated in the interval c j1∗
k12m−(s−1) < c ≤ c j1∗

k12m−s .

The last layer Lj1,m
k12m contains the closure of all

the cycles created in the interval c j1∗
k121 < c ≤

c∗1 = 2.

Proposition 2b′. Let c be the flip parameter val-
ues ck1bm, m = 1, 2, . . . , of the spectrum ω1, c j1

k1bm,

k1 = 3, 4, . . . , of the spectrum ω j1
k1

, generating the
neutral cycle (k12m−1; j1, pm−1) (S = −1). Proposi-
tions 2(b1) and 2(b2) hold changing the stable cycle
(k12m; j1, pm) into the neutral cycle, and the imme-
diate basin into the immediate convergence, and
adapting the boundaries of the parameter intervals.

Proposition 2b′ is deduced from Proposi-
tions 2(b1) and 2(b2), when c → cbm, c → c j1

k1bm
with decreasing values.

5. Properties of the Different Types
of Julia Set

On the basis of intervals defined by bifurcation val-
ues of the Myrberg’s map, Sec. 3.3 has defined five
different types of Julia set. Except the dendrites
case these types can be differentiated between a
class A, when c belongs to the spectrum ω1, and
a class B, when c belongs to an embedded spec-
trum ωj

k. The propositions in Sec. 4 have provided
the plane situation of well defined subsets of the
Julia set J for four of these types. This section
completes the Julia set properties of each type, and
describes the different J outlines generated inside a
same type.

5.1. First type of Julia sets.
Multiplier S = +1

This type is generated for parameter values c = c(1)0

(class A), c = c j
(k)0

(class B), or more generally the

embedded forms c = c j1,...,ja

(k1,...,ka)0
, which are the first

boundary of Myrberg spectra. Consider that the J
structure (i.e. location of the unstable cycles in the
plane) depends strongly on the class, even if for class
B the outline of J subsets reproduces the J one for
class A.

The class A case, c = c(1)0, fold bifurcation of
the spectrum ω1, is the simplest one. This para-
meter value gives a situation in the (x, y) plane
described in of [Julia, 1918, pp. 231–237], of [Fatou,
1920, pp. 91–92, pp. 240–242], and J has the Julia–
Fatou configuration (A1) i.e. it is a simple closed
Jordan curve. The Julia set J contains all the
unstable cycles generated inside the box Ω1, and
J ∩ (y = 0) contains the neutral fixed point q1 ≡ q2
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(S = 1), “left” limit of the increasing rank criti-
cal points, then belonging to E′c, and its rank-one
preimage q−1

1 . According to (P3) in Sec. 3.1 J can-
not be the basin boundary of an attracting set on
the x-axis. It does not satisfy the Fatou theorem
[1920, p. 240] recalled in (P5) in Sec. 3.1. The Julia
set J limits only the basin of the point at infinity
(domain of divergence), and a basin toward q1 ≡ q2

adjoining this point. At q1 ≡ q2 (c(1)0 = −1/4)
J presents a cusp point with a horizontal tangent.
Moreover, for a numerable set of points, increasing
rank preimages of q1 ≡ q2, the tangent to J can
be defined [Fatou, 1920]. Nevertheless J is nowhere
differentiable, because at a cusp point a function is
not differentiable. The Julia set J is a Jordan curve
without double points. Fatou [1920, p. 242] iden-
tified the J outline as equivalent to that of a von
Koch curve, i.e. it is fractal. This case is shown in
Fig. 7(a), where the J outline has a fractal petal-
like aspect, and is the boundary of the brown region
(the filled Julia set −Γ(J)). The Julia set J has the
properties given in Proposition 1a′.

The class B of this first type, defined by the
opening c = c j

(k)0
, k > 2 of any spectrum ωj

k ⊂
Ωj

k, has the properties given in Proposition 1b′. As
mentioned in Sec. 3.3, the class A petal-like shape
of J is fractally reproduced at c = c j

(k)0
.

The fractal structure, observed on the x-axis
with the Myrberg’s map, is reproduced consider-
ing all the preimages of any rank of the segment
[q−1

1 , q1], T−n
Z ([q−1

1 , q1]) for n > 0, which however
is more and more “contracted” on the x-axis, as c
increases. An example is shown in Figs. 7(b)–7(d)
(at the beginning c = c1

(3)0
= 7/4 of the box of

first kind associated with the three-cycle). A period
three petal-like outline is fractally reproduced on
both sides of the x-axis, and along “rays” ending at
points of the immediate basin [Fig. 7(c)]. Clearly a
similar behavior occurs for any c = c j1,...,ja

(k1,...,ka)0
of the

rank-a box Ωj1,...,ja

k1,...,ka
.

