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a b s t r a c t

In this work we consider a simple system of piecewise linear discontinuous 1D map with
two discontinuity points: X0 = aX if jXj < z, X0 = bX if jXj > z, where a and b can take any real
value, and may have several applications. We show that its dynamic behaviors are those
of a linear rotation: either periodic or quasiperiodic, and always structurally unstable. A
generalization to piecewise monotone functions X0 = F(X) if jXj < z, X0 = G(X) if jXj > z is also
given, proving the conditions leading to a homeomorphism of the circle.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The study of piecewise smooth systems is a quite recent
field of research, because in several applied contexts, as in
engineering, economics and social sciences, the models are
ultimately described by piecewise smooth systems, either
with continuous or discontinuous functions. These models
are used, for example, for the transmission of chaotic sig-
nals, specially in telecommunication and engineering [7],
or modelling systems with grazing bifurcations [30], and
several other examples can be found in the survey books
[8,14,42], as well as in economics (see [11,12,34,35]).

The peculiar feature of non smooth systems (continuous
and discontinuous) is the occurrence of border collision
bifurcations1 (BCB henceforth), due to the collision of some
invariant set (generally a periodic point) with the point in
which the function changes its definition. This may lead to
a drastic change, which may be impossible in the framework
of smooth systems, for example the dynamics can change
from an attracting fixed point suddenly to an attracting cycle
. All rights reserved.
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, see also [32].
of any period, or to chaotic dynamics, which is true (or strict)
chaos, persistent as a function of the parameters (so called
robust chaos in [6]).

Piecewise smooth systems may be classified in two clas-
ses having different properties, that is: continuous models
and discontinuous models. The bifurcations occurring in
piecewise smooth continuous unimodal maps can be inves-
tigated making use of the canonical form (a one-dimen-
sional continuous unimodal piecewise-linear map) whose
dynamics have been completely studied. The results are
reported in [18,25,37] and other papers, [7,31,32,26,27],
see also the recent survey in [36].

While regarding discontinuous one-dimensional piece-
wise-linear maps (frequently used in the applications, see
[1–3,16]), only partial results exist. Several properties have
been described, but still the knowledge is far from a com-
plete classification of all the possible dynamics. The studies
of discontinuous piecewise-linear maps started several
years ago, and some works have been recently rediscov-
ered. We recall, for example, the works by Leonov at the
end of the 50th, [22,23] (and his results were used also in
[25–29]). In his works Leonov described several bifurca-
tions, giving a recurrence relation to find the analytic
expression of the family of bifurcation curves occurring in
a one-dimensional piecewise-linear map with one disconti-
nuity point, which is still mainly unknown. His results have
been recently improved in [15], dealing with the iterative
process to detect analytically the equations of the BCB
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curves, in the case of the so-called period adding scheme
(or Farey scheme), and generalized in [4,41].

We recall that the generalization of this kind of dynamics
to the case of increasing smooth functions with one discon-
tinuity point, has been extensively investigated in the past,
due to their connections with the flows, in particular with
Lorenz like flows (but not only), and they are often called
as Lorenz maps (see, for example, [20,10,24,33,5,21,9,17]).

Consider an invariant interval I = [G(d),F(d)] with a dis-
continuity point d 2 I and F(x) increasing in [G(d),d] while
G(x) is increasing in [d,F(d)]. There is a drastic change in
the dynamic behavior depending on the invertibility or
non invertibility of the map in I. The bifurcation occurs
when the following condition holds:

G � FðdÞ ¼ F � GðdÞ: ð1Þ

In such a case the map has the dynamics of a circle map, or
homeomorphism of the circle (see [20,9,13]). When (1)
holds, a rotation number can be identified for the circle
map, which can be either rational or irrational. When a
rational rotation number exists then all the trajectories
have a cycle as x-limit set. When the rotation number is
irrational and the functions F and G are of class C2 then
quasi periodic trajectories are dense in I, while if the func-
tions F and G have not log (F0) and log (G0) with bounded
variation, then the quasi periodic trajectories may be dense
in a Cantor set attractor, or in I. When the rotation number
is irrational the map is structurally unstable. When (1)
holds and the functions are affine, then the circle map be-
comes a rotation, and either all the points are periodic of
the same period (rational rotation number) or all the tra-
jectories are quasiperiodic and dense in the interval I
(irrational rotation number) (see also [15]).

When G � F(d) < F � G(d) then the Lorenz map is into I, it
is invertible, and it has a gap, or nonwandering interval, in
I. Then no unstable cycle can exist (although the first deriv-
ative may be higher than 1in some interval) and the only
possible dynamics are regular: the asymptotic state is
ether a cycle, when the rotation number is rational, or a
Cantor set when it is irrational. The case with irrational
number is structurally unstable.

While when G � F(d) > F � G(d) the Lorenz map is nonin-
vertible in I and an invariant set with chaotic dynamics ex-
ists, even if the attracting set may be a cycle, a Cantor set2

or chaotic intervals (see [20,9,19]).
To our knowledge, the bifurcation condition given in (1)

has been found as a bifurcation condition in several ap-
plied models, leading from a regime of structurally stable
regular dynamics to one of structurally stable chaotic
behavior (as in [38,39]). However, a recent applied model,
proposed in [40], is described by a peculiar map, very sim-
ple, whose dynamics are always in a state satisfying the
condition given in (1). This family of maps is described by:

T : X0 ¼
aX if jXj < z

bX if jXj > z

�
ð2Þ

where the real parameters a and b can take positive or neg-
ative values, while z > 0. The parameter z is a scale variable,
2 When a wondering interval exists.
and by using the change of variable x = X/z, our model in
(2) becomes the following map F:

F : x0 ¼
f ðxÞ ¼ ax if jxj < 1
gðxÞ ¼ bx if jxj > 1

�
ð3Þ

which we rewrite as follows:

F : x0 ¼
gðxÞ ¼ bx if x < �1
f ðxÞ ¼ ax if � 1 < x < 1
gðxÞ ¼ bx if x > 1

8><
>: ð4Þ

So we have a one-dimensional piecewise linear discontinu-
ous map, with two discontinuity points. As we shall see, in
the parameter space satisfying jaj > 1 and jbj < 1 this family
of maps is very special. The numerical simulations of the
observed dynamics may lead to wrong conclusions, reflect-
ing a sequence of states very close to a chaotic behavior.
While no chaos can occur, any map of this family satisfies
a stability condition equivalent to the one given in (1). Thus,
this is a non-chaotic map with peculiar properties, with sta-
ble dynamics, periodic or quasiperiodic, but not attracting.
That is, all the existing dynamic behaviors are structurally
unstable in the sense that any perturbation in the parame-
ters leads to a different dynamic behavior.

Clearly this peculiar condition can be broken by using
piecewise smooth functions (instead of piecewise linear
ones), examples of which will be given in the last section,
or by changing the structure of the functions (for example
assuming f(x) or g(x) affine instead of linear).

We remark that this model may be used to represent
the interaction between two different dynamic behaviors
in the same population, describing the interactions be-
tween two opposite tendencies, whichever is interpreted
the population, in a social context, or in a financial market
(as in [38] and [40]), or in some mechanical device.

