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Properties of the different configurations of Julia sets J, generated by the complex map T7:

Z/:ZQ

— ¢, are revisited when ¢ is a real parameter, —1/4 < ¢ < 2. This is done from a

detailed knowledge of the fractal bifurcation organization “box-within-a-boz” , related to the real
Myrberg’s map T : 2’ = 22 — ), first described in 1975. Part I of this paper constitutes a first
step, leading to Part II dealing with an embedding of Tz into the two-dimensional noninvertible
map T : 2’ = 2% +y —c; y = yy+42%y, v > 0. For v = 0, T is semiconjugate to T in the
invariant half-plane (y < 0). With a given value of ¢, and with « decreasing, the identification of
the global bifurcations sequence when v — 0, permits to explain a route toward the Julia sets.
With respect to other papers published on the basic Julia and Fatou sets, Part I consists in the
identification of .J singularities (the unstable cycles and their limit sets) with their localization
on J. This identification is made from the symbolism associated with the “box-within-a-box”
organization, symbolism associated with the unstable cycles of J for a given c-value. In this
framework, Part I gives the structural properties of the Julia set of Tz, which are useful to
understand some bifurcation sequences in the more general case considered in Part II. Different
types of Julia sets are identified.

Keywords: Noninvertible map; Julia set; fractal set; stability; basin; global bifurcation.

1. Introduction

This paper is the first part of a double publication
devoted to a study of a common basis: the fractal
bifurcation organization called “boz-within-a-box”
(translation of “boites emboitées’ in French). In the
simplest case this configuration is generated by the
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one-dimensional quadratic map. This paper involves
the real Myrberg’s noninvertible map 2’ = 22 — A,
inside the interval —1/4 < X < 2. The first
description of the box-within-a-box organization
was given in [Gumowski & Mira, 1975] and [Mira,
1975] before the introduction of the word “fractal”.
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Quoting these publications Guckenheimer [1980]
called it “embedded boxres”. Further to these pub-
lications, the books by Gumowski and Mira [1980a,
1980b], Mira [1987], Mira et al. [1996] have fur-
nished more elaborated presentations of this topic.

The identification of the fractal “box-within-a-
box” organization of the one-dimensional quadratic
map was made on the following bases: the Myr-
berg’s results [1963], and a nonclassical bifurcation
resulting from the merging of two singularities of
different nature, an unstable periodic point with a
rank-r image of the minimum of 2/ = 2% — \,r =
2,3,... [Mira, 1975].

The Myrberg’s results can be summarized as
follows.

e All the bifurcations values occur into the interval
—1/4<A<2.

e The number Ny of all possible cycles having the
same period k, and the number Ny (k) of bifur-
cation values giving rise to these cycles, increases
very rapidly with k.

e The cycles having the same period k differ from
each other by the type of cyclic transfer (per-
mutation) of one of their points by k successive
iterations by T'. These permutations were defined
by Myrberg using a binary code constituted by
a sequence of (k — 2) signs [+, —]. More or less
explicitly the Myrberg’s papers give an extension
of this notion to the case k — oo, and to general
orbits (iterated sequences).

e For A < A@)s = 1,401155189, ..., the number
of singularities (cycles) is finite. For A > A(y),
the number of singularities is infinite, and the
situation is chaotic (stable, or unstable chaos).
The parameter A1), is a limit point of bifurcation
values of period doubling of cycles of period 2¢,
1=0,1,2,..., (Myrberg cascade is called “spec-
trum” by Myrberg [1963], and called Feigenbaum
cascade after Feigenbaum [1978]).

e The following cascades of bifurcations: “stable
period k2¢ cycle — unstable period k2! cycle +
stable period k2!t cycle”, i = 0,1,2,3,...,
kE = 1,3,4,..., occurs when A increases. When

i — 00, the bifurcations have a limit point )‘zk)y

A)s < )\zk)s < 2, j characterizing the permuta-
tion of the period k cycle.

e It is possible to classify all the cycles of binary
codes via an ordering law (Myrberg’s ordering
law).

e A binary code can be associated with the A\-value
resulting from accumulation of bifurcations such

that ¢ — oo, or k — oo. This rotation sequence
satisfies the ordering law.

All these fundamental results have passed over
in silence, as they are unknown to the wide pub-
lic, and not cited in contemporary papers deal-
ing with this subject (subject quite popular since
1978). Most parts of these results are now very
often attributed to authors who rediscovered them
after, using other forms of quadratic map such as
the logistic map, or maps of the unit interval.

When c is real, this first part of the double pub-
lication shows how the knowledge of this bifurca-
tion organization permits a better understanding
of some “microscopic” properties of the Julia set J,
created by the complex map Tz, 2’ = z?> —c, where ¢
is a real parameter. Its two-dimensional real form is:

=2 —y®—c
TZ:{/_2 (1)
Yy =2y

By introducing a second parameter 7, from a
situation where the Julia set does not exist, the
second Part will explain some bifurcation routes,
leading to different configurations of Julia sets J
generated by Tz, when v — 0. This is made by an
“indirect” embedding of T’z into a two-dimensional
family of noninvertible maps T':

I .2
T:{x, 7+ y 20 @)
Yy =y +4x7y

with —1/4 < ¢ < 2, v > 0. This embedding is
not a “direct” one because its link with 7' is not
obtained by equating directly the parameter v to
zero. Indeed the maps family is characterized by the
fact that Twzo is semiconjugate to Tz in the invari-
ant half-plane {(z,y) : y < 0} (cf. [Agliari et al.,
2003, 2004]), i.e. TAY:O oh = hoTy, where h(zx,y) =
(z,—y?). In this half-plane T—¢ is equivalent (i.e.
semiconjugate) to the two-dimensional map T7.
Then the properties of the different Julia set config-
urations, obtained for fixed values of parameter c,
are also revealed from a bifurcation study when -y
decreases from 1 to 0. For v = 0 the basin boundary
in y <0 is a fractal set nowhere smooth, except for
particular values of ¢ at which J is a circle (¢ = 0),
or a segment (¢ = 2).

Remind that if 7" is a map, X' = T X, a period
k cycle is a set of k consecutive points satisfying
the relations TFX = X, T"X # X, 0 < r < k.
In the case of a general complex map 2z’ = ¢(2)
(not specially a polynomial one) a Julia set includes
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the points of all unstable cycles of any period k =
1,2,..., their limit sets, and their increasing rank
preimages (some properties of this set are recalled
below). The cycle multipliers (eigenvalues) of the
two-dimensional quadratic map Ty, are real and
equal, S1 = Sy = S. The paper shows that each
of these cycles located on the z-axis is exactly iden-
tified by the symbolism (k;j), or a more elaborated
one called “embedded representation” (cf. Sec. 2.2),
where j characterizes the cycle points permutation
by k iterations (cf. Sec. 2.1). As for the cycles with
y # 0, they have the same characterization, because
progressively they belong to y = 0 when ¢ increases
until ¢ = 2.

The Julia set J of Ty is a perfect set, clo-
sure (derived set, or set of the limit points, E')
of the set E of all the unstable periodic points
(cf. [Julia, 1918; Fatou, 1919, 1920], see also [Blan-
chard, 1984], the books of selected papers edited
by Devaney and Keen [1988], Beardon [1991] and
Devaney [1994]). The source of the fundamental
results concerning J properties are the works of
Julia and Fatou. Often the papers published after,
quoting these authors, do not mention their exact
contribution, which makes fuzzy the contributions
after those authors. In this paper, the corresponding
page numbers of the original French publications
are given, when necessary. Regarding this point,
in order to facilitate the reading of the Julia and
Fatou papers, it is important to indicate the follow-
ing two basic original symbolisms. Set J is called
E' by Julia and F (with a rounded type) by Fatou.
The map is written 2’ = ¢(z) in Julia, 2/ = R(z) in
Fatou.

In relation with the published papers, it is
worth to note that sometimes the same word has
different meanings according to the mathematical
“schools”, which is a source of misunderstanding
and mix-up. So in the classical nonlinear mechanic
field, and also for R. Thom (see his book Sta-
bilité Structurelle et Morphogéneése [1972]), a basin
of attraction is related to an asymptotically sta-
ble stationary state i.e. an attractor, and not to a
semi-stable state (or “neutral” as denoted by other
authors).

This text also uses the term “chaotic attrac-
tor” or “chaotic intervals” (behavior on the x-axis)
as attracting sets, and the term “basin” in any case
of chaotic attractors. This vocabulary requires an
explanation. Indeed in the case of a cycle, “basin
of attraction” is classically used when it is a topo-
logical attractor (with eigenvalue |S| < 1) and it

is not used when it is neutral (|S| = 1) even if it
attracts almost all the points of a domain. Gener-
ally “chaotic intervals”, or a “critical chaotic set”
are not topological attractors, even if they attract
almost all the points of a domain, thus the term
“basin of attraction” (as for the neutral cycle) can-
not be strictly used.

We remind that an attractor (or topological
attractor) A of a map T is defined as an invari-
ant set for which there exists a neighborhood U
such that lim7"(U) = A, which is not the case
when |[S| = 1. If this attractor has a “domain of
influence” of positive measure it is called “attractor
in Milnor sense”. As for a topological attractor,
for an attractor in the Milnor sense we shall use
the term “basin” (which for a topological attractor
means basin of attraction). Similarly when we have
a chaotic attractor, it is generally an “attractor in
Milnor sense”. It is the case for the map restricted to
the z-axis, when the boundary of a “cyclical chaotic
interval” includes a repelling cycle, so it cannot
be an attractor, but only an “attractor in Milnor
sense”. For the two-dimensional map the basin does
not exist, the Julia set (a dendrite) becoming the
boundary of the domain of diverging orbits.

The notion of critical point, which plays a fun-
damental role in the study of a complex map 2’ =
©(z), also must be clarified. Originally in the papers
of Julia, Fatou, and the other authors of the French
school of iteration (end of the 19th century, and
beginning of the 20th one), this notion is related
to the inverse map. A critical point of the inverse
of the map (as explicitly written in these papers) is
the image C of a point such that dp/dz = 0 (for
example see [Julia, 1918, p. 51]). From the second
half of the 20th century, in the most part of the
papers published in English a critical point is pre-
sented as a point satisfying dp/dz = 0, without any
reference to the inverse map. Following the volumi-
nous literature existing on noninvertible maps, this
paper uses the definition of the French school of
iteration (which is the Julia-Fatou one). So in this
paper a critical point, or a rank-one critical point, is
a point for which at least two coincident rank-one
preimages exist. The forward images of a critical
point are also called critical points, clearly of higher
rank.

The Julia set J has also other properties result-
ing from the previous ones given above.

(i) J is completely invariant (i.e. forward and
backward invariant) so that it includes all the
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increasing rank images and all the increasing
rank preimages of any of its points.

(ii) J is also given by the closure of the set of all
the preimages of any of its points. Thus, a for-
tiori, all the increasing rank preimages of E are
everywhere dense on J.

(iii) For a polynomial map, in the (x,y) plane J
constitutes the boundary of the basin of the
point at infinity (2 = o0), i.e. it bounds the
domain of divergent orbits [Fatou, 1920, p. 85].
Indeed, making the variable change z = 1/Z,
the point at infinity is now Z = 0, with a mul-
tiplier (eigenvalue) S = 0, point also called
superstable or superattracting.

(iv) In the case of the map Tz with —1/4 < ¢ <
2 generally J is also the basin boundary of
an attracting set on the z-axis. Here “gener-
ally” is related to the fact that in this interval
of c-values particular bifurcations values are
excluded, giving situations in which the basin
does not exist. Here two cases, developed in
Sec. 3, are possible. The first one is related to a
basin, in the Julia—Fatou sense, toward a point,
or a cycle (also called neutral) located on J,
its multiplier being |S| = 1. In the second case
(dendrite) J is the boundary of the basin of the
point at infinity, but does not separate another
basin. We recall that the set of c-values giving
rise to a dendrite is a set of positive Lebesgue
measure.

It is worth noting that the last paragraph
(p. 73) of Chapter 4 in [Fatou, 1920] underlines the
interest of finding, in the general case, the necessary
and sufficient condition for a “continuous” variation
of J, when the parameters vary, this independently
of the local behavior of the attractor. In the par-
ticular case of the quadratic maps family 7, with
c real, the box-within-a-box organization gives the
solution of the Fatou problem. Indeed the qualita-
tive properties of J change when a (k;j) (unsta-
ble) cycle first with y # 0 belongs to y = 0, after
crossing a c¢ bifurcation value for which the cycle
multiplier (eigenvalue) is |S| = 1. For each of the
(k; 7) cycles, this paper shows that the knowledge of
the box-within-a-box bifurcations organization per-
mits to define a c-open interval associated with an
attracting (k;j) cycle, where J has such a continu-
ous behavior. Such an open interval is bounded by
c-values such that |S(k;j)| = 1. This gives a first
step to discern between the J properties. Inside each

interval the multiplier S(k;j) = 0 separates two
different local behaviors near the (k;j) attracting
cycle: S > 0 with a regular convergence of orbits,
S < 0 with an “alternate” convergence.

For the clarity of this paper, we also have to
define two qualifiers, specifically used in this paper,
which are related to the properties of the Julia set
J. The first one is the J structure, which is only
related to the identification of the localization of
the (k;j) unstable cycles in the plane, i.e. of well-
defined subsets of the Julia set J. The propositions
in Sec. 4 provide such information. At this step the
J outline is not yet considered. The second qualifier
is the J shape directly related to its outline. So a
same J structure can correspond to different shapes,
which can be identified from a numerical simula-
tion. For example, in the interval —1/4 < ¢ < 3/4
(related to the attracting fixed point), J has the
same structure, but with a continuous evolution of
four shapes described in Sec. 5.3. This shape evolu-
tion depends on the distance of the period 2 cycle
(y # 0, which attains y = 0 for ¢ > 3/4) from the
T-axis.

This paper, as the numerous others published
since 1965, does not pretend to give new fun-
damental results with respect to the Julia and
Fatou contribution, which defined the basic situa-
tions without a computer help. The purpose of the
paper is only to show how the bifurcations sym-
bolism related to the box-within-a-box organization
(described in Sec. 2) permits to obtain a first order-
ing of the Julia sets generated by (1), when c is real,
—1/4 < ¢ < 2. Incidentally, we note that the sec-
tion of the Mandelbrot set by the real axis, obtained
numerically and shown in many relatively recent
papers, is well identified by the box-within-a-box
organization.

After this introduction, Sec. 2 is devoted to a
rundown of the box-within-a-box bifurcation orga-
nization of the Myrberg’s map 2’ = 22 —c. Section 3
is devoted to the Julia sets generated by T'z. Some
general Julia and Fatou results are reminded, with
a particular view concerning the polynomial map
Ty. The propositions about the structure identifi-
cation of the Julia set are given in Sec. 4, from the
bifurcation values of the Myrberg’s map, and the
intervals they define, inside which the J evolution is
continuous. From this information Sec. 5 describes
five well defined types of Julia sets, and their shape
evolution inside intervals where the J evolution is
continuous.
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2. Box-Within-a-Box Bifurcations
Organization of Unimodal Real
Maps. Rundown

2.1. Some basic properties

A unimodal map is a one-dimensional noninvertible
map, ' = f(xz,\) () is a real parameter), defined
by a function f with only one extremum. Here x
is assumed to be real, and that the z-axis is made
up of two open intervals: Zs, each point of which
has two distinct rank-one preimages, and Z; each
point of which has no real preimage. Such a map is
said of Zy — Z5 type. In particular, a quadratic map
belongs to this type for correctly chosen parame-
ter values. The fractal “box-within-a-box” (transla-
tion of “boites emboitées” in French) bifurcations
structure, or “embedded boxres” according to Guck-
enheimer [1980], was first identified in the case of
unimodal maps with negative Schwarzian deriva-
tive [Gumowski & Mira, 1975] and [Mira, 1975]. A
more complete presentation is given in the books
Gumowski and Mira [1980], Mira [1987], Mira et al.
[1996]. The basic fractal bifurcation organization is
generated by the simplest case of unimodal maps,
given by the quadratic map:

T:2' =2%- ) (3)

Here z is a real variable, and for this map, called
Myrberg’s map [Myrberg, 1963], the real parameter
cofthe map T (2) is written A. The inverse map 7"~
is defined by « = £+v/2’ + A. So the z-axis is made
up of the intervals Z, (' > —\), Zy (' < —\). The
rank-one image C' = T(C_1) of the ordinate mini-
mum C_; (z = 0) of the map function is the rank-
one critical point (in the Julia—Fatou sense), z(C') =
—A. It has two merging rank-one preimages at
T-YC) = C_4, C separating Zy and Zs. A rank-r
critical point C,_1 is obtained after r iterations of
C_1 (or equivalently r — 1 iterations of C, consid-
ered as the rank-one critical point Cy = C'). The
set of increasing rank critical points is denoted by
E. and its limit set by E., (derived set of E.). The
map 7" is characterized by the following properties.
(a) The parameter interval Q1 = [Aq1),, AT], A1), =
—1/4, A} = 2, called owverall box contains all the
bifurcations values of (3). In the interval —1/4 <
A < 2 the map possesses a unique attractor, which
in the simple cases is an asymptotically stable (or
attracting) fixed point, or an attracting period k
cycle, or a chaotic attractor. The value A1), =
—1/4 corresponds to a fold bifurcation giving rise

to two fixed points ¢;, ¢ = 1,2, with multiplier (or
eigenvalue) S = 2x(q;): ¢1 always unstable (S > 1),
and g2 (S < 1, attracting when —1 < S < 1). In
the interval A < A(j), = —1/4 no real fixed point
exists. The value A = A\] = 2 is a basic nonclassi-
cal bifurcation related to the merging of the unsta-
ble fixed point ¢; with the rank-two critical point
C, = T(C) = T*(C_1) = q1. For this parameter
value z(C1) = z(q1) = 2, 2(C) = z2(q;") = -2,
T~Yq1) = 1 Ugqy . When 0 < A\ < A} the invari-
ant segment [q; ! q1] is the closure of the basin of
the absorbing segment C'C7, containing the unique
attractor.

For the parameter value 0 < A < A} = 2 the
segment CC} is absorbing, an absorbing segment
(d") being bounded by two critical points, such that
the increasing rank images of any point of its neigh-
borhood U(d’), from a finite number of iterations,
enter into (d') and cannot get away after entering.