5.2. Second type of Julia sets.
Multiplier S = −1

The simplest case is the first flip bifurcation of
the Myrberg spectrum ω1 (class A situation) i.e.
c = cb1 = 3/4, with S = −1 for the fixed point
q2 which is neutral and belongs to J . According to
(P3) given in Sec. 3.1, J cannot be the basin bound-
ary of an attracting set on the x-axis (on both sides

the point q2 is the limit of increasing rank criti-
cal points, i.e. q2 ∈ E′c). The Julia set J limits
only the basin of the point at infinity (domain of
divergence), and a basin toward q2 adjoining this
point. This means that the convergence toward q2

is singular in the Julia sense. At q2 J has a verti-
cal tangent, and J has a numerable set of points,
increasing rank preimages of q2, where the tan-
gent can be defined. Elsewhere J has no tangent.
Figures 8(a) and 8(b) show this situation where the
brown region is the basin toward q2 (i.e. the filled
Julia set −Γ(J)), the white one (which is touching
q2) is the basin of the point at infinity. The vertical
tangent at q2 is such that locally two “arcs” of J ,
belonging to two lobes of the basin toward q2, are
on the same side of this tangent [Fig. 8(b)], giving
a hollow for an arc and a bump for the other. For
c = cb1 = 3/4, J is connected and has the Julia–
Fatou basic configuration (A2). Remark that for the
Myrberg’s map x′ = x2 − c (reduction of TZ to the
x-axis) q2 is stable and not neutral.

Each c = cbm values, m = 2, 3, . . . , leads to
properties of Proposition 2a′. Each of the 2m−1 com-
ponents of the boundary of the immediate basin
associated with the neutral period 2m−1 cycle, is
connected with the Julia–Fatou basic configuration
(A2).

Figure 9 shows the structure of J and filled
Julia set −Γ(J) at the second flip bifurcation,
occurring for c = cb2 = 5/4, J ∩ (y = 0) =
[Cl(

⋃
r≥0 T−r(E2

1))] ∩ (y = 0), E2
1 being made up of

q1, q2 and the period 2 cycle (α1, α2) with S = −1,
born on the x-axis from q2 for c = cb1 = 3/4, Cl

indicating the closure of the set. The same behav-
ior occurs for flip values c = cbm of the ω1 spectrum,
introducing Em

1 the finite set of the m repelling
cycles of the x-axis of period 2p, 0 ≤ p < m, the
cycle of period 20 being the fixed point q2.

When c = c j
kbm (class B), J ∩ (y = 0) contains

infinitely many Cantor like sets Cs (cf. Sec. 2.3)
born for c < c j

(k)0 and the unstable cycles with their
increasing rank preimages located on (y = 0), born
for c j

(k)0 ≤ c < c j
kbm. So the set J ∩ (y = 0) is a well

defined fractal set. The basin intersects the x-axis
including k2m−1segments invariant by T k2m−1

Z , and
their increasing rank preimages located on the seg-
ment [q−1

1 , q1]. All the points of J with y �= ∅ consist
of points of all the other repelling cycles existing in
the plane and still outside the x-axis (which will
enter the x-axis at higher values of parameter c),
and their limit points.
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(a)

(b)

Fig. 7. (a) Filled Julia set (of petal-like type) for the fold bifurcation c = c(1)0 = −1/4. The filled Julia set is a basin toward
the neutral fixed point q2 ≡ q1 ∈ J (S = 1). The Julia set J has a numerable set of points where the tangent can be defined,
but these points are cusps, so J remains nowhere differentiable. (b) Partial view of the filled Julia set (symmetric with respect
to x = 0) for the fold bifurcation c = c1(3)0 = 7/4. The two period three cycles (α1, α2, α3) with S ≤ 1, (β1, β2, β3) with S ≥ 1

merge at this parameter value and S = 1. (c) and (d) represent two enlargements.
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(c)

(d)

Fig. 7. (Continued )
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(a)

(b)

Fig. 8. (a) Filled Julia set for the first flip bifurcation cb1 = 3/4. The filled Julia set is a basin toward the neutral fixed point
q2 (−1 < S < 0), which results from the merging of the points α1 and α2 of the period two cycle on the x-axis (cf. Fig. 2
caption). It results in the basic Julia–Fatou configuration (A2). (b) Enlargement in the neighborhood of q2.
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Fig. 9. Filled Julia set for the flip bifurcation c = cb2 = 5/4. The period 2 cycle (α1, α2), which belongs to the Julia set J , is
neutral (S = −1) and the filled Julia set is a basin toward (α1, α2). The Julia set J has a numerable set of points where the
tangent can be defined, but J remains nowhere differentiable.