The argument of the present paper belongs to those
studied since the beginning of the theory of nonlinear
dynamics, as originated from the Lorenz like systems or
the Lorenz maps. Moreover, piecewise smooth systems
are appearing since many years in all the applied disci-
plines. So, in our opinion, the results and open problems
presented in this work are of interest in the study of com-
plex phenomena in nonlinear sciences.

The rest of the paper is as follows. In Section 2 we sum-
marize some generic properties of the map in (3), showing
that the stability condition is always satisfied, whichever
are the parameters a and b satisfying jaj > 1 and jbj < 1, in
both the discontinuity points x = �1 and x = 1 (which are
involved either separately or together). The peculiarity of
the map is that we can analytically determine all the
curves in the parameter space (a,b) which are associated
with periodic orbits of any period. This is performed by
using the Leonov’s approach proposed in [15], starting
with the computation of curves associated with the first
complexity level, then using the adding mechanism to
determine the analytic expressions of the curves associ-
ated with any complexity level, in an iterative way ([4]).
The symmetry properties of this map are such that once
that the curves in the region a > 0 and b > 0 (the so-called
increasing/increasing case for f(x) and g(x)) are obtained
(in Section 3), all the other situations, associated with



Fig. 1. Two dimensional parameter space (a,b). The regions are bounded
by the straight lines a = ±1 and b = ±1.
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increasing/decreasing, decreasing/increasing or decreas-
ing/decreasing cases for the functions f(x) and g(x), are also
immediately obtained, as shown in Sections 4 and 5. In
Section 4 we prove that the increasing/decreasing case
for f(x) and g(x) is reduced, by using the first return map,
to a standard linear circle map (with increasing/increasing
functions). In Section 5 we prove that the last two cases
can be studied by using the second iterate of the map. Sec-
tion 6 is devoted to a generalization of our class of maps to
the piecewise smooth case. We first prove that when the
stability conditions hold the system is reduced to a circle
map, for which, in general, the case of rational rotation
number is no longer structurally unstable as for the linear
case. However, the stability condition can be considered
not persistent, and breaking the stability condition the
dynamics are lead to Lorenz maps, either to those charac-
terized by noninvertibility (and with chaotic regimes) or to
those characterized by invertibility (and thus to attracting
cycles, now structurally stable). Two illustrative examples
are given. Section 7 concludes.

2. The model and preliminary properties

In this section we are going to describe some simple
properties of the map defined in (4). A first one is immedi-
ate from its structure. Performing the change of variable
y = �x the map is transformed into itself:

y0 ¼
f ðyÞ ¼ ay if jyj < 1
gðyÞ ¼ by if jyj > 1

�
ð5Þ

which means that the phase space is symmetric with re-
spect to the origin. We have so proved the following:

Property 1 (Symmetry in the phase space). The map F in (3)
is invariant with respect to the change of variable y = �x. Thus
a periodic orbit (x1,x2, . . . , xn) either has points symmetric
with respect to the origin, or (�x1, �x2, . . . ,�xn) is also a
periodic orbit.

Even if, as we shall see, we can have cycles with peri-
odic points in two or three partitions of the map, the func-
tions involved are only two, so that the eigenvalue of a
cycle only depends on the number of periodic points in
which the functions f(x) and g(x) are applied. The following
property immediately follows:

Property 2 (Eigenvalue). The eigenvalue of a cycle of the
map F in (3) having p periodic points in the middle region
(jxj < 1) and q outside (jxj > 1) is given by k = apbq.

Moreover, another property is also immediate, and ex-
cludes cases which are unfeasible in the applied context,
as leading to divergent trajectories. From Property 2 we
have that when both the slopes of the functions f(x) and
g(x) are in modulus higher than 1, then all the possible cy-
cles are unstable, as jkj > 1. In these cases, a piecewise lin-
ear map, when bounded trajectories exist, can only have
chaotic dynamics, or the trajectories are divergent. How-
ever, due to the particular structure of our map, when
jaj > 1 and jbj > 1 we cannot have bounded dynamics be-
cause both the functions are linear. Thus, a trajectory in
the range jxj < 1 is mapped in the region jxj > 1 in a finite
number of iterations, and then the trajectory will be diver-
gent. It follows that the unique possible existing cycle is an
unstable fixed point. We have so proved the following:

Property 3 (Divergence). Consider the map F with jaj > 1
and jbj > 1, then any initial condition x – 0 has a divergent
trajectory.

We can consider the regions in the parameter space
(a,b), as summarized in Fig. 1 where the regions with diver-
gent dynamics are those already introduced in Property 3,
while those associated with the stability of the fixed point
in the origin O = (0,0) are described in the following.

Property 4 (Fixed point). Consider the map F with jaj < 1
and jbj < 1, then the fixed point O in the origin is globally
attracting.

In fact, any initial condition in the range jxj > 1 has a tra-
jectory which, in a few iterations, enters the range jxj < 1
from which the trajectory converges to the origin. This
leads to the cental region in Fig. 1. While the dynamics in
the other regions of the vertical strip in the center of
Fig. 1 are described in the following.

Property 5 (Fixed point and divergence). Consider the map F
with jaj < 1 and jbj > 1, then the fixed point O is attracting,
with basin of attraction BðOÞ ¼� � 1;1½. Any i.c. x with jxj > 1
has a divergent trajectory.

In fact, any initial condition in the range jxj < 1 has a
trajectory which converges to the origin, as it is locally sta-
ble and the map is linear in that region, while any initial
condition in the range jxj > 1, due to the structure of the
piecewise linear map, has a trajectory which is divergent.

The particular cases with a = 1 and a = �1 are degenerate
bifurcations (see [36]). For a = 1 there is the segment ]�1,1[
filled with fixed points, while for a = �1 the segment ]�1,1[
is filled with cycles of period 2. At these degenerate bifurca-
tions the existing cycles are stable but not asymptotically
stable (i.e., not attracting the trajectories of nearby points).
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After the bifurcation, for jaj > 1, the result depends on the
modulus of b. As we have seen, for jbj > 1 only divergent
dynamics can occur, while for jbj < 1 an invariant absorbing
interval J exists, given by:

J ¼ ½f ð�1Þ; f ð1Þ� ¼ ½�a; a�; if a > 1 ð6Þ
J ¼ ½f ð1Þ; f ð�1Þ� ¼ ½a;�a�; if a < �1

attracting the trajectories of all the points of the phase
space outside J (and from which a trajectory cannot es-
cape), thus the dynamics cannot be divergent.

