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a b s t r a c t

In this paper we prove the existence of full measure unbounded chaotic attractors which are

persistent under parameter perturbation (also called robust). We show that this occurs in a

discontinuous piecewise smooth one-dimensional map f, belonging to the family known as

Nordmark’s map. To prove the result we extend the properties of a full shift on a finite or in-

finite number of symbols to a map, here called Baker-like map with infinitely many branches,

defined as a map of the interval I = [0, 1] into itself with infinitely branches due to expanding

functions with range I except at most the rightmost one. The proposed example is studied by

using the first return map in I, which we prove to be chaotic in I making use of the border col-

lision bifurcations curves of basic cycles. This leads to a robust unbounded chaotic attractor,

the interval (−∞, 1], for the map f.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the properties of one-dimensional discrete

dynamical systems is mainly performed considering a func-

tion which maps a compact interval into itself. At the present

time there are many works dealing with such systems,

which consider both continuous and discontinuous maps

(see e.g. [7,17,18,23]). The various definitions of attractor

given in the current literature refer almost all to compact

sets ([14,23,25]). Moreover, the interest is often focused on

chaotic attractors, which in one-dimensional maps are cyclic

or acyclic chaotic intervals, and thus bounded invariant sets

in which the boundaries are given by the images of crit-

ical points (see [2]). In particular, in such cases the con-

tact of the invariant set with the basin’s boundary leads to

a change in the dynamics. A typical example is the logistic

map T(x) = μx(1 − x), at μ = 4 a chaotic interval exists (not

attracting) and for μ > 4 mainly divergent dynamics occur
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(although an invariant chaotic set still exists in [0, 1]), and

many examples can also be found in applied models.

However, there are several systems, also in applications,

that lead to unbounded trajectories which are not diverg-

ing. This fact was emphasized for example in [6], and un-

bounded chaotic sets naturally arise in the iteration of maps

with a vanishing denominator. For example, the existence of

a “non bounded chaotic solution” in a one-dimensional map

has been shown in [16] (see also [18] p.38). Further examples

can be found in [5], where the related theory and properties

were extended to two-dimensional maps.

In the references cited above, the existence of unbounded

chaotic sets of full measure was proved on the basis of theo-

retical arguments, and in some cases even giving the closed

analytical expression of such trajectories in terms of elemen-

tary algebraic and transcendental functions. The main ana-

lytical tool used in [5] to give the closed form solution of un-

bounded chaotic trajectories is related to a method based on

the Schröder functional equation, described in [16] (see also

[18] and the Appendix in [5]).

Clearly, a full measure unbounded chaotic set in a one-

dimensional (1D for short) map must include periodic points

which are dense in an unbounded interval. The basic char-

acteristic of an unbounded and not diverging aperiodic
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trajectory is that it includes points arbitrarily close to infinity

which are then followed by points that come back (at finite

distance). Such a property leads to difficulties in the numer-

ical iterations of the system, since an overflow error occurs

even if the numerically generated trajectory is not diverging.

However, the technique applied in the present work, mak-

ing use of the first return map of the system, ultimately leads

to the study of a map in a compact interval, avoiding such

kind of numerical problems and allowing suitable theoreti-

cal tools.

One more feature that is worth to mention is that the ex-

amples leading to a closed form solution of the trajectories

refer to full measure unbounded chaotic sets which are not

structurally stable1. That is, a small perturbation of the pa-

rameters in the system causes the destruction of the invari-

ant chaotic set (at least in some characteristic features here

mentioned, unbounded, chaotic, and full measure). However,

an important property is the persistence of chaotic attractors

(i.e. really attracting sets in the phase space) under parame-

ter variations, also called robust chaotic attractors, following

the definition given in [3]. One of the goals of the present

work is to show that full measure unbounded chaotic attrac-

tors can exist which are also robust. In the proposed example,

this property (existence of a full measure unbounded chaotic

attractor) persists for parameters in a wide region of positive

measure of the parameter space.

To get this result we need to prove the existence of full

chaos in a discontinuous map of the interval I = [0, 1] into

itself with infinitely many discontinuity points, leading to a

second goal. This subject is not new in the literature. The ba-

sic tools are related to a Baker-like map on the interval I, with

two branches, which has been deeply studied since many

years and is nowadays of common knowledge ([7]). That is,

a map from I into itself with one discontinuity point, and ex-

panding functions in the two partitions, having range I. It is

also known as full shift on two symbols, and the same prop-

erty of the map (of full chaos in I) also holds in a full shift on

any finite number of symbols. That is, a map from I into itself

with a finite number of discontinuity points, and in all the

partitions expanding functions have range I.