The flip values c = cj1,...,ja

(k1,...,ka)bn
of a rank-a box

repeat the same behavior.

5.3. Third type of Julia set

A continuous variation of J occurs inside well
defined intervals, beginning with the fold bifurca-
tion of a Myrberg spectrum. The simplest case is
class A for the interval c(1)0 < c < cb1, c(1)0 =
−1/4, cb1 = 3/4, belonging to ω1. The correspond-
ing structure of the Julia set is given by Proposi-
tion 1a. Types of class B are related to intervals
c j
(k)0

< c < c j
kb1 (k > 2) belonging to ωj

k, or more

generally for an interval c j1,...,ja

(k1,...,ka)0
< c < c j1,...,ja

(k1,...,ka)b1

belonging to ωj1,...,ja

k1,...,ka
, with equivalent intervals for

boxes of second kind. The corresponding structure
of the Julia set is given in Proposition 1b.

Julia set type of class A (cf. Proposition 1a)
In the interval, c(1)0 < c < cb1, c(1)0 = −1/4, cb1 =
3/4, the stable (attracting) cycle is the fixed point
q2 (k = 1). The Julia set J has a fractal outline

(except for c = 0) with a continuous modification
of its shape when c increases, passing from a petal-
like outline to two other forms, the last ones tending
to Fig. 8(a) when c → cb1.

In the interval c(1)0 < c < 0 the shape has
a bumpy fractal aspect (petal-like). This aspect
results from a continuous modification of the case
c = c(1)0 = −1/4, but now contrary to c = c(1)0

the set J has nowhere a tangent. The unstable fixed
point q1 (y = 0), located at a cusp point for the fold
bifurcation value c = c(1)0, has moved to the right,
and q2 is attracting in the brown region of Fig. 10,
which now represents the basin of this point. The
only points of J , located on the x-axis, are q1 and
q−1
1 , T−1(q1) = q1 ∪ q−1

1 , while T−1
Z (q−1

1 ) includes

the points (x = 0, y = ±
√

−(q−1
1 + c)). The seg-

ment −
√
−(q−1

1 + c) < y <
√

−(q−1
1 + c) on the y-

axis, given by T−1
Z (]q−1

1 ,−c[), belongs to the basin of
q2. When c → 0, the J bumps progressively become
less and less pronounced up to attain the circle
|z| = 1 at c = 0, for which the q2 multiplier is S = 0.
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Fig. 10. Filled Julia set (of petal-like type) for c = −0.15. The filled Julia set is the basin of the stable fixed point q2
(0 < S < 1). The points (α1, α2) are those of the period 2 cycle.

In the interval 0 < c ≤ cb1 = 3/4. Figure 11
(c = 0.25) and Fig. 12 (c = 0.5) show the con-
tinuous evolution of J (boundary of the brown
region, basin of the fixed point q2) from the cir-
cle |z| = 1 (c = 0) to the flip bifurcation shown
in Fig. 8(a) (c = cb1 = 3/4). The value c = 0 is
a boundary separating two different J outlines: the
petal-like one from an outline presenting infinitely
many “spikes” in a fractal configuration (Fig. 11).
When c increases, then progressively the simply
connected basin of q2 (bounded by the simple Jor-
dan closed curve J) presents infinitely many excres-
cences (Figs. 12 and 2) with a “base” having a
decreasing length, which tends toward zero when
c → cb1. The origin of such excrescences is easily
explained, considering that when c → cb1 the two
points (y < 0 and y > 0) of the unstable period 21

cycle α1∪α2 ∈ J tend toward the stable fixed point
q2 on the x-axis. Indeed inside the basin of q2, this
situation near q2 creates a narrow vertical section
(Fig. 2), bounded by α1 and α2, the increasing rank
preimages of which are related to the fractal set of
excrescences.

When c = cb1 the period two cycle merges with
q2 ≡ α1 ≡ α2, the section length becoming equal
to zero [Fig. 8(a)]. This results in J the rank-one
infinite set Rdp1 ⊂ J of double points (q2 and its
increasing rank preimages) when c ≥ cb1 (cf. Sec. 4).