For the parameter value A = A] the segment
CCY is chaotic and merges with [¢; ', ¢1], (q; ") =
z(C) = =2, z(q1) = z(Cy) = 2. All the possible
cycles have been created, and they belong to CC}.
Then CC; is invariant but not absorbing. From
an initial condition zg, —2 < zg < 2, the map
generates a bounded orbit, belonging to the inter-
val (¢ ! q1], which is very sensitive to very small
changes of xg. The repelling cycles constitute a real
set E which is dense in the whole interval [—2,2]
(as well as their preimages of any rank), that is, the
derived set (set of limit points) E' = [—2,2] is per-
fect (see more details in [Julia, 1918; Gumowski &
Mira, 1980; Mira, 1987]).

When A > 3/4 the fixed point ¢o is always
repelling with S(g2) < —1, and a period 2 cycle
appeared from g¢s. This cycle, made up of two
points g2, © = 1,2, has the multiplier S(go;) =
4 — 4\, attracting (|S(g2)| < 1) if 3/4 < XA < 5/4.
The value A = XN;y = 3/4 is a flip bifurcation.
Increasing values of \ generate a sequence of flip
bifurcations A = A, for period 2™ cycles, m =
1,2,..., with an accumulation value lim,, o A\p;, =
As =~ 1.401155189. At this particular bifurca-
tion value A = Ay, the corresponding attractor is
an invariant set with Cantor like structure called
critical attractor Acr (see, among others, [Guck-
enheimer & Holmes, 1983]). When A < A;s the
number of repelling (or unstable) cycles is finite,
each cycle has a period 2™ which has been cre-
ated after crossing through the value Ap,,. When
A=A +¢e, >0, e — 0, infinitely many repelling
period 2¢ cycles (i = 0,1,2,...) exist, the ones
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created by the above sequence of flip bifurcations.
The parameter interval wy = [)\(1)0;>\13] is called
the Myrberg spectrum, denomination used in this
text. It corresponds to the sequence (cascade) of
period doubling bifurcations from the fixed point

g2 (i=0).

(b) The number Nj of all possible cycles having
the same period k, and the number Ny (k) of bifur-
cation values leading to these cycles, increase very
quickly with & (cf. pp. 93-97 of [Mira, 1987] for the
relations giving N and N)(k)). Cycles with the
same period k differ from each other by the per-
mutation (cyclic transfer) of their points by succes-
sive iterations of T'. Each k-cycle can be identified
by the symbolism (k;j), j being an index charac-
terizing this permutation. Afterward j will be sim-
ply called “permutation” in place of “permutation
of the cycle points via k iterations”. Let (k;j) be
one of such cycles. It can be generated from two
basic bifurcations: either a fold one, or a flip one.
The fold bifurcation generates two basic cycles at
A= )\fk)oz (k;j)s>1 and (k;j)s<1, k # 2. With
increasing values of A, a cascade of flip bifurcations
is created from the cycle (k;j)s<1, giving rise to a
sequence of (k2%;j;)s<1 cycles with accumulation,
when ¢ — oo, at a value A, A\is < A, < 2.
Here j; is the permutation related to the related
period 2! cycle, generated in the interval wy. Myr-
berg also calls “spectrum” the parameter interval
wj = [)‘{k)&)‘is]’ k = 1,3,4,.... The interval wj,
is made up of parameter intervals corresponding
to attracting cycles of period k2% i = 0,1,2,....
In w the flip bifurcation of a (k2™ 1;j,,_1) cycle
is denoted X, ., m = 1,2,.... The cycle sym-
bolisms (k;j) and (k2';j,p;) are related to what
is called a nonembedded representation in [Mira,
1987] and [Mira et al., 1996]. This symbolism, which
identifies precisely every cycle, is of wide interest
and importance in the description of the complex
dynamics of one-dimensional unimodal maps. The
complex and fractal behaviors can be described
also with other analytical tools, as for instance, the
kneading theory or symbolic dynamics. Neverthe-
less such theories do not identify the cycles gener-
ated by the map, and so are not able to explain
their origin in the complex bifurcations organiza-
tion, as the parameter A increases from A(j), =
—1/4 to A} = 2. For a given value A = A, of
A, the “box-within-a-box” bifurcation organization
permits the identification of all the cycles born for
A< Ag.

For A > A} = 2, [¢;',¢1] € CCy, the only
attractor is the point at infinity, and no other bifur-
cation takes place. The derived set E’ (without the
point at infinity) constitutes the nonwandering set
E' C [¢;' ¢1]. The map T has generated all the
possible cycles, which are real and repelling, and
E’ is an invariant Cantor set (and thus totally dis-
connected). This set, which constitutes the basin
boundary of the fixed point at infinity, is every-
where disconnected (discontinuous in [Fatou, 1919,
p. 260]).

The situation equivalent to the one at A} (but
now with an absorbing set inside CC}) is met for
each (k;j) cycle with multiplier S > 1 (thus gener-
ated by a fold bifurcation), for a value A = \;”. In
this case Az] is the least A-value such that the criti-
cal points Cy, = T*(C), Cp41, . .., Ca_1 merge into
k points of the (k;j) cycle with S > 1. Consider-
ing the map T*, for k intervals bounded by critical
points of well-defined rank, the value )\Z] reproduces
qualitatively the situation of 7" when A = A]. So
similarly to the case A = A}, when A = X\ the
map 1" gives rise to k nonconnected intervals con-
stituting a k-cyclic chaotic segment denoted C’H,]€
which attracts almost all (i.e. except for a set of
zero Lebesgue measure) the points of |¢; ', ¢1[\C'Hj.

C’H,Z is made up of the k cyclic chaotic segments
CCk7 Clck+17 s ack‘—ICQk—l .

(¢) The permutation (cyclic transfer) of one of the
points of a (k;j) cycle, via k successive iterations
by T', can be defined either in a binary form (Myr-
berg’s rotation sequence), or a decimal one (deci-
mal rotation sequence) [Mira, 1987]. Each rotation
sequence is associated with a well-defined index
j = 1,2,...,Ny(k). These rotation sequences are
ordered according to the Myrberg’s ordering law
[Myrberg, 1963; Mira, 1987], and the index j gives
not only the place of any cycle in this ordering,
but also the birth order of the bifurcations, when
A increases from A(;), = —1/4. Note that a nec-
essary and sufficient condition for a permutation
of k integers to be one of a cycle generated by a
unimodal map is given in pp. 136-138 of [Mira,
1987].

2.2. Description of the bifurcations
organization

The bifurcations organization described here in
the case of (3), concerns the whole family of uni-
modal maps (i.e. Zy — Z» ones) with negative
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Schwarzian derivative, which are topologically con-
jugated with (3) in some correctly chosen parameter
range. Globally the organization is characterized by
the existence of a parameter interval 1 = [A(1),, A]]
(overall boz), inside which all the possible bifur-
cations occur. This overall box contains intervals
reproducing the )1 properties in a configuration
of “Russian dolls” type. Out of 21 no bifurcation
occurs. 27 is generated from the two basic period
k =1 cycles, i.e. the fixed points g; and ¢s. Taking
into account the Myrberg spectrum wy related to
the fixed point g2 (S < 1), the box €2 is defined by:

0 = [A(l)O,XH =wiUA] A= ])\15,Xf]

The description of the box-within-a-box organiza-
tion implies a specific symbolism. So considering the
cycle (2%;p;) generated inside the spectrum wy, the
symbol “2” is not used for cycles of even period
born from a fold bifurcation, or a flip bifurcation
related to a basic cycle appearing out of w;. So
with such a symbolism the period 22 is different
from the period 4, 23 # 8, and 23 # 4.21, 4.2! being
the period of the cycle born from the flip bifurca-
tion of the period 4 cycle which appears from a
fold bifurcation A%Zl)o € Ajp. Cycles different from

(2:p;) can appear only for A € Aj. The interval
A < A1), = —1/4 corresponds to the absence of
fixed points (except the point at infinity), or cycles,
and every orbit is divergent. For A > A\] = 2 all the
possible period k cycles have been created. They are
repelling, and the map has the properties indicated
in Sec. 2.1.

Two basic cycles (k;j) (k = 3,4,...), issued
from the same fold bifurcation, one with S > 1, the
other with S < 1, generate a parameter interval,
provisionally denoted Qs having the same behav-

ior as Q1, Qx C A;. The box € is denoted 7,
if k is a prime number, or if it is not contained in
another interval Qy, k being a multiple of &’. Then
Qy is called rank-one box, or box (k;j) (embedded
representation) with:

Q= Wy, MW QL =w[UA] C Ay,

J 1\

Ak - P‘ks’ )\k ]
The index k is the basic period (or rank-one basic
period) of all the cycles generated in the box 7,
and j the basic permutation (or rank-one basic per-
mutation) of the points of these cycles. The interval

wj is the spectrum (k;j), and includes the Myr-
berg’s cascade (or period doubling cascade of flip

bifurcations) generated from the basic (k;j)-cycle
of the box with S < —1. Considering T* the box
ch reproduces all the bifurcations contained in the
box €2y, in the same order (self similarity property),
for a set of cycles (of the map T') having periods
multiple of k£ (but not all the possible cycles with
these periods). Let ;' be one of such boxes. Inside

chll it is possible to define rank-two boxes Q172 =

[ {,t’ﬁ:?)o, A:il',’j;] C A7l related to two (k1.k2; ji1, j2)
basic cycles, which for (7%1)*2 reproduce in the
same order all the bifurcations of the box Qill, and
so those of €;:

Q]17]2 — [)\]17]2

*J1,J2
k1.ke — (k1.k2)o? A ]

k1.ko
J1,J2 Ji.J2
- wkl ko U Ak‘l-kQ - Ak‘l’

A]la]Q — ])\]1-]2

*J1,72
ki.ko (k‘l.k‘z)s’ )\ ]

ki1 .ko

All the cycles generated inside Qfl],é have a rank-
one basic period ki, a rank-one basic permutation
J1, a rank-two basic period kike and a rank-two
basic permutation (ji,j2). Similarly, from a cou-
ple of basic cycles (ki,...,kq;71,---,Ja), One with
S < 1, the other with S > 1, rank-a boxes embed-
ded into a rank-(a — 1) box are defined:

]11 Ja _ ]17 7]11 *j17"'7ja
le, oka [)‘(kl, ka)o’ )‘kl,...,ka ]
.]17 7.]!1 .]17 7]0« j17"'7jl1*1
- wklv ka U A wka C Akl,...,ka_l
with cycles having rank-p basic periods,p =1,.. ., a,
and rank-p basic permutations. Moreover QJ 1 Tk €

]17 7](11
le’ ka1 O = 1,2,....

)\21 ,’]a of each of these boxes (a = 1,2,...) corre-
sponds to the merging of well-defined critical points
with a repelling basic cycle having the multiplier
S > 1.Boxes !, ..., Q" ’Jl‘z . are called bozes of
first kind. The representatlon of these boxes is given
in Fig. 1(a), with the enlargement in Fig. 1(b).

Bozes of second kind can be defined as follows.
Consider another type of bifurcation parameter \*,
now defined from a repelling cycle with S < —1,
born from a flip bifurcation. The first and largest
box is Q91 = [Ap1, A51] € Q1, A5 (K = 1) corre-
sponding to Ca = g2 (S < —1), A5, ~ 1.543689013.
Similarly boxes Qaom = [Apm, Agm], Asm (K = 1),
corresponding to critical points merging with the
period 2™ ! cycle (S < —1) from rank 2™*! can
be defined with

The boundary parameter

Qom C Qom-1 C -+ C Qo1 C
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Al o,
) Myrberg's cascade
2 k=l |
03 Qi A, =f(03 Q! No cyclai of odd period
5 2 11 3 ! >
H Qs Q3.3 i H 921.
A H W - W | =
A A  A3), Al A, A, My,
2 QL s, ~1.401 14
(a)
I
le CAI
) 1 a
A/ﬁ s < ®
jp 1 . i
Qi Ji :
0 il : lkl-3 “)kllg My?rber%'skcascade
. J1> . | =
. k] 4 . Ak1 3 N / Q ]171 ‘ : 1
/ﬁS 1 k.3 3i H kj.2"
DY #Jpol A A - ; 1 ;
A kl Aa f (k-3)g A Iil xklbl 7”{11)
N 12l ky.2 15 o/ ko
Limit of boxes A kl 3 LiI_I}it of boxes
QJ, K oo QJ, K>
(b)
Qzl
< 922
ol | . g
2Lm < 0 2! >
nol A2 Ao Ay, Ay Ay Ay
(c)

Fig. 1.
of first kind Qill (c¢) Box of second kind Q1.

Then each interval [A},.,i,A5n] C Qom contains
boxes, self-similar with €1, denoted

me7]’17]'2,---7]'a

PmsJ1,J25 - Ja—1
ey de e © A

2mk1,k2,..ska—1’ a= 1’ 27 o

Each of such boxes is defined from the basic
cycle (2Mky1, ko, ..., ka;DmsJ1,72s---+Ja) with the

Fractal “box-within-a-box” (or embedded boxes) bifurcations structure. (a) General view. (b) Enlargement of the box

rank-one basic period 2", and the rank-one basic
permutation p,, of the period 2™ cycle generated
inside wy. For A = A3, the map T gives rise to
m nonconnected intervals constituting a m-cyclic
chaotic segment denoted CHZYr. With the box-
within-a-box symbolism, note that a period 2™k,
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is not a k12™ cycle because they are not generated
in the same box. The box-within-a-box symbolism
implies a cycle identification related with a well-
defined box. '

Considering now a box !, bifurcations \ =

Agser, mo = 1,2,k = 1,3,4,..., can be
defined in an equivalent way. They are charac-
terized by the fact that the critical points, from
the rank k127%! merge into the unstable period
k2™t cycle (S < —1). Considering the flip bifur-

cation A = Aflbm, generating the attracting cycle

(k12™; j1,pm), the interval )\illbm < A S‘ )\;;{127”

defines a box of second kind, denoted Qfﬂm C
Qﬁl When m — oo, the two boundaries of Qﬁlzm
tend toward Ai}l o with A;ZIQW > Ai}l S.‘Here ky is
the rank-one basic period of all the Qfﬂm cycles,
J1 the corresponding rank-one basic permutation,
k12™ the rank-two basic period, (j1,pm) the rank-
two basic permutation, p,, being the permutation
related to the period 2" cycle of the w; spectrum.
For \ = )\:ﬁm the map T gives rise to km non-
connected intervals constituting a km-cyclic chaotic
segment denoted C' H} .

Other boxes of the second kind of embedded
versions can be defined, for example:

thjm---,jmpm _ [)\jh---,ja )\*j1,j27...,ja ]

k1,k2,..,ka2™ T 1k, kabm Tk ke, kg 2T
j17j27"'1ja
SR

from the cycle (ki, k2, . .. ka2 G g, s JasPm)
with S = —1, and

le1j21---7.7‘r711pm1jr+la---1ja

_ [ J1:J25--2Jr—1:PmJr+15--Ja
k1,k2,kr—1.2M kg1, ka

)\*jl7j2a---ajrflypmvjrwtlv---vja]
kl7k27---7k1"—172m7k7‘+17"'7kl1

J1,J25-Ja
- le,k‘g,...,k‘a

from the cycle (k‘l.k‘g, cee kr_1.2m71.k7»+1, ey kg
jl,jg, e 7jr—17pm7jr+17 e 7ja) with § = —1. More
complex boxes, with several periods 2? in the k;
sequences characterizing a cycle period, can be
defined.

Figure 1 represents the fractal “box-within-a-
box” (or embedded boxes) bifurcations structure,
with self-similarity properties. The organization of
the set € is similar to that of its parts (the above
defined boxes), even if these parts are infinitesimal.

2.3. Properties

Consider the map (3) and increasing values of the
parameter \. In this case, the multiplier .S of a cycle

ki,ko,....kr—1,krbm kg1, ke

(k;7)s>1 increases, and the multiplier S of a cycle
(k;7)s<—1 decreases. So these cycles become more
and more repelling, and they cannot disappear by
bifurcation. The following properties result from the
fractal box-within-a-box organization:

(a) Let [k,j] (nonembedded representation), k =
1,3,4,..., be the given basic cycle of the box
Q. with S < 1. For A > A/ the spectrum wj,
has generated an invariant set with Cantor like
structure Cs[k, j], made up of all the repelling
(k2%, j;)-cycles, i = 0,1,2,..., with multiplier
S < —1, and their limit set, born from the flip
bifurcations of wj.

(b) Let (ki;j1) be the basic cycle (S < 1) of
the rank-one box '. For A\ > )\Zil the

box Qi}l has generated an invariant set with
a Cantor like structure Cs[ki,ji]. This frac-
tal set is made up of infinitely many Cantor

like sets, Cs[klk‘g;jl,jg], ey Cs[klk‘g, ey k‘a;
J1,J2s---,Ja] (embedded representation)...,
a = 1,2,...,00, generated from the infinitely

many boxes embedded into 3} .
(¢) For A > A" the map T (thus not only the
k1

box ' as in (b)) has generated infinitely
many invariant sets with Cantor like structure
related to the infinitely many boxes created for
A<

(d) For \ < Af;ﬂ)s the map has generated infinitely
many invariant sets with Cantor like structure
related to the infinitely many boxes created for
A< )\z}ﬁ)o.

(e) For A > A}, T has generated all the possible
cycles (which are repelling), created from the
infinitely many boxes embedded into the over all
box €21, and all belong to an invariant set with
Cantor like structure included in the interval
[Q1_17 Ch] .

(f) For any A > Ais the map T has generated a
Cantor like invariant set on which the restriction
of T is chaotic, which includes infinitely many
repelling cycles defined from the properties

(a)~(d).

Properties (a)—(d) describe a “microscopic”
view of the generation of Cantor like structures,
while (e)—(f) give the global result of such a genera-
tion. When the map variable is complex, 2/ = z%2—¢,
the properties (a)—(d) have the interest of detecting
what are the subsets of the Julia set J which become

real when the real parameter c increases, and the J
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subsets, located out of the real axis, which are just
about to become real.