The results have been extended to shifts on an infinite

number of symbols in [26], and thus to a map with infinitely

many branches (infinitely many discontinuity points) when

all the infinite branches of the map have full range I, let us call

it a Baker map with infinitely many branches.This result was

used in [13], and it is used also in our study. In fact, we shall

prove that the map may be reduced to this kind at the bor-

der collision bifurcations of basic cycles (as we shall clarify in

the next sections). However, as it is common to occur, such

bifurcation values belong to a set of zero measure in the pa-

rameter space, thus the unbounded chaotic attractor proved

in this way cannot be called robust. In order to prove that it is

really persistent, we need to extend the result on Baker maps

with infinitely many branches (based on [26]) also to maps in

which one branch is not of full range [0, 1]. This extension to

what we call a Baker-like map with infinitely many branches, is

necessary to reach the goal of proving the persistence of full

measure unbounded chaotic attractors.
1 As it occurs, for example, in the logistic map T(x) = 4x(1 − x).
The plan of the paper is as follows. In Section 2 we in-

troduce a discontinuous map defined in two partitions be-

longing to the family proposed by Nordmark ([19,20]), with

a linear branch in the left side of x = 0 and a hyperbolic

branch in x > 0. The branch on the right side has a vertical

asymptote at x = 0. We prove that the dynamic of the sys-

tem in the interesting parameter range can be studied by use

of a suitable first return map, which can be analytically de-

scribed. This return map of the interval I = [0, 1] into itself

has infinitely many discontinuity points ξ j which are accu-

mulating to x = 0. All the branches are defined by expanding

functions having range I except at most the rightmost one,

defined in a given interval [ξ , 1], whose range can be any in-

terval [0, y] with 0 < y ≤ 1. That is, a Baker-like map with in-

finitely many discontinuity points in our definition, given in

Section 3, where we prove that it is chaotic in [0, 1] by using

the standard tools, that is, proving that transitivity occurs in

I, that periodic points are dense and there is sensitivity with

respect to the initial conditions. In Section 4 we return to the

proposed example where we use the border collision bifurca-

tion curves together with the fold bifurcation curves of basic

cycles to show that the first return map is a Baker-like map

with infinitely many discontinuity points for parameters be-

longing to a wide region of the parameter space, of positive

measure. Thus proving that the interval (−∞, 1] is a robust

unbounded chaotic attractor for map f. Section 5 concludes.

2. One-dimensional discontinuous piecewise-smooth

map

The 1D discontinuous map which we are interested in

comes from the applied context. Recent applications in en-

gineering lead to piecewise smooth systems (see e.g. [8])

among which much attention has been given to the system

proposed by Nordmark ([19,20]), defined as follows:

x �−→ fμ(x) =
{

fL(x) = ax + μ if x ≤ 0

fR(x) = bx−γ + μ if x > 0
(1)

and mainly considered for γ < 0 and μ > 0. Recently, the

discontinuous case occurring for γ > 0 has been also inves-

tigated. It was first considered in [21], then in [22] for the

particular case γ = 0.5, evidencing the existence regions of

stable basic cycles, and in [15] a complete investigation for

any γ > 0 has been performed. In particular, in the present

work we are interested in the following parameter ranges:

0 < a ≤ 1, b < −1, γ > 0 (2)

Regarding the parameter μ, without loss of generality it can

be fixed at μ = 1. In fact, for any μ > 0 the transforma-

tion (x, a, b,μ) −→ (xμ−1, a, bμ−γ −1, 1) leads from (1) to

the map

x �−→ f (x) =
{

fL(x) = ax + 1 if x ≤ 0

fR(x) = b

xγ
+ 1 if x > 0

(3)

We recall that by using the symbolic notation based on

the letters L and R corresponding to the two partitions IL =
( − ∞, 0], IR = (0, +∞), respectively, we may associate to

each trajectory its itinerary by using the letter L when a point

belongs to the partition IL (L side for short) and R when a

point belongs to the partition I (R side for short). A cycle can
R
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be represented by its finite symbolic sequence. For example,

a cycle with symbolic sequence RLn corresponds to a cycle

having one periodic point on the right partition and n on the

left one. Such cycles, or those with symbolic sequence LRn,

are called basic cycles (or maximal cycles, or principal cycles,

see [1,8,9]). In the case of a piecewise smooth discontinuous

map, it is common to be faced also with non smooth bifurca-

tions, called border collision bifurcations (BCB for short). This

term is here used to denote a periodic point of a cycle which

is colliding with the discontinuity point x = 0 from the L side.

The properties of the dynamic behaviors in the consid-

ered region for the parameters given in (2) depend on the

straight line on the L side having slope smaller than 1 and on

the rank-1 preimage of the origin on the R side O−1
R

= ( − b)
1
γ

which is larger than 1. Since no fixed point exists in the L side,

any point on the left side has an increasing sequence reach-

ing the right side in a point ≤1. At the same time, any point

on the right side larger than 1 is mapped below 1 in one it-

eration. Thus we can consider the interval (−∞, 1] (range of

map f). Moreover, for b < −1 any point in (0, 1] is mapped to

the L side in one iteration. That is, in the itinerary of any tra-

jectory the symbol R is necessarily followed by L (i.e. at least

one L). It follows that the only possible basic cycles are those

with the symbolic sequence RLn, and they all exist for any

n ≥ 1, in suitable parameter ranges. Indeed, let 0 < x0 < 1

be a point on the right side, then when b is small enough we

have fR(x0) � 0, and it takes many iterations by fL for the tra-

jectory in order to reach the right side again.

