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Abstract.

Boom and bust cycles are widely documented in the literature on industry
dynamics. Rigidities and delays in capacity adjustment in combination with
bounded rational behavior have been identified as central driving forces. We
construct a model that features only these two elements and we show that this is
indeed sufficient to reproduce some stylized facts of a boom and bust cycle. The
bifurcation diagrams summarizing the dynamic behavior reveal complex cycles
and in particular also abrupt changes in the nature of these cycles. We apply new
insights from the mathematical theory of piecewise smooth dynamic systems -
in particular, results from the theory of border collision bifurcations - and show
that the very existence of borders such as capacity constraints or nonnegativity
constraints may lie behind abrupt changes in the dynamic behavior of economic
variables.
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1 Introduction

Boom and bust cycles - during which an increase in demand is accompanied
by an even stronger increase in capacity, leading to overcapacity and to a sub-
sequent decline of the industry - are widely documented in business literature.
In their overview Dosi et al. (2008, with reference to Paich and Sterman 1993;
Sterman 2000; Sterman et al. 2007) mention examples in durable consumer elec-
tronics (e.g. televisions, VCR’s, calculators, etc.), telecommunications, medical
equipment, chemicals, real estate, pulp and paper, agricultural commodities,
natural resources, toys and games, tennis equipment, bicycles, semiconductors
and running shoes.

In a seminal paper studying the implications of different firm strategies for
the industry dynamics, Sterman et al. (2007) start from a rich set of behavioral
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assumptions and construct an analytically formulated, highly complex nonlin-
ear model; too complex in fact for obtaining analytic solutions. Using computer
simulations they identify the combination of boundedly rational managerial be-
havior with rigidities and delays in capacity adjustments as crucial for the oc-
currence and the nature of boom and bust cycles. Their modeling of managerial
behavior involves the use of anchoring and adjustment heuristics, the use of
simple forecasting rules on the basis of past observations, and a differentiation
between an “aggressive” and a “cautious” type of behavior. Sterman et al.
(2007) and in particular also Dosi et al. (2008) provide ample evidence from ex-
periments and case studies that boundedly rational behavior of this type is quite
persistent — and the scope for learning is very limited — in complex, nonlinear
dynamic situations such as boom and bust cycles.

In the present paper, we consider a model as simple as possible that retains
the two central aspects identified by Sterman et al. (2007), namely boundedly
rational behavior on the one hand and, in particular, delays and rigidities in
capacity adjustments on the other hand. It is on the role of the latter that the
focus of our paper rests; and this has three implications for the model: First,
we explicitly consider a gestation lag for increasing capacity; second, we explic-
itly take into account that downward adjustment of capacity is constrained by
the depreciation rate (reflecting the assumption that machinery once installed
is specific to the particular industry); and third, we explicitly take into account
that output expansion is constraint by existing productive capacity. We com-
bine these aspects of non-instantaneous capacity adjustment with a boundedly
rational behavior similar to the type used in Sterman et al. (2007) and cor-
roborated by Dosi et al. (2008); in particular, we use anchor and adjustment
heuristics and simple expectation formation hypotheses. Finally, to keep the
model as simple as possible, we abstract from strategic interactions and assume
a fully competitive market. From an analytic point of view, it should be noted
that the model will be specified in discrete time: This allows a simple represen-
tation delays; more importantly and already noted by Saari (1985) a continuous
time formulation reduces by assumption the possibility of “overreaction” and
instability.

The role of capacity constraints, on which the focus of our paper rests, is
also discussed in the literature on Hicksian growth and business cycle models
(for a recent contribution see: Shusko et al., 2010) and in oligopoly literature
(for recent contributions see e.g. Besanko and Doralszelki, 2004; Lu and Pod-
dar, 2005; Tramontana et al., 2009). However, assuming a perfectly competitive
market structure, our model is in the tradition of Cobweb models. In this field,
recent contributions analyze primarily the role of learning and of heterogeneous
agents (for an overview see: Hommes 2008; and for a recent example: Caulkins
and Baker 2010); some papers studied the role of buffer stocks (see e.g.: Athana-
sioua et al., 2008); and the role of demand or supply linkages (see Currie and
Kubin, 1995; Dieci and Westerhof, 2010). The role of capacity constraints and
capacity adjustments got little attention although its importance is explicitly
stressed e.g. for agricultural markets (see Gouel 2011; Declerck and Cloutier
2010). The only exception to our knowledge is Currie and Kubin (1997), on
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which we base our subsequent analysis.
The simplicity of the model — while admittedly losing many an empirical