For any A > Ay denote AY the fractal invari-
ant set belonging to [¢; ! q1] which includes all the
unstable cycles created for values of the parameter
lower than A (whose bifurcation organization is well
defined and represented in Fig. 1) together with all
their preimages and limit points. When Ay < )\ <
A} from any initial point zp € [ql_l,ql]\Aj, after
a number N (x() of iterations (the number depend-
ing on the initial point) the trajectory enters an
e-neighborhood of the unique attracting set exist-
ing in C'C;. Then when the point z is sufficiently
close to A, N(zo) may be quite high and the orbit
(discrete trajectory) possesses a chaotic transient.
When A > A}, and zg € ]g; ', ¢1[\A%, N(0) denotes
the number of iterations occurring in the interval
lay ! g1, after which the point is mapped outside
lay ! g1[ and the orbit diverges tending toward infin-
ity. When the point xq is close to A3 then N(xg)
may be quite high and the trajectory possesses a
chaotic transient.

As remarked above, on the z-axis, the repelling
cycles, their increasing rank preimages, and their
limit points, have a fractal organization when
A > M. For each point of the parameter A-axis,
A > Mg, the fractal structure of the map sin-
gularities is completely identified from the box-
within-a-box bifurcation organization. Consider \ €

wi, with A\ sufficiently near )\(k) so that the

map has an attracting cycle (k;j). For the map
T* this cycle gives k attracting fixed points Pj,
i = 1,...,k, each of which with an immedi-
ate basm do( ), and a total nonconnected basin
d(P;) = U,=o(T7%)"do(P;). The total basins d(P;)
have a fractal structure. The set AY constitutes a
strange repeller, which belongs to the boundary of

Uh_, d(P).

2.4. Limit sets of boxes and
resulting properties

Let A > Aj5. Consider the critical set E, (i.e. the
orbit of the critical point) E. = {T™(C),n > 0}, its
derived set E., the set E of repelling cycles (|S| >
1), and its derived set E’. The set E’ contains sets
of accumulation points of increasing classes in the
Pulkin’ sense [1950]. So E belongs to the class 1, a
limit point of class p being accumulation point of
points of class ¢ < p (also see [Mira, 1987, pp. 99—
100]). The situation p — oo is characteristic of a
fractal set.

Adapting the Fatou’s results [1919] to the case
of a real variable, the following properties can be
deduced [Mira, 1987, pp. 156-160]:

(i) When T has an attracting cycle (|S| < 1), a
point of the critical set E. or its derived FE.
does not belong to the set E of repelling cycles
(|S] > 1), or to its derived set E'.

(i) When E U E’ contains points of E. U E., then
some bifurcation occurs, giving either a neutral
cycle with |S| = 1, or some chaotic attracting
set, say for A = \. In this last case T gener-
ates either a critical attractor A.. or k-cyclic
chaotic segments (k > 1) in the interval CCy
(for k = 1 the chaotic interval is bounded by the
critical points C' and C). For example, A,” (or

any closure of a box of first kind), >‘k]21

closure of a box of second kind) and AJ (Myr-
berg’s limit pomt of flip bifurcations sequence)
are particular A values. When \ = )\k] , k points
of E. and their increasing rank images merge
into k points of E. When \ = )\;232“ k2¢ points
of E. and their increasing rank images merge
into k2' points of E. When A = A/ the whole
set E. coincides with the critical attractor A,
and belongs to E'.

(or any

From these considerations, a first set of prop-
erties related to the different types of limit sets
of sequences of rank-one boxes QP (r = 3,4,...)
can be given (more details are given in [Mira, 1987,
pp. 156-160, 166-174]).

(a) Consider a rank-one box of first kind Q{{ =
M@ N k=3,4,..., ‘
A< )\(k) the parameter value )\%k)o (at which

and its boundaries. For

the set E! consists in the (k;j) neutral cycle)
is a limit point of rank-one boxes of first kind

Q{, with & — oco. For \ > Azj the value )\Zj isa
limit point of rank-one boxes ch/,l, with k" — oo.
For A < A7, A7 is a limit of a subset of rank-a

boxes, a > 1, embedded into €. The value A}’
is such that E. includes the repelling (k;j)s>1
cycle (i.e. C is either periodic or preperiodic),
the set E. is without accumulation points.

(b) Inside each Q] box the bifurcation values X

is a limit point for A > X\ of N9 values when

k2¢

i — 00, and for A < A} of the flip bifurcations
generated in the mterval w}. The value AJ
such that the whole set E! coincides Wlth the

critical attractor A, (i.e. the invariant set with
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Cantor like structure A% C [g; ", ¢1]). Moreover
the critical point C' belongs to the set E! and
the set E. belongs to E'.

(¢) Parameter values of type ), denoted A, exist as
limit of boxes QF, without belonging to a box
boundary. For example A ~ 1.89291098791 for
which g = C3 (and similar values exist for each
k > 3 at which ¢o = Cj, [Mira, 1982, 1987]).
Then C'C] is an absorbing chaotic segment, giv-
ing rise to a nonclassical invariant measure (cf.
[Couot & Mira, 1983; Mira, 1987, pp. 156-160,
166-174], see also [Thunberg, 2001] and refer-
ences therein). At such particular bifurcation
values (in which the attracting set of the map
is a chaotic interval, or cyclical chaotic inter-
vals) the set E. includes a repelling cycle (i.e.
C' is either periodic or preperiodic, the set F.
is without accumulation points).

(d) Due to the self-similarity property, (a)—(c) also
recur for embedded rank-a boxes, a > 1, with
adaptations related to their rank, for example,
now C'C] contains some cyclic chaotic segment
giving rise to a nonclassical invariant measure.

We note that for A = )\Zj the cyclic chaotic
segment CHj, made up of the k segments CC},
C1Cky1, - -
ated inside the Qi box, and their limit sets. Its com-
plementary part CCy\CH ,JC inside CC] contains all
the repelling cycles created for A < A{

-y Ck—1C2;—1, contains all the cycles cre-

50" A value

A, limit of boxes Qb s such that CC contains all
the cycles created for A < A, except the point ¢;
(period one cycle).

We end this section summarizing briefly the
properties of this family of maps, as A varies in the
interval —1/4 <\ < 2.

For any value of A almost all the points =z
of the interval |¢; ', q1[ (i.e. apart from at most
a set of points of zero Lebesgue measure) have
the same asymptotic behavior, which sometimes is
called metric attractor Ay, due to this property, and
independently on its nature. This metric attractor
Ay can only be one of the following three typolo-
gies ([Blockh & Lyubich, 1991], see also [Sharkovsky
et al., 1997]):

(1) a k-cycle (of any period k > 1, either stable
(IS] < 1), or neutral (|S] =1));

(2) a critical attractor (A.,) with Cantor like struc-
ture, of zero Lebesgue measure;

(3) k-cyclic chaotic intervals, k& > 1.

In the case (1) the generic omega limit set w(x)
is equal to the omega limit set of the critical point
C, and the trajectory of C tends to the k-cycle,
stable or neutral Ay,w(C) = A). In the case in
which S = 0 we have E, = A, and E. = @ while
when |S] < 1 and S # 0 we have Ay = E. and
E.NE! =@, sothat E. N.J # & when |S| = 1.

In the case (2) the generic omega limit set w(x)
is equal to w(C) = E. (that is A, = E.) and C €
E! (so that E. C E!).

In the case (3) the critical point C'is either peri-
odic or preperiodic, merging into a repelling cycle
(|S| > 1), which is called a critical periodic orbit.
Thus F. consists in a finite set of points, which are
not limit point of critical points, however the crit-
ical periodic orbit belongs to the chaotic intervals
Ay, sothat E.NE # @ and E.N Ay # O.

Let us define as )\, the set of parameter val-
ues in the box Q1 ([—1/4;2]) at which the typol-
ogy (1) occurs, Ao and Ay, respectively the set of
parameter values in the same interval [—1/4,2] at
which the typology (2) and (3) respectively occurs.
Then it is important to notice that the set A\, con-
sists of infinitely many nontrivial intervals having a
fractal structure in the interval [—1/4,2] and dense
in it (ie. A, = [~1/4,2]). These intervals are the
Myrberg spectra without their boundary A . The
set A is a completely disconnected set of zero
Lebesgue measure while the set A\, is a completely
disconnected set of positive Lebesgue measure (for
the proofs we refer to [Thunberg, 2001] and ref-
erences therein). Thus the set in which we have
chaotic attracting sets, above denoted with 5\, is
given by their union, that is, A = A, U Ay, and
is a set of positive Lebesgue measure.

As recalled in the previous sections, when the
parameter \ varies in the interval —1/4 < A\ < 2
sequences of “boxes” occur, with the related bifur-
cations. Each box of the first kind is opened by a
fold bifurcation giving rise to a pair of cycles, such
a box of first kind closes when the cycle with .S > 1
becomes critical for the first time (i.e. the first time
that a critical point merges in it, at its first homo-
clinic bifurcation). Inside each box of first kind the
cycle with .S < 1 starts an infinite sequence of flip
bifurcations, each of which opens a box of second
class which closes when it becomes critical for the
first time (i.e. at its first homoclinic bifurcation).
Such sequences of boxes have a fractal structure due
to the self-similar property. All the boundaries of
boxes of first or second class are bifurcation values.
At all the opening values the map is of typology
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(1), while all the closure values are global (homo-
clinic) bifurcations (belonging to the set A.,), and
the map is of typology (3). Inside each box of first
kind there exists a limit value of boxes of second
kind at which the map is of typology (2) (for exam-
ple, those previously denoted as Af{ ; belonging to
the set A..). Particular bifurcation values of A\ are
those which are limit points of other bifurcation val-
ues (for example, boundaries of boxes of first class),
such bifurcation values belong to the set A, and
the map is of typology (3). In particular, when the
critical point C' is periodic or preperiodic (to an
unstable cycle) the map is of typology (3).

Remark. The results related to the above item
(¢) (i.e. to typology 3) are generally attributed
to [Misiurewicz, 1981], the parameter values A},

1 ,)\ZJ , 5\, X and their embedded forms being called
“Misiurewicz points” by Blanchard [1984], or other
authors. Nevertheless these values were identified
before, from the years 1975, without using the
same language (cf. [Gumowski & Mira, 1975, 1980a,
1980b; Mira, 1975, 1976, 1978, 1979, 1982, 1987;
Couot & Mira, 1983]). This identification permitted
the ordering of the Myrberg spectra in the frame-
work of the fractal “box-within-a-box” bifurcations
organization.

2.5. General occurrence of the
embedded boxes organization

As already remarked in Sec. 2.1 the embedded boxes
organization generated by the Myrberg’s map T (3)
also occurs for other types of unimodal maps. Par-
ticularly in the case of the general form of quadratic
map 3y = ay?® + 2by + ¢, a linear change of variable
y = ar + 3 leads to (3) with A\ = b* — ac — b,
ac = 1, af = —b. Moreover, particular classes
of bimodal maps (maps with two extrema, i.e.
Z1 — Zs — Z1 maps) create such bifurcations orga-
nization related to each of the two possible attrac-
tors (cf. [Gumowski & Mira, 1980, pp. 401-418)).
For multimodal maps locally this organization may
also exist.

The fractal embedded boxes organization
described in Secs. 2.1-2.3 shows that if the Myr-
berg’s map has a cycle with a period different from
2t 4 =0,1,2,..., that is for A > A5, then T has
already generated infinitely many repelling cycles
which belong to a strange repeller (as stated in
Sec. 2.3). This property may occur also in multi-
modal maps. It gives a test permitting to state the

presence of a strange repeller, and also the existence
of any homoclinic trajectory of a repelling cycle
permits to state this existence (and an homoclinic
explosion of a repelling cycle occurs whenever a crit-
ical point is merging with a repelling cycle, which
corresponds to the existence of chaotic dynamics
on intervals). In the case of a two-dimensional map
T, such a dynamic behavior may occur on a one-
dimensional manifold, in which case we can say that
it contains a strange repeller, generated by the one-
dimensional map resulting from the restriction of T'
to this manifold.

3. Julia Set Properties from the
Box-Within-a-Box Ones

3.1. Some basic general Julia Fatou
results

The introduction has already recalled some basic
properties (cf. (i) to (iii)) of the Julia set J gener-
ated by a complex map 2z’ = p(z) (not necessarily a
quadratic polynomial). In particular J is a perfect
set including the set E of all the unstable cycles of
any period k = 1,2,3,..., their derived set (or set
of limit points) E’ (Julia notation), J = E’. This
section gives more properties denoted below (P1)—
(P7). In this framework it is reminded (see (iii) in
Sec. 1) that the point at infinity is an attracting
fixed point with multiplier S = 0 (being also a crit-
ical point), when ¢(z) is a polynomial.

(P1) The basin of an attracting fixed point (or
a cycle) is either simply connected (as it is
always the case for the point z = oo when
the map is polynomial), or nonconnected with
infinite order (i.e. made up of infinitely many
nonconnected components). The basin of z =
oo is bounded by the Julia set J. Generally J
is nowhere differentiable [Julia, 1918; Fatou,
1920].

(P2) If more than two attracting fixed points, or
cycles, exist, at most one of these attractors
can have a simply connected basin, the other
basin being made up of infinitely many dis-
tinct domains [Fatou, 1920, p. 79].

(P3) When a fixed point z* is such that its mul-
tiplier is |S| = 1, it always belongs to the
Julia set J. The point z* is a limit point
for the increasing rank images of the criti-
cal point related to the branch of the inverse
map ¢~ !(z) related to this point, i.e. z* € E.
(cf. Sec. 2.1). The convergence toward z* is
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called “singular”. Then the Julia set J has a
numerable set of points where the tangent can
be defined [Julia, 1918, pp. 52-53, 222-243,;
Fatou, 1919, p. 163, Chaps. IT and IV].

The basin of an attracting fixed point (or a
cycle) always contains a critical point [Julia,
1918, p. 129]).

Let « be an attracting fixed point of the map
2 = p(z), and Dy its immediate basin, sup-
posed to be simply connected. If the bound-
ary dDg of Dy does not include a point image
of a critical point of the inverse map ¢!, or
limit of increasing rank preimages of a critical
point, Dy has no tangent at any of its points,
except when 0Dy is a circle, or a straight line,
or an arc of circle, or a segment of straight
line [Fatou, 1920, p. 240].

The structure of J is self-similar (now called
fractal) (cf. [Julia, 1918, p. 49|, and [Fatou,
1920]).

J is either a simple closed Jordan curve, or
made up of infinitely many closed Jordan
curves (C") and their limit points [Julia, 1918,
p. 52]. In this last case J contains double
points everywhere dense on J. Each point of a
(C*) curve is a limit point of curves external
to the one considered, their dimensions tend-
ing toward zero.

General properties of the
quadratic map Tz, ¢ being real

Let us recall some other particular features of J gen-
erated by the quadratic polynomial map Tz in the
interval ¢ > —1/4. They were proved by Julia [1918]
and Fatou [1919, 1920}, and differently presented by
Blanchard [1984], Devaney [1986]. The parameter A
of the real map 2’ = 22 — X in Sec. 2 is now denoted
¢, and the cycles multipliers of the two-dimensional
map 1y are real and 51 =5, = 5.

(a)
(b)

Except the cases ¢ = 0, ¢ = 2, the Julia set J
is a fractal set (cf. Sec. 3.1, P3).
For ¢ = 0 J is the circle with radius 1 (i.e. the
circle |z| = 1 in the complex representation), on
which the map T is topologically conjugated
with the map of the circle into itself f(6) = 26,
0 € 10,27]| (cf. [Julia, 1918, p. 103; Fatou, 1920,
p. 226]).

For ¢ = 2J is the interval [—2,2] [Julia,
1918, p. 52, 186].
For ¢ > 2, the critical point C' belongs to
the domain of divergent trajectories, then J is

(d)
(e)

the complementary set of this domain, and is
everywhere disconnected [Fatou, 1920, p. 84].
J is a Cantor set (on which the map is topolog-
ically conjugated with the shift map [Devaney,
1986]).

For any ¢ > —1/4 the restriction of Tz to J is
a chaotic map [Devaney, 1986]).

For —1/4 < ¢ < 3/4 J is made up of a sim-
ple (i.e. without multiple points) Jordan closed
curve (cf. (P7) and [Julia, 1918, p. 52, 188~
213]), fractal for ¢ # 0. The shape of J in the
interval —1/4 < ¢ < 0 is sometimes called petal-
like. For 3/4 < ¢ < c15 ~ 1401155189, J is
a closed continuous curve, which may have a
parametric representation as x = f(t),y = g(t),
having multiple points everywhere dense on
itself. J is made up of infinitely many curves,
each one being a simple closed Jordan curve (cf.
(P7) and [Julia, 1918, p. 52, 220-222]).

The last paragraph (p. 73) of Chapter 4 in
[Fatou, 1920] notices that, when J (denoted F
by Fatou) contains points of E.U E., the corre-
sponding parameter of the map can be related
to what is a bifurcation (even if this word is
not used). Indeed Fatou says that examples
show this situation, which is in the parame-
ter space a boundary separating two regions
where J varies continuously (for polynomials,
see also the contribution of Douady in the book
edited by Devaney [1994]). Fatou also notes
that, in the general case, it would be interest-
ing to find the necessary and sufficient condi-
tion for a continuous variation of J when the
parameters vary. When c¢ is a real parameter,
the knowledge of the box-within-a-box organi-
zation permits to define the boundaries sepa-
rating ¢ intervals where J varies continuously,
as this will appear below.

Among the situations E/ C J consider the
particular case for which a fixed point, or cycle
(limit of increasing rank critical points), z* € J
has a multiplier |S| = 1 (Secs. 3.4 and 3.5),
thus with only a basin toward this cycle of J,
attractor in the Milnor sense on the z-axis. This
case is a bifurcation one, as indicated in Sec. 2.
Except this case, when .J contains points of
E. U E! the corresponding situations are given
by the values ¢ = ¢ (cf. Sec. 2.4, A becom-
ing now the parameter c¢). For example, such
values are ¢;’, or ¢, for which a rank-r crit-
ical point (belonging to E.) C,_1, Cy = C,
merges with a point of a repelling cycle, and
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¢}, (limit of period doubling bifurcations), and
their embedded forms in rank-a boxes, a > 1.
For such c-values J is not the basin boundary
of an attracting set on the x-axis different from
the point at infinity, and its shape nowadays
is called a dendrite, see for example [Devaney,
1986] for ¢ = ¢}, ~ 1.543689013 (C2 = ¢2). In
such cases J is made up of a “base”, the seg-
ment [q; ' q1] of the z-axis, and an “arbores-
cent” subset of J for y # 0.