Julia set type of class B (Proposition 1b)
The simplest form corresponds to intervals c j

(k)0
<

c < c j
kb1 (k > 2) belonging to ωj

k. TZ has a (k; j)
attracting cycle on the x-axis with multipliers −1 <
S < 1. The immediate basin boundary of the stable
(k; j) cycle is made up of k (k = 3, 4, . . .) simple
(i.e. without multiple points) Jordan closed curves
(with the Julia–Fatou configuration (A1)). Inside
each interval the multiplier S(k; j) = 0 separates
two different local behaviors near the (k; j) cycle:
S > 0 with a regular convergence of orbits, S < 0
with an “alternate” convergence.

Now, contrarily to c = 0, the value c = c j
k (S =

0), giving the (k; j) cycle multiplier S = 0 (sep-
arating orbits with a regular local convergence,
and an “alternate” one) is no longer a boundary
separating the petal-like J outline, from the one
presenting infinitely many “spikes”. Indeed in this
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Fig. 11. Filled Julia set for c = 0.25. The filled Julia set is a basin toward the stable fixed point q2 (−1 < S < 0). The points
(α1, α2) are those of the period 2 cycle. The Julia set J shape ceases to be of “petal-like” kind, and presents infinitely many
spikes. (b) c = 0.5, J presents infinitely many excrescences with a “base” having a decreasing length, tending toward zero for
c → cb1.

new situation the parameter, separating two differ-
ent shapes of J , is obtained for c = c j

k , c j
(k)0

<

c j
k < c j

k (S = 0), which corresponds to a multiplier
0 < S < 1.

For c = c j
k the Julia set J is made up of

infinitely many separated concave continuous closed
curves (Č), constituting a fractal set, separat-
ing “petal-like” shapes from shapes with “spikes”.
The existence of such curves (Č), appears numer-
ically from successive enlargements, with precision
increase. The mathematical proof seems very dif-
ficult to establish. Among these curves there are
k curves (Č j

k ) invariant by T k
Z . The intersection

J ∩ (y = 0) = J ∩ ([q−1
1 , q1]) is a fractal set made up

of all the repelling cycles generated on the x-axis for
c < c j

(k)0 (the lower boundary of the box Ωj
k), their

limit set, the subset of the increasing rank preim-
ages of all these points, located on y = 0. Clearly for
y �= 0 this fractal structure is reproduced in all the
preimages T−n

Z ([q−1
1 , q1]) for n > 0, and T−n

Z (Č j
k ).

The above properties can be illustrated for the
interval c1

(3)0
< c < c1

3b1 of the ω1
3 ⊂ Ω1

3 spec-
trum. When S = 0, c = cS=0 
 1.7548776662,
a rough numerical simulation without a sufficient
enlargement might lead to think that the immedi-
ate basin boundary of the superstable period three
cycle is made up of three circles. This is wrong as
shown in Fig. 13 obtained from a strong enlarge-
ment, which indicates that the boundary contains
infinitely many “spikes”. A more elaborated sim-
ulation shows that smooth concave closed curves
(Č) (enlargement of Fig. 14(e)) are obtained for
c1
3 
 1.7545313 with a cycle multiplier S 
 0.037.

Smooth concave closed curves not intersecting y = 0
cannot be clearly seen in Fig. 14(a), but they appear
in the enlargement of Figs. 14(b)–14(d).

Consider the boundary ∂Dn
0 (k; j) of the imme-

diate basins Dn
0 (k; j), n = 1, 2, . . . , k, of the k sta-

ble fixed points of T k
Z , which are n J subsets. In

the interval c j
(k)0

< c < c j
k , each ∂Dn

0 (k; j) is of
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Fig. 12. Filled Julia set for c = 0.5. The filled Julia set is a basin toward the stable fixed point q2 (−1 < S < 0). The points
(α1, α2) are those of the period 2 cycle. The shape of the Julia set J presents infinitely many excrescences with a “base” of
decreasing length, which tends toward zero for c → cb1 = 3/4 (cf. Figs. 2 and 8).

petal-like type. When c → c j
k the ∂Dn

0 (k; j) bumps
progressively become less and less pronounced, and
disappear at c = c j

k , for which ∂Dn
0 (k; j) is made

up of k smooth concave closed curves (Č j
k ). For

c j
k < c < c j

kb1, with c increasing values ∂Dn
0 (k; j)

is made up of k subsets of J , first made up of
infinitely many “spikes” in a fractal configuration,
and then ∂Dn

0 (k; j) presents infinitely many excres-
cences with a “base” having a decreasing length,
which tends toward zero when c → cj

kb1. So accord-
ing to the c-value of the interval c j

(k)0
< c < c j

kb1,
J = Cl(

⋃
r≥0 T−r

Z [∂Dn
0 (k; j)] locally will present out-

lines either of petal-like type, or smooth concave
closed curve, or “spike”, or excrescences types.