relevant aspect — allows studying the interplay of the two driving forces quasi in
insulation and it allows applying recent analytic results from the theory of non-
linear dynamic systems. We show that the model can reproduce some stylized
facts of boom and bust cycles and, in particular, that the dynamic behavior and
the nature of theses cycles may change abruptly. Applying the new analytic in-
sights provides an economic interpretation of these abrupt changes. The model
is ultimately described by a continuous two dimensional map. Taking delays
and rigidities in capacity adjustment explicitly into account introduces borders
— that have an economics’ motivation — into the phase space at which the def-
inition of the dynamic system changes. This type of systems, called piecewise
smooth, exhibits properties which are similar to those of smooth systems; but,
in addition, new phenomena may occur: The possibility that a border is crossed
at which the definition of the map changes leads to a new type of bifurcations,
called border collision bifurcations (following Nusse and Yorke 1992, 1995). To
be more precise: This type of bifurcation occurs if some attracting set collides
with a border. Due to the fact that applied models often are only piecewise
smooth, the study of these particular bifurcations has been considerably im-
proved in recent times, and since a few years, border collision bifurcations are
noted also in economics’ models (see Agliari et al., 2011; Gardini et al. 2008,
2011; Tramontana et al. 2009, 2010, 2011 to cite a few). However, this is still
a novel argument, and many studies of piecewise smooth systems actually only
perform a local stability analysis of the fixed point(s) and illustrate the global
dynamics by use of simulations, via bifurcation diagrams, in order to evidence
abrupt changes in the shape or cyclicity of an attractor or an abrupt change
from a cyclical to a chaotic attractor. Typically — and also in Currie and Kubin
(1997) — no economic explanation is offered for these abrupt transitions. In the
following we show that some of them involve border collision bifurcations.

Given the fact that also bifurcations occurring in smooth systems quite often
lead to abrupt changes in the dynamic pattern, the economic significance of bor-
der collision bifurcations might be questioned. However, there are noteworthy
differences between bifurcations occurring also in smooth systems and border
collision bifurcations (occurring only in piece-wise defined systems). First, in
contrast to the former, the occurrence of a border collision bifurcation has an
explicit economics rational since it is intimately related to borders with an gen-
uine economics motivation (and is not only a mathematical curiosity connected
to the piecewise smooth specification of the system). We consider this type
of bifurcation of particular relevance for economics models because there exist
many borders, such as e.g. capacity constraints and nonnegativity constraints.
The importance of such constraints for the economic analysis is underlined by
the possibility of border collision bifurcations that engender an abrupt change
in the dynamic pattern. Second, bifurcations in smooth systems typically oc-
cur if one of the eigenvalues is equal to one in absolute value. Therefore, as
Grandmont et al. (1998) have already pointed out, econometric methods from
the time series analysis can be used to detect whether a system is close to a
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bifurcation. It is sufficient to observe and analyze the time series of one of the
system variables; if it exhibits a root close to one (is near a unit-root process), a
bifurcation can be expected to occur. In contrast, the eigenvalues of the cycles
play no role in border collision bifurcations. Instead, we may expect such a bi-
furcation to occur when a periodic point of a cycle is close to a border defining
a region of the map, when it "collides" with the border. This requires that all
system variables are observable and that all borders are known — in this sense
it is more difficult to detect empirically that a system is close to a border colli-
sion bifurcation (than to detect that it is close to a bifurcation occurring also in
smooth systems). Third, while for bifurcations occurring also in smooth systems
the implied qualitative change in the attracting cycles can be often predicted
mathematically, the nature of attracting set after a border collision bifurcation
can often not be predicted (it may be a different cycle, it may consist of several
cyclical chaotic pieces, or it may be a chaotic attractor in one piece). Moreover,
the occurrence of a border collision bifurcation often leads to multistability, ie
to the co-existence between several cyclical and/or chaotic attractors. The co-
existence also reveals another dimension of unpredictability: the related basins
of attraction have a fractal structure; thus, even a small shock may cause the
time path to converge to a different (co-existing) attractor.

Thus, from an economic point of view, a border collision bifurcation - while
having an economics’ rational - might be called more “dangerous” than a bifur-
cation occurring also in smooth systems: In comparison to the latter, it is more
difficult to predict that a system is close to a border collision bifurcation; it is
more difficult to predict what happens to the qualitative nature of the attractor
after the border collision bifurcation. The last difficulty is reinforced by the fact
that after a border collision bifurcation coexisting additional attractors might
occur with fractal basins of attraction.

After this introduction, the rest of the paper is as follows. In Sec. 2 we
recall the model, which was originally proposed in Currie and Kubin (1997),
illustrating how the constraints follow from natural economic assumptions, and
how this complicates the dynamics of the economic model, depending on the
different values that the state vector can assume. In the same section the proof
of the uniqueness of the equilibrium is given, and its local stability analysis is
recalled. In Sec. 3 we analyze the global dynamics. We first illustrate that the
model can reproduce stylized facts of boom and bust cycles. We then describe
the cyclical pattern of the global dynamics occurring in the region in which the
equilibrium is unstable. Closed attracting curves with cyclical behavior change
abruptly with stable cycles of different periods and chaotic attractors and in-
stances of multistability are found, i.e. the coexistence of several attractors with
fractal basins of attraction. We show that some of these dynamic phenomena
are indeed due to a collision of the attractor with one of the borders. In Sec-
tion 3 we thus demonstrate that the very existence of economically motivated
borders leads to the possibility of abrupt and drastic changes in the cyclical
behavior of economic variables. Section 4 concludes.
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2 The basic framework