It follows that the particular cases left to our analysis
are exactly those in the green regions of Fig. 1, which is
the main object of our work. As remarked in Fig. 1 the
regions which are to be investigated are really four differ-
ent ones, associated with different values of the slopes of
the functions f(x) and g(x). For a > 0 these include the
two cases

FðiiÞ; increasing=increasing : a > 1; 0 < b < 1 ð7Þ
FðidÞ; increasing=decreasing : a > 1; �1 < b < 0

while for a < 0 these include the two cases

FðdiÞ; decreasing=increasing : a < �1; 0 < b < 1 ð8Þ
FðddÞ; decreasing=decreasing : a < �1; �1 < b < 0

In the next sections we shall completely explain the cases
F(ii) and F(id) and these will also be used to explain the
cases F(di) and F(dd). Let us first introduce in this section
what is the peculiar property of the map F, which is stated
in the following:

Stability property. Consider the map F with jaj > 1 and
jbj < 1, then the following equalities hold:

ðS1Þ : f � gð1Þ ¼ g � f ð1Þ ð9Þ
ðS2Þ : f � gð�1Þ ¼ g � f ð�1Þ ð10Þ

In fact, both properties can be immediately verified from the
definition of the map F given in (3): we have g � f(1) = ba and
f � g(1) = ab as well as g � f(�1) = �ba and f � g(�1) = �ab, so
that the properties in (9) and (10) hold. h

As already remarked in the Introduction, the Stability
Property is important because it leads to a stability regime
which is however structurally unstable. The important dy-
namic property of the map F is exactly this Stability Prop-
erty which, as we shall see, implies that an invariant set A
exists, and each point of A has a unique rank-1 preimage in
the set A itself. As we shall see, this leads to the same prop-
erty of a linear rotation on a circle, and depending on a
suitable rotation number, which in our case is associated
with the values of the parameters a and b, a trajectory
may be either periodic (in which case all the points in A
are periodic of the same period), or quasiperiodic and
dense in A. In the case increasing/increasing F(ii), consid-
ered in the next section, there are two disjoint invariant
absorbing intervals: A = IL [ IR � J; while in the case
increasing/decreasing F(id), that we shall consider after,
the invariant set A is the union of two different intervals
(not invariant).

Let us first analyze the conditions leading to periodic
dynamics. Let x be a point belonging to the invariant
absorbing set A of the map F, different from a discontinuity
point, then it can be a periodic point of first period n if n is
the smallest integer such that Fn(x) = x. Then let p be the
number of periodic points of the n-cycle in the region
jxj < 1 and q in the region jxj > 1, (p + q) = n. Then we have

FnðxÞ ¼ apbqx: ð11Þ

It follows that the condition of periodic orbit, apbqx = x, can
be satisfied by a point x – 0 iff the eigenvalue k = apbq of
the cycle satisfies the following equation

apbq ¼ 1 ð12Þ

We have so proved the following

Property 6 (Cycles). Consider the map F with jaj > 1 and
jbj < 1, then x is a periodic point of an n-cycle iff apbq = 1
holds, where p is the number of periodic points of the n-cycle
in the region jxj < 1 and q in the region jxj > 1, with (p + q) = n
and the eigenvalue of the cycle is k = apbq = 1.

On the other hand, the fact that the eigenvalue is equal
to 1, in the piecewise linear case means that the cycle is
stable but not attracting, and this can only occur for all
the points of an interval. That is, the map F necessarily sat-
isfies the condition Fn(x) = x for all the points x of a suitable
interval or intervals, invariant for Fn, all the points of which
are periodic of the same period and with the same sym-
bolic sequence (i.e., with the same sequence of applied
functions f(x) and g(x), cyclically invariant). Examples shall
be given in the next sections, where the different cases are
considered.
3. Dynamics in the increasing/increasing case F(ii)

Let us consider here the effects of the properties (S1)
and (S2) in (9) and (10) on the dynamics, when the map
has the two functions f(x) and g(x) both with positive
slopes, a > 1 and 0 < b < 1 as qualitatively shown in Fig. 2a.

Under such assumptions the map leads to two coexis-
ting invariant absorbing intervals, and thus we necessarily
have bistability. In fact, any initial condition in the region
x > 0 will be forever in that region, entering the absorbing
interval IR = [g(1),f(1)] in a finite number of iterations, from
which it cannot escape. Thus it attracts the points in
BðIRÞ ¼�0;þ1½, which is its basin of attraction. The restric-
tion of the map F to the absorbing interval IR is given by

FR : x0 ¼
f ðxÞ ¼ ax if gð1Þ < x < 1
gðxÞ ¼ bx if 1 < x < f ð1Þ

�
ð13Þ

where g(1) = b 2 (0,1) and f(1) = a > 1.
From Property 1 we can deduce that any initial condi-

tion in the region x < 0 will be forever in that region, enter-
ing the absorbing interval IL = [f(�1),g(�1)] in a finite
number of iterations, from which it cannot escape, and it
attracts the points in BðILÞ ¼� �1;0½. The restriction of
the map F to the absorbing interval IL is given by

FL : x0 ¼
gðxÞ ¼ bx if f ð�1Þ < x < �1
f ðxÞ ¼ ax if � 1 < x < gð�1Þ

�
ð14Þ

where f(�1) = �a < �1 and g(�1) = �b 2 (�1,0). So we are
lead to the invariant set



Fig. 2. In (a) Map F in the case F(ii) at a = 1.5 and b = 0.87358.
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A ¼ IL [ IR ¼ ½f ð�1Þ; gð�1Þ� [ ½gð1Þ; f ð1Þ�: ð15Þ
As no divergent trajectory can occur, we can argue that an
initial condition in one of the intervals converges to some
attracting set. However this is not the case. An attracting
set (or attractor) is defined as some invariant set for which
a neighborhood exists whose points converge to the attrac-
tor. But this cannot occur in our map. In fact, it is known
(see e.g., [20,9], to cite a few), that in the case of an increas-
ing discontinuous map the stability property leads to a cir-
cle map (we shall return on this in Section 6), but in the
particular case of linear functions (as we have) the map
is conjugate with a linear rotation (see also [13] and
[15]). This means that depending on the values of a and b
a suitable rotation number may be defined, which may
be rational or irrational, and cannot be persistent. For a ra-
tional rotation number all the points of the absorbing
intervals IR/L are periodic (and all of the same period), for
an irrational rotation number all the points of the absorb-
ing intervals IR/L have quasiperiodic trajectories dense in
the absorbing intervals IR/L, but not chaotic. Thus in the ra-
tional case no true attracting set can exist, but the dynam-
ics are regular: when there are periodic orbits these are
stable but not attracting. Similarly when there are quasipe-
riodic trajectories. And in the case of a linear rotation (dif-
ferently from a generic circle map), these dynamics are
structurally unstable, as the rational or irrational rotation
number cannot be persist as the parameters are varied.

An example of periodic orbits is shown in Fig. 2 for the
case F(ii) at a = 1.5 and b = 0.87358 (the reason why of this
value is explained below), and at these values of the
parameters we have that all the points of the invariant
intervals IR and IL are periodic of period 4 (see Fig. 2a).
The fourth iterate of the map is shown in Fig. 2b and it con-
sists in several branches, one of which belongs to the diag-
onal on the invariant interval IR, and a second branch on
the diagonal, on the interval IL.

The main result for our map is that this dynamic prop-
erty is always true, independently on the values of the
slopes, in the regions marked with (S) in Fig. 1. That is,
for the map F we are interested in, this kind of non-chaotic
regime, characterized by structurally unstable orbits
(either periodic or quasiperiodic), is persistent for all the
parameters in the cases F(ii), F(id), F(di) and F(dd) here
defined.

Let us consider a few more properties on the organiza-
tion of the existing cycles. We have seen Property 6 in the
previous section, which states when a cycle can exist. So
we can find the exact values of p and q giving us the cycles,
and it is possible to organize in some way their existence
regions (which are curves in the two-dimensional parame-
ter plane (a,b)).