(g) In the special case ¢ = 0 the Julia set J of Tz
is a circle, with the fixed point ¢ (multiplier
S = 0) as center. For —1/4 < ¢ < 0, J has
a shape presenting infinitely many bumps (see
below Fig. 10), called above “petal like”. When
¢ > 0 first (i.e. before another shape change)
the J shape appears as made up of infinitely
many spikes (see below Fig. 11), the continuous
evolution of the J shape occurring through the
circle case.

3.3. Specific properties of Tz related
with the box-within-a-box ones

We turn now to more specific properties of the two-
dimensional map 77 (1), in the interval —1/4 <
¢ < 2. From Tz(z,y) = Tz(—x,—y) the symme-
try property of the map, with respect to the origin,
results. Thus the preimages of any point different
from the origin are symmetric with respect to (0, 0),
as all the backward invariant sets, in particular .J.
This two-dimensional map 77 has only one rank-
one critical point, C' = T%(0,0) = (—¢,0) belong-
ing to the x-axis. This axis is an invariant set (the
restriction to y = 0 is the Myrberg’s map), thus all
the critical points of any rank, images of C, belong
to the x-axis. The same is not true for the preim-
ages. Indeed it is easy to see that all the points
of the plane, different from (0,0), possess two dis-
tinct rank-one preimages. Only the points of the x-
azis (z,0) with x > x(C) = —c have two distinct,
symmetric, rank-one preimages belonging still to the
x-azis (they are those related to the Myrberg’s map).
All the other points of the plane have two distinct
rank-one preimages not belonging to the x-axis (and
symmetric with respect to the origin). In particu-
lar, it is the case of the points (z,0) with < z(C),
which have two distinct rank-one preimages belong-
ing to the y-axis. For example, with —1/4 < ¢ <2
consider the two rank-one preimages of the segment
[qfl,—c] on the z-axis, where qfl is the preim-
age of the repelling fixed point ¢, different from

this point. Such preimages give the two symmet-
~(a7" +0)
and — —(ql_1 + ¢) <y < 0. Notice that the width

of the segment [¢; ', —c] (and that of its rank-one
preimages) decreases as c¢ increases, and tends to
zero, which occurs for ¢ = 2 with qfl =—c= -2

Due to the fact that all the critical points
belong to the x-axis, it follows that the attractor of
the map Ty at finite distance (related to the orbit of
the critical point C') can only belong to the x-axis,
and so it is the attractor of the Myrberg’s map.
Divergent orbits always exist, thus the Julia set J
bounds the basin of divergent trajectories, and may
be also the boundary of the attractor on the z-axis.
For the map Ty all the possible cycles always exist
i the plane, at any value of c. Depending on the
parameter value, some of them may be on the x-
azis, and all the other outside (necessarily repelling,
thus belonging to J).

For example, for —1/4 < ¢ < 3/4 only the
two fixed points of Tz belong to the z-axis, all the
other k-cycles, k > 1, (which are repelling) have
their ordinate y # 0, and belong to the Julia set
J (here made up of a simple Jordan closed curve).
Clearly, as all these cycles of period k£ > 1 have ordi-
nates y # 0, the same property also occurs for all
their preimages of any rank. While for the two fixed
points on the x-axis, only a subset of their increas-
ing rank preimages also exists with y # 0 from a
certain rank.

As said in Sec. 1 two qualifiers, related to the
Julia set J properties, can be used. The first one
is the J structure, which identifies the set of (k;j)
unstable cycles belonging to y = 0, and the one
belonging to y # 0, this without any relation with
the J outline. The second qualifier is qualitative,
and concerns the J shape directly related to its
outline. This last qualifier is essentially related to
the numerical simulation of J, but qualitatively
depends on the ordinate (y # 0) of the first cycle
which will attain the z-axis from a c-increase.

The structure and the shape of J change as
the parameter ¢ increases, starting from the value
¢ = —1/4 [case of Fig. 7(a)]. As ¢ increases, the
positions of the repelling cycles with y # 0 (and
thus the Julia set J) changes continuously as long as
no bifurcation occurs on the x-axis, which involves
the dynamics of the Myrberg’s map 2/ = z? — .
Thus every bifurcation occurring in the Myrberg’s
map, also implies a bifurcation in the structure of
J. Generally the bifurcations of the Myrberg’s map

ric segments of the y-axis, 0 < y <
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involve the appearance of cycles on the z-axis, or
better: the transition of cycles already existing in
the plane (outside the z-axis, on the set J), to the
z-axis. Thus J can have continuous changes only
in the interval of values corresponding to the exis-
tence of an attracting cycle on the z-axis, where no
bifurcation occurs. Stated in other words, when c
increases, all the bifurcations of the Julia set J are
associated with bifurcations of the Myrberg’s map,
and often correspond to transitions of cycles from
y # 0 to the x-axis, from which they can never
escape. Now consider the properties of the Myr-
berg’s map mentioned in Sec. 2.4, by emphasizing
the related properties of the Julia set J.

For any value of ¢, —1/4 < ¢ < 2 the struc-
ture of J is related to the structure of the unique
metric attractor A. existing on the x-axis for the
Myrberg’s map:

(P'1) When A, is a stable k-cycle (of any period
k> 1, |S| <1), then J changes continuously
in the interval of ¢ for which —1 < S < 1 (as
described in Secs. 5.3 and 5.4). The values
S = 41 and § = —1 are bifurcation values
for J, described in Secs. 5.1 and 5.2.

(P’2) When A, is a critical set A.. (with Cantor
like structure of zero Lebesgue measure on
the x-axis), or when A. consists of k-cyclic
chaotic intervals (y = 0), k > 1, then J is at
a bifurcation value and it is a dendrite.

In the case (P’1) when the cycle is stable, (|S] <
1), then the trajectory of the critical point C is
either periodic (superstable case), or tends to the
stable k-cycle, and no point of E.UE.. belongs to .J.
In this case J separates two basins: the basin of A,
and the basin of divergent trajectories (the point at
infinity being also an attractor for T7). When the
cycle is neutral (|S| = 1) then J is at a bifurcation.
One has A, = E! which is the neutral k-cycle, and
E.N E! = @ but now the periodic orbit E! belongs
to J (E. C J). In this neutral case .J separates the
basin of the point at infinity (domain of divergence),
and a basin toward A., which is a set of positive
measure also for Tz, in the two-dimensional phase
plane.

The set of parameter values of the interval
[—1/4; 2], where a continuous variation of J occurs,
is related to intervals inside the Myrberg’s spectra,
which are contained in all the boxes of first and
second kind, in a self-similar way (Sec. 2.4). Each
one of such intervals is bounded by two consecutive

bifurcations of a given spectrum. So the continuous
variations of J occur in infinitely many nontrivial
intervals having a fractal structure in [—1/4; 2] and
dense in it.

As already noticed, in the case (P’2) the den-
drite structure of J is related to two different situ-
ations, in each of which the invariant set A. of the
Myrberg’s map has chaotic dynamics, and J is the
boundary of the basin of divergent trajectories but
not the boundary of an attractor on the z-axis (the
invariant set A, in fact belongs to J itself). The
two different situations, related to the two different
kinds of chaotic sets on the z-axis, have different
properties in terms of limit sets of the critical point
of the map Tz. When ¢ belongs to ¢, C ¢, then
A, is a critical set A, (cf. Sec. 2.5 for the defini-
tion of A, and ¢.,) with a Cantor like structure of
zero Lebesgue measure. Then A, = E., C € E!
so that E. € E. C J. While when ¢ belongs to
Cen, C ¢ (cf. Sec. 2.4), then A, consists of k-cyclic
chaotic intervals, the critical point C' is either peri-
odic or preperiodic, merging into a repelling cycle
(|S| > 1), which is called a critical repelling periodic
orbit. Thus E.N.J # ). The set of parameter values
¢ = ¢erUcep, for which the case (P’2) of the dendrite
structure of J occurs, is a completely disconnected
set of positive Lebesgue measure.

When the case of (P’1) occurs, the so-called
filled Julia set (or filled-in Julia set) ¥(.J) is the set
of all points (x,y) that have a bounded orbit (i.e.
nondiverging trajectories). It is given by the clo-
sure of the basin of the stable (or neutral) k-cycle
on the z-axis. The frontier of ¥(J) is J. Clearly in
the cases in (P’2) the filled Julia set F(J) reduces
to the dendrite J.

The properties of J, issued from the knowledge
of the box-within-a-box organization, comes from
the fact that the subset of E' (repelling cycles of the
map Tz) belonging to the z-axis for —1/4 < ¢ < 2,
their preimages and limit sets, can be well identified
by the symbolism described in Sec. 2, and such sets
are involved in any bifurcation of J. We recall that
all such bifurcations are of codimension two for the
map T because we have always S; = Sy (a pair
of cycles from the region y # 0 reaches the z-axis
when S = +1, a cycle from the region y # 0 merges
with a cycle on the z-axis when S = —1). The
bifurcation values of the parameter ¢, defined by
the box-within-a-box organization, permit to bound
intervals where J changes continuously. So five dif-
ferent types of structure of the Julia set J can be
identified, for c-values in the interval —1/4 < ¢ < 2.
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Three types are related to the ¢ bifurcation val-
ues, and two to intervals where J has a continuous
change, i.e. intervals corresponding to the existence
of an attracting cycle on the z-axis, where no bifur-
cation occurs.

The first type occurs at each fold bifurcation
(S = +1) on the z-axis. For ¢ = ¢), = —1/4, it
will be considered of class A. For ¢ = C(Jk)o’ or more

generally c(])il’"_'_’_j,‘;a)o fold bifurcations giving rise to

a pair of cycles of period ki, ks, ..., ky, it will be
considered said of class B.

The second type occurs at each flip bifurcation
on the z-axis (S = —1) belonging to a Myrberg
spectrum. For ¢ = ¢, € wi, it will be considered
of class A. For ¢ = ¢} € wlg, or more generally

kbm
J1s--sJa J1s--sJa . : 3
Clhr o hadom € Wik M= 1,2,3,..., it will be

considered of class B.

The third type occurs when J changes con-
tinuously in intervals 1), < ¢ < a1, ),
—1/4, 1 = 3/4. It will be considered of class

A. For c(Jk) < ¢ < ¢l , k>3 or more gen-
erally c{él""_:’fga)o <ec< c{él"’:’fga)bl, at which Ty
has an attracting cycle on the z-axis with multi-
pliers —1 < S < 1, it will be considered of class
B. Its immediate basin boundary is made up of k
(k = 1,2,...), or ki,...,kq, simple (i.e. without
multiple points) Jordan closed curves. For k& > 2
the points of these curves are accumulation of other
such curves.

The fourth type occurs when J changes contin-
uously in intervals cp, < ¢ < cypyry, m=1,2,....

Then it will be considered of class A. For ¢} < ¢ <

T Tkem
J1y-5Ja
(k17---aka)b

, at which T has an attracting cycle

k > 3, or more generally c <c<

c’g,b(mfl)’
C]l,---,]a
(K15 ska o (mt 1)
on the z-axis with multipliers —1 < S < 1, it will be
considered of class B. For k = 1 (cy, < ¢ < Cp(my1))
J is made up of infinitely many closed Jordan curves
(C*) and their limit points. In this last case J con-
tains double points everywhere dense on J. Each
point of a (C") curve is a limit point of curves exter-
nal to the one considered, their dimensions tending
toward zero [Julia, 1918, p. 52].
The fifth type, corresponds to the dendrite
structure of J, at each value of ¢ belonging to the

set ¢ = cor U e, (which includes values such as czj ,

c,‘g o € and their embedded forms in rank-a boxes,
a > 1), except for the value ¢ = 2.

So the “class A” indicates that the considered
parameters belong to the first Myrberg spectrum.

With the “class B” they belong to embedded spec-

tra wy, or wil e A given type associated with one

of the two classes (except the fifth type) is related
to a well defined structure (in Sec. 1 sense) of the

Julia set, as it will be shown in Sec. 4.

3.4. Consequences

It is worth to note another remarkable property
of the so-called filled Julia set ¥(J) in the cases
defined by (P’1), and of the Julia set J in the cases
defined by (P’2) (see above) for ¢ € [—1/4,2]. In the
case (P'1) ¥(J) is given by the closure of the set
of all the preimages of the segment [q; ' q1] on the
x-axis. In the case (P’2) J is also given by the clo-
sure of the set of all the preimages of the segment
[¢71, q1] on the x-axis, that is:

F(J)=C U T,"(l¢; ", q1])p in the cases (P'1)
n>0

(4)
in the cases (P’2)

J=C 3 1" (ot @)
n>0

(5)
where C) denotes the closure of the set. Indeed con-
sidering the segment [g; L q1] of the z-axis, and
the arborescent set of its increasing rank preim-
ages, the property stated above is clearly true when
¢ = 2 as in this case for any n > 0 we have
T;"(ler " o)) = [ay ' @] = J. When ¢ € [~1/4,2]
the subset [q; ', —c| of the segment [¢; ', q1] is the
one from which all the preimages have y # 0. So the
two rank one preimages of the segment [g; ' q1] on
the z-axis are: the segment itself and the segment on
the y-axis with —\/—(qf1 +c)<y< \/—(qfl +¢),
intersecting the other at the origin. Then all the
increasing rank preimages consist of arcs issuing
from (or crossing) the further preimages of the ori-
gin (on the z-axis and on the y-axis occurring when-
ever a preimage of some rank of the origin is a
point belonging to [¢; 1 —¢]). The rank-one preim-
ages of this first segment on the y-axis consist of two
arcs issuing from (or transversally crossing) the two
points of the z-axis belonging to 7~!(z = 0) (which
are the same points of T,'(0,0)) and symmetric
with respect to the z-axis. And so on. Consider-
ing U0 T, "([g; ", ¢1]) we get infinitely many arcs
which belong to the filled Julia set, or to J, because
all such points do not have divergent trajectories.
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Thus considering the closure of this set we get the
whole filled Julia set, or the whole Julia set J. In
fact, it is enough to consider the closure of the
preimages of the point ¢; to get the whole frontier J,
and thus the equality is obviously true in (5) when
J is a dendrite. Otherwise in the cases (P’1), the
set J (clearly contained in Cy({J, o Ty "([a; ', ¢1])))
is the frontier of a basin, and is necessarily on the
boundary of the set, which thus consists in the filled
Julia set £(J).

We remark that the width of the first segment
on the y-axis belonging to the rank-one preimage

of g7, q1] is 24/ —(g; ' + ¢) and tends to zero as
¢ increases towards 2. Thus the structure of J is
more and more “contracted” on the xz-axis, as c
increases. Moreover, at each value of ¢, say ¢ = ¢,
all the repelling cycles of the Myrberg’s map (cycles
of Ty with y = () belonging to J) belong to the
subset JN[g; ', q1], with the subset of their increas-
ing rank preimages on the z-axis and their limit
points. While the part of the Julia set J with y # ()
includes all the other repelling cycles of Tz (as all
exist in the plane at any value of ¢) and still out-
side the z-axis. It is clear that such cycles and
their preimages (all with y # ()) are only limit
points of the preimages of the interval [g; Lq). All
such repelling cycles belonging to J (but not to the
x-axis) will enter the x-axis at higher values of the
parameter ¢, at the other bifurcations occurring for
¢ > ¢ in the Myrberg’s map.

4. Propositions on the Julia Set
Structure

4.1.

It is recalled that the notion of structure is only
related to the identification of the position of (k;j)
unstable cycles and their limit sets in the plane, i.e.
to the geometrical situation of well defined subsets
of the Julia set J, this without any relation with the
J outline (or shape). So a same structure of .J can
correspond to different shapes, which can be iden-
tified from a numerical simulation. Until now only
a coarse view of the plane situation of the unsta-
ble cycles has been given for a non “bifurcated”
¢ = ¢4 parameter value: the ones located on the
x-axis, generated for all the bifurcations of the inter-
val ¢(1), < ¢ < ¢y, the ones having y # 0, which
are associated with the bifurcations of the interval
¢y < ¢ < c}. The purpose of this section is to refine
the identification of J subsets in y # 0.

Generalities

Another description of the filled Julia set ¥(.J)
in the cases (P'1) is obtained by considering the
immediate basin, denoted dy(A.) C (y = 0) of the
Myrberg’s real map 2’ = z? — ¢. The boundary
ddo(A.) of dy(A.) belongs to J, then clearly

F(J) =0 | | Tz"(do(Ae)) (6)
n>0

and J is the boundary of ¥(J).

Using the box-within-a-box symbolism, the
above properties can be presented as follows. Con-
sider the restriction of T to the z-axis, that is the
Myrberg’s map T (2’ = x? — ¢), and for C(J,mo <
¢ < ¢j,; the stable basic cycle (ki;71) of the box
chll The corresponding k; stable fixed points of

the map 7" have as immediate basins the open
segments dj(ki;51) C (y = 0), n = 1,2,... ki,
bounded by the associated (ki;ji) unstable fixed
points of 7% with S > 1, and some well defined
of their preimages until the rank & (Sec. 2.3). The
boundaries of the other parts of the total basins
(on y = 0) are made up of all the repelling cycles,
created on the z-axis for ¢ < C(]lil)o (the lower

boundary of the box €;'), their derived set, the
increasing rank preimages (on y = 0) of all these
points. Inside each of the immediate basins of the
ki stable fixed points of T, and on their bound-
ary, the dynamics reproduces the behavior inside
the basin (and on its boundary) of the stable fixed
point g2 with —1 < S < 1, obtained when ¢(1)y =
—1/4 < ¢ < c1p1 = 3/4. An equivalent property
occurs in the intervals ¢y, < ¢ < cymy1) (belong-
ing to the spectrum wy ), for a period 2™ cycle, and
el <ec< cglb(mﬂ) (interval belonging to wj') a
period k12™ cycle.

When we consider the points of the two-
dimensional phase plane of Ty, with —1/4 < ¢ <
3/4, the Julia set J is made up of all the unstable
cycles of any period (belonging to the plane with
y # 0, and entering the z-axis when the parameter
¢ belongs to 1), their limit points and their increas-
ing rank preimages. The set J is the basin boundary
of the fixed point go (first cycle of the Myrberg spec-
trum wq, with multiplier |S| < 1). The basin is an
open simply connected domain.