As in Currie and Kubin (1997), we study the dynamics of a competitive market
with a homogenous commodity. Technology is assumed to be as simple as
possible: Production takes time (one period); and requires as input one unit of
fixed capital (one machine) and a constant quantity of labor and raw material
per unit of the final output. While labor and raw material can be acquired
instantaneously at a fixed price, denoted by ν, the stock of machines can only
be increased with a gestation lag of one period. It depreciates irrespective of
use at a constant rate δ per period. The price of one new machine, denoted by
m, is constant. Once installed, machines are specific to the particular industry
and thus their use involves no opportunity costs.

We do not allow for any (buffer) stocks of the final commodity and the
entire final output, denoted by qt, is sold at a market clearing price. The
market demand function is assumed to be linear and subject to the following
constraints:

pt =






0 for qt = 0
a− qt for 0 < qt ≤ a

0 for qt > a
(1)

where a denotes the maximum quantity that can be sold at a positive price and
where we assume — for completeness - that with a zero quantity the price is also
zero (since no price can be observed).

For modeling entrepreneurial behavior, we start from the following obser-
vations well documented in managerial, evolutionary, behavioural economics as
well as in systems dynamics (for overviews, see e.g. Dosi et al., 2008, and Aram-
buro et al., 2012): In an environment characterized by nonlinearities, feedback
mechanisms and delays — and our model will definitely fall in this class - the
scope for learning the underlying model is limited (see Dosi et al., 2008, who ex-
tensively document various impediments to learn) and economic agents tend to
base their decisions on incomplete and inaccurate mental models or to recur to
simple heuristics. In their famous survey on heuristics and biases, Tversky and
Kahneman (1974, 185) note that “in many situations, people make estimates
by starting from an initial value that is adjusted to yield the final answer” and
that “adjustments are typically insufficient”. Sterman (1989), in his seminal
paper, identifies this anchoring and (insufficient) adjustment behaviour as typ-
ical heuristic used in capacity adjustment decisions (with the status quo being
quite naturally used as anchor) and provides evidence for its intended rational-
ity (similar also in his more recent study, Sterman et al., 2007). Aramburo et al.
(2012) review results from a vast number of laboratory experiments on decision
making in complex and dynamic environments. They conclude that economic
agents tend to ignore delays and that in complex environments “experimen-
tal data fit a decision rule based on the anchoring and adjustment heuristic”
(Aramburo et al., 2012, 98).

For our model, we follow this line of reasoning and assume that entrepre-
neurs base their decisions on an anchoring and (insufficient) adjustment heuris-
tic, where the status quo is used as anchor and where the (insufficient) adjust-
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ment follows from market observations. In order to be more precise, note that
in a competitive market with many (homogeneous) competitors a single entre-
preneur would have difficulties to observe total market capacity, total market
supply and total market demand, but she can easily observe her own capacity,
her own quantity produced and the market price for the output. This suggests a
Marshallian perspective on managerial decision heuristics: Observable individ-
ual quantities serve as anchor and they are (insufficiently) adjusted — following
a Marshallian tradition – whenever the current market price is not equal to
the relevant Marshallian supply price.

First, we model the output decision. Given that the costs of the inherited
machines are sunk, a Marshallian short-period supply price is equal to the effec-
tive variable cost ν(1 + i) where i denotes the (fixed) interest rate for financing
the variable inputs over the production period. We assume that producers follow
an adjustment rule whereby, subject to the capacity constraint, they increase
their anchor variable output if the current market price is less than this supply
price. Specifically

qt+1 − qt

qt
= µ(pt − ν(1 + i)) subject to 0 ≤ qt+1 ≤ kt (2)

otherwise — and this is the first important constraint - it is assumed qt+1 = kt.
Here pt is given in (1), µ > 0 denotes the speed for output adjustment, and kt
indicates the current stock of machines, i.e. the current capacity. The equation
in (2) can be rewritten as follows: since qt+1 = (1 − µν(1 + i))qt + µptqt =
(1 + µ(pt − ν(1 + i)))qt, we have

qt+1 =

{
(1 + µ(pt − ν(1 + i)))qt if 0 ≤ (1 + µ(pt − ν(1 + i)))qt ≤ kt
kt if (1 + µ(pt − ν(1 + i)))qt > kt

(3)

Second, for the capacity adjustment decision, the long-period supply price, de-
noted by c, is given by

c = ν(1 + i) +m(δ + i) (4)

where m(δ + i) represents the ex ante per period costs of buying and installing
a machine instead of investing in the financial market.