To rigorously prove the dynamic properties of a map, it

comes quite often useful to consider the first return map in

a suitable interval (some recent examples in discontinuous

maps can be found in [10,11]). In the case of map f in (3), we

can consider the first return map of f in the interval I = [0, 1],

whose existence and construction is given in the following

Proposition:

Proposition 1. Let b < −1, 0 < a ≤ 1. The dynamics of map f in

(3) can be investigated by using the first return map Fr(x) in the

interval I = [0, 1]. Fr(x) is a discontinuous map with infinitely

many branches defined as follows:

Fr(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

FRLn(x) = f n
L ◦ fR(x) if ξn+1 ≤ x ≤ 1

FRLn+1(x) = f n+1
L

◦ fR(x) if ξn+2 ≤ x < ξn+1

...
...

FRLn+ j (x) = f n+ j
L

◦ fR(x) if ξn+ j+1 ≤ x < ξn+ j

...
...

(4)

where n ≥ 0 is the smallest integer for which f n
L

◦ fR(1) ∈
[0, 1),

FRLm(x) = amb

xγ
+ 1 − am+1

1 − a
(5)

and the discontinuity points are preimages of the origin given

by

ξm+1 = f −1
R ◦ f −m

L (0) =
(

−b
am−1

am(a−1)
+ 1

) 1
γ

.

Proof. Since in the region b < −1 of the parameter space

fR(1) = 1 + b < 0 holds, it is possible to define the first re-

turn map of f(x) in the interval [0, 1]. We recall that the first

return map Fr(x) is defined as the function which associates

to any point x > 0 the first non negative value of the trajectory

of x, that is, the first value satisfying fn(x) ≥ 0, which in our

case is necessarily f n(x) ∈ [0, 1). We also notice that when a

point ξ satisfies f n(ξ) = 0, then it is also fL ◦ f n(ξ) = 1. So,

given a value b < −1, let n ≥ 0 be the smallest integer such

that

f n
L ◦ fR(1) ∈ [0, 1) (6)

In the generic case satisfying f n
L

◦ fR(1) ∈ (0, 1) we have

that decreasing x from 1, fR(x) decreases and the first return

map decreases as well, so that it must be defined as Fr(x) =
f n
L

◦ fR(x) for all the points in a left interval of 1, up to a point

ξn+1 in which it holds

f n
L ◦ fR(ξn+1) = 0. (7)

That is, ξn+1 is a preimage of the origin of order (n + 1) as,

taking the inverses in (7), we have ξn+1 = f −1
R

◦ f −n
L

(0). By

applying fL on both sides in (7), we also have that

f n+1
L ◦ fR(ξn+1) = 1 (8)

It follows that in a left neighborhood of the point ξn+1 the

first return map must be defined as Fr(x) = f n+1
L

◦ fR(x), up

to a point ξn+2 in which it holds f n+1
L

◦ fR(ξn+2) = 0, and so

on. We can state that, for any j ≥ 0, the first return map is

defined by branches of the following kind:

FRLn+ j (x) = f n+ j
L

◦ fR(x)

separated by discontinuity points (preimages of the origin).

The number of branches is necessarily infinite. In fact, as

described above, we have to consider the preimages of the

origin as follows:

ξn+ j+1 = f −1
R ◦ f −(n+ j)

L
(0) (9)

which exist for any j ≥ 0. Considering the inverse functions

f −1
R (y) =

(
b

y − 1

) 1
γ

(10)

f −1
L (y) = y − 1

a
(11)

the iterative application of the inverse on the left side leads

to

f −k
L (y) = y

ak
− ak − 1

ak(a − 1)
(12)

so that from (9), by using (12) and (10), we have explicitly:

ξn+ j+1 =
(

−b
an+ j−1

an+ j(a−1)
+ 1

) 1
γ

(13)

We know that the points f
−(n+ j)
L

(0) exist on the left side for

any j ≥ 0, because the function fL is increasing with slope a ≤
1, so that as j → ∞ the points f

−(n+ j)
L

(0) tend to −∞ and thus

f −1
R

◦ f
−(n+ j)
L

(0) exist for any j ≥ 0 and tend to 0.

The first return map is necessarily defined by infinitely

many branches separated by discontinuity points, preim-

ages of the origin of rank (n + j), denoted by ξn+ j . Fr(x) =
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Fig. 1. Map f at γ = 0.5, a = 0.9, b = −5.5, for which n = 4 in the definition of Fr(x). The images of the point x = 1 are marked in light gray, and a few preimages

of x = 0 are shown. In the enlargement the related first return map Fr(x).