The increasing rank preimages of ∂Dn
0 (k; j)

intersect the x-axis at the boundaries of the noncon-
nected parts of the total basin of the map restricted
to the x-axis, and their limit points defined in Sec. 2,
i.e. infinitely many Cantor like sets Cs (cf. Sec. 2.3)
born for c < c j

(k)0. All the points of J with y �= ∅

consist of the points of all the other repelling cycles
existing in the plane and still outside the x-axis, and
their limit points. All such repelling cycles belong-
ing to J will enter the x-axis at higher values of
the parameter c, that is at the other bifurcations
occurring for c > c j

(k)0.
For c(1)0 < c < cb1, J ∩ (y �= 0) contains all

the unstable cycles generated in the box Ω1. In a
same way, the k J subsets ∂Dn

0 (k; j) are such that⋃k
n=1[∂D

n
0 (k; j)] ∩ (y �= 0) contains all the unstable

cycles generated inside the box Ωj
k (c j

(k)0 ≤ c ≤ c∗jk ).

The cycles generated for c > c∗jk occupy other places
on J , in particular as limit points (y �= 0) of the
increasing rank preimages of ∂Dn

0 (k; j). The same
property occurs at any c-value of the rank-a box
Ωj1,...,ja

k1,...,ka
.

The fact that the circle situation obtained for
c = 0, related to a multiplier S = 0, cannot occur for
a (k; j) cycle, is easily explained. Indeed, consider
the map T , x′ = x2 − c, restricted to the x-axis,
and the arcs of T k in the (x;x′) plane, defining the
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Fig. 13. Enlargement of the filled Julia set part containing the point (x = y = 0) of the superstable (S = 0) period 3 cycle
(α1, α2, α3), c 	 1.7548776662, with the framework −0.002 < x < 0.002, 0.1075 < y < 0.1077. The corresponding immediate
basin boundary contains infinitely many “spikes” in a fractal configuration.

cycle pair (k; j). The arc on both sides of x = 0,
abscissa of one of points of the superstable (k; j)
cycle, is symmetric with respect to this line x = 0.
It is not the case for the other k−1 arcs, not having
such a symmetry with respect to the other points
of the superstable cycle (for example with k = 3
see Fig. 2.6 in [Mira et al., 1996]), which cannot be
centers of circles generated by TZ .

5.4. Fourth type of Julia set

This Julia set type is obtained for each c-value of
the interval cbm < c < cb(m+1) of the ω1 spectrum,
m = 1, 2, . . . . The interval c j

kbn < c < c j
kb(n+1) of

the ωj
k spectrum has equivalent properties.

Julia set type of class A (Proposition 2a) cbm < c <
cb(m+1).

The interval cbm < c < cb(m+1), belongs to the
ω1 spectrum, and the Julia set structure is given
by Proposition 2a. In particular J ∩ (y = 0) =

Cl(
⋃

r≥0 T−r(Em
1 )), where Em

1 ∈ [q−1
1 , q1] is the

(finite) set of the m repelling cycles of the x-axis
of period 2p, 0 ≤ p < m, created by the period
doubling bifurcations for c < cbm, Cl is the set
closure. The cycle of period 20 is the fixed point
q2. The Julia set J is the boundary ∂D(2m; pm) of
the nonconnected basin D(2m; pm) of the attracting
period 2m cycle on the x-axis. The set ∂D0(2m; pm)
is the boundary of the immediate basin D0(2m; pm)
of the attracting period 2m cycle. The unstable
period 2m−1 cycle (y = 0) belongs to the boundary
∂D0(2m; pm). All the other unstable period 2h cycles
(y = 0), h = 0, 1, 2, . . . , n−2, belong to ∂D(2m; pm),
and are limit of a subset of increasing rank preim-
ages of the unstable period 2m−1 cycle. The basin
of the point at infinity is simply connected (Julia–
Fatou configuration (A1)), and its boundary is the
external part of J .

The situation in Sec. 5.2 c = cb1 = 3/4
(S(q2) = −1), also occurs for the parameter interval
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cb1 = 3/4 < c < cb2 = 5/4, but now J is with-
out tangent at any of its points. In particular J
has the Julia–Fatou basic configuration (A2), with
J having multiple points Rdp1 (cf. Sec. 5.3) every-
where dense on itself. The set J is made up of the
union of infinitely many curves (Cu), limiting non-
connected open areas, and Rdp1 = Cl(

⋃
r≥0 T−r(q2).