Entrepreneurs increase capacity whenever the current (or going) price is
higher than the long-period supply price according to the following rule:

kt+1 − kt

kt
= σ(pt − c) subject to

kt+1 − kt

kt
≥ −δ (5)

where pt is given in (1), σ > 0 denotes the speed for capacity adjustment, and
where the lower bound, equivalent to kt+1 ≥ (1 − δ)kt, reflects the inability
of producers to sell second-hand machines. Note that we are not assuming
rational decision making with naïve expectations and some (implicit) convex
adjustment costs; instead, we assume that decision making in complex environ-
ments involves the use of an anchoring and (insufficient) adjustment heuristic
(with only intended rationality). A reflection of this insufficient adjustment is
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that entrepreneurs may still invest even if the current price is below the longrun
supply price, in particular for c− δ

σ
< pt < c, (the results in Sterman, 1989, and

Sterman et al, 2007, provide evidence for this insufficient capacity reduction
even in the light of excess capacity). Only for prices well below the longrun
supply price, in particular for pt < c − δ

σ
, the constraint is not satisfied and

kt+1−kt
kt

= −δ is assumed, that is kt+1 = (1− δ)kt. This is our second important
constraint and the capacity dynamics is defined as

kt+1 =

{
(1 + σ(pt − c))kt if σ(pt − c) ≥ −δ
(1− δ)kt if σ(pt − c) < −δ

(6)

The economic model is represented by the equations in (3) and (6), where pt is
given in (1). Thus it is ultimately described by a two-dimensional continuous
map in the plane, say (qt+1, kt+1) = T (qt, kt), where T is not smooth, as its
definition changes (although continuously) crossing some borders (in the phase
plane (q, k)) due to the constraints.

By inserting (1) into (3) we have the following output dynamics:

qt+1 =






f1(qt) = (1 + µ(a− ν(1 + i)))qt − µq2t if 0 < qt ≤ a and kt ≥ f1(qt)
f2(kt) = kt if 0 < qt ≤ a and kt < f1(qt)
f3(qt) = (1− µν(1 + i))qt if qt > a and kt ≥ f3(qt)
f2(kt) = kt if qt > a and kt < f3(qt)

(7)
Inserting (1) into (6) gives the following capacity dynamics:

kt+1 =

{
g1(qt, kt) = (1 + σ(a− c− qt))kt if qt ≤ min(a∗, a)
g2(kt) = (1− ξ)kt if qt > min(a∗, a)

(8)

where

a∗ = a− c+
δ

σ
(9)

and the contraction factor (1− ξ) is computed via

ξ = σc if a ≤ a∗ (i.e. if σc ≤ δ) (10)

ξ = δ if a > a∗ (i.e. if σc > δ)
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Fig.1 Regions in the phase space. In (a) the case with a ≤ a∗ (i.e. when
σc ≤ δ). In (b) the case a > a∗ (i.e. when σc > δ).

Summarizing, the phase space can have several regions, where the map T takes
different definitions. For parameters values such that σc ≤ δ the phase space
consists in four regions (see Fig.1a), separated the vertical straight line of equa-
tion q = a and the graphs (q, f1(q)) for q < a and (q, f3(q)) for q > a. Instead,
when σc > δ the phase space consists in six regions (see Fig.1b), separated by
the vertical straight lines of equation q = a∗ and q = a, besides the graphs
(q, f1(q)) for q < a and (q, f3(q)) for q > a. In the regions R1, R3, R4 and R6
the definition of the map is as in Fig.1a; in region R5 the definition is as in re-
gion R6; and in region R2 it is defined as (qt+1, kt+1) = (f1(qt), g2(kt)). Regions
R5 and R6 of Fig.1b have the same definition; the differ only from an economic
point of view, since in region R6 the price is zero, while it is still positive in
region R5. Regions R5 and R6 of Fig.1b differ from region R6 in Fig.1a only
in the contraction factor of the function g2(kt) = (1− ξ)kt which is defined via
two different constants (as given in (3)): in region R6 of Fig.1a it is is ξ = σc,
while in Regions R5 and R6 of Fig.1b it is ξ = δ.

We remark that in the rightmost regions, R1, R5 and R6 the definition of
the map is a contraction in both variables, so that the dynamics of T (qt, kt) are
naturally forced to enter in other regions. However, this does not preserve the
dynamics to be always bounded in the phase space, as points having a divergent
trajectory may exist (in particular parameter settings).

The definition of the map in regionR4, given by (qt+1, kt+1) = (f2(kt), g1(qt, kt))
= (kt, (1+σ(a−c−qt))kt) can be written also as a delayed logistic in the variable
capital:

kt+1 = (1 + σ(a− c))kt − σktkt−1 (11)

whose dynamics have been investigated by several authors (see e.g. Aronson et
al. 1982). So it is well known that it has a unique fixed point different from
k = 0, given by

k∗ = (a− c) (12)
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and thus the two-dimensional map T has also a positive fixed point (q, k) =
(k∗, k∗) iff this point belongs to the region R4.

Proposition. The system defined in (7) and (8) has a unique fixed point
different from (0, 0), given by (k∗, k∗), belonging to Region R4.