Fig. 2. First return map Fr(x) at γ = 0.5, a = 0.9. In (a) b = −4.71742, BCB value of the maximal cycle RL4. In (b) b = −6.24158, BCB value of the maximal

cycle RL5.
FRLn(x) = f n
L

◦ fR(x) for ξn+1 ≤ x ≤ 1, and Fr(ξn+1) = 0; by

Fr(x) = FRLn+1(x) = f n+1
L

◦ fR(x) for ξn+2 ≤ x < ξn+1 which is

a continuous increasing branch from 0 to 1, as Fr(ξn+2) =
f n+1
L

◦ fR(ξn+2) = 0 and Fr(ξn+1) = f n+1
L

◦ fR(ξn+1) = 1, and

so on, this holds for any integer. That is, for any j, Fr(x) =
FRLn+ j (x) = f

n+ j
L

◦ fR(x) is a continuous increasing branch for

ξn+ j+1 ≤ x < ξn+ j, taking values from 0 to 1, as Fr(ξn+ j+1) =
f

n+ j
L

◦ fR(ξn+ j+1) = 0 and Fr(ξn+ j) = f
n+ j
L

◦ fR(ξn+ j) = 1.

Examples of map f and its first return map Fr are shown in

Fig. 1.

In the particular case in which the condition in (6) occurs

as f n
L

◦ fR(1) = 0, we also have FRLn+1(x) = f n+1
L

◦ fR(1) = 1,

so that we can define Fr(1) = f n
L

◦ fR(1) = 0 in the single

point ξn+1 = 1 and then Fr(x) = f n+1
L

◦ fR(x) in [ξn+2, ξn+1).

Notice that the range of FRLn+1(x) = f n+1
L

◦ fR(x) in [ξn+2, 1]

is exactly [0, 1], and similarly, in all the other branches of

Fr(x) which can be defined as above. Examples are shown in

Fig. 2.

We have so proved that the first return map in [0, 1] is

a discontinuous map defined by infinitely many increasing

branches as explicitly given in (4). �

2.1. Border collision bifurcations

The particular case

f n ◦ fR(1) = 0 (14)
L
mentioned in the proof given above can be rewritten as

f n
L

◦ fR ◦ fL(0) = 0 (considering 1 = fL(0)), or equivalently,

by applying fL on both sides of (14), as follows:

FRLn+1(1) = f n+1
L ◦ fR(1) = 1 (15)

thus it corresponds to the BCB of a basic cycle with symbolic

sequence RLn+1 (as in fact x = 0, as well as x = 1, is a periodic

point of period (n + 2)).
In terms of the preimages of the origin the condition in

(14) also corresponds to

1 = f −1
R ◦ f −n

L (0) (16)

that is, by using the definition in (9) with j = 0,

ξn+1 = 1 (17)

The equation ξn+1 = 1 of the BCB can be written in explicit

form. In fact, considering n = n + 1 in (13) and j = 0 we have

1 =
(

−b
an−1

an(a−1)
+ 1

) 1
γ

equivalent to

−b = an − 1

an(a − 1)
+ 1

and, rearranging:

BRLn : b = − 1 − an

an−1(1 − a)
(18)
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which is the equation of the BCB of a cycle with symbolic

sequence RLn.

Considering the example shown in Fig. 1, as b increases

from the value −5.5, the value FRL4(1) = f 4
L

◦ fR(1) of the

rightmost branch of Fr increases, and when FRL4(1) = f 4
L ◦

fR(1) = 1, from (15) the BCB of the cycle with symbolic se-

quence RL4 occurs, as shown in Fig. 2a (from (18) with a = 0.9

and n = 4 the bifurcation value b � −4.71742 is obtained).

Differently, as b decreases from the value −5.5, the value

FRL4(1) = f 4
L

◦ fR(1) of the rightmost branch of Fr decreases,

and when FRL4(1) = f 4
L ◦ fR(1) = 0 (which corresponds to

f 5
L

◦ fR(1) = 1) from (14) the BCB of the cycle with symbolic

sequence RL5 occurs, as shown in Fig. 2b (from (18) with

a = 0.9 and n = 5 the bifurcation value b � −6.24158 is ob-

tained). As we shall see in Section 4, as b decreases up to

−∞, all the BCB curves of cycles with symbolic sequence RLk

for k > 4 are crossed, and the first return map is expansive

(the first derivative of all the component branches FRLm(x) is

larger than 1 in all the points of the related intervals).

A few properties of the first return map Fr immediately

follow.