We note that the permutation of the abscis-
sae of a cycle (k;j) with y # 0, whatever be
c< C(Jk)07 is also that of the Myrberg’s map. Indeed

when c increases each cycle attains the z-axis, hence
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permitting to identify the cycle from the Sec. 2
data. The only difference is for a cycle (k2™; 7, pm)
resulting from a flip bifurcation, for which each of
the k2! pairs of its points have the same abscissa.
This is due to the flip bifurcation on the z-axis,
coming from the merging of a pair of cycles from
the region with y # 0 with a stable cycle of period
k/2 on the z-axis. From this property, even in this
case the permutation of the cycle abscissae permits
to identify the period k2™ cycle.

~ Due to the properties of self-similarity, for
C(Jk)o < ¢ < ¢}y, the immediate basin Dg(k; j) of the
stable (k; 7) cycle has a boundary 0Dy (k; j), which is
a subset of the Julia set J. The set Dy (k; j) limits k
domains, which are the immediate basins Dg (k; j),
n =1,2,...,k, of the k stable fixed points of Tf.
Each one, with its boundary 0Dg (k; j), reproduces
locally the dynamics obtained for —1/4 < ¢ < 3/4,
Di(k;j) N (y = 0) = di(k;j), and for odgy(k;j),
the boundary of dij(k;j), oDy (k;j) N (y = 0) =

odg(k; j). For C(Jlil)o

cycles on the z-axis are those created for ¢ < clgibl,
property which results from the box-within-a-box
organization.

Definition 4.1

< ¢ < ¢y, the repelling

(a) The Julia set J, or one of its subset, is said to
have the Julia-Fatou configuration (A1) when
it is a simple closed Jordan curve.

(b) The Julia set J, or one of its subset, is said
to have the configuration (A2) in the following
conditions. (i) It is a continuous closed curve,
but having double points everywhere dense on
itself. (ii) It is the union of infinitely many
curves (C") with their limit points, each (C*)
being a simple closed Jordan curve. (iii) Each
point of a (C") curve is a limit point of curves
external to the one considered, their dimensions
tending toward zero.

These two configurations are described in p. 52
of [Julia, 1918] and proved in pp. 158-175, (also see
of [Fatou, 1920, p. 91]). A configuration (A1) differ-
ent from the one obtained for ¢ = —1/4 [see below
Fig. 7(a)] is represented in Fig. 2 at ¢ = 0.72. A con-
figuration (A2) is represented in Fig. 3, at ¢ = 1.22.

4.2. First interval of a Myrberg
spectrum

From the Julia—Fatou results, and the above con-
siderations, for the intervals cjyp = —1/4 < ¢ <

cpy1 = 3/4, and C(Jk)o < ¢ < ¢}y, the J structure
(in the sense defined in Sec. 1) is now well identi-
fied by the following propositions on the Julia set
structure:

Proposition 1a. Let ¢ be the parameter value of the
interval c1yp = —1/4 < c < cp = 3/4.

(i) The Julia set J is the basin boundary of the
stable fized point qo.

(ii) J contains all the unstable cycles, and their
limit sets, generated inside the box Q1. JN(y =
0)=q Uql_l, T Yq) =aq Uql_l, and so con-
tains only one unstable cycle, the fixed point
ql(S > 1).

(iii) J has the Julia—Fatou configuration (A1), i.e.
it is a simple closed Jordan curve.

Proposition 1a’. Let ¢ be the fold parameter value
cqyo = —1/4, Proposition 1a holds changing the sta-
ble fixed point g, into the neutral fixed point.

Propositions la and 1a’ result from the above
considerations. Figure 2 represents the Julia filled
set for ¢ = 0.72. This figure shows the positions of

the cycles (2';p1) (o, a2), (2%p2) (11,12, 03,74),
the period 3 cycle (01, 09,03) generated in the box
04, and the period 6 cycle (six blue points 0511'3) of
the box Q;’llﬁ C Q91. The evolution of these cycles
will be followed in the next figures.

The symbolism of the following proposition is

defined in Sec. 2.2 dealing with boxes of first kind.

Proposition 1b. Let ¢ be the parameter of the
interval C(Jlil)o < c < Clgllbl’ generating the sta-
ble cycle (k1;51), k1 = 3,4,..., (multiplier —1 <
S < 1). Let Ji! be the J subset of all the unsta-
ble cycles with a rank-one basic period ki, a rank-

one permutation ji, generated inside the interval

o < ¢ < ¢ (box Q). Let Do(ks; ) be the

immediate basin of the stable cycle (k1;71).

(i) All the cycles, and their limit sets, generated

fore < Clzllbl’ belong to the J subset JN(y = 0).

(ii) jﬁ C J belongs to the immediate basin bound-
ary 0Do(k1;j1) of the stable cycle (ki;j1).

(iii) Exzcept the unstable cycle (ki;71) (multiplier

S > 1) all the j,ﬁ cycles have an ordinate

y#0.

(iv) The unstable cycles entering the x-axis for ¢ >
*J1

¢, are such that y # 0. They are limit points

of the increasing rank preimages of j,ﬁ Out of
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Fig. 2.
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The Julia filled set for ¢ = 0.72, related to a Julia—Fatou configuration (A1l). The Julia set J bounds the basin toward

the stable fixed point g2 (=1 < S < 0). The points a1, ag are those of the period two cycle (21; p1). This figure also represents
the period four cycle (2%; p2) (points 01,712,173, 14), the period three cycle (o1, 09, 03), entering the z-axis when c¢ is in the box
Q3, and the period six cycle (six blue points 051%3) when ¢ is in the box Qb ’; C Qo1. The Julia set J presents infinitely many
excrescences with a “base” having a decreasing length, tending toward zero for ¢ — ¢;; = 3/4. The origin of such excrescences
is due to the fact that when ¢ — ¢,1 the two points (y < 0 and y > 0) of the unstable period 2! cycle a; Uag € J tend toward
the stable fixed point g2 on the z-axis. This creates locally, in the basin of g2, a narrow vertical section bounded by a; and

a2, the increasing rank preimages of which are related to the fractal set of excrescences. When ¢ = ¢ the period two cycle

merges with ¢g, the section length becoming equal to zero, which leads to the basic Julia—Fatou configuration (A2).

the Dy(ky;71) closure, j,ﬁ itself belongs to the
limit set of these increasing rank preimages.

(v) Each component 0Dy (ki;j1), n = 1,2,... k1,
of ODy(k1;71) has the Julia—Fatou configura-
tion (Al), i.e. it is a simple closed Jordan
curve. The unstable cycles generated for ¢ <
cliyy (on the x-axis) belong to the limit set of
the increasing rank preimages of 0D{(k1; 1),
which intersect y = 0 symmetrically.

(vi) The above properties recur for the first interval

jlv"',ja jlv"'?ja
Clhr,ynka)o < € < Cly, .. ka)bl

jl?“‘,ja ; jl?“‘?ja
Wi of embedded first kind boxes le,...,ka'

of every spectrum

When C(jkll)o <c< cgllbl, first we note that each
boundary 0df(k1;71) = ODg(ki;51) N (y = 0) is

made up of one of the ki points of the unstable
(k1;41) cycle (with S > 1) and, among its rank-
k1 preimages, the nearest preimage of this cycle
point. For ¢ = czjll we note that each component

of C’H,ﬁ (Sec. 2.2), kij-cyclic chaotic segment on
the z-axis, is bounded by the same points. The
statement (i) results from the above considerations.
The claims, (ii), (iii) are directly due to the k;
periodicity, associated with the permutation ji, of
the immediate basin boundary dDg(k1;j1). Indeed
according to the box-within-a-box cycles organiza-
tion, except the cycles generated inside the box Qfgll

(c(j,;l)O < c < czzl) no other cycle multiple of k;

with a basic period ki, and a basic permutation j;
(cf. Sec. 2.2) can exist on dDg(k1;j1). For ¢ = ¢!
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Interval ¢ < ¢ < ¢pa, ¢ = 1.22, basic Julia—Fatou configuration (A2). The filled Julia set is the basin toward the

stable period 2! cycle a1 Uaa. The set Ry, is made up of the unstable fixed point g2 and its increasing rank preimages. The

colored points are those of the unstable cycles defined in Fig. 2. The period four cycle (2%;ps) (pomts 1, 12,M3,M4), and the

period six cycle (six blue points 021 3)

belong to the immediate basin boundary of the stable period 2! cycle. The period three

cycle (01,02,03) belongs to the remaining part of the basin boundary.

all the C'H; unstable cycles (k1, ..., ka;j1,-- - Ja),
a=1,2,..., with a period multiple of k1 comes from
unstable cycles (y # 0) which entered the x-axis for
a c-value, c(}C 0 <c< c,C Indeed when c¢ increases

in the interval c,C pp << c I1 , the unstable cycles

of J,gl (y # 0) are those Wthh progressively enter
1
on the x-axis, more precisely in the intervals defined
by the boundaries of the former djj(k; j) (now being
not basin parts). The point (ii) also reflects the self
similarity property between J for —1/4 < ¢ < 3/4,
which contains all the unstable cycles generated in
Qq, and JJ1 which for c(k o <c< ck p1 contains all

the unstable cycles generated inside the box le

About the other points of PI‘OpOSlthH 1b, it is clear
that the cycles generated for ¢ > Ck are limit points
(y # 0) of the increasing rank preimages of J}Q,
and out of the D{(ki;j1) closure, each point of
j,ﬁ is a limit of a J subset made up of increasing

rank preimages of j,g . As J is a simple closed Jor-
dan curve for ¢()p = —1/4 < ¢ < ¢p = 3/4 (cf.

[Julia, 1918; p. 52]), le belongs to k1 simple closed
Jordan curves in the interval C(k)o < ¢ < ckb1

Points (iii)—(vi) are justified by properties given
in Secs. 3.3 and 3.4, by self similarity properties
related to the immediate basin between the inter-
vals cyo < ¢ < a1, C(Jk)o < ¢ < ¢}y, and their
embedded forms.

Let ¢ be the fold parameter value
Proposition 1b holds changing the sta-

Proposition 1b'.
c = c(k )0°
ble cycle (ki;j1) into the neutral cycle (ki;71),
and adapting the boundaries of the parameter
intervals.

This Proposition results from the above con-
siderations, when ¢ — c(k) from decreasing c

values.
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4.3. Interval bounded by the two
first flip bifurcations of the
basic Myrberg spectrum w,

The symbolism of this section is defined in Sec. 2.2
dealing with boxes of second kind. The basic Myr-
berg spectrum is wy, defined by c(1)p = —1/4 < c <
c1s = 1.401,.... The subinterval of wy here consid-
ered is ¢ = 3/4 < ¢ < ¢ = 5/4, bounded by
the two first consecutive flip bifurcations. In this
interval the attractor is the stable cycle (2%;p1),
located on the z-axis. With the box-within-a-box
symbolism, consider that 2™ denotes the period of
a cycle born from the bifurcation S = —1 (so 22 # 4,
23 £ 8,...), and that a period denoted 2™k is differ-
ent from the period denoted k2. As shown by Julia
and Fatou, the Julia set J has the Julia—Fatou con-
figuration (A2), called here basic configuration (A2)
(cf. Fig. 3), bounded on the z-axis by the unstable
fixed point ¢; and its rank-one preimage q; ! differ-
ent from g1 (T~ (q1) = @1 Ug; ).

Proposition 2(al). Let ¢ be the parameter value
inside the interval ¢y = 3/4 < ¢ < ¢ = 5/4,
inside the spectrum wi, interval bounded by the two
Jirst consecutive flip bifurcations and generating the
stable cycle (21;p1). Let Jo1 be the J subset of all the
unstable cycles (i.e. with their limit sets), generated
inside the interval cyy < ¢ < ¢y (box of second
kind Q91), cycle which has a rank-one basic period
21 associated with the permutation p;.

(i) J N (y = 0) contains q1 U qi' U qo, and the
subset of all the increasing rank preimages of
q2, located on (y = 0).

(i) Jy1 C J belongs to the immediate basin bound-
ary ODo(2';p1) of the stable period 2' cycle.
The point qo is common to the two components
oDy (2% p1), n =1,2, of ADo(2'; p1).

(iii) The J cycles different from the Jo1 ones belong
to (y # 0), and enter the z-azis for c in the
interval ¢, < c<cj=2.

(iv) The Julia set J has the Julia—Fatou con-
figuration (A2). The set J is connected but
bounds nonconnected open domains. Among
these domains 2% of them belong to the imme-
diate basin ODy(2';p1) of the stable period 2!
cycle.

Consider the immediate basin boundary
ODo(2';p1), of the stable period 2! cycle, and the
basin boundary of each of the 2! stable fixed points
generated by T %l. The boundary 0Dg(2™;py,) is

made up of two components D} (2%;p1), n = 1,2,
with 0D} (2% p1) N OD3(2Y;p1) = qo. The state-
ment (i) results from Sec. 3 considerations. The
assertion (ii) is directly due to the 2! periodicity
of ODgy(2'; p1), associated with the permutation p.
Indeed 2! and p; are respectively the rank-one basic
period and the rank-one basic permutation for all
the cycles generated in the interval ¢y < ¢ < cjm
(box of second kind €2,1). No other cycle with an
even period 2'77 r = 0,1,2,..., and a permuta-
tion piy,, exists in this interval. For ¢ = ¢, j21
belongs to the two-cyclic chaotic segment CHg},
having ¢» as common point. All its unstable cycles
(generated inside €251), now with y = 0, come from
unstable cycles (y # 0) which entered the z-axis
for a c-value, ¢p1 < ¢ < ;. It is clear that the
other unstable cycles of J with y # 0 are gener-
ated in the interval ¢, < ¢ < ¢ (point (iii) of
Proposition 2a). The total basin of the stable period
2! cycle is nonconnected, but with a connected
boundary J.

As shown by Julia and Fatou, J is made up
of the union of infinitely many closed curves (C*)
and so has the Julia-Fatou configuration (A2) (cf.
Sec. 4.1) limiting nonconnected open areas (cf.
Fig. 3). The points set Rg1 = Ci(U,>07 " (q2))
corresponds to contacts between these curves, the
points of which are dense on J. On the z-axis
JN(y = 0) is made up of ¢, and its increasing rank
preimages, tending toward ¢ U q; 1 which belong
to Rgp1 N (y = 0). The points of Ry, belong to
the connected basin boundary dD(2'; p1) of the sta-
ble period 2 cycle located on y = 0. Each of these
points separates two bordering (adjacent) noncon-
nected parts of the total basin D(2%;p1).

For y # 0 the shape of JN(y = 0) is reproduced
on the fractal set of arcs given by T, "([¢; !, ¢1]) for
r > 0. It is clear that the other unstable cycles
of J with y # 0 are those becoming stable in the
interval cj; < ¢ < ¢} (point (iii) of Proposition 2a).
The total basin of the stable period 2™ cycle is non-
connected, but with a connected boundary J. Point
(iv) is due to the properties of self-similarity of the
embedded boxes.

Figure 3 is obtained from Fig. 2 after the merg-
ing of the two points «aq, as of the unstable cycle
(2':p1) into the stable fixed point go, the cycle
(2':p1) becoming stable on the z-axis, and g2 unsta-
ble. It results in a breaking of the of the simply
connected basin Fig. 2 into pieces separated by the
set of Rg,1 points. Figure 3 illustrates the properties
described in the Proposition. So the unstable period
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six cycle (six blue points 0511_3) of the box Q;’ll'g C
91, as all the unstable cycles of (251 are located
on the immediate basin boundary dDg(2';p;) of
the stable cycle (2';p1). The unstable period three
basic cycle (three red points oy, i = 1,2, 3), gener-
ated in the box Q1 out of Qy1, belongs to the total
basin boundary, but does not belong to dDg(2; p1).
The sequence of bordering (adjacent) nonconnected
parts of the total basin intersecting the y-axis, is
made up of decreasing open domains on both sides
of y = 0, symmetrical with respect to y = 0, with

ordinates — —(Qfl-i-C) <y < - —(qfl—i-qQ)

and /(¢ + @) < y < \/—(a7" +c). Their
boundaries form two plaits, first rank preimages of
boundaries of basin parts on both sides of the x-
axis, with —(q; 11 ¢) < 2 < ¢o. The increasing rank
preimages of dDg(2';p1) give rise to the J configu-
ration (A2). Remark that these parts belong to J
subsets constituting well defined levels of “strata”
starting from the immediate basin.

4.4. Interval bounded by the two
first flip bifurcations of a
Myrberg spectrum wy,

Proposition 2(b1). . '

inside the interval Cl;:yllbl <c< c,illb?, of the spec-

Let ¢ be the parameter value

trum wi, ki = .., generating the stable cycle

(k12! ,jl,pl). Let J]ﬁ’zpll be the J subset of all the

unstable cycles, generated inside the interval Clgibl <

¢ = CZfél (box of second kind Qill’gf). Let jﬁ

be the J subset of all the unstable cycles gener-
ated inside the interval ck 21 < c < Ck , located
inside the box of first kind Qill Let ODg(k12'; 71, p1)
be the immediate basin boundary of the stable point
of the cycle (k12%;j1,p1), made up of k12" compo-
nents 0D (k125 51,p1), n=1,2,... k2%

(i) The subset J N (y = 0) is made up of all the
unstable cycles, their limit sets, born in the
interval ¢(1)p < ¢ < Clﬁbl‘

(ii) J]Ml21 C J belongs to the immediate basin
bounddry ODo(k12Y; j1,p1). Each point of the
unstable cycle (k1;j1)s<-1 (located on the
z-axis) is common to ODF(k12';j1,p1) and
Tk1 (0D (k12 j1,p1)]. This situation gives rise
to a J subset JJ1 made up of ki pairs OD}, of

k1, Jit = UL, 8D,

connected sets, r =1,...

(i) Each pair dD} is linked with a subset J ()" of
jﬁ As @6 the set jﬁ = U]:1:1 j(ill)r and the
set j,ﬁ U j,ﬁ are periodic of period ki, asso-
ciated with the permutation ji. Each of the
ki elements ODg U J(i})"of the set JI U J}!
has the basic Julia—Fatou configuration (A25
of Fig. 3, bounded on the x-axis by a point of
the unstable cycle (ki;j1)s>1 and its rank-ky
preimage the nearest to this cycle point.

(iv) The unstable cycles generated for ezl <c<dc
are such that y # 0, and are limit points of the
increasing rank preimages of Ji} UJ]}. The set
j,ﬁ U j,ﬁ itself belongs to the limit set of these
increasing rank preimages.