In the case F(ii), we can follow the same technique used
in the case of attracting cycles when the period adding
scheme works. Indeed, as shown in [15], the intersection
of the existing periodicity regions with the locus (S1) of
the stable (but not attracting) regime where Property
(S1) holds, is a set of points in the locus which still follows
the adding mechanism. So we can reason similarly in our
case. It is clear that in order to have the sequence of a
so-called maximal cycle in the interval IR, say with sym-
bolic sequence fgk, we have to look for a periodic point
which can be obtained as a fixed point of the composite
function gk � f(x), by solving the equation gk � f(x) = x. For
their existence we have to determine all the parameters
a and b that, for any k P 1, satisfy

fgk
: abk ¼ 1: ð16Þ

Thus we have curves in the parameter plane (a,b) a few of
which (for k = 1, . . . ,10) are drawn in Fig. 3a. For k = 3 we
have the 4-cycles, so that for a = 1.5 we have computed
from (16) the value b = 0.87358, used to show the example
in Fig. 2.

Following the adding mechanism, between any two
consecutive curves associated with maximal cycles, or cy-
cles of first level of complexity, we can find two families of
infinite curves associated with cycles of second level of
complexity. For example, between the two curves fgk and
fgk+1 we have the following pair of families of infinite
curves (both for any m P 1):

ðfgkÞmfgkþ1
: a1þmbkþ1þmk ¼ 1 ð17Þ

fgkðfgkþ1Þm : a1þmbkþmð1þkÞ ¼ 1: ð18Þ

A few of these curves in the region (ii) are shown in Fig. 3b
for k = 1, . . . ,10 and m = 1,2,3.



Fig. 3. In (a), in the parameter plane (a,b) region (ii), curves associated with periodic orbits, whose equation is given in (16), for k = 1, . . . ,10. In the region
(id) the symmetric ones. In (b) curves associated with periodic orbits, whose equation is given in (17) and (18) for k = 1, . . . ,10 and m = 1,2,3. In (c), in the
region (ii), curves associated with periodic orbits, whose equation is given in (19), for k = 1, . . . ,10, and in the region (id) the symmetric ones. In (d) curves
associated with periodic orbits, whose equation is given in (20) and (21) for k = 1, . . . ,10 and m = 1,2,3, belonging to the region (ii), and in the region (id) the
symmetric ones are drawn.

Fig. 4. One dimensional bifurcation diagram of the map F showing the
variable x is as a function of b at a = 1.5 fixed. The case F(ii) occurs for
b > 0: dynamics in two disjoint attracting intervals. The case F(id) occurs
for b < 0: dynamics in a unique attracting set.
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Similarly we can continue for any level of complexity:
between any two consecutive curves, with symbolic se-
quence A and B, of the same level of complexity, we can
compute two families of infinitely many curves, with sym-
bolic sequence (A)nB and A(B)n, for any n P 1.

Exchanging f and g we obtain a maximal cycle existing
in the interval IR, with different symbolic sequence: gfk. A
periodic point can be obtained as a fixed point of the func-
tion fk � g(x), so we have to determine all the parameters a
and b such that, for any k P 1:

gf k
: bak ¼ 1 ð19Þ

and two families of curves of cycles of second complexity
level are given, for any m P 1, by:

ðgf kÞmgf kþ1
: b1þmakþ1þmk ¼ 1 ð20Þ

gf kðgf kþ1Þm : b1þmakþmð1þkÞ ¼ 1 ð21Þ

and so on for any level of complexity. A few of the curves in
(19) are illustrated in the region (ii) in Fig. 3c for
k = 1, . . . ,15. In Fig. 3d the curves from Eqs. (20) and (21)
are shown for k = 1, . . . ,15 and m = 1,2,3. We recall that
when the parameters belong to such curves, there are cy-
cles in the invariant interval IR and the symmetric ones also
exist in the other invariant interval IL. Under assumption
F(ii), the infinitely many curves for which the parameters
(a,b) are associated with periodic orbits, are dense in the
region defined as (ii). However, if we numerically compute
a bifurcation diagram, we observe a figure as the one
shown in Fig. 4, where the variable x is reported as a func-
tion of b at a = 1.5 fixed.

The region corresponding to assumption F(ii) is the
interval 0 < b < 1, and we have two disjoint and coexisting



Fig. 5. In (a) Map F in the case F(ii) at a = 1.5 and b = 0.25. In (b) versus time behavior of two coexisting trajectories at the same parameter values as in (a).
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invariant absorbing intervals IR (in blue/light grey in Fig. 4)
and IL (in red/dark grey in Fig. 4). The numerical results are
qualitatively similar to those which can be obtained in a
chaotic regime. However, no chaotic regime can here exist.
As at all the parameter values either there are periodic
points or quasiperiodic trajectories, and due to the fact that
both the values of periodic orbits and quasiperiodic orbits
are dense in the interval, we can numerically observe
mainly a quasiperiodic orbit.

We notice that also the versus time trajectory may be mis-
leading. It may be considered as chaotic while it cannot be. An
example is shown in Fig. 5. In Fig. 5b the versus time behav-
iors of two coexisting trajectories are shown, one in the
absorbing interval IR and the other in the absorbing interval IL.
4. Dynamics in the increasing/decreasing case F(id)

Let us here consider the parameters which satisfy con-
ditions F(id). Even if the function f is increasing and g
decreasing in their definition sets, see an example in
Fig. 6a, the existence of the properties in (9) and (10) im-
plies that the map F in (3) is uniquely invertible in the
invariant absorbing set A given by

A ¼ ½f ð�1Þ; gð1Þ� [ ½gð�1Þ; f ð1Þ�: ð22Þ

In fact, consider the interval [f(�1),g(1)] = [f(�1),f(g(1))] [
[g(f(1)),g(1)] (where we have used f(g(1)) = g(f(1))), then
each point of [f(�1), f(g(1))] has only the inverse via f�1 in
A, while each point of [g(f(1)),g(1)] has only the inverse via
g�1 in A (as in both cases the other one is external to A). Sim-
ilarly in the other interval [g(�1),f(1)] = [g(�1), g(f(�1)] [
[f(g(�1),f(1)] (where we have used g(f(�1)) = f(g(�1))), each
point of [g(�1),g(f(�1)] has only the inverse via g�1 in A
while each point of [f(g(�1), f(1)] has only the inverse via
f�1 in A (as in both cases the other one is external to A).