(i) Each component FRLn(x) of Fr is continuous and in-

creasing from 0 to 1, except at most the rightmost

branch (as in the example in Fig. 1), as F ′
RLn(x) > 0, for

x > 0. This also follows from the explicit expression of

the first derivative:

F ′
RLn(x) = an f ′

R(x) = −bγ

xγ +1
an > 0

(ii) Each component FRLn(x) of Fr is concave, since

F ′′
RLn(x) < 0, for x > 0, as follows from the explicit

expression:

F ′′
RLn(x) = d

dx

(
−bγ

xγ +1
an

)
= bγ (γ + 1)

xγ +1
an < 0

(iii) The same properties (increasing branches and con-

cavity) hold for any composition of the functions

FRLn(x).

(iv) An immediate consequence of the constructive defini-

tion of the first return map Fr, is that infinitely many

unstable basic cycles necessarily exist. In fact, the first

return map Fr(x) consists of infinitely many increas-

ing and concave branches FRL j (x) which are continuous

and take values from 0 to 1, at least for any j ≥ n + 1.

Thus unstable fixed points xRL j must exist for any j ≥
n + 1.

In the example given in Fig. 1, where n = 4, the right-

most branch of Fr is defined by FRL4(x) = f 4
L

◦ fR(x). All the

branches defined by FRL4+ j = f
4+ j
L

◦ fR(x) exist for any j ≥ 1

and intersect the diagonal, leading to the existence of unsta-

ble cycles of period (5 + j) for any j ≥ 1.

3. Chaos in a Baker-like map with infinitely many

discontinuity points

In the previous section we have seen several properties

of map f that can be studied by the first return map Fr:

I → I having three peculiarities: infinitely many discontinu-

ity points which have x = 0 as limit point, all the continuous

branches F j (x) of Fr take values from 0 to 1 except at most
RL
the rightmost one and, as we shall prove in the next section,

all the functions of the component branches are expanding.

In this section we prove that a map having these properties,

which we call Baker-like map with infinitely many disconti-

nuity points or equivalently with infinitely many branches,

is chaotic in I. Clearly, for map f this means that the whole

unbounded interval (−∞, 1] is a chaotic attractor (whose ro-

bustness will be proved in Section 4).

Definition 1 (Baker-like). A function φ : [0, 1] −→ [0, 1] de-

fined by

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1(x) if ξ1 ≤ x ≤ ξ0

φ2(x) if ξ2 ≤ x < ξ1

...
...

φi(x) if ξi ≤ x < ξi−1

...
...

0 if x = 0

is called a 1D Baker-like map with infinitely many discon-

tinuity points in I = [0, 1] if the {ξi}∞
i=0 ⊂ I constitute a de-

creasing sequence of positive numbers with ξ0 = 1 such that

lim
i→∞

ξi = 0 and φi a family of differentiable functions

φi : [ξi, ξi−1] −→ [0, 1], for any i ≥ 1

satisfying φi(ξi) = 0 for any i ≥ 1, φi(ξi−1) = 1 for any i > 1,

0 ≤ φ1(1) ≤ 1, and φ′
i
(x) > 1 for any x ∈ [ξi, ξi−1].

In the following lemma, we prove that any open interval

in I has an image of finite rank which includes at least one

discontinuity point.

Lemma 1. Let φ be a 1D Baker-like map with infinitely many

discontinuity points in I = [0, 1]. Then for any interval J =
(α,β) ⊂ I, there is k ≥ 0 such that

φk( J) ∩ {ξi | i ∈ N} �= ∅.

Proof. Reasoning by contradiction, suppose that there is an

interval J = (α,β) ⊂ I such that

φk( J) ∩ {ξi | i ∈ N} = ∅, for any k ≥ 0 (19)

For k = 0, J does not include any discontinuity point, so there

is i0 ≥ 1 such that J ⊂ (ξi0
, ξi0−1) and φ(J) is an interval. Since

φi0
(x) is continuous in J, differentiable and increasing in J, by

the mean value theorem there is c1 ∈ J such that∣∣φ( J)
∣∣ =

∣∣φ(β) − φ(α)
∣∣ = μ1(β − α) = μ1|J|

where μ1 = φ′
i0
(c1) > 1. Now consider k = 1, then there ex-

ists i1 ≥ 1, such that φ( J) ⊂ (ξi1
, ξi1−1) and φ2(J) is an in-

terval. Similarly, since φi1
(x) is continuous in φ( J), differen-

tiable and increasing in φ(J), there is c2 ∈ φ(J) such that∣∣φ2( J)
∣∣ = μ2

∣∣φ( J)
∣∣ = μ1μ2|J|

where μ2 = φ
′
i1
(c2) > 1. So iteratively, for k = n there is

in ≥ 1 such that φn( J) ⊂ (ξin , ξin−1) and φn+1( J) is an inter-

val. Likewise, there is cn ∈ φn(J) satisfying∣∣φn+1( J)
∣∣ = μn

∣∣φn( J)
∣∣ = μ1μ2 . . . μn|J|
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where μn = φ′
in
(cn) > 1. Since μi > 1 for any i, we have

lim
n→+∞

∣∣φn+1( J)
∣∣ = +∞

which is a contradiction. �

We prove that a 1D Baker-like map with infinitely many

discontinuity points is chaotic in the sense of Devaney [7] in

I = [0, 1]. Let us recall the following

Definition 2 (chaos). Let (X, d) be a metric space without iso-

lated points. Then a dynamical system φ : X −→ X is said to

be chaotic (in the sense of Devaney) if it satisfies the follow-

ing conditions:

(1) Transitivity: φ is topologically transitive in X; that is,

for any pair of non-empty open sets U and V of X there

exists a natural number n such that φn(U) ∩ V �= ∅;

(2) Density: the periodic points of φ are dense in X;

(3) Sensitivity: φ has sensitive dependence on initial con-

ditions in X; that is, there is a positive constant δ
(sensitivity constant) such that for every point x of X

and every neighborhood N of x there exists a point y

in N and a non negative integer n such that d(φn(x),

φn(y)) ≥ δ.

If φ is continuous, one can drop the sensitivity condition

from Devaney’s definition of chaos because it is implied by

the other two conditions ([4]). Moreover, it has been proved

that if φ is a continuous map on an interval, not necessar-

ily a finite interval, then transitivity implies density and sen-

sitivity ([24]). Namely, for continuous maps on an interval,

both sensitivity and density are redundant conditions in the

definition of chaos. However, for the 1D discontinuous maps

which we are interested in, the three conditions have to be

proved separately.

Theorem 1. Let φ be a 1D Baker-like map with infinitely many

discontinuity points in I = [0, 1]. Then, φ is chaotic in I = [0, 1].

Proof. We show that φ satisfies the conditions in

Definition 2 (transitivity, density and sensitivity).

(1) First we prove transitivity. Let J = (α,β) ⊂ I be an ar-

bitrary open interval. According to Lemma 1, let k0 be

the smallest positive integer such that φk0( J) ∩ {ξi |
i ∈ N} �= ∅. So, there is at least one discontinuity point,

say ξ j ∈ φk0( J) ∩ {ξi | i ∈ N}. We know that φj is con-

tinuous and increasing in [ξ j, ξ j−1] and φ j(ξ j) = 0.

Since ξ j ∈ φk0( J), we have that 0 = φ(ξ j) ∈ φk0+1( J).

Since 0 is limit set of the discontinuity points, there

exists n0 such that ξn ∈ φk0+1( J) for any n ≥ n0. Hence

[ξn, ξn−1] ⊂ φk0+1( J). Now by applying φ on both

sides, we obtain [0, 1) = φ([ξn, ξn−1]) ⊂ φk0+2( J). So

it is topologically transitive and also topologically

mixing [12].

(2) Regarding density, let J = (α,β) ⊂ I be an arbitrary in-

terval. By Lemma 1, let k0 be the smallest positive in-

teger such that φk0( J) ∩ {ξi | i ∈ N} �= ∅. We know that

φk0( J) = (φk0(α), φk0(β)) is an interval. Let ξ j be the

largest discontinuity point in φk0( J). Note that φk0

is continuous and increasing on J and ξ j ∈ φk0( J). So

there exists x0 ∈ J, such that φk0(x0) = ξ j and [x0, β)

⊂ J. Since φk0+1(x0) = φ(φk0(x0)) = φ(ξ j) = 0 and 0
is limit set of the discontinuity points, there is n0 such

that ξn ∈ φk0+1([x0, β)) for any n ≥ n0. It follows that

[ξn, ξn−1] ⊂ φk0+1([x0, β)). Thus there are x1 ∈ [x0, β)
such that φk0+1(x1) = ξn and also y1 ∈ [x0, β) satis-

fying φk0+1(y1) = ξn−1. Clearly, [x1, y1] ⊂ [x0, β) and

φk0+2([x1, y1)) = [0, 1). Since [x1, y1) ⊂ [0, 1), let c =
y1+1

2 . It is clear that y1 < c < 1. Moreover, there is

d ∈ [x1, y1) such that φk0+2(d) = c. Now we define a

new map

g : [x1, d] −→ [0, c]

such that g(x) := φk0+2(x) − x. Since g is continuous

on [x1, d] and g(x1) = 0 − x1 = −x1 < 0 and g(d) =
c − d > 0, by Bolzano’ theorem there exists x∗ ∈ [x1,

d] ⊂ J such that g(x∗) = φk0+2(x∗) − x∗ = 0, that is

φk0+2(x∗) = x∗. This completes the proof.

(3) For the proof of sensitivity, we show that there exists

δ > 0 such that for any p ∈ I and any neighborhood U

of p, there is q ∈ U and j ≥ 1 such that d(φj(p), φj(q)) ≥
δ. Fix δ = 1

2 . According to the proof of (1), there is j ≥ 1

such that φ j(U) = [0, 1). Let φ j(p) = p j ∈ I and qj ∈ I

such that |q j − p j| = 1
2 . Since qj ∈ I, there is q ∈ U such

that φ j(q) = q j and thus

d(φ j(p), φ j(q)) ≥ δ.