To prove the proposition we have to show that the fixed point belongs to that
region and that no other fixed point exists in the other regions. That k∗ = (a−c)
is always smaller that min(a∗, a) follows immediately. Then we have to prove
that k∗ < f1(k∗). And in fact we have f1(k∗) = k∗(1 + µ(a− ν(1 + i)− k∗)) =
k∗(1 + µ(c − ν(1 + i)) = k∗(1 + m(δ + i)) which clearly is larger than k∗.
Now we have to consider the definitions in the other regions. As remarked
above, no fixed point can exist in the regions R1, R5 and R6 where there are
contractions (whose dynamics converge towards (0, 0) outside these regions).
The function defined in the region R3, (qt+1, kt+1) = (f1(kt), g1(qt, kt)), has no
fixed point, as can immediately be seen, while the function defined in the region
R2, (qt+1, kt+1) = (f1(kt), g2(kt)) has the point (q, k) = (a− ν(1 + i), 0) which
does not belong to the region R2 and thus it is not a fixed point of our system.�

Regarding the local stability of the fixed point (k∗, k∗), the Jacobian matrix
of the system defined in region R4 is given by

J(q, k) =

[
0 1
−kσ 1 + σ(a− c)− qσ

]
(13)

so that

J(k∗, k∗) =

[
0 1

−σ(a− c) 1

]
(14)

whose characteristic polynomial is given by P(λ) = λ2−λ+σ(a−c). The related
eigenvalues are given by

λ1,2 =
1±

√
1− 4σ(a− c)

2
(15)

and are complex conjugated for 4σ(a− c) > 1. The fixed point can loose stabil-
ity via a Neimark Sacker bifurcation, occurring when the complex eigenvalues
become equal to 1 in modulus, which occurs for σ(a− c) = 1, that is when

NS : σ(a− ν(1 + i)−m(δ + i)) = 1. (16)

For σ(a− c) < 1 the fixed point is locally attracting, while for σ(a− c) > 1 it
is a repelling focus. As locally (in the region R4) the map is smooth, the effect
of this supercritical bifurcation is well known. Close to the bifurcation value,
a locally attracting closed invariant curve Γ exists, surrounding the unstable
fixed point, and the dynamics on Γ are either quasiperiodic (when the rotation
number of the trajectory is irrational), or the closed curve Γ consists in a saddle-
node connection of a pair of cycles of some period n (when the rotation number
is rational) and the attracting set is the attracting cycle. It is obvious that
for some set of parameter values this attracting closed curve Γ is completely
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included in the region R4. However, a change occurs when a contact between this
invariant set and the border of the region R4 takes place. This is an example of
border collision bifurcation. And what occurs to the system after this bifurcation
is, in general, not predictable. However, in the continuous case, a collision
of an invariant set different from a periodic orbit is often persistent after the
crossing of the border. This is due to continuity, although, clearly, how much
the persistence can survive depends on the definition of the new map involved
after the crossing.

An example is shown in Fig.2 at the following parameter values:

a = 8, ν = 1, m = 2, i = 0.1, µ = 0.3 (17)

which will be kept fixed in all our simulations in this work.
In Fig.2 the phase space is as shown in Fig.1a. In Fig.2a, soon after the

Neimark Sacker bifurcation, the closed curve is quite far from the boundary of
regions R4 and R5. In Fig.2b, increasing the value of σ, the closed curve is close
to the boundary of region R4, and the boundary is crossed in Fig.2c. Here the
effect is not so dangerous, as in fact the closed curve persists, even if now the
dynamics on it depend on two different definitions, and the invariant set crosses
the two regions R3 and R4 (causing qualitative changes in the shape of Γ). In
the next section we shall see that border collision bifurcations of cycles may lead
to more dangerous dynamic effects.

Fig.2 Closed invariant curve at δ = 0.9. In (a) σ = 0.205; in (b) σ = 0.22; and in
(c) σ = 0.223.

3 Border collision bifurcations of cycles.

In the following we analyze the global properties of the dynamics in greater
detail; we are particularly interested in the role of borders and constraints that
were introduced with a genuine economic rational. Since, as remarked in the
previous section, it is difficult to predict the global behavior of the map after a
border collision bifurcation of a cycle (which, as explained below, always refers
to a pair of cycles), also our investigations depend strongly on numerical simula-
tions. Throughout the section, we concentrate on a variation in the parameters
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(σ, δ), which are our central parameters since δ measures the downward rigidity
of capacity, and σ relates to cautious and aggressive entrepreneurial behavior,
and a low (high) value of σ relates to cautious (aggressive) behavior. We keep
the other parameter fixed as in (17). The result, in our case, is that we can dis-
tinguish between changes in the dynamics due to usual behaviors occurring as in
smooth maps1 , and changes due to the constraints which have been introduced
with an economic meaning.