This means that F is invariant in A and each point of A
has one and only one preimage, which is characteristic of
a circle map. The properties of F can be studied by using
the first return map, say map Fr, in a suitable interval. As
a trajectory from the side x < 0 can ‘‘return’’ to the right
side x > 0 only via an application of the function g(x) when
x < �1, we can consider the first return in the first interval
on the right side, that is in r = [g(�1),g(f(�1)] = [ �b, �ab],
and we can prove the following proposition:

Proposition 1. The first return map Fr of F in the case (id)
(a > 1, �1 < b < 0) in the interval r = [�b, �ab], is a piecewise
linear map made up of increasing branches, with a unique
discontinuity point in the preimage of �1 belonging to r, and
conjugated with a linear rotation.
Proof. Let us define as nthe first preimage of the point
x = �1 in r. That is, for a suitable k > 0, we have

n ¼ � 1

bak
2 r ð23Þ

so that the first return map is defined as

Fr : x0 ¼
TlðxÞ ¼ b2akþ1x if � b 6 x < n

TrðxÞ ¼ b2akx if n < x 6 �ab

8<
: ð24Þ

and it is immediate to verify that Tl(n) = �ab,Tr(n) = �b, and
Tr � Tl(n) = �b3ak+1 = Tl � Tr(n), so that Fr is a linear circle
map in r, conjugated with a rotation. h
An example in shown in Fig. 6a, where k = 6, and the
first return map is enlarged in Fig. 6b. It follows that in
the set A the map has either all periodic points dense in
A or quasiperiodic trajectories dense in A. A numerically
obtained bifurcation diagram is shown in Fig. 4 at a = 1.5
fixed, in the region corresponding to assumption F(id)
which is the interval �1 < b < 0. Although the figure sug-
gests a chaotic behavior, it is not. The dynamics in the case
F(id) are similar to those described in the case (ii), and we
can analytically write the curves in the parameter plane at
which we can find all periodic orbits of any level of com-
plexity. In Fig. 3 we can see the curves described in the pre-
vious section reflected in the region (id). These curves
correspond to parameters associated with a rational rota-
tion and cycles of suitable periods exist for the map F in
the case (id), as stated in the following proposition:

Proposition 2. Let ð�a; �bÞ be a point of the parameter plane
belonging to a curve in the region (ii) associated with n-cycles
of F, then also the point ð�a;��bÞ in the region (id) belongs to a
curve associated with periodic orbits of F, of period n or 2n.



Fig. 6. (a) Map F in the case F(id) at a = 1.5 and b = �0.25. In (b) enlargement showing the first return map Fr in the interval r = [g(�1),g(f(�1))].
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Proof. Let us assume that for ð�a; �bÞ 2 ðiiÞ the condition

�ap�bq ¼ 1 ð25Þ

occurs for some suitable integers p and q with n = p + q.
Then if q is even we also have

�apð��bÞq ¼ 1 ð26Þ

in which case the symmetric curve is associated with a cy-
cle of the same period (n = p + q). Otherwise, if q is odd we
have �apð��bÞq ¼ �1 and

�a2pð��bÞ2q ¼ 1 ð27Þ
which means that the symmetric curve corresponds to a
cycle of double period (2n = 2(p + q)). h

For example, at (a,b) = (1.5,0.903602), belonging to a
curve in the region (ii) (from (16) with k = 4) associated with
a 5-cycle having p = 1 and q = 4, at (a, �b) = (1.5, �0.903602)
(see Fig. 7a) we must have 5-cycles, as shown in Fig. 7b.

In the case of the 4-cycle shown in Fig. 2 at (a,b) =
(1.5,0.87358) we have p = 1 and q = 3, thus at (a, �b) =
(1.5, �0.0.87358) we must have 8-cycles, as shown in Fig. 8.
Fig. 7. In (a) Map F at (a, �b) = (1.5, �0.903602). In (b)
5. Dynamics in the cases F(di) and F(dd)

The dynamics in these cases are similar to those de-
scribed in the previous two Sections. In some situations
(when jabj < 1) they can be reduced to the cases F(ii) and
F(id) by using the second iterate of the map, as stated in
the following Proposition.

Proposition 3. Consider map F when a < �1 and jabj < 1,
then the second iterate F2 is continuous in the points x = 1 and
x = �1, discontinuous in the points xl ¼ 1

a and xr ¼ � 1
a. The

case F(di) is conjugated with the case F(id) while the case
F(dd) is conjugated with the case F(ii).
Proof. Let a < �1, then the rank-1 preimages of the discon-
tinuity points x = 1 and x = �1 of the function f exist inside
the range jxj < 1. Explicitly, the preimages are given by

�1 < xl ¼
1
a
< 0; 0 < xr ¼

�1
a
< 1 ð28Þ

satisfying f(xl) = 1 and f(xr) = �1. Clearly these two points
are discontinuity points for the second iterate F2 of the
map. While the continuity of the map F2 in the points
x = 1 and x = �1 is an immediate consequence of the
Map F and map F5 at the same parameter values.



Fig. 8. In (a) Map F at (a, �b) = (1.5, �0.0.87358). In (b) Map F and map F8 at the same parameter values.
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Stability Property: from f � g(1) = g � f(1) we have limx?1�F2

(x) = limx?1+F2(x) while from f � g(�1) = g � f(�1) we have
limx?(�1)�F2(x) = limx?(�1)+F2(x). The map F2 is defined by
a linear increasing function (i.e., with positive slope):

f 2ðxÞ ¼ a2x ð29Þ

in the interval xl < x < xr, while outside it is given by

f � gðxÞ ¼ g � f ðxÞ ¼ abx ð30Þ

and it is increasing or decreasing depending on the sign of
the parameter b. Thus:

– In the case F(di), with b > 0, outside the interval (xl,xr)
the second iterate F2 is a negative sloped function, so
that F2 is topologically conjugated with the increasing/
decreasing case already considered in (id), with discon-
tinuity points in xl and xr in place of �1 and 1, respec-
tively, and slopes given by a2 > 0 and ab < 0 in place of
a and b, respectively;

– In the case F(dd), with b < 0, outside the interval (xl,xr)
the second iterate F2 is a positive sloped function, so that
F2 is topologically conjugated with the increasing/increas-
ing case already considered in (ii), with discontinuity
Fig. 9. In (a) Map F in the case F(di) at a = �1.5 and b = 0.4. I
points in xl and xr in place of �1 and 1, respectively, and
slopes given by a2 > 0 and ab > 0 in place of a and b,
respectively. h

An example in the case F(di) (resp. F(dd)) is shown in
Fig. 9a (resp. Fig. 9b). When jabj > 1 the discontinuity
points of F have more than two preimages in the absorbing
interval, so that the second iterate F2 has more than two
discontinuities and the similarity with the previous cases
is no longer immediate. However, that the results hold
comes from the existence of dense curves in the parameter
space. In fact, regarding the curves associated with rational
rotation numbers, we can take advantage of those existing
in the regions (ii) with a > 1, as stated in the following
proposition:

Proposition 4. Let ð�a; �bÞ be a point of the parameter plane
belonging to a curve in the region (ii) associated with n- cycles
of F, then also the point ð��a; �bÞ in the region (di) and the point
ð��a;��bÞ in the region (dd) belong to curves associated with
periodic orbits of F, of period n or 2n.

Proof. Let us consider the parameters ð�a; �bÞ belonging to a
curve in the region (ii) (a > 1, 0 < b < 1) assuming n = p + q
such that
n (b) Map F in the case F(dd) at a = �1.5 and b = �0.4.



Fig. 10. In (a) Map F and map F8 at (�a,b) = (�1.5,0.87358), in the case F(di). In (b) Map F and map F4 at (�a, �b) = (�1.5, �0.87358), in the case F(dd).
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�ap�bq ¼ 1: ð31Þ

Then, if p is even we also have

ð��aÞp�bq ¼ 1 ð32Þ

in which case the symmetric curve in the region (di) is
associated with a cycle of the same period (n = p + q). Other-
wise, if p is odd we have ð��aÞp�bq ¼ �1 and

ð��aÞ2p�b2q ¼ 1 ð33Þ

which means that the symmetric curve in the region (di)
corresponds to a cycle of double period (2n = 2(p + q)).