(v) The above properties recur for each interval

J17 7](1 ]17 7](1

ey < ¢ < e , of the spec-
trum w”’ ’]aa of the embedded box of first kind
J1yeda
Qk11 wka®

The property (i) results from considerations
given in the previous section. As for (ii) it is
directly due to the k12! periodicity, with the per-
mutation (ji,pm), of the immediate basin bound-
ary 0Do(k12';j1,p1). Indeed according to the
box-within-a-box cycles organization, except the

cycles generated inside the box Q' (¢, < ¢ <

k12t
Z] 121p ") no other cycle multiple of &k with a rank-two

basic period k; 2!, and a rank-two basic permutation
(71,p1) (cf. Sec. 2.2) exists on the immediate basin
boundary. For point (iii) it is clear that jﬁ U j,ﬁ
is periodic with the period k; and the permuta-
tion ji. Due to the self-similarity property, each of
its k1 elements reproduces the situation of points
(ii)—(iv) of Proposition 2(al). The situations of the
present points (iv) and (v) are also due to the pro-
perties of self-similarity. The .J subset J] ! JJ ! must
belong to a subset of the limit points of the increas-
ing rank preimages of J]1 J]l7 clearly out of the
domain bounded by its external boundary, the other
increasing rank preimages having as limit set the
unstable cycles, and their limit sets, entering the
x-axis for ¢ in the interval czjl '<e<d.

4.5. Interval bounded by two
consecutive flip bifurcations of
the Myrberg spectrum wq

The interval considered here is defined by ¢, <
¢ < Cym+1) (Cwi), m = 2,3,..., inside which the
map gives rise to the stable cycle (2";p,,). As a
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first step, starting from Fig. 3 let us compare its
configuration with the ones in Figs. 4-6, obtained
respectively for c-values of the interval with m =
2,3, 4. In these figures, due to their informative and
“central” illustrative role, the following basic cycles
are represented:

The (2™; py,) cycles, m = 0 (fixed point g2), m =1
(points oy Uag), m =2 (n;, ¢ = 1,...,4), and for
m = 3,4, the corresponding stable cycle on the x-
axis, are light blue colored.

The unstable period six cycle (six points 0;11_3) gen-

erated with S < 1 in the interval c;Q < c < CSI
;11.3 C Qy1, i.e. one of the two

period three cycles of T2 generated in the box Q1.

containing the box 2

The unstable period 12 cycle (12 points) generated
with S < 1 in the interval ¢f; < ¢ < ¢, containing

1,1
the box QL'

cycles of T% generated in the box 92.

C 92, i.e. one of the two period three

The unstable period 3 basic cycle (three points oy,
i =1,2,3) generated with S < 1 in the box Q4 out
Of le .

With the above mentioned cycles these figures
illustrate an evident first property: the immedi-
ate basin boundary 0D (2™; p,,,) of the stable cycle
(2™; p,) (on the x-axis) being periodic of period 2™,
0Dy (2"™; py,) contains all the unstable cycles enter-
ing the z-axis for ¢ in the interval ¢, < ¢ < cim
(box of second kind €Qom), then with a rank-one

| I

-.700
-1.800 1.200
(a)
Fig. 4. Interval ¢y < ¢ < ¢p3, ¢ = 1.34, the filled Julia set is a basin toward the stable period 2% cycle (22;p2) (points 7;,
i=1,...,4). (a) The Julia set J contains the set Rgy,1, now accumulation of points of the set Rgy,2, made up of the unstable

period 2! cycle a1 U g, and its increasing rank preimages. The blue points are those of one of the two period 12 basic cycles
(22.3;p2, 1) of the box Qg%; contained in the interval ¢§; < ¢ < cj.. They are located on the immediate basin boundary
8D0(22;p2) of the stable cycle (22;p2). The six green points a;ié,
g}él contained in the interval c3» < ¢ < ¢31. The three red points 031), located in the rank-two layer,
are those of the cycle (3;1), generated inside the box Q3 located inside the interval ¢y < ¢ < ¢ =2. (b) Enlargement of the

rank-two layer containing a point of the cycle (3;1).

located in the rank-one J layer, are those of the period 6

basic cycle of the box
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basic period 2" associated with the permutation
Pm- Let jgm be this subset of J.

A second property appears from the visible
“central” basic configuration (A2) located on both
sides of the y-axis, which reproduces Fig. 3 that
was generated for m = 1, and which surrounds two
points of the stable (2"*;p,,) cycle. This configura-
tion is repeated 2™1 times.

Now a Rgyp set is defined from the unstable
cycles (2% p,) € JN(y =0), ¢ =0,1,...,m —1,
born in the interval c¢(1)p = —1/4 < ¢ < ¢y On
the z-axis each point of a (2"~1;p,_1) cycle is an
accumulation point of a subset of increasing rank
preimages of a point of the cycle (2%:py), 0 < h <
m. Each of the unstable cycles (2"~ p,_1),0 < h <
m (the cycle (2°; pg) is the fixed point g2 ), belonging
to y = 0 and generated for ¢ < ¢y, gives rise to a
set Rgpp, of multiple points of J:

Rapn = |J T771(2" 1))
r>0

(b)

(Continued)

Note that here the closure of J,~, T~"[(2"; pp)]
is not considered. For m = 1 the points set belongs
to Rap1 = U, 0T "(q2), defined in the previous sec-
tion, and separating two bordering (adjacent) non-
connected parts of the total basin D(2';py).

Two different kinds of Rg,, sets can be distin-
guished:

The first is related to points of Rapy, which sep-
arate two bordering (adjacent) nonconnected parts
of D(2";py,). They are generated from the points
of the unstable cycle (2" 1':p,,_1) located on
the z-axis, and their increasing rank preimages.
Each component 0D{(2™;py,) of the immediate
basin boundary of one of the 2" stable fixed
points of T%m, has a common point (a point of
the cycle (27 1:p,,_1)) with the immediate basin
T%"Hl [OD2(2™; py,)] of another fixed point of T% .
This gives rise to the 277! pairs of connected sets
@gm r = 1,...,2"7 ! via a common point of
the unstable cycle (27 1; p,,,_1). We shall say that



From the Boz- Within-a-Box Bifurcation Organization to the Julia Set. Part I 305

the two immediate basin boundaries OD{(2™; py,)
and T%"kl [ODF(2™; pm)], have a strong linkage,
or are strongly linked, through the unstable cycle
(2m=1:p,,_1). Similarly their increasing rank preim-
ages generate sequences of plaits of the total basin
which are strongly linked inside a J subset, having
the basic configuration (A2) of Fig. 3.

The second kind of Rapy, sets is related to the points
of Rap(m—1) € OD(2™:pm), 0 < h < m, a subset of

which limits a J subset denoted jQ(::Q,)l, having the

basic configuration (A2) of Fig. 3. It is the case of
each of the 2m*1j2(fl2,)1 surrounding two points of
the stable cycle (2™;py,). We shall say that each

of the Rg,(m—1) points introduces a strong linkage

between two adjoining jz(ﬁ%)l, but a weak linkage

between plaits of strongly linked parts of the basin
D(2™; pp).

The third kind of Rapn sets is related to the points of
Rapn € OD(2™;pp), 0 < h < m—1, limit points of a
sequence of J subsets having the basic configuration
(A2) of Fig. 3. They produce weak linkage between

3(42)

gm—1-

This last situation is due to the fact that when
¢ > cpy, the points of each unstable period 29 cycle,
q < h < m — 1, belonging to the basin boundary
OD(2™;py,) = J are limit points for a subset of
increasing rank preimages of the period 2" cycles
located on the z-axis.

It is worth noting that for ¢ > ¢, each unsta-
ble cycle (29;p,), g > m, y # 0, is symmetric with

540

-.540

-1.=00

1.200

Fig. 5. Interval ¢p3 < ¢ < ¢pq, ¢ = 1.385. (a) The filled Julia set is a basin toward the stable period 8 cycle (23;p3). A new
set Rgp3 has been created. It is made up of the unstable period 4 cycle (2%;p2) (points 71, 72,7m3,n4) and its increasing rank
preimages having the set Rgyo as limit set. Now the blue points of the basic cycle (22.3; p2, 1) have moved from the immediate

basin boundary of the z-axis to the rank-one layer of the Julia set. The cycles 05113, 031), are located on the rank two and three
layers, respectively. (b) Enlargement of the rank-two layer containing a point of the cycle (3;1).
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respect to the z-axis, i.e. it is made up of 297! cou-
ples of points, the two points of each couple having
the same abscissa. When ¢ = ¢, the 29~1 couples
merge into the stable (297%;p,_1) cycle of the z-
axis, and for ¢ > ¢, they turn into the (29;py)
cycle of the z-axis, stable for ¢py < ¢ < ¢ygq1). For
¢ > Cyg+1), becoming unstable the (29;p,) cycle
gives rise to the Rg,4_1) set.

Let us return to Fig. 4(a) (m = 2). The imme-
diate basin boundary 9Dy(22;p;) contains all the
unstable cycles, and their limit sets, generated in
the interval cpp < ¢ < ¢, (box 292). Among them
the unstable period twelve cycle (12 blue points)
entering the z-axis (with S < 1) when ¢ is in the box
Q;’Ql.g C 2, are represented. This figure also shows
a “central” configuration (A2) on both sides of the
y-axis, with an outline equivalent to Fig. 3, bounded
by a subset of the Rg,; points (weak linkage), made
up of the fixed point ¢ and a subset of its increasing
rank preimages. These points limit a set, denoted
j;ﬁﬁ)f for which the (C") curves of the basic con-
figuration (A2) have Ry, points (strong linkage)

(b)

(Continued)

as multiple points, and bound nonconnected basin
parts, organized in plaits with decreasing size, when
the distance increases from the immediate basin of
the stable fixed points 11, n3 of T%Q. The same sit-
uation takes place for the set denoted j2(142)2
taining the immediate basin boundary of the fixed
points 7, 74 of T§2. These two (A2) basic configura-
tions have a strong linkage, giving rise to the couple
Kym1 = Ky = JADV Y 792 Laving the point
om—1 21 o1 o1 g p
g2 € Rgp1 in common. They intersect the z-axis at
the intervals I{ and I3 [cf. Fig. 4(a)]. This shows

that 1?21\8D0(22; p2) contains all the cycles, gener-
ated in the interval 032 <c< czl which belongs to
the box of second kind. Qgm—1 D Q29m. Among them
the unstable period 6 cycle (six green colored points
0;’11.3) entering the z-axis (with S < 1) when ¢ is in
the box Qé’ll_g C Qo1, is represented in Fig. 4(a).

So for m 2 three layers containing well
identified unstable cycles and their limits can be

identified: 9Dg(22;p2), 1?21\8D0(22;p2), and the

, con-
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remaining part of J which contains the cycles
becoming stable in the interval cj; < ¢ < ¢} (see
the period three cycle o3, red points in Fig. 4(a)).

For m = 3, Fig. 5 shows 22 basic configu-
rations (A2) jQ(QAQ)’T, r = 1,...,2%. Bach jQ(QAQ)’T
contains two components of the immediate basin

boundary of the stable cycle (23;p3), and is adja-

cent to another j2(2A D

(2% p1) cycle. The set IH(ZQ = Ur; jz(QAQ)’T is peri-

odic with period 22. Two components K iy of _[?22

through a point of the

can be associated such as I%’él = Jéfz)’i U jz(QAQ)’tH,
i = 1,21 = 2m=2 ¢ = ol UM _ gL AR
obtained from a linkage via a point of the cycle
(2%;p1) (points ai,ay of the x-axis) belonging to
the Rgpo set. 1?21 = Uzzil K;l is a set of period 2!,
Kpn(y=0)=I2UI2 )

On the z-axis, the two components Ky of
I?y are weakly linked through a subset Sy of

increasing rank preimages of 1?21 having the fixed

210

-.210

-1.=00

1.200

Fig. 6. Interval ¢py < ¢ < ¢p5, ¢ = 1.3965. (a) The filled Julia set is a basin toward the stable period 16 cycle (24;p4). A
new set Rg,4 has been created. It is made up of the unstable period 8 cycle (23;p3) of the x-axis, and its increasing rank

preimages having the set Rg,3 as limit set. Now the blue points of the basic cycle (22.3; p2,1) have moved from the rank-one

layer to the rank-two layer of the Julia set. The cycles 05113, Ué, are located on the rank three and four layers, respectively.

(b) Enlargement of a part of the filled Julia set.
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200

dp?2

-.200

-.320

Fig. 6.

point ¢ (i.e. a cycle (2773 p,,_3) belonging to the
Rg,1 set) as limit point. The union of these com-
ponents is the set I?Qo intersecting the z-axis on a
segment I3. We have: dDg(23;p3) C I?Qz C 1?21 C
_[?20.

A first layer is the immediate basin boundary
0Dy (23;p3), which contains all the points of the
unstable cycles with a basic period 22, and their
limit sets, generated inside the interval cp3 < ¢ < ¢33

(box of second kind €293), then with a rank-one basic
period 23 associated with the permutation p,y,.

The second layer is I?zz \ODy(23; p3) which con-
tains all the points of the unstable cycles, and their
limit sets, generated inside the interval 033 <c<
c32 (inside the box of second kind Qgm-1).

The third layer is 1?21 / 1?22. It contains all
the points of the unstable cycles, and their limit

(b)

100

(Continued)

*

sets, generated inside the interval ¢, < ¢ < ¢,

(inside the box of second kind €91).

A fourth layer 1?20 / 1?21 contains the cycles
becoming stable in the interval ¢, < ¢ < cj.

Notations. Let ¢ be the parameter value inside
the interval cpm < ¢ < ¢ypqry (Ewi), m=2,3,...,
which gives rise to the stable cycle (2™;p,,).

jéﬁ%)l’r, r=1,...,2" ! is the J subset reproducing
the Fig. 3 outline (basic (A2) configuration) but
bounded by a subset of Ry, (,,—1) points, increasing
rank preimages of the unstable cycle (2™72;p,,_2)

(y = 0). A subset of jéﬁ%){r contains two elements
of the immediate basin boundary of the stable cycle

(2™ pm).-

I?Qm—l = Uzzl_l jéﬁ%){r is a set of period 2™~ 1.
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Two components of sz 1 are associated such as

Kigmo = JOF O JUDM G =1, am=2 ¢ =
om=2 jéﬁ%)ltﬂ = T?Z[Jg(ﬁ%){i], obtained from a

linkage via a point of the cycle (2™72;p,,_2) of the
z-axis belonging to the Ry, —1) set.

I?qu = Uf:f R—imeQ contains the set of unstable
cycles with the basic period 2™ 2.

Recursively 27 rank-s subsets of the Julia set J,
denoted Kigm-s (s <m,m > 1,i=1,...,2Mm %),
are defined. Each one made up of the association of
two neighboring sets Ky, (.—1yweakly linked from
a point of the cycle (2™ %;p,,—s) of the z-axis
belonging to Rgy(m—s41), and also by the subset of
increasing rank preimages of these neighboring sets
having the point of the cycle (2™ %; p,,,—s) as accu-
mulation point.

_[?mes = Uf:fs Kigm_ contains the set of unstable
cycles with the basic period 275,

8D0(2m,pm) C .[?2m—1 c---C .[?2m—s

5m is the rank-s layer of J, defined by (m > 3,
s=1,2,...,m):

s «—> R
gm = Kom—s \K gm—(s-1)

Then:

Each K iym—s bounds a subset of the basin of the
stable (2™; p,,) cycle on the x-axis, which contains
2% points of this cycle.

L3, contains all the cycles, and their limits, created
in the interval ¢, (1) < ¢ < s

Figure 6 illustrates the situation for m = 4.

When m = o0, ¢ = c15 = limy oo hn =
lim,,, o0 Cpm, the Julia set J is a dendrite. Infinitely
many layers with associated families of cycles result
as limit of the above situations when m — oo. The
basins Dy and D now do not exist, 0Dy degenerates
into the Cantor set on the z-axis, made up of the
limit of the stable cycle (2™;p,,) when m — oco. In
this case the segment [¢; - q1] of the z-axis is the
limit of infinitely many layers.

Proposition 2(a2). Let ¢ be the parameter value
inside the interval cp, < ¢ < Cypy1)(C w1),m =
2,3,..., which gives rise to the stable cycle

(2™ ), and the J subsets J(m )1, Kym—s defined
above.

(i) The cycles (2%4py) € JN(y = 0),q = 0,1,
2,...,m—1, are unstable and born in the inter-
val ¢y = —1/4 < ¢ < cpm.

(ii) Each component OD{(2™;pm), n = 1,2,...,

™ of the immediate basin boundary 0Dy (2"™;
Pm) of the stable period 2™ cycle (2™; py,), has
a common point with Tg%l [OD§ (2 p,)]. The
boundary 0Dy (2™; py,) contains all the unsta-
ble cycles generated inside the interval cpy, <
¢ < cm (box of second kind Qom ).

(iii) The J subset J(m 2 contains all the cycles with
a basic period 21, generated in the interval
Com < €< C;m—l'

(iv) The J layer L. contains all the cycles created
in the interval ¢, ,_,) < ¢ < 5. The last
layer L5k, contains all the cycles created in the
interval ¢y < c<cy=2.

4.6. Interval bounded by two
consecutive flip bifurcations of
the Myrberg spectrum wsj,

Let c be the parameter value inside the inter-
val ck o < € < c,‘zlb(mﬂ) (spectrum wk) m =
2,3,...,k1 = 3,4,..., bounded by two consecu-
tive ﬂip bifurcations, generating the stable cycle
(k12™; 41, pm). Considering the map 7%, as in
Sec. 4.5, Rill dph, Sets are defined from the unstable
(k12" 51, 1), 0 < h < m, cycles of the z-axis

=7

r>0

RJ 1

ho-
kvdph — [(k12"; 51, pn)]-

It is the same for the following sets:

Jﬂéﬁ”i =1,..., k2™ is the J subset repro-

du(:ing the Fig. 3 outline but bounded by a subset

of Rk1 dp(m—1) points, increasing rank preimages of

the unstable cycle (k12™2; 51, pm-_2) (y = 0). A
subset of J’ 1ém )lr contains two components of the

immediate basin boundary 9Dg(k12™; j1,pm,)-
Kflzm = Uzzll Jﬁém )" contains unstable cycles

with the basic period k2™ 1.