�

4. Robust unbounded chaotic attractors

In this section we prove that in the considered example

of map f given in (3) there are open sets in the parameter

space at which the dynamics of the system persist as chaotic

in the unbounded interval (−∞, 1], showing that the first re-

turn map Fr defined in Section 2 is a Baker-like map with in-

finitely many discontinuity points.

To this purpose, let us recall some features of the bifurca-

tion curves in the parameter space of our map. Besides the

BCB BRLn determined in Section 2 associated with cycles hav-

ing symbolic sequence RLn (n ≥ 2, in the considered range

b < −1) it is known that fold bifurcations of basic cycles may

occur (see [15,21]). A fold bifurcation leads to two merging

solutions of the equation FRLn(x) = x, and from (5) this leads

to

anb

xγ
+ 1 − an+1

1 − a
= x. (20)

The eigenvalue of a cycle is the first derivative of the com-

posite function FRLn(x), thus we have

F
′

RLn(x0) = −bγ

x
γ +1
0

an (21)

where x0 is the periodic point on the R side. Taking into ac-

count that at a fold bifurcation two fixed points are merging

in one point denoted x∗
RLn and that F

′
RLn(x∗

RLn) = 1, from (21)

we obtain the condition

x∗
RLn = (−bγ an)

1
γ +1 (22)

By substituting this expression into (20), the equation of the

fold bifurcation in the function F n (a curve in the parameter
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Fig. 3. Two-dimensional bifurcation diagram in the (a, b)−parameter plane. In (a) at γ = 0.5, in (b) at γ = 1.5. Regions related to stable cycles of different

periods are shown in different colors. The periodicity regions of the maximal cycles RLn are evidenced. The lower boundary is a fold bifurcation curve �RLn while

the upper boundary (in black) is a BCB curve BRLn . The bifurcation curves �RLn and BRLn are drawn by using the equations given in (23) and (18), respectively. The

codimension-two points (an, bn) are marked with black circles. In (a) a∞ = 2
3
, in (b) a∞ = 2

5
. The segment in (a) evidenced by the arrow is at a = 0.9.

RL
plane (a, b)) is obtained, for any n ≥ 1, given by:

�RLn : b = − 1

γ an

(
1 − an+1

1 − a

γ

γ + 1

)γ +1

(23)

It is worth to note that for any n ≥ 1 (and any γ > 0, a >

0) the two curves �RLn and BRLn have a point of tangency,

as can be observed in Fig. 3 where a few BCB curves BRLn

are shown in black, the fold bifurcation curves �RLn are also

shown, and the points of tangency are marked by black cir-

cles. Each codimension-two point, say (an, bn), satisfies both

equations in (23) and (18), thus an can be obtained as the

unique solution of the following equation:

aγ
1 − an

1 − a
−

(
1 − an+1

1 − a

γ

1 + γ

)γ +1

= 0 (24)

and bn = b(an) is obtained from (18) at a = an. The equa-

tion in (24) cannot be easily solved analytically. However,

a simpler expression can be obtained. In fact, considering

that at the codimension-two point both bifurcations must

occur simultaneously, and since the border collision occurs

when the periodic point on the right side collides with x = 1,

we can state that the fold bifurcation point given in (22),

x∗
RLn = (−bγ an)

1
γ +1 , must be equal to 1, that is, simplifying:

−bγ an = 1 (25)

By substituting b = − 1
anγ into (18) we get − 1

anγ =
− 1−an

an−1(1−a)
, that is a 1−an

1−a = 1
γ and, rearranging:

an+1 − a

(
1 + 1

γ

)
+ 1

γ
= 0 (26)

For the BCB curve of the 2−cycle RL (n = 1), occurring at b =
−1, the condition in (25) reduces to a − 1

γ = 0, so that the

codimension-two point is given by

a1 = 1

γ
(27)
While for n = 2, related to the BCB curve of the 3−cycle RL2,

we obtain

a2 = 1

2

(
−1 +

√
1 + 4

γ

)
.

In addition, it follows that increasing n the solutions are de-

creasing values (i.e. an+1 < an), and all these values are larger

than a fixed value of a which can be obtained from (26) as

n → ∞, leading to

a∞ = 1

γ + 1
. (28)

So we can state that, for any n > 1, the following inequalities

hold:

a∞ = 1

γ + 1
< an+1 < an < a1 = 1

γ
. (29)

When the parameters belong to the BCB curve BRLn then

a periodic point is merging with x = 1, it holds F
′

RLn(1) =
−bγ an = γ an 1−an

an−1(1−a)
= γ a 1−an

1−a and

• for a < an we have F
′

RLn(1) < 1 which means that the col-

liding cycle is stable, and thus the fold bifurcation curve

�RLn (associated with a point in which F
′

RLn = 1) must

have been occurred before at a smaller value of b;

• for a > an we have F
′

RLn(1) > 1 which means that the

colliding cycle is unstable, and thus the fold bifurcation

curve (associated with a point in which F
′

RLn = 1) must

be virtual (at larger values of a), below the BCB curve

BRLn .