The J nonsmoothness gives a “spike shaped” con-
tact between two curves (Cu). The points of Rdp1

belong to the connected basin boundary ∂D(21; p1)
of the stable period two cycle on y = 0. Each of
these points separates two bordering (adjacent) non-
connected parts of the total basin D(21; p1).

On the x-axis J ∩ (y = 0) is made up of q2

and its increasing rank preimages, tending toward
q1 ∪ q−1

1 . For y �= 0 the structure of J ∩ (y = 0)
is reproduced on the fractal set of arcs given by
T−r

Z ([q−1
1 , q1]) for r > 0. All the points of J with

y �= ∅ (belonging to the closure of
⋃

r≥0 T−r([q−1
1 ,

q1])) consist of points of all the other repelling
cycles existing in the plane and still outside the
x-axis, and their limit points (all such repelling
cycles will enter the x-axis at higher values of the
parameter c).

When c increases in the interval cb1 < c < cb2

Fig. 15 (c = 1.24) shows that progressively the non-
connected basin of the period 21 cycle (bounded by
J containing the Rdp1 set) presents infinitely many
new excrescences with a “base” having a decreas-
ing length, tending toward zero for c → cb2 = 5/4
(Fig. 9). This situation is easily explained from the
four points ηi (y < 0 and y > 0, i = 1, . . . , 4) of
the period 22 cycle of J . Indeed when c → cb2 this
period 22 cycle with y �= 0 tends toward the stable
period 21 cycle (α1, α2) on the x-axis, and locally
creates two narrow “vertical” sections in the basin

(a)

Fig. 14. (a) Filled Julia set (symmetric with respect to x = 0) for c = c13 	 1.7545313. The stable period 3 cycle (α1, α2, α3)
has a multiplier S 	 0.037. The cycle (β1, β2, β3) is repelling and located on the immediate basin boundary of the period 3
cycle (α1, α2, α3). For this parameter value a smooth period 3 concave closed curve (Č), boundary of the immediate basin of
(α1, α2, α3) is obtained. This situation, which now does not occur when the multiplier is S = 0, separates two different forms
of the Julia set, a petal-like one, and the other with “spikes”. (b)–(d) Some enlargements in different regions of the (x; y)
plane. (e) Enlargement in the region defined by Fig. 13, with −0.005 < x < 0.005, 0.1075 < y < 0.1077.



February 24, 2009 15:25 02287

From the Box-Within-a-Box Bifurcation Organization to the Julia Set. Part I 321

(b)

(c)

Fig. 14. (Continued )
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(d)

(e)

Fig. 14. (Continued )
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Fig. 15. Interval cb1 < c < cb2, c = 1.24. The filled Julia set is a basin toward the stable period 21 cycle α1 ∪ α2. The points
ηi ∈ J (y < 0 and y > 0, i = 1, . . . , 4) are those of unstable period 22 cycle. The Julia set J contains only the set Rdp1. When

c → cb2 = 5/4 the period 22 cycle ηi with y 
= 0 tends toward the stable period 21 cycle (α1, α2) on the x-axis, and locally
creates two narrow “vertical” sections in the basin of the stable period 21 cycle.

of the stable period 21 cycle. From this situation a
new (rank-2) infinite set Rdp2 of double points of J
results when c ≥ cb2. Then for c ≥ cb2 the points of
Rdp2 = Cl(

⋃
r≥0 T−r(α1∪α2)) belong to the bound-

ary ∂D(22; p2) of the period four cycle now located
on y = 0, and separate two bordering nonconnected
parts of D(22; p2). It is not the case of the points of
Rdp1 ∈ ∂D(22; p2), which now do not separate two
bordering nonconnected parts of D(22; p2), but turn
into limit points of Rdp2, thus are accumulation of
non connected parts of D(22; p2). This last situation
is due to the fact that when c > cb2 the points of the
unstable fixed point q2 is a limit point of a subset
of increasing rank preimages of the unstable period
21 cycle (α1, α2) ∈ ∂D(22; p2), immediate basin of
the period 22 cycle.