To begin with, we note that the regions in the phase space represent different
economic regimes: While regions R1 and R6 involve a zero price, regions R2,
R3, R4 and R5 exhibit positive prices and each of it represents a specific regime
within a boom and bust cycle: In regions R2 and R3 the intended quantity
adjustment is not constrained by the existing capacity, or put differently, those
regimes are characterized by excess capacity. In region R3, positive or negative
capacity adjustments evolve unbounded, whereas in region R2 (given the high
quantity and thus the low price) downward capacity adjustment is bounded by
the depreciation rate — entrepreneurs would like to reduce capacity quicker than
the depreciation rate allows. In regions R4 and R5 entrepreneurs would like to
increase quantity above the existing capacity — however, quantity adjustment
is constraint by the existing capacity; in region R4 this is combined with an
unconstrained (positive or negative) capacity adjustment whereas in region R5
the intended (comparatively strong) reduction in capacity is restricted by the
deprecation rate.

Fig.2 has already shown that the dynamics after the Neimark Sacker bifurca-
tion of the fixed point — that is in Region R4 — sooner or later enters also Region
R3. In order to analyze more systematically the regions which are visited by
the attracting set after the Neimark Sacker bifurcation of the fixed point, we
present a numerical simulation in the two-dimensional parameter plane (σ, δ)
while keeping the other parameter fixed as in (17). We remark, however, that
the resulting picture takes into account only the attracting set reached with an
initial condition in the phase space (q, k) quite close to the fixed point (k∗, k∗),
and does not capture coexisting attractors, which are not so rare in our model.

1not only locally, but also globally, as contact bifurcations and homoclinic bifurcations of
cycles.
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Fig.3 The regions denote the different regimes involved in the asymptotic state of the
model. In the black points the system involves regime 3+4+5.

Fig.3 summarizes the results and shows how the nature of the attracting set
vary with a variation in the parameters (σ, δ). For each parameter combination
the grey shade indicates the regimes the dynamic path enters over the time.
Region R4, in which output adjustment is constrained by existing capacity, is
clearly involved for all parameter combinations. Quite plausibly, regions R2
and R5, in which the downward rigidity of capacity adjustment is binding, is
involved on the attracting set only for higher values of σ (i.e. with more aggres-
sive entrepreneurial capacity adjustments) and/or lower values of δ, i.e. more
severe downward rigidities in capacity adjustment. The broad dynamic pattern
revealed in Fig.3 thus in line with the possible regimes switches involved in
boom and bust cycles. The complex structure, however, is surprising.

Fig.4 completes the analysis of the global dynamics in the same parameter
plane by showing for each (σ, δ) combination the period of the appertaining
attracting cycle. Each color corresponds to a specific periodicity and a few
periods are explicitly indicated in Fig.4. The white points of Fig.4 represent an
attracting set as a closed invariant curve, or a chaotic attractor, or a cycle of
period greater than 45. The region with "1" corresponds to the stability region
of the fixed point. Its boundary is given by the NS curve (whose equation is in
(16)). Close to that curve there exist a strip of white points, associated with
the existence of a closed attracting curve Γ. The black curve denoted with "r"
denotes the kind of map. By using the definition of the cost parameter in (6)
we have that the inequality σc ≤ δ holds iff δ ≥ σ(ν(1+i)+i)

1−δm .
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Fig.4 Two-dimensional parameter plane (σ, δ) at fixed a = 8, ν = 1, m = 2,
i = 0.1, µ = 0.3. The different colors denotes regions associated with cycles of

different periods. The curve denoted NS represents the Neimark-Sacker bifurcation
of the fixed point.

Thus the curve

(r) : δ =
σ(ν(1 + i) + i)

1− δm

separates the two possible phase spaces: for parameters taken above it the
system is defined via four regions, as shown in Fig.1a, while for parameters
taken below it the system is defined via six regions, as shown in Fig.1b. The
horizontal line at δ = 0.9 shown in Fig.4 corresponds to a one-dimensional
bifurcation diagram, in which the asymptotic states of qt are reported as a
function of the only parameter σ, as shown in Fig.5.

In order to summarize note that the global dynamics — as shown in Fig.3,
4 and 5 — is characterized by many abrupt and drastic changes. We will argue
in the following using the bifurcation diagramme in Fig.5 that many of those
changes actually involve border collision bifurcations and we will illustrate their
possible effects on the dynamics path.

At the point A (σ = 0.22) of Fig.5 we have the contact of the curve Γ with
the upper boundary of the region R4 already commented in the previous section,
in Fig.2b. A border collision bifurcation occurs that changes the shape of the
attractor without drastically modifying its nature. The bifurcation occurring at
point B (σ = 0.245) does not involve any border — it is a smooth saddle-node
bifurcation at which the invariant curve disappears and which leads to a pair
of 6-cycles, an attracting node and a saddle. As σ is increased, the transition
to chaos follows the standard period doubling route. However, the transition to
other periodic orbits is often associated with border collision bifurcations, i.e.
with the collision of an invariant set with one of the borders of the regions. As
an example, the transition occurring at the point C (σ = 0.34193) illustrates
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this type of bifurcation.