While considering the symmetric point ð��a;��bÞ in the
region (dd), we necessarily have

ð��aÞpð��bÞq ¼ 1 ð34Þ
when p and q are both even or both odd, in which case we
have cycles of the same period, while when p and q are
one odd and one even, from ð��aÞpð��bÞq ¼ �1 we have

ð��aÞ2pð��bÞ2q ¼ 1 ð35Þ

which leads to cycles of double period. h

An example is shown in Fig. 10. Considering the case in
Fig. 2, at (a,b) = (1.5,0.87358), belonging to a curve in the
region (ii) associated with 4-cycles with p = 1 and q = 3,
at (�a,b) = (�1.5,0.87358) we must have 8-cycles, as it is
shown in Fig. 10a, while at (�a, �b) = (�1.5,�0.87358)
we must have 4-cycles, as shown in Fig. 10b.

From the Properties 2 and 4 it is clear that the curves
associated with periodic orbits existing in the region (ii)
(where the curves are dense) also exist in all the other re-
gions. While the dynamics associated with the case under
assumptions F(ii) are already known in the literature, we
don’t know a similar result for all the other cases F(id),F(di)
and F(dd). However, given that the curves associated with
periodic orbits are dense in the region (ii), also the curves
obtained by symmetry are dense in the other regions (id),
(di) and (dd). Moreover, we can analytically write the
curves at which we can find all periodic orbits and of any
level of complexity, and the periods of the cycles associ-
ated to these curves are those commented above. This
proves the following result:

Proposition 5. Consider the map F with jaj > 1 and jbj < 1,
then all the trajectories enter an invariant absorbing set A
inside which we can have either all periodic orbits or all
quasiperiodic trajectories. By using the adding scheme we can
write all the analytic curves in the parameter plane (a,b)
associated with the periodic orbits of any level of complexity.
For suitable integers p and q, all the curves can be written as
apbq = 1.
6. Generalization and regularity breaking

In this section we generalize the map given in (3). Let us
consider the following map:

M : X0 ¼
FðXÞ if jXj < s;
GðXÞ if jXj > s;

�
ð36Þ

where F(X) and G(X) are monotonic functions, either
increasing or decreasing, such that F(0) = G(0) = 0. The
parameter s satisfies s > 0. As it is a scale parameter, by
using the change of variable x = X/s, our model in (36) be-
comes the following map T:

T : x0 ¼
f ðxÞ if jxj < 1;
gðxÞ if jxj > 1;

�
ð37Þ

where f(x) = F(sx) and g(x) = G(sx). Then the following
proposition holds:

Proposition 6. Consider the map T in (37) with increasing f
and g monotone (increasing or decreasing) such that
f(0) = g(0) = 0. If the following equalities hold:

ðSÞ : f � gð1Þ ¼ g � f ð1Þ; f � gð�1Þ ¼ g � f ð�1Þ ð38Þ

then the system can be reduced to a circle map in a suitable
interval.
Proof. To prove the statement, we separately consider the
cases (ii), (id) for the monotone functions f and g respec-
tively, where i/d denotes increasing/decreasing.
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– (ii). This is the simplest case, as when the two functions
are both increasing, then two disjoint invariant absorb-
ing intervals exist, IR = [g(1),f(1)] and IL = [f(�1),g(�1)],
and the conditions in (S) correspond to the definition
of T a circle map in each invariant interval.

– (id). In this case there exists an invariant absorbing set
A ¼ ½f ð�1Þ; gð1Þ� [ ½gð�1Þ; f ð1Þ�: ð39Þ
In the interval [f(�1),g(1)] = [f(�1), f(g(1))] [ [g(f(1)),g(1)]
(where we have used f(g(1)) = g(f(1))), each point of
[f(�1), f(g(1))] has only the inverse via f�1 in A, while each
point of [g(f(1)),g(1)] has only the inverse via g�1 in A. Sim-
ilarly in the other interval [g(�1),f(1)] = [g(�1),g(f(�1)] [
[f(g(�1), f(1)] (where we have used g(f(�1)) = f(g(�1))),
each point of [g(�1),g(f(�1)] has only the inverse via g�1

in A while each point of [f(g(�1)), f(1)] has only the inverse
via f�1 in A. So the properties of map T can be studied by
using the first return, say map Tr, in a suitable interval.
As a trajectory from the side x < 0 can return on the side
x > 0 only via application of g, we can consider the first
interval on the right side, that is:
r ¼ ½gð�1Þ; gðf ð�1ÞÞ�: ð40Þ

We shall prove that Tr is defined by piecewise increasing
functions having a unique discontinuity point in the first
preimage of x = �1 belonging to r, but continuous in the
preimage of x = 1, and that Tr is a circle map. Let gbe the
first preimage of x = 1 belonging to r. That is, an integer
m P 0 (m = 0 corresponds to the case 1 2 r) exists such that

g ¼ f�mð1Þ ð41Þ

and let us define as nthe first preimage of the point x = �1
in r, which may be smaller or larger than g. That is, for a
suitable n P 0, we have either

ðjÞ n ¼ f�ðmþ1Þ � g�1 � f�nð�1Þ < g ð42Þ

or

ðjjÞ n ¼ f�m � g�1 � f�nð�1Þ > g ð43Þ

In the case (j) the first return map is defined as

Tr : x0 ¼
HlðxÞ ¼ g � f ðnþ1Þ � g � f ðmþ1ÞðxÞ if gð�1Þ 6 x < n

HrðxÞ ¼ g � f n � g � f ðmþ1ÞðxÞ if n < x 6 g
HrrðxÞ ¼ g � f ðnþ1Þ � g � f mðxÞ if g 6 x 6 gðf ð�1ÞÞ

8><
>:

ð44Þ

and it is immediate to verify that Hl(n) = g(f(�1)), Hr(n) =
g(�1), Hr(g) = g � fn � g � f(1), Hrr(g) = g � f(n+1) � g(1) = g � fn

(f(g(1))) so that, due to the property (S) we have g � f(1) =
f � g(1) and thus Hr(g) = Hrr(g) (continuity of Tr in g),
Hrr � Hl(n) = g � f(n+1) � g � fm(g(f(�1))), Hl � Hr(n) = g � f(n+1)

� g � f(m+1)(g(�1)) = g � f(n+1) � g � fm(f(g(�1))) = Hrr � Hl(n)
due to the property (S), so that Tr is a circle map in r.