-
Two components of KﬁQm,l are associated such

as Kionot = JPGPT O JOPOD G =
ki2m? g =ome? AU - [Jz(m )1] from

a linkage by a point of the cycle (k2™
of the z-axis belonging to the Rfcll dp(

a]17pm72)

m—1) set.
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K Uh2 ™ g tai tabl

kq2m—2 i=1 kqp2m—2 contaimms unstable
cycles with the basic period k2™ 2.

Recursively k12"7° rank-s subsets of the Julia

set J, denoted .;{7211277175 (s <m,m > 1,1 =
1,...,k12™ %), are defined. Each one is made
up of the association of two neighboring sets
KZ‘.Z;lme(sfl) weakly linked from a point of the
cycle (k12™75;j1,pm—s) of the z-axis belonging to

J
Rklldp(m—s—l—l)’
rank preimages of these neighboring sets having the
point of the cycle (k12"7%; j1,pm—s) as accumula-

tion point.

and also by the subset of increasing

i Figmee 70 ;
Ky oms = Uizi K%, om-s contains unstable

cycles with the basic period k12™7%.

Lfl’zsm is the rank-s layer of J defined by (m >
3,s=1,2,...,m)

J1,8 _ 1 1
Ly om = Kklzm—s\l(lem*(sfl)‘

Proposition 2(b2). Let ¢ be the parameter value

. . . jl J1 o
inside the interval Cioyom < € < Chort( m =

m+1)’
2,3,..., k1 = 3,4,..., bounded by two consecu-
tive flip bifurcations, generating the stable cycle
(k12™; 51, pm)- Let jﬁé’;‘i)l, Ki}ﬂm,s the J subsets
defined above

(i) The subset JN(y = 0) contains all the unstable

cycles, and their limit sets, born in the interval
J
)0 < ¢ < G pmtn)-

(ii) Each component 0D (ki12™;j1;pm), n = 1,
2,...,k12™, of the immediate basin boundary
ODo(k12™; j1;pm) of the stable period k2™
cycle (k12™; 41, pm), has a common point with

m—1 . .
T 10D (k2™ 1, pm)]. ODo(k12™; 1, pm)
contains all the wunstable cycles generated
inside the mtemal clgllbm <c< c,‘gllQm (box of
second kind ngllQW)‘

(iii) The J subset j,jllz(ﬁ’l contains the closyre of
all the cycles generated in the interval C,‘gll;m <

11 %
c<clt

k12m71 . )
(iv) The J layer Ly 5m contains all the cycles cre-
. - jl* jl*
ated in the interval Criam—(s—1) < €= Cilom—s-

The last layer Li}l’;ﬁl contains the closure of all

the cycles created in the interval cgll; <c<

=2
Proposition 2b’. Let ¢ be the flip parameter val-
ues Cribm, m = 1,2,..., of the spectrum wy, clﬁbm,
ki = 3,4,..., of the spectrum wlgll, generating the

neutral cycle (k12™ % 51, pm—_1) (S = —1). Proposi-
tions 2(b1) and 2(b2) hold changing the stable cycle
(k12™; j1,pm) into the neutral cycle, and the imme-
diate basin into the immediate convergence, and
adapting the boundaries of the parameter intervals.

Proposition 2b’ is deduced from Proposi-
tions 2(bl) and 2(b2), when ¢ — ¢y, ¢ = ¢y,
with decreasing values.

5. Properties of the Different Types
of Julia Set

On the basis of intervals defined by bifurcation val-
ues of the Myrberg’s map, Sec. 3.3 has defined five
different types of Julia set. Except the dendrites
case these types can be differentiated between a
class A, when ¢ belongs to the spectrum w, and
a class B, when ¢ belongs to an embedded spec-
trum wi. The propositions in Sec. 4 have provided
the plane situation of well defined subsets of the
Julia set J for four of these types. This section
completes the Julia set properties of each type, and
describes the different J outlines generated inside a
same type.

5.1. First type of Julia sets.
Multiplier S = +1

This type is generated for parameter values ¢ = ¢(q)g

(class A), ¢ = C(]k)o (class B), or more generally the

(]kﬂ];?a)o’ which are the first
boundary of Myrberg spectra. Consider that the J
structure (i.e. location of the unstable cycles in the
plane) depends strongly on the class, even if for class
B the outline of J subsets reproduces the J one for
class A.

The class A case, ¢ = c(y)p, fold bifurcation of
the spectrum wq, is the simplest one. This para-
meter value gives a situation in the (z,y) plane
described in of [Julia, 1918, pp. 231-237], of [Fatou,
1920, pp. 91-92, pp. 240-242], and J has the Julia—
Fatou configuration (A1) i.e. it is a simple closed
Jordan curve. The Julia set J contains all the
unstable cycles generated inside the box i, and
J N (y = 0) contains the neutral fixed point ¢; = ¢

embedded forms ¢ = ¢
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(S = 1), “left” limit of the increasing rank criti-
cal points, then belonging to E/, and its rank-one
preimage ¢; . According to (P3) in Sec. 3.1 J can-
not be the basin boundary of an attracting set on
the z-axis. It does not satisfy the Fatou theorem
[1920, p. 240] recalled in (P5) in Sec. 3.1. The Julia
set J limits only the basin of the point at infinity
(domain of divergence), and a basin toward q; = ¢
adjoining this point. At ¢1 = g2 (cqyp = —1/4)
J presents a cusp point with a horizontal tangent.
Moreover, for a numerable set of points, increasing
rank preimages of g1 = ¢o, the tangent to J can
be defined [Fatou, 1920]. Nevertheless J is nowhere
differentiable, because at a cusp point a function is
not differentiable. The Julia set J is a Jordan curve
without double points. Fatou [1920, p. 242] iden-
tified the J outline as equivalent to that of a von
Koch curve, i.e. it is fractal. This case is shown in
Fig. 7(a), where the J outline has a fractal petal-
like aspect, and is the boundary of the brown region
(the filled Julia set £(J)). The Julia set J has the
properties given in Proposition 1a’.

The class B of this first type, defined by the
opening ¢ = c(]k)07 k > 2 of any spectrum wj C

ch, has the properties given in Proposition 1b’. As
mentioned in Sec. 3.3, the class A petal-like shape
of J is fractally reproduced at ¢ = C(Jk)o.

The fractal structure, observed on the z-axis
with the Myrberg’s map, is reproduced consider-
ing all the preimages of any rank of the segment
[qfl,ql], Tg”([qfl,ql]) for n > 0, which however
is more and more “contracted” on the x-axis, as c
increases. An example is shown in Figs. 7(b)-7(d)
(at the beginning ¢ = C%B)O = 7/4 of the box of
first kind associated with the three-cycle). A period
three petal-like outline is fractally reproduced on
both sides of the z-axis, and along “rays” ending at
points of the immediate basin [Fig. 7(c)]. Clearly a
similar behavior occurs for any ¢ = C{éljlza)o of the

rank-a box QJ'rJe
kla"'7ka

5.2. Second type of Julia sets.
Multiplier S = —1

The simplest case is the first flip bifurcation of
the Myrberg spectrum w; (class A situation) i.e.
¢ = ¢y = 3/4, with S = —1 for the fixed point
g2 which is neutral and belongs to J. According to
(P3) given in Sec. 3.1, J cannot be the basin bound-
ary of an attracting set on the z-axis (on both sides

the point g9 is the limit of increasing rank criti-
cal points, i.e. ¢o € E.). The Julia set J limits
only the basin of the point at infinity (domain of
divergence), and a basin toward g, adjoining this
point. This means that the convergence toward ¢o
is singular in the Julia sense. At ¢o J has a verti-
cal tangent, and J has a numerable set of points,
increasing rank preimages of ¢o, where the tan-
gent can be defined. Elsewhere J has no tangent.
Figures 8(a) and 8(b) show this situation where the
brown region is the basin toward g2 (i.e. the filled
Julia set ¥(J)), the white one (which is touching
@2) is the basin of the point at infinity. The vertical
tangent at go is such that locally two “arcs” of J,
belonging to two lobes of the basin toward ¢o, are
on the same side of this tangent [Fig. 8(b)], giving
a hollow for an arc and a bump for the other. For
¢ = ¢y = 3/4, J is connected and has the Julia—
Fatou basic configuration (A2). Remark that for the
Myrberg’s map 2’ = 22 — ¢ (reduction of Tz to the
x-axis) ¢y is stable and not neutral.

Each ¢ = ¢, values, m = 2,3,..., leads to
properties of Proposition 2a’. Each of the 2! com-
ponents of the boundary of the immediate basin
associated with the neutral period 2™~ 1 cycle, is
connected with the Julia—Fatou basic configuration
(A2).

Figure 9 shows the structure of J and filled
Julia set F(J) at the second flip bifurcation,
occurring for ¢ = ¢ = 5/4, JN(y = 0) =
[Cl(U,>o T "(E?))] N (y = 0), E? being made up of
q1, g2 and the period 2 cycle (g, az) with S = —1,
born on the z-axis from ¢y for ¢ = ¢ = 3/4, C
indicating the closure of the set. The same behav-
ior occurs for flip values ¢ = ¢, of the wy spectrum,
introducing E7" the finite set of the m repelling
cycles of the z-axis of period 2P, 0 < p < m, the
cycle of period 2° being the fixed point gs.

When ¢ = ¢f,,, (class B), J N (y = 0) contains

infinitely many Cantor like sets Cs (cf. Sec. 2.3)
j

k
increasing ran(k preimages located on (y = 0), born
for C(Jk)o < ¢ < ¢y So the set JN (y = 0) is a well
defined fractal set. The basin intersects the z-axis
including k2™ 'segments invariant by T §2m_1, and
their increasing rank preimages located on the seg-
ment [g; ", ¢1]. All the points of J with y # () consist
of points of all the other repelling cycles existing in
the plane and still outside the z-axis (which will
enter the x-axis at higher values of parameter c),
and their limit points.

born for ¢ < ¢ 0 and the unstable cycles with their
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Fig. 7. (a) Filled Julia set (of petal-like type) for the fold bifurcation ¢ = ¢(;), = —1/4. The filled Julia set is a basin toward
the neutral fixed point go = ¢ € J (S = 1). The Julia set J has a numerable set of points where the tangent can be defined,
but these points are cusps, so J remains nowhere differentiable. (b) Partial view of the filled Julia set (symmetric with respect
to x = 0) for the fold bifurcation ¢ = 013)0 = 7/4. The two period three cycles (a1, a9, a3) with S <1, (81, [2,03) with S > 1

merge at this parameter value and S = 1. (c¢) and (d) represent two enlargements.
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Fig. 7. (Continued)
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Fig. 8. (a) Filled Julia set for the first flip bifurcation ¢;; = 3/4. The filled Julia set is a basin toward the neutral fixed point
g2 (—1 < S < 0), which results from the merging of the points «; and ag of the period two cycle on the z-axis (cf. Fig. 2
caption). It results in the basic Julia-Fatou configuration (A2). (b) Enlargement in the neighborhood of gs.



From the Boz- Within-a-Box Bifurcation Organization to the Julia Set. Part I 315
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Fig. 9. Filled Julia set for the flip bifurcation ¢ = ¢5 = 5/4. The period 2 cycle (a1, ag), which belongs to the Julia set J, is
neutral (S = —1) and the filled Julia set is a basin toward (o, 2). The Julia set J has a numerable set of points where the

tangent can be defined, but J remains nowhere differentiable.

The flip values ¢ = Czllmj(;ea)bn

repeat the same behavior.

of a rank-a box

5.3. Thard type of Julia set

A continuous variation of J occurs inside well
defined intervals, beginning with the fold bifurca-
tion of a Myrberg spectrum. The simplest case is
class A for the interval c)p < ¢ < ¢, cyp =
—1/4, ¢y = 3/4, belonging to wy. The correspond-
ing structure of the Julia set is given by Proposi-
tion la. Types of class B are related to intervals
c(Jk)0 < ¢ < ¢y, (k> 2) belonging to wy, or more

3 .jla"'v.ja jlv"'v.ja
generally for anA 1nt§rval Clerka)o < €< €t kaln
J15--Ja

belonging to wj ™", with equivalent intervals for
boxes of second kind. The corresponding structure
of the Julia set is given in Proposition 1b.

Julia set type of class A (cf. Proposition 1a)

In the interval, c(1yg < ¢ < ¢p1, ¢y = —1/4, ey =
3/4, the stable (attracting) cycle is the fixed point
g2 (k = 1). The Julia set J has a fractal outline

(except for ¢ = 0) with a continuous modification
of its shape when ¢ increases, passing from a petal-
like outline to two other forms, the last ones tending
to Fig. 8(a) when ¢ — ¢p;.

In the interval ¢(;)p < ¢ < 0 the shape has
a bumpy fractal aspect (petal-like). This aspect
results from a continuous modification of the case
c=cap = —1/4, but now contrary to ¢ = ¢(1)0
the set J has nowhere a tangent. The unstable fixed
point q; (y = 0), located at a cusp point for the fold
bifurcation value ¢ = ¢(1)9, has moved to the right,
and ¢o is attracting in the brown region of Fig. 10,
which now represents the basin of this point. The
only points of J, located on the z-axis, are ¢; and
qfl, T Yq) = q1 U qfl, while Tgl(qfl) includes

the points (z = 0, y = i\/—(qfl +¢)). The seg-

ment —/—(g; ' +¢) <y </—(g;" +¢) on the y-

axis, given by T, *(Jg; !, —c[), belongs to the basin of
q2- When ¢ — 0, the J bumps progressively become
less and less pronounced up to attain the circle

|z| =1 at ¢ = 0, for which the go multiplier is S = 0.
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In the interval 0 < ¢ < ¢ = 3/4. Figure 11
(¢ = 0.25) and Fig. 12 (¢ = 0.5) show the con-
tinuous evolution of J (boundary of the brown
region, basin of the fixed point ¢2) from the cir-
cle |z| =1 (¢ = 0) to the flip bifurcation shown
in Fig. 8(a) (¢ = ¢p1 = 3/4). The value ¢ = 0 is
a boundary separating two different J outlines: the
petal-like one from an outline presenting infinitely
many “spikes” in a fractal configuration (Fig. 11).
When ¢ increases, then progressively the simply
connected basin of ¢o (bounded by the simple Jor-
dan closed curve J) presents infinitely many excres-
cences (Figs. 12 and 2) with a “base” having a
decreasing length, which tends toward zero when
¢ — ¢p1. The origin of such excrescences is easily
explained, considering that when ¢ — c¢; the two
points (y < 0 and y > 0) of the unstable period 2!
cycle aj Uag € J tend toward the stable fixed point
g2 on the z-axis. Indeed inside the basin of ¢, this
situation near qo creates a narrow vertical section
(Fig. 2), bounded by oy and ag, the increasing rank
preimages of which are related to the fractal set of
eXCrescences.

1.000

Filled Julia set (of petal-like type) for ¢ = —0.15. The filled Julia set is the basin of the stable fixed point g2
(0 < S < 1). The points (a7, a2) are those of the period 2 cycle.

When ¢ = ¢p; the period two cycle merges with
g2 = a1 = a9, the section length becoming equal
to zero [Fig. 8(a)]. This results in J the rank-one
infinite set R4, C J of double points (g2 and its
increasing rank preimages) when ¢ > ¢ (cf. Sec. 4).

Julia set type of class B (Proposition 1b)

The simplest form corresponds to intervals C(jk)o <

¢ < ¢y (k> 2) belonging to wy. Tz has a (k; )
attracting cycle on the z-axis with multipliers —1 <
S < 1. The immediate basin boundary of the stable
(k;j) cycle is made up of k (k = 3,4,...) simple
(i.e. without multiple points) Jordan closed curves
(with the Julia-Fatou configuration (Al)). Inside
each interval the multiplier S(k;j) = 0 separates
two different local behaviors near the (k;j) cycle:
S > 0 with a regular convergence of orbits, S < 0
with an “alternate” convergence. '
Now, contrarily to ¢ = 0, the value ¢ = ¢} (S =
0), giving the (k;j) cycle multiplier S = 0 (sep-
arating orbits with a regular local convergence,
and an “alternate” one) is no longer a boundary
separating the petal-like J outline, from the one
presenting infinitely many “spikes”. Indeed in this
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-1.500
Fig. 11.

1.500

Filled Julia set for ¢ = 0.25. The filled Julia set is a basin toward the stable fixed point g2 (—1 < S < 0). The points

(a1, a2) are those of the period 2 cycle. The Julia set J shape ceases to be of “petal-like” kind, and presents infinitely many
spikes. (b) ¢ = 0.5, J presents infinitely many excrescences with a “base” having a decreasing length, tending toward zero for

C— Cp1-

new situation the parameter, separating two differ-
ent shapes of J, is obtained for ¢ = g,g, c(]k)0 <

gg < C,z (S = 0), which corresponds to a multiplier
0<S<1. .

For ¢ = g,g the Julia set J is made up of
infinitely many separated concave continuous closed
curves (C), constituting a fractal set, separat-
ing “petal-like” shapes from shapes with “spikes”.
The existence of such curves (C'), appears numer-
ically from successive enlargements, with precision
increase. The mathematical proof seems very dif-
ficult to establish. Among these curves there are
k curves (C}) invariant by T%. The intersection
JN(y=0)=JN([¢;", q1]) is a fractal set made up
of all the repelling cycles generated on the z-axis for
c< C(Jk)o (the lower boundary of the box €7), their
limit set, the subset of the increasing rank preim-
ages of all these points, located on y = 0. Clearly for
y # 0 this fractal structure is reproduced in all the
preimages T, " ([¢; ', ¢1]) for n > 0, and T,,"(C}).

The above properties can be illustrated for the
interval 0%3)0 < c < cébl of the wgl, C Qzl,, spec-
trum. When S = 0, ¢ = cg—¢ =~ 1.7548776662,
a rough numerical simulation without a sufficient
enlargement might lead to think that the immedi-
ate basin boundary of the superstable period three
cycle is made up of three circles. This is wrong as
shown in Fig. 13 obtained from a strong enlarge-
ment, which indicates that the boundary contains
infinitely many “spikes”. A more elaborated sim-
ulation shows that smooth concave closed curves
(C) (enlargement of Fig. 14(e)) are obtained for
Qé ~ 1.7545313 with a cycle multiplier S ~ 0.037.
Smooth concave closed curves not intersecting y = 0
cannot be clearly seen in Fig. 14(a), but they appear
in the enlargement of Figs. 14(b)-14(d).