Fig.5 One-dimensional bifurcation diagram of qt as a function of σ at δ = 0.9. The
points A, B, C, D correspond to σ = 0.22, σ = 0.245, σ = 0.34193, σ = 0.4946,

respectively. The interval E is enlarged in Fig.7a.
In Fig.6a the attracting set, constisting of six chaotic pieces, is shown and in
Fig.6b, at σ = 0.34194, the sudden appearance of an attracting cycle (of period
18) , which persist, attracting, for an interval of values in σ. This transition
is associated with a border collision saddle-node bifurcation. Let us briefly
comment the bifurcation decreasing the parameter.

When the 18-cycle exists, it is associated with a companion saddle 18-cycle,
and two periodic points one of the node and one of the saddle are approaching
and merging on a border, here the line q = a∗ (in Fig.6b we can see that one
periodic point is almost on the border), after which the pair of cycles disappear.
The attracting set thus changes suddenly, here leading to a 6-pieces chaotic at-
tractor, shown in Fig.6a.
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Fig.6 Attractor at the parameters as given in (17) and δ = 0.9 along the horizontal
path shown in Fig.4. In (a) at σ = 0.34193 effect of the border collision bifurcation
occurring in (b) at σ = 0.34194. In (c) at σ = 0.4945 effect of the border collision

bifurcation occurring in (d) at σ = 0.4946.
Comparing the bifurcation occurring at point B (smooth saddle-node bifur-
cation) with the one at point C (border collision saddle-node bifurcation) we
remark that the dynamic effects are very similar. However, the smooth saddle-
node bifurcation is associated with a standard bifurcation and can be locally
detected via the eigenvalues of the cycles. That is, at the smooth saddle-node
bifurcation one of the eigenvalue is equal to +1. Thus, the occurrence of a
smooth saddle-node bifurcation can be found using econometric methods (the
time series exhibits a unit root) but it has no obvious economic rational. In
contrast, at a border collision saddle-node bifurcation the eigenvalues of the
cycles are not approaching the value +1 and its occurrence can no longer be
predicted via the eigenvalues of the cycles. In that sense, its occurrence is more
“dangerous”, more unexpected. However, the role played by the eigenvalue in
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smooth system is now replaced by the borders of the regions. When a periodic
point is close to a border that defines some region, a "collision" with the bor-
der is expected to occur, after which it is difficult to predict what will be the
attracting set. It is important to note that the borders — and thus the collisions
with it — have a genuine economic rational.

Another example of a border collision saddle-node bifurcation is found in
Fig.5, at point D: Decreasing σ from 0.5 the attracting set initially is a cycle
of period 13 (with a co-existing period 13 saddle), which suddenly disappear
at the point σ = 0.4946. In Fig.6d an attracting 13-cycle is shown to exist,
with periodic points in the 4 regions R2, R3, R4 and R5, and we can see that a
periodic point is almost on the border of the line q = a∗ (separating the regions
R2 and R3). Even if its eigenvalues are not close to +1 a border collision is
expected to occur — one of the points of the attracting period-13 cycle (an one
point of the coexisting period-13 saddle) collides exactly with the border, after
which the two cycles disappear. In Fig.6c, at σ = 0.4945, we can see the drastic
change in the dynamics, as the resulting attractor is a one-piece chaotic set,
crossing the 4 regions R2, R3, R4 and R5.

The border collision saddle-node bifurcations seen so far involved a sudden
change in the nature of the attracting set. However, it may also involve the
sudden (dis)appearance of a pair of cycles (saddle and node). This behavior
is related with the property of multistability, which often occurs in piecewise
smooth systems. As an example, let us consider the segment denoted by E in
Fig.5 and enlarged in Fig.7a. In Fig.7a we can see that in the interval between
the point A (σ = 0.366) and B (σ = 0.3853) there are two coexisting attractors,
one drawn in black and one in red (a 6-cycle). Let us analyze the behavior
starting at σ = 0.39 where only a stable 6-cycle exists (in red in Fig.7a) which
attracts almost all the points in the phase space. Decreasing the parameter σ,
at σ = 0.3853 (point B in Fig.7a) another stable 6-cycle appears, marked in
black in Fig.7a, in pair with a saddle 6-cycle. Fig.7c shows both the attracting
cycles in the point B, the red one existing also before and after and the newly
born black one. Note that the black cycle has a periodic point very close to the
boundary between the regions R3 and R4. It follows that the black cycle is born
via a border collision saddle-node bifurcation. While before the bifurcation (i.e.
for σ higher than the value in point B (σ = 0.3853)) almost all the points in
the phase space are attracted by the 6-cycle in red, after the appearance of the
other (black) attractor the points of the phase space are shared between the
two attractors. In Fig.7d we illustrate the shape of the two basins for the two
attractors in Fig.7c. n Fig. 7d points in red (black) indicate initial conditions
that are attracted to the red (black) cycle of period 6 shown in Fig 7c.
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Fig.7 In (a) enlarged part of the bifurcation diagram shown in Fig.5 at δ = 0.9. In
(b) the two coexistent attractors existing when the parameters are in the point A

(σ = 0.366). In (c) the two coexistent attractors existing when the parameters are in
the point B (σ = 0.3853). In (d) the basins of attraction of the two different

attractors shown in (c) at σ = 0.3853.
We can see that the basins have a complex (fractal) structure. This is due to the
existence, in the phase space, of a chaotic repeller: a Cantor set of points with
infinitely many unstable cycles with homoclinic orbits, which create a complex,
unobservable, repelling net, which however belongs to the frontier of the two
basins (and it is visible in Fig.7d as the set of points separating the regions with
the two colors).