In the case (jj) the first return map is defined as

Tr : x0 ¼
HllðxÞ ¼ g � f n � g � f ðmþ1ÞðxÞ if gð�1Þ 6 x 6 g
HlðxÞ ¼ g � f ðnþ1Þ � g � f mðxÞ if g 6 x < n

HrðxÞ ¼ g � f n � g � f mðxÞ if n < x 6 gðf ð�1ÞÞ

8><
>:

and it is immediate to verify that Hl(n) = g(f(�1)), Hr(n) =
g(�1),Hl(g) = Hll(g) (continuity of Tr in g),Hr � Hl(n) = g � fn
� g � fm(g(f(�1))), Hll � Hr(n) = g � fn � g � fm(f(g(�1))) =
Hr � Hl(n) due to the property (S), so that Tr is a circle map
in r. h

It is worth to note that similar properties exist also the
function f is decreasing (and g increasing or decreasing),
that is, in the cases (di) and (dd). However, the proof in
general is more difficult. When only two preimages of
the discontinuity points exist in the absorbing interval,
then the second iterate of the map is also a map with only
two discontinuities. These cases are reduced to the two
previous ones by use of the second iterate T2 of map T. In
fact, considering the rank-1 preimages of the discontinuity
points x = 1 and x = �1 of the function f existing inside the
range jxj < 1, say

�1 < xl ¼ f�1ð1Þ < 0; 0 < xr ¼ f�1ð�1Þ < 1 ð45Þ

then the second iterate is defined as follows:

T2 : x0 ¼

f � gðxÞ if gð�1Þ 6 x 6 �1
g � f ðxÞ if � 1 6 x < xl

f 2ðxÞ if xl < x < xr

g � f ðxÞ if xr < x 6 1
f � gðxÞ if 1 6 x 6 gðf ð�1ÞÞ

8>>>>>><
>>>>>>:

ð46Þ

where xl and xr are the only two discontinuity points of the
map T2, as the conditions in (S) lead to continuity of T2 in
x = 1 and x = �1. Thus:

– In the case (di), outside the interval (xl,xr) the second
iterate T2 is a decreasing function, so that T2 is a map
of type increasing/decreasing as already considered in
the case (id), with discontinuity points in xl and xr in
place of �1 and 1, respectively;

– In the case (dd), outside the interval (xl,xr) the second
iterate T2 is an increasing function, so that T2 is a map
of type increasing/increasing as already considered in
the case (ii), with discontinuity points in xl and xr in
place of �1 and 1, respectively.

In any case, when condition (S) holds, an invariant
absorbing set A can be defined inside which the map is un-
iquely invertible, and without gap, so that no chaotic
behavior can occur. In the particular case of linear functions
for f and g we get a linear circle map, and the same results
described in the previous sections. While when f and g are
generic monotone functions the trajectories are of the same
kind of those existing in a circle map (see [20,9,13]). So we
still have that all the points in A have the asymptotic behav-
ior depending on the rotation number, which is uniquely
defined, either rational or irrational. However, in a generic
circle map only the irrational case is structurally unstable.
When a rational rotation number exists it is generally per-
sistent as a function of the parameters in some set. Also the
attracting sets are different. When a rational rotation num-
ber exists then all the trajectories have a cycle as x-limit
set (not necessarily unique, but all of the same period).
When the rotation number is irrational and the functions
f and g are of class C2 then quasi periodic trajectories are
dense in the whole set A, while if the functions f and g have
not log (f0) and log (g0) with bounded variation, then the
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quasiperiodic trajectories may be dense in a Cantor set
attractor (or in the invariant set A).

In the family of piecewise monotone functions of the
interval known as Lorenz maps, the occurrence of a circle
map is a kind of bifurcation case, and separates two classes
of functions: those which are invertible with a gap, and
those which are noninvertible (or overlapping), and the
three classes have different dynamic properties. When a
Lorenz map is invertible with a gap, then the attractor is
a unique cycle (when the rotation number is rational) or
a Cantor set attractor (when the rotation number is irratio-
nal), and the rational rotation is persistent, or structurally
stable, while the irrational rotation is structurally unstable.
When a Lorenz map is noninvertible, then a chaotic repel-
ler exists although the attracting set may be a cycle or cha-
otic intervals (in both cases structurally stable), or a Cantor
set attractor (structurally unstable).

Similarly in our case, with generic smooth functions, it
can be considered that the occurrence of the conditions
in (38) corresponds to a bifurcation case, such that before
and after that condition the map behaves differently. That
is, when the conditions are not satisfied we can have
dynamics associated with invertible maps with a gap or
associated with a noninvertible map. Let us illustrate here
two examples, one of which includes the linear case of the
previous sections as a particular bifurcation, and a second
one in which the bifurcation associated with the stability
conditions (S) behaves differently.

6.1. First example

Let us consider the family of maps

T : x0 ¼
f ðxÞ ¼ ajxja1 sgnðxÞ if jxj < 1

gðxÞ ¼ bjxjb1 sgnðxÞ if jxj > 1

(
ð47Þ

as a function of four parameters, for which it is clear that
when a1 = 1 and b1 = 1 we get the map F in (3) so that the
dynamic behavior of the map in this bifurcation case (with
the stability conditions (S) satisfied) is completely known.
We can expect that the dynamic behaviors are different
when the parameters a1 and b1 are not both equal to 1. In
Fig. 11 we show the shape of map T at a = 2 and b = 0.23
fixed (so that we are in a case (ii)) and a1 = b1 = 0.9 in
Fig. 11a, where we can see that the function is invariant
in two disjoint intervals IR = [g(1),f(1)] and IL = [f(�1),
g(�1)], in which it is a Lorenz map with a gap
(f � g(1) > g � f(1) and g � f(�1) > f � g(�1)) and the attractor
is a 3-cycle in both intervals, while a1 = b1 = 1.1 in Fig. 11b,
where we can see that the function is invariant in these two
disjoint intervals in which it is a noninvertible Lorenz map
(f � g(1) < g � f(1) and g � f(�1) < f � g(�1)), with chaotic
dynamics in both intervals. Also with a1 = 0.9 and
b1 = 1.1we obtain that the function is invariant in IR and IL

in which it is a Lorenz map with a gap (the attractors are
different cycles in the two intervals), while for a1 = 1.1
and b1 = 0.9 we obtain the function invariant in IR and IL

in which it is a noninvertible Lorenz map, with chaotic
dynamics in both intervals.

As an example of the bifurcation structure, in Fig. 12 we
illustrate the two-dimensional parameter plane (a,b) at
a1 = b1 = 0.9 fixed. The regions with jaj > 1 and jbj < 1are
filled with periodicity regions associated with attracting
cycles of any period. That is, the dynamic behavior of a
Lorenz map with a gap persists not only in the (ii) case
with a > 1 and 0 < b < 1, but in all the other regions as well.
The point A = (2,0.23) (used to plot the map in Fig. 11a) is
shown in the enlargement in Fig. 12b, and it is inside a
periodicity region of a 3-cycle. It is worth to note that also
in this nonlinear case we can analytically determine the
border collision bifurcation curves bounding the periodic-
ity regions of the existing cycles. Let us consider the region
(ii) and proceed in the same way as described in Section 3.
In order to have a periodic point of a so-called maximal cy-
cle in the interval IR, say with symbolic sequence fgk, k P 1,
we have to look for a fixed point of the composite function
gk � f(x), by solving the equation gk � f(x) = x. It is well
known (see [15]) that the appearance/disappearance of
the cycle occurs via BCB when a periodic point of the cycle
collides with the discontinuity point x = 1. Thus the equa-
tions of the two BCB curves bounding a maximal cycle fgk