Consider the boundary dD{ (k; j) of the imme-
diate basins Dy (k;j), n = 1,2,...,k, of the k sta-
ble fixed points of Té, which are n J subsets. In
the interval c(jk)O < ¢ < ¢, each aDy(k;j) is of
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1.000

-1.000

-1.500
Fig. 12.

1.500

Filled Julia set for ¢ = 0.5. The filled Julia set is a basin toward the stable fixed point g2 (—1 < S < 0). The points

(a1, ) are those of the period 2 cycle. The shape of the Julia set J presents infinitely many excrescences with a “base” of
decreasing length, which tends toward zero for ¢ — ¢y = 3/4 (cf. Figs. 2 and 8).

petal-like type. When ¢ — le the D (k;j) bumps
progressively become less and less pronounced, and
disappear at ¢ = ¢}, for which dD{ (k;j) is made
up of k smooth concave closed curves (C’kj ). For

¢ <e< cgbl, with ¢ increasing values 9D{ (k; j)

is made up of k subsets of J, first made up of
infinitely many “spikes” in a fractal configuration,
and then 0D{'(k; j) presents infinitely many excres-
cences with a “base” having a decreasing length,
which tends toward zero when ¢ — c;bl. So accord-
ing to the c-value of the interval c(jk)o <ec< cgbl,
J = C(U,> T, "[0Dg (k; 7)] locally will present out-
lines either of petal-like type, or smooth concave
closed curve, or “spike”, or excrescences types.
The increasing rank preimages of 9D{ (k;j)
intersect the z-axis at the boundaries of the noncon-
nected parts of the total basin of the map restricted
to the z-axis, and their limit points defined in Sec. 2,
i.e. infinitely many Cantor like sets Cs (cf. Sec. 2.3)

born for ¢ < c(Jk)O. All the points of J with y # 0

consist of the points of all the other repelling cycles
existing in the plane and still outside the z-axis, and
their limit points. All such repelling cycles belong-
ing to J will enter the z-axis at higher values of
the parameter c, that is at the other bifurcations
occurring for ¢ > C(Jk)o.

For ¢y < ¢ < ¢p1, J N (y # 0) contains all
the unstable cycles generated in the box ;. In a
same way, the k J subsets 0D{ (k;j) are such that

Uﬁzl[ﬁDg(k;j)] N (y # 0) contains all the unstable
cycles generated inside the box €, (C(Jk)o <c<d).

The cycles generated for ¢ > CZJ occupy other places
on J, in particular as limit points (y # 0) of the
increasing rank preimages of 0Dy (k;j). The same
property occurs at any c-value of the rank-a box

The fact that the circle situation obtained for
¢ = 0, related to a multiplier S = 0, cannot occur for
a (k;j) cycle, is easily explained. Indeed, consider
the map T, 2’ = z? — ¢, restricted to the z-axis,
and the arcs of T* in the (x;2') plane, defining the
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Fig. 13.

00z

Enlargement of the filled Julia set part containing the point (z = y = 0) of the superstable (S = 0) period 3 cycle

(a1, a9, a3), ¢ ~ 1.7548776662, with the framework —0.002 < x < 0.002, 0.1075 < y < 0.1077. The corresponding immediate
basin boundary contains infinitely many “spikes” in a fractal configuration.

cycle pair (k;j). The arc on both sides of x = 0,
abscissa of one of points of the superstable (k;j)
cycle, is symmetric with respect to this line x = 0.
It is not the case for the other k—1 arcs, not having
such a symmetry with respect to the other points
of the superstable cycle (for example with k£ = 3
see Fig. 2.6 in [Mira et al., 1996]), which cannot be
centers of circles generated by 1.

5.4. Fourth type of Julia set

This Julia set type is obtained for each c-value of
the interval ¢y, < ¢ < ¢p(q1) Of the wy spectrum,

m = 1,2,.... The interval c,gbn <c< c]zb(nﬂ) of
the wi spectrum has equivalent properties.

Julia set type of class A (Proposition 2a) cpm < ¢ <
Cb(m+1)-
The interval ¢y, < ¢ < ¢ypy1), belongs to the

w1 spectrum, and the Julia set structure is given
by Proposition 2a. In particular J N (y = 0) =

C(U,o T7"(E™)), where ET* € [q;',q1] is the
(finite) set of the m repelling cycles of the x-axis
of period 27, 0 < p < m, created by the period
doubling bifurcations for ¢ < ¢, C; is the set
closure. The cycle of period 2° is the fixed point
g2. The Julia set J is the boundary 0D(2™;p,,) of
the nonconnected basin D(2"; p,,,) of the attracting
period 2™ cycle on the z-axis. The set 9D (2"; pi,)
is the boundary of the immediate basin Dg(2"; p,,)
of the attracting period 2" cycle. The unstable
period 2™ 1 cycle (y = 0) belongs to the boundary
ODo(2™; pp). All the other unstable period 2" cycles
(y=0),h=0,1,2,...,n—2, belong to OD(2™; py,),
and are limit of a subset of increasing rank preim-
ages of the unstable period 2™~ ' cycle. The basin
of the point at infinity is simply connected (Julia—
Fatou configuration (A1l)), and its boundary is the
external part of J.

The situation in Sec. 5.2 ¢ = ¢y = 3/4
(S(g2) = —1), also occurs for the parameter interval
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= 3/4 < ¢ < e = 5/4, but now J is with-
out tangent at any of its points. In particular J
has the Julia-Fatou basic configuration (A2), with
J having multiple points Rg,; (cf. Sec. 5.3) every-
where dense on itself. The set J is made up of the
union of infinitely many curves (C"), limiting non-
connected open areas, and Rgp1 = Ci(U,~o T " (g2)-
The J nonsmoothness gives a “spike shaped” con-
tact between two curves (C*). The points of Ry
belong to the connected basin boundary 9D(2%;p)
of the stable period two cycle on y = 0. Each of
these points separates two bordering (adjacent) non-
connected parts of the total basin D(2%;p1).

On the z-axis J N (y = 0) is made up of ¢
and its increasing rank preimages, tending toward
q U qfl. For y # 0 the structure of J N (y = 0)
is reproduced on the fractal set of arcs given by
T, ([¢;", q1]) for 7 > 0. All the points of J with

y # ) (belonging to the closure of |J,~q 7" ([¢; ",
q1])) consist of points of all the other repelling
cycles existing in the plane and still outside the
z-axis, and their limit points (all such repelling
cycles will enter the z-axis at higher values of the
parameter c).

When c¢ increases in the interval cy; < ¢ < ¢
Fig. 15 (¢ = 1.24) shows that progressively the non-
connected basin of the period 2! cycle (bounded by
J containing the Ry set) presents infinitely many
new excrescences with a “base” having a decreas-
ing length, tending toward zero for ¢ — ¢ = 5/4
(Fig. 9). This situation is easily explained from the
four points ; (y < 0O and y > 0,47 = 1,...,4) of
the period 22 cycle of J. Indeed when ¢ — ¢y this
period 22 cycle with y # 0 tends toward the stable
period 2! cycle (ay, az) on the z-axis, and locally
creates two narrow “vertical” sections in the basin

110

-.110

-1.900

.aoa

Fig. 14. (a) Filled Julia set (symmetric with respect to o = 0) for ¢ = ¢} ~ 1.7545313. The stable period 3 cycle (a1, ag,a3)
has a multiplier S ~ 0.037. The cycle (81, (32, 03) is repelling and located on the immediate basin boundary of the period 3

cycle (aq, g, as). For this parameter value a smooth period 3 concave closed curve (C'), boundary of the immediate basin of
(a1, a2, a3) is obtained. This situation, which now does not occur when the multiplier is S = 0, separates two different forms
of the Julia set, a petal-like one, and the other with “spikes”. (b)—(d) Some enlargements in different regions of the (z;y)
plane. (e) Enlargement in the region defined by Fig. 13, with —0.005 < z < 0.005, 0.1075 < y < 0.1077.
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Fig. 14. (Continued)
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1.200

Fig. 15. Interval ¢p; < ¢ < ¢pa, ¢ = 1.24. The filled Julia set is a basin toward the stable period 2! cycle aj U aa. The points
m€J(y<Oandy>0,i=1,...,4) are those of unstable period 22 cycle. The Julia set J contains only the set Rg;,1. When
¢ — cya = 5/4 the period 2% cycle 7; with y # 0 tends toward the stable period 2% cycle (a1, ap) on the z-axis, and locally
creates two narrow “vertical” sections in the basin of the stable period 2 cycle.

of the stable period 2! cycle. From this situation a
new (rank-2) infinite set Rgyo of double points of J
results when ¢ > ¢pz. Then for ¢ > ¢py the points of
Rapo = Ci(U, >0 T7"(ev1 Uarz)) belong to the bound-
ary 0D(2%; py) of the period four cycle now located
on y = 0, and separate two bordering nonconnected
parts of D(22;py). It is not the case of the points of
Rap1 € 0D(2%ps), which now do not separate two
bordering nonconnected parts of D(22;ps), but turn
into limit points of Ry, thus are accumulation of
non connected parts of D(2%; p3). This last situation
is due to the fact that when ¢ > ¢ the points of the
unstable fixed point ¢o is a limit point of a subset
of increasing rank preimages of the unstable period
2! cycle (v, a) € OD(2%; py), immediate basin of
the period 22 cycle.

The same behavior occurs for any interval
Com < € < Cyimy1) of the wy spectrum. When
¢ — Cpp the 2™ points (y < 0 and y > 0) of
the period 2™ cycle tend toward the stable period
2m=1 cycle on the z-axis, creating locally 2m~1

narrow “vertical” sections (base of excrescences) in
the basin of the period 2~ ! cycle, and after a new
(rank-m) infinite set Rg,,, of double points of J
appearing when ¢ > ¢,,. The points of Rgp,, sep-
arate two bordering (adjacent) nonconnected parts
of D(2™). The points of Rgpn, € 0D(2™;pm), 1 <
h < m, does not separate two bordering noncon-
nected parts of D(2%), but are limit points of non-
connected parts of D(2P; p,). This situation is due to
the fact that when ¢ > ¢, the points of an unstable
period 29 cycle, belonging to the basin 9D (2™;p,,)
are limit points for a subset of increasing rank
preimages of the period 2" cycles ¢ < h located
on the z-axis. Figures 4-6 show J as boundary of
the brown region (filled Julia set) for a c-value of
the interval m = 2, 3,4 corresponding to the basin
of the stable period 2™ cycle, J containing the m
sets Rapm.-

When m — oo, the sets D(2™) — 0 and
U_1 Rapm tend toward the dendrite (cf. Sec. 5.5),

obtained for ¢ = ¢15 (Fig. 17).
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-.012

-.079 #

-.129

-.104

Fig. 16. Interval C;,bl <c< C%b2, ¢ = 1.77289. Partial view of the filled Julia set J, basin toward the stable period 6 cycle
(3.21:1,1), with S ~ 0. The boundary ]‘31.’211 belongs to the immediate basin boundary of the stable period 6 cycle (3.21;1,1).

The boundary F31_’211 is one of the three components of the period three subset of J (cf. Sec. 4 Proposition 2b), each one having
the basic Julia-Fatou configuration (A2). Some of the preimages of this configuration can be seen, for example B,.

Julia sets of class B: intervals clgbm <ec< cgb(mﬂ)
of the spectrum wy,.

For intervals clgbm <ec< cgb(m +1) of the spectrum

wi, the Julia set structure is given by Proposition
2b. Now contrarily to intervals cpm < ¢ < ¢yimq1)
of w1, J N (y = 0) contains infinitely many Can-
tor like sets Cs (cf. Sec. 2.3) born for ¢ < C(jlc)O
and the unstable cycles with their increasing rank
preimages located on (y = 0), born for C(jlc)O <
¢ < ¢y, So the set J N (y = 0) is a well defined
fractal set, J N (y = 0) C Cl(Ur>0T_T(Eim)),
where Efgm €lgy ! q1] is the Cantor set of repelling
cycles born for ¢ < cgbm. The basin of the stable
(k.2™: 4, pm) cycle intersects the z-axis including
2™k segments invariant by T§2m, and their increas-
ing rank preimages located on the segment [g; Lai)
The other increasing rank preimages are located
on the fractal set T,"([g; ', q1]) for all r > 0. All

the points of J with y # () consist of points of
all the other repelling cycles existing in the plane
and still outside the z-axis, and their limit points
(which will enter the z-axis at higher values of the
parameter ¢). The properties of the structure of J
are given in Proposition 2b. Figure 16 represents an
enlargement of the filled Julia set in the neighbor-
hood of the immediate basin boundary of the stable

(k2™ §,pm) cycle.

Similarly equivalent behaviors occur for inter-
vals of spectra w;!"1% between two consecutive flip-

bifurcations.

5.5. Fifth type of Julia set.
Dendrites

Dendrites are characterized by the fact that
E.NJ # 0 (i.e. a dendrite occurs if and only if E.N
J # (). As we have seen in Sec. 3.3 this occurs when
the attracting set A, of the Myrberg’s map is either
a critical set A, (with Cantor like structure, of zero
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c = 1.481155189

Fig. 17.

-.05

c = 1.481155189

.05

R g

(b)

(a) Situation of the Julia set J, a dendrite, at the boundary ¢ = c15 ~ 1.401155189 of the wi; Myrberg spectrum.

This dendrite is the limit of the filled Julia sets of Figs. 4-6 for an attracting period 2™ cycle with m — oco. Now the filled
Julia set does not exist, in other words it reduces to J. (b) Enlargement.

Lebesgue measure), or when A, consists of k-cyclic
chaotic intervals, £ > 1 as described in Sec. 3.2
(point (P'2) and related properties). Clearly at any
value of ¢ in the parameter set denoted by ¢ = ¢ U
cen at which a dendrite occurs, the structure of .J
is at a bifurcation situation, as conjectured in p. 73
(last paragraph of Chapter 4) in [Fatou, 1920].

The set ¢, includes all the values of the param-
eter ¢ which are limit points of flip bifurcation cas-
cades, i.e. one of the two boundaries of a Myrberg
spectrum (A, is a critical set), as the values ¢j, and
their embedded forms in all the rank-a boxes, a > 1.
These cases are characterized by the fact that the
trajectory of the critical point C' belongs to the crit-
ical set as C' € E. = A, so that E. C E.. C J.

The set ¢, includes all the values of the param-
eter ¢ which are global bifurcations, at the clo-
sure of any box of first or second kind, as the
values ¢;’, ¢;}.., and limit points of such bifurca-
tions, and other global bifurcations as the values
¢, and their embedded forms in any rank-a boxes,
a > 1 (Sec. 2.4). In these cases A. consists of k-
cyclic chaotic intervals (k > 1), the critical point
C is either periodic or preperiodic, merging into a
repelling cycle (|S| > 1), thus E. N J # 0.

As already remarked in Secs. 3.2 and 3.3, for
such parameter values, say ¢ € ¢, J is not the
basin boundary of the attracting set on the z-axis,

but only the frontier of the basin of divergent tra-
jectories. This situation is called a dendrite, as J
is made up of a basic segment, the whole inter-
val [qy L q1] of the z-axis, and all its preimages
of any rank, TZ_”([ql_l,ql]) for n > 0, as given
in (5), which includes an “arborescent” sequence
of infinitely many arcs belonging to J for y # 0.
Clearly the basic segment [g; L q1] of J includes all
the repelling cycles already created in the inter-
val (for ¢ < ¢ € ¢) and belonging to the attract-
ing set A. of the Myrberg’s map (except for the
point ¢;) as well as their preimages and limit points
on the z-axis, while the arborescent part of J for
y # 0 includes all the remaining cycles with peri-
odic points having y # 0, and their preimages, that
will become real at higher values of c.

It is worth to note that since J is also the clo-
sure of all the repelling points (at any value of the
parameter c), it follows that the points of the inter-
val [qy ! q1] which are not periodic, or limit points
of periodic points, on the z-axis (in particular, all
those of the interval [¢; !, —¢[) are limit points of
periodic points belonging to J with y # (). Also the
points belonging to TZ*”([qfl7 q1]) for n > 0 are not
such periodic points, and are thus are only in the
limit set of such preimages.

As a result of all the preimages of any rank,
T,"(l¢; ", q1]) for n > 0, the “arborescent” sequence
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of infinitely many J arcs with y # 0 has the
same qualitative shape whatever be the parameter
¢ = ¢er U cep. The related dendrites only differ by
the nature of the singular sets (Sec. 2.4) located
on the basic segment [g; 1 q1]. Figure 17 represents
the case ¢ = c1,5. Equivalent qualitative figures, at a
correctly chosen scale, can be obtained for ¢ = c,g o

_ '17"'7]'04 _
c= Cgkh...,k‘a)s’ €= Cch-

6. Conclusion

Julia and Fatou have already described the basic
situations generated by a one-dimensional complex
map (and it is remarkable that this was done with-
out the help of any computer). In this Part I,
this paper has shown how the bifurcations sym-
bolism related to the box-within-a-box organization
(described in Sec. 2) permits to introduce a fractal
ordering in the qualitative changes of the Julia sets
generated by (1) when ¢ is real, —1/4 < ¢ < 2.
So it is possible to follow the evolution of the Julia
set shape in this interval, and identify the subin-
tervals giving the same qualitative shape. More-
over, as shown in Sec. 4, the structure of the Julia
set, defined from the the location unstable cycles
(defined by Sec. 2 symbolism) in the plane, can be
identified.

We remark that the paper results, based on the
box-within-a-box organization, describe the situa-
tion given from the section by the real parameter
axis of the boundary of the classical Mandelbrot set.
Then in the Mandelbrot parameter plane it is likely
that there exist routes with ¢ complex, ¢ = a + jb,
42 = —1, reproducing with a two parameter sym-
bolism what occurs when c is real.

Considering now the “indirect” embedding of
Tz into the two-dimensional family of noninvertible
maps T (2) (object of Part II of this paper), which
depends on the two real parameters ¢ and v, Secs. 3—
5 results define completely the map behavior in the
half plane y < 0, when v = 0. More particularly, the
second part of this paper will explain bifurcation
routes leading to the different configurations of the
Julia sets J generated by Tz when v — 0, with
¥ >0.
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