In Fig.7a, as the parameter σ is decreased from point B, we can see a period
doubling route to chaos of the 6-cycle in black, always coexisting with the red
6-cycle. The red 6-cycle (dis)appears as the parameter σ crosses the point A.
Before the disappearance there is coexistence between a 6-piece chaotic attractor
and the red 6-cycle, as shown in Fig.7b, where we can also see that one point
of the red 6-cycle is very close to the border separating the regions R3 and
R4 (and the related basins have also a complex structure). Therefore, at point
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A a stable 6-cycle (in red) appears/disappear via a border collision saddle-
node bifurcation, in pair with a saddle 6-cycle. For smaller values of σ only
the 6-pieces chaotic attractor is left. Considering the same bifurcation as the
parameter σ is increased, at σ = 0.365 a 6-pieces chaotic attractor exists, at the
point A a stable 6-cycle appears via a border collision saddle-node bifurcation,
marked in red in Fig.7a, and from the wider Fig.5 we can see that also this red
6-cycle undergoes a period doubling route to chaos.

Note that in the parameter range associated with two coexisting attractors
the related basins of attraction have always a complex structure. This is due
to the fact that such border collision bifurcations occur after the destruction
of the closed invariant curve associated with the Neimark Sacker bifurcation of
the fixed point, and its destruction is often associated with chaotic dynamics or
chaotic repellers. The complexity of the basins of attraction leads to a strong
sensitivity of the dynamics to the initial conditions and/or parameters. In fact,
a change in the position of the point in the phase space, due for example to a
perturbation of some parameter or of the initial condition as a consequence of
some shock, may lead to the transition towards a different attracting set. For
example a cyclical path associated with a periodic orbit (the 6-cycle) may be
lead to a chaotic state, or vice versa.

4 Conclusions

Boom and bust cycles are widely documented in the literature on industry dy-
namics and are one famous example for cyclical behavior of economic variables.
Rigidities and delays in capacity adjustment in combination with bounded ra-
tional behavior have been identified as central driving forces. In this paper, we
have constructed a model that features only these two elements and we have
shown that this is indeed sufficient to produce a boom and bust dynamics. The
bifurcation diagrams summarizing the dynamic behavior reveal complex cycles,
abrupt changes in the nature of these cycles and the occurrence of co-existing
attractors with fractal basins of attraction. Being on purpose oversimplified,
the model admittedly looses many a realistic feature. However, its simplicity
allowed us to apply new insights from the mathematical theory of piecewise
smooth dynamic systems, in particular results from the theory of border col-
lision bifurcations. The definition of our map is indeed only piecewise smooth
— i.e. its definition differs in distinct regions of the phase space. Moreover the
different regions in the phase space are not uniquely determined, as these can be
4 or 6 depending on the values of the economic parameters. This complicated
structure in the definition of the map is not an arbitrary assumption made for
analytic convenience or for generating “interesting” results; instead, it is the
very existence of delays and rigidities in capacity adjustment — one of the core
elements of our analysis — that introduces boundaries into the definition of the
dynamic map. One of the boundaries separating the phase space follows from
the fact that capacity cannot adjusted immediately and that — as a consequence
— current output is constraint by existing capacity; another boundary reflects
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the fact that capacity reductions cannot exceed depreciation. In addition, we
took into account non-negativity constraints for prices and quantities. The very
existence of those — economically motivated — boundaries introduces the possi-
bility of border collision bifurcation — occurring when one point of an attracting
set collides with a border and giving rise to abrupt changes in the nature of the
attractor or giving even rise to entirely new attractors. We showed in the paper
various examples of border collision bifurcation illustrating how the dynamics
may be affected by such a bifurcation. We argued that from an economic point
of view, a border collision bifurcation might be called more “dangerous” than a
bifurcation occurring also in smooth systems: In comparison to the latter, it is
more difficult to predict that a system is close to a border collision bifurcation;
it is more difficult to predict what happens to the qualitative nature of the at-
tractor after the border collision bifurcation. The last difficulty is reinforced by
the fact that after a border collision bifurcation coexisting additional attractors
might occur with fractal basins of attraction. However, our main point — that
goes well beyond the scope of the paper — is that the very existence of borders
such as capacity constraints or nonnegativity constraints may lie behind abrupt
changes in the dynamic behavior of economic variables and gives them a genuine
economic rational.
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