The same behavior occurs for any interval
cbm ≤ c < cb(m+1) of the ω1 spectrum. When
c → cbm the 2m points (y < 0 and y > 0) of
the period 2m cycle tend toward the stable period
2m−1 cycle on the x-axis, creating locally 2m−1

narrow “vertical” sections (base of excrescences) in
the basin of the period 2m−1 cycle, and after a new
(rank-m) infinite set Rdpm of double points of J
appearing when c ≥ cbm. The points of Rdpm sep-
arate two bordering (adjacent) nonconnected parts
of D(2m). The points of Rdph ∈ ∂D(2m; pm), 1 ≤
h < m, does not separate two bordering noncon-
nected parts of D(22), but are limit points of non-
connected parts of D(2p; pp). This situation is due to
the fact that when c > cbm the points of an unstable
period 2q cycle, belonging to the basin ∂D(2m; pm)
are limit points for a subset of increasing rank
preimages of the period 2h cycles q < h located
on the x-axis. Figures 4–6 show J as boundary of
the brown region (filled Julia set) for a c-value of
the interval m = 2, 3, 4 corresponding to the basin
of the stable period 2m cycle, J containing the m
sets Rdpm.

When m → ∞, the sets D(2m) → 0 and⋃∞
m=1 Rdpm tend toward the dendrite (cf. Sec. 5.5),

obtained for c = c1s (Fig. 17).
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Fig. 16. Interval c13b1 < c < c13b2, c = 1.77289. Partial view of the filled Julia set J , basin toward the stable period 6 cycle

(3.21; 1, 1), with S 	 0. The boundary f1,1
3.21 belongs to the immediate basin boundary of the stable period 6 cycle (3.21; 1, 1).

The boundary F 1,1
3.21 is one of the three components of the period three subset of J (cf. Sec. 4 Proposition 2b), each one having

the basic Julia–Fatou configuration (A2). Some of the preimages of this configuration can be seen, for example Bµ.

Julia sets of class B: intervals c j
kbm ≤ c < c j

kb(m+1)

of the spectrum ωj
k.

For intervals c j
kbm ≤ c < c j

kb(m+1) of the spectrum

ωj
k, the Julia set structure is given by Proposition

2b. Now contrarily to intervals cbm ≤ c < cb(m+1)

of ω1, J ∩ (y = 0) contains infinitely many Can-
tor like sets Cs (cf. Sec. 2.3) born for c < c j

(k)0

and the unstable cycles with their increasing rank
preimages located on (y = 0), born for c j

(k)0 ≤
c < c j

kbm. So the set J ∩ (y = 0) is a well defined
fractal set, J ∩ (y = 0) ⊂ Cl(

⋃
r≥0 T−r(Ej

km)),
where Ej

km ∈ [q−1
1 , q1] is the Cantor set of repelling

cycles born for c < c j
kbm. The basin of the stable

(k.2m; j, pm) cycle intersects the x-axis including
2mk segments invariant by T k2m

Z , and their increas-
ing rank preimages located on the segment [q−1

1 , q1].
The other increasing rank preimages are located
on the fractal set T−r

Z ([q−1
1 , q1]) for all r > 0. All

the points of J with y �= ∅ consist of points of
all the other repelling cycles existing in the plane
and still outside the x-axis, and their limit points
(which will enter the x-axis at higher values of the
parameter c). The properties of the structure of J
are given in Proposition 2b. Figure 16 represents an
enlargement of the filled Julia set in the neighbor-
hood of the immediate basin boundary of the stable
(k.2m; j, pm) cycle.

Similarly equivalent behaviors occur for inter-
vals of spectra ωj1,...,ja

k1,...,ka
between two consecutive flip-

bifurcations.

5.5. Fifth type of Julia set.
Dendrites

Dendrites are characterized by the fact that
Ec ∩ J �= ∅ (i.e. a dendrite occurs if and only if Ec∩
J �= ∅). As we have seen in Sec. 3.3 this occurs when
the attracting set Ac of the Myrberg’s map is either
a critical set Acr (with Cantor like structure, of zero
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(a) (b)

Fig. 17. (a) Situation of the Julia set J , a dendrite, at the boundary c = c1s 	 1.401155189 of the ω1 Myrberg spectrum.
This dendrite is the limit of the filled Julia sets of Figs. 4–6 for an attracting period 2m cycle with m → ∞. Now the filled
Julia set does not exist, in other words it reduces to J . (b) Enlargement.

Lebesgue measure), or when Ac consists of k-cyclic
chaotic intervals, k ≥ 1 as described in Sec. 3.2
(point (P′2) and related properties). Clearly at any
value of c in the parameter set denoted by ĉ = ccr ∪
cch at which a dendrite occurs, the structure of J
is at a bifurcation situation, as conjectured in p. 73
(last paragraph of Chapter 4) in [Fatou, 1920].