are given by

gk � f ð1Þ ¼ 1 ð48Þ
gk�1 � f � gð1Þ ¼ 1 ð49Þ

By using the explicit formulation

gkðxÞ ¼ bð1þb1þ���þbk�1
1 Þxbk

1 ¼ b
1�bk

1
1�b1 xbk

1 ð50Þ

we have the equations

b
1�bk

1
1�b1 abk

1 ¼ 1 ð51Þ

b
1�bk�1

1
1�b1 ðaba1 Þb

k�1
1 ¼ 1 ð52Þ

In Fig. 13 the curves in (51) and (52) are reported for
k = 1, . . . ,10 in the upper part of the figure, bounding peri-
odicity regions of cycles of period 2, . . . ,11 of symbolic se-
quence fgk. Similarly we can reason for the cycles in the
same interval with symbolic sequence gfk, for any k P 1,
the BCB curves satisfy

f k � gð1Þ ¼ 1 ð53Þ
f k�1 � g � f ð1Þ ¼ 1 ð54Þ

and by using the explicit formulation

f kðxÞ ¼ að1þa1þ���þak�1
1 Þxak

1 ¼ a
1�ak

1
1�a1 xak

1 ð55Þ

we have the equations

a
1�ak

1
1�a1 xak

1 ¼ 1 ð56Þ

a
1�ak�1

1
1�a1 ðbab1 Þa

k�1
1 ¼ 1 ð57Þ

In Fig. 13 the curves in (56) and (57) are reported for
k = 1, . . . ,10 in the lower part of the figure, bounding peri-
odicity regions of cycles of period 2, . . . ,11 of symbolic se-
quence gfk (clearly for k = 1 the two families give the same
BCB curves). It is obvious that as a1 and b1 tend to 1 the two
BCB curves bounding the periodicity regions become closer



Fig. 11. Map T in (47) at a = 2 and b = 0.23. In (a) a1 = b1 = 0.9. In (b) a1 = b1 = 1.1.

Fig. 12. Two-dimensional bifurcation diagram of map T in (47) in the (a,b) parameter plane at a1 = b1 = 0.9 fixed. i.c. x0 = �0.9.

Fig. 13. Bifurcation curves in (51) and (52) in the upper part and in (56) and (57) in the lower part, for k = 1, . . . ,10.
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and closer and for a1 = b1 = 1 these coincide in the unique
curve whose equation has been given in Section 3.
By using the map-replacement technique (see [15,4]) it
is also possible to analytically detect the BCB curves of any



Fig. 14. In (a) two-dimensional bifurcation diagram of map T in (58) in the (a,b) parameter plane at a1 = 0.5, b1 = 0.1 fixed, and i.c. x0 = �0.9. In (b) shape of
the map for a1 = 0.5, b1 = 0.1, a = 1.5, b = 0.3.
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complexity level, which are dense in the region and have as
limit sets curves associated with irrational rotation num-
bers (and structurally unstable dynamics).

In Fig. 12 we can see that besides the periodicity regions
of cycles following the adding mechanism (or Farey tree
structure), the regions are colored in orange (representing
the attracting fixed point in the origin) or in yellow (repre-
senting an attracting fixed point not in the origin) or in pink
(representing an attracting 2-cycle), which also may coex-
ist. However, what is interesting to remark here, is the
dynamic behavior in the other regions different from (ii)
when no fixed points nor 2-cycles exist. The bifurcation
structure of the cycles existing in the disjoint intervals IR-

and IL in case (ii) is well known (and what is new here is
the explicit analytic equations of the BCB curves, which
can be done for any complexity level), but the interesting
point is that a similar structure also occurs in the other re-
gions, but associated with different periods. As we have
seen, in the point A = (2,0.23) 2 region(ii) we have a 3-cycle
of symbolic sequence gf2, then in the point (2, �0.23) 2 re-
gion(id) the map, with two discontinuity points, is now
invertible in an invariant set A, with a gap, and we have a
cycle of double period (as expected as the number of points
under the function g, now decreasing, was odd). As we have
done in Section 4, probably this case may be studied via the
first return map in the interval r = [g(�1),g(f(�1))]. In the
point (�2,0.23) 2 region(di) we have a cycle of the same
period 3, while in the point (�2, �0.23) 2 region(dd) we
have a cycle of double period 6. However, we notice that
now the map is invariant in an attracting set A in which it
is invertible with a gap, and we have two discontinuities.
Thus the related properties are still to be investigated.

6.2. Second example

As a second example let us consider the system defined
by

T : x0 ¼
f ðxÞ ¼ axþ ea1x � 1 if jxj < 1
gðxÞ ¼ bxþ eb1x � 1 if jxj > 1

�
ð58Þ

Assuming the parameters a1 = 0.5 and b1 = 0.1 fixed, we
have numerically computed the set of parameters (a,b) at
which the stability condition (S) in (38) is satisfied, and it
is reported in Fig. 14a (black curve evidenced by an arrow).
As we can see, it occurs only when the functions f and g are
in the regions (id) and (dd). When the parameters belong to
such a curve the map behaves as a circle map, and now we
may have persistence of an attracting cycle. More compli-
cated is the investigation of the dynamics when the param-
eters are outside the stability curve. We notice that both
above and below the curve we can have, for the map T,
an invariant absorbing set A = [f(�1),g(1)] [ [g(�1), f(1)]
including both an interval without preimages in A and an
interval with two preimages in A (located on opposite sides
with respect to the origin). However, in the region (id), as
long as an invariant absorbing set A exists, the properties
of the map can be investigated making use of the first
return map Tr in the interval r = [g(�1),g(f(�1))].

Differently, when the parameters belong to the region
(ii) visible in Fig. 14a, we have now that the map is invari-
ant in two disjoint intervals IR = [g(1), f(1)] (where it is a
noninvertible Lorenz map, thus with the existence of cha-
otic dynamics) and IL = [f(�1),g(�1)] in which it is an
invertible Lorenz map, an example is shown in Fig. 14b.
The colored regions in (ii) visible in Fig. 14a correspond
to attracting cycles in the interval IL.

7. Conclusions

In this work we have shown the dynamics of a particu-
lar family of maps, defined in (3). In its simplicity, which
makes the model suitable for several applications, we have
shown that when the parameters a and b satisfy jaj > 1 and
jbj < 1 then the stability conditions (S1) and (S2) (in (9) and
(10)) are always satisfied, which implies that only regular
dynamics can exist. In the case a > 0 and b > 0 (i.e., f(x)
and g(x) both increasing functions) this was a known re-
sult, but we have proved that the dynamics are similar also
when the slopes have all the other different signs. More-
over, we have proved that the curves in the (a,b) parameter
plane, associated with periodic orbits, can be easily found
analytically, and for any level of complexity. However,
the regular dynamics so determined are structurally unsta-
ble. Assuming generic monotone functions as defined in
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(37) we have proved that the stability condition leads to
circle maps, and now the existence of attracting cycles
(at rational rotation numbers) may be persistent. In gen-
eral, the stability condition can be seen as a bifurcation
case. When the functions are both increasing the stability
breaking leads the dynamics to those of Lorenz maps,
invertible and noninvertible, while in the other cases the
breaking of the condition leads to new phenomena, and
it is left for further studies.
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