The codimension-two points on a BCB curve separate

different dynamic behaviors. If we consider a point of a

BCB curve BRLn at the right of its codimension-two point

(an, bn) it holds that F ′
RLn(1) > 1 and the colliding cycle is

unstable.

The case associated with the example in Fig. 3a, related

to the curve BRL4 , corresponds to the upper point in the seg-

ment marked by an arrow in Fig. 3a, while the example in

Fig. 3b, related to the curve B 5 , corresponds to the lower
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point. The case shown in the enlargement of Fig. 1 corre-

sponds to a point inside the segment.

For parameters (a, b) ∈ BRLn and a ≥ an, the first return

map consists of infinitely many branches FRL j (x), j ≥ n, and

all of them, including the rightmost one FRLn(x), have range

[0, 1]. Since F ′
RLn(1) > 1, then it must be F ′

RLn(x) > 1 for any

x ∈ [ξn+1, 1). Notice that the codimension-two points a j of

BRL j (x), j > n, are all smaller than an which means that at

fixed a decreasing b all the BCB curves BRL j (x), j > n are

crossed and at such bifurcation points it holds F ′
RL j (1) > 1 for

any j > n. This implies that at (a, b) ∈ BRLn also all the other

branches, given by FRL j (x), j > n, are expansive. In fact, the

slope is certainly F ′
RL j (x) > 1 for x ∈ [ξ j+1, x∗

j+1
] where x∗

j+1

is the unstable fixed point of Fr(x), then for x ∈ [x∗
j+1

, ξ j] the

slope, although decreasing, is larger than 1 as at the consid-

ered parameter (a > an) it cannot cross the value 1 (a branch

FRL j (x) of the first return map can have points with slope

smaller than 1 only if at fixed value of a, decreasing b the fold

bifurcation curve �RL j is crossed, which can occur for a < a j

and this cannot occur at the considered parameter).

This proves that the first return map is expanding, and

thus Fr(x) is a Baker-like map with infinitely many branches,

at the points (a, b) ∈ BRL j (where a ≥ an) for any j ≥ n. But the

same result holds not only at the BCB values. In fact, consider-

ing any point (a, b) ∈ BRLn with a ≥ an, then for any b ≤ b it is

F ′
r (1) > 1 and thus the rightmost branch of Fr(x) has the slope

larger than 1 in all its points (due to monotonicity and con-

cavity), as in the example shown in the enlargement of Fig. 1.

Then, not only the rightmost branch, but also all the other

(infinitely many) branches defining the first return map Fr(x)

have the slope larger than 1 in all the points. In fact, reason-

ing as above, the related branches all have an unstable fixed

point, with slope larger than 1, and on its right side the slope,

although decreasing, cannot cross the value 1 as this cannot

occur for the considered parameter (a > an).
We have so proved that for any fixed γ > 0 considering a

BCB curve BRLn , in all the points (a, b) of the two-dimensional

bifurcation diagram with a ≥ an and b ≤ bn the first return

map Fr(x) is a Baker-like map with infinitely many branches

(as in the gray region shown in Fig. 3a,b). It follows that a

wide area in the parameter space corresponds, for f, to the

existence of a robust unbounded chaotic attractor, the inter-

val (−∞, 1].

As we can see from Fig. 3, the larger the value of γ , the

wider is the region in the parameter space with robust un-

bounded chaotic attractors.

5. Conclusions

In this work we have proved the existence of robust full

measure unbounded chaotic attractors in a discontinuous

piecewise smooth one-dimensional map f, linear-hyperbolic,

belonging to the family known as Nordmark’s map. We have

shown that the dynamics of the system in the considered pa-

rameter range can be studied by use of a suitable first return

map, which has been analytically described. This first return

map of the interval I = [0, 1] into itself has infinitely many

discontinuity points ξ j which are accumulating to x = 0. In

Section 4 we have proved that in the considered parameter

space all the branches are defined by expanding functions
and have range I except at most the rightmost one, defined

in a given interval [ξn+1, 1], whose range can be any interval

[0, y] with 0 < y ≤ 1. This kind of map has been called Baker-

like map with infinitely many branches, and in Section 3 we

have proved that it is chaotic in I, proving that in I transitiv-

ity occurs, periodic points are dense and there is sensitivity

with respect to the initial conditions. Proving that the first

return map is chaotic in I we have proved that (−∞, 1] is an

unbounded chaotic attractor of map f which is persistent un-

der parameter perturbation in a set of positive measure of the

parameter space.
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