The set ccr includes all the values of the param-
eter c which are limit points of flip bifurcation cas-
cades, i.e. one of the two boundaries of a Myrberg
spectrum (Ac is a critical set), as the values c j

ks and
their embedded forms in all the rank-a boxes, a ≥ 1.
These cases are characterized by the fact that the
trajectory of the critical point C belongs to the crit-
ical set as C ∈ E′c = Acr, so that Ec ⊂ E′c ⊂ J .

The set cch includes all the values of the param-
eter c which are global bifurcations, at the clo-
sure of any box of first or second kind, as the
values c∗jk , c∗jk2m , and limit points of such bifurca-
tions, and other global bifurcations as the values
c̃, and their embedded forms in any rank-a boxes,
a > 1 (Sec. 2.4). In these cases Ac consists of k-
cyclic chaotic intervals (k ≥ 1), the critical point
C is either periodic or preperiodic, merging into a
repelling cycle (|S| > 1), thus Ec ∩ J �= ∅.

As already remarked in Secs. 3.2 and 3.3, for
such parameter values, say c ∈ ĉ, J is not the
basin boundary of the attracting set on the x-axis,

but only the frontier of the basin of divergent tra-
jectories. This situation is called a dendrite, as J
is made up of a basic segment, the whole inter-
val [q−1

1 , q1] of the x-axis, and all its preimages
of any rank, T−n

Z ([q−1
1 , q1]) for n > 0, as given

in (5), which includes an “arborescent” sequence
of infinitely many arcs belonging to J for y �= 0.
Clearly the basic segment [q−1

1 , q1] of J includes all
the repelling cycles already created in the inter-
val (for c < c ∈ ĉ) and belonging to the attract-
ing set Ac of the Myrberg’s map (except for the
point q1) as well as their preimages and limit points
on the x-axis, while the arborescent part of J for
y �= 0 includes all the remaining cycles with peri-
odic points having y �= 0, and their preimages, that
will become real at higher values of c.

It is worth to note that since J is also the clo-
sure of all the repelling points (at any value of the
parameter c), it follows that the points of the inter-
val [q−1

1 , q1] which are not periodic, or limit points
of periodic points, on the x-axis (in particular, all
those of the interval [q−1

1 ,−c[) are limit points of
periodic points belonging to J with y �= ∅. Also the
points belonging to T−n

Z ([q−1
1 , q1]) for n > 0 are not

such periodic points, and are thus are only in the
limit set of such preimages.

As a result of all the preimages of any rank,
T−n

Z ([q−1
1 , q1]) for n > 0, the “arborescent” sequence
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of infinitely many J arcs with y �= 0 has the
same qualitative shape whatever be the parameter
ĉ = ccr ∪ cch. The related dendrites only differ by
the nature of the singular sets (Sec. 2.4) located
on the basic segment [q−1

1 , q1]. Figure 17 represents
the case c = c1s. Equivalent qualitative figures, at a
correctly chosen scale, can be obtained for c = c j

ks,
c = cj1,...,ja

(k1,...,ka)s
, c = cch.

6. Conclusion

Julia and Fatou have already described the basic
situations generated by a one-dimensional complex
map (and it is remarkable that this was done with-
out the help of any computer). In this Part I,
this paper has shown how the bifurcations sym-
bolism related to the box-within-a-box organization
(described in Sec. 2) permits to introduce a fractal
ordering in the qualitative changes of the Julia sets
generated by (1) when c is real, −1/4 ≤ c ≤ 2.
So it is possible to follow the evolution of the Julia
set shape in this interval, and identify the subin-
tervals giving the same qualitative shape. More-
over, as shown in Sec. 4, the structure of the Julia
set, defined from the the location unstable cycles
(defined by Sec. 2 symbolism) in the plane, can be
identified.

We remark that the paper results, based on the
box-within-a-box organization, describe the situa-
tion given from the section by the real parameter
axis of the boundary of the classical Mandelbrot set.
Then in the Mandelbrot parameter plane it is likely
that there exist routes with c complex, c = a ± jb,
j2 = −1, reproducing with a two parameter sym-
bolism what occurs when c is real.

Considering now the “indirect” embedding of
TZ into the two-dimensional family of noninvertible
maps T (2) (object of Part II of this paper), which
depends on the two real parameters c and γ, Secs. 3–
5 results define completely the map behavior in the
half plane y ≤ 0, when γ = 0. More particularly, the
second part of this paper will explain bifurcation
routes leading to the different configurations of the
Julia sets J generated by TZ when γ → 0, with
γ ≥ 0.
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rationnelles,” J. Math. Pures Appl. 4, 7ème série,
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