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50 years ago (1959) in a series of publications by Leonov, a detailed analytical study of the
nested period adding bifurcation structure occurring in piecewise-linear discontinuous 1D maps
was presented. The results obtained by Leonov are barely known, although they allow the
analytical calculation of border-collision bifurcation subspaces in an elegant and much more
efficient way than it is usually done. In this work we recall Leonov’s approach and explain why
it works. Furthermore, we slightly improve the approach by avoiding an unnecessary coordinate
transformation, and also demonstrate that the approach can be used not only for the calculation
of border-collision bifurcation curves.
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1. Introduction

Bifurcations occurring in piecewise-smooth systems
are quite different from those occurring in smooth
ones. It is nowadays well known that in smooth
systems the dynamics may evolve from a regu-
lar dynamic behavior to a complex one via a
sequence of bifurcations (for example, routes to
chaos via Feigenbaum cascades of period doubling
bifurcations), whereas in piecewise-smooth systems
Border-Collision Bifurcations (BCB for short) may
occur, leading to a sharp transition from regular
dynamics to chaos.

In piecewise-linear systems, which we are con-
sidering in this paper, mainly BCB and contact
bifurcations1 occur. It is classified as border-
collision any contact between an invariant set of a
map with the border of its region of definition, and
this may, or may not, produce a bifurcation.2 The
term border-collision bifurcation was introduced for
the first time in [Nusse & Yorke, 1992], (see also
[Nusse & Yorke, 1995]) and it is now widely used
in this context (i.e. for piecewise-smooth maps).
Recently, these bifurcations have been studied
mainly because of their relevant applications in

1Following [Mira et al., 1996] and [Fournier-Prunaret et al., 1997], a contact bifurcation occurs when two invariant sets of
different nature have a contact in one or more points. The dynamic effect of a contact bifurcation may be of several different
kinds, and depends on the nature of the invariant sets and on the map.
2For example, when a stable fixed point undergoes a border-collision crossing a boundary, it may persist, stable, also after the
crossing, and in this case no bifurcation takes place due to the border-collision.
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engineering (electrical and mechanical), and also in
economics and social sciences. In fact, several pub-
lications were motivated by models describing par-
ticular circuits or models for the transmission of
signals (see for example [di Bernardo et al., 1999;
Banerjee & Grebogi, 1999; Banerjee et al., 2000a,
2000b; Avrutin & Schanz, 2006; Avrutin et al.,
2006; Zhusubaliyev et al., 2006, 2007]). Before the
work by Nusse and Yorke, the bifurcations associ-
ated with piecewise smooth maps were also stud-
ied in some papers (even if the bifurcations were
not called border-collision). We recall, for example,
[Mira, 1978, 1987; Maistrenko et al., 1993, 1995,
1998] and others. In particular, in [di Bernardo
et al., 1999] some results, already printed several
years ago by Feigin in 1978,3 are republished. We
may also go further back, citing the work by Leonov
in the end of 50th, [Leonov, 1959, 1962]. In his
work, Leonov described several bifurcations, giving
a recurrence relation to find analytic expressions
of the family of bifurcations occurring in a one-
dimensional piecewise-linear map with one point of
discontinuity, which is still mainly unknown. The
aim of this work is to give a new interpretation and
improvements of some of his results, associated with
the map

x′ = f(x) =
{

fL(x) = aLx + µL if x < 0
fR(x) = aRx + µR if x > 0

(1)

in the case of positive slopes. That is, we restrict
our analysis to the ranges

aL > 0, aR > 0, µR < 0 < µL (2)

Note that the symmetry in the two functions
fL and fR with respect to the parameters, will turn
out to be quite useful in the computations. Consid-
ering the map given in (1) and the parameters as
given in (2), we can immediately say that no sta-
ble fixed point can exist, but we may have one or
two unstable fixed points: the unstable fixed point
P ∗

L = µL/(1 − aL) < 0 exists when aL > 1 while
P ∗

R = −µR/(aR − 1) > 0 exists when aR > 1.
It is easy to see that we can limit our study to
the interval I = [fR(0), fL(0)] = [µR, µL]. It is
obvious that almost all (except for a set of zero
Lebesgue measure) the trajectories are divergent
when fR(0) < P ∗

L or when P ∗
R < fL(0). Thus we

are interested in the bounded dynamics existing
when the interval I = [µR, µL] is absorbing, which

means that points in a suitable neighborhood of
I are mapped into I from which the trajectories
can never escape. This occurs when either the fixed
points do not exist (both slopes are less than one),
or fR(0) > P ∗

L (when aL > 1 and P ∗
L exists) or

P ∗
R > fL(0) (when aR > 1 and P ∗

R exists).
The basin of attraction of the interval I can

be determined easily. Note that if P ∗
L exists and is

unstable then all points x0 < P ∗
L lead to divergent

trajectories. Similarly, if P ∗
R exists and is unstable

then all points x0 > P ∗
L lead to divergent trajecto-

ries. So, when the interval I is absorbing, then its
basin of attraction B(I) is determined by the fixed
points of the map:

B(I) =




R if no fixed points exist
(P ∗

L,+∞) if only the unstable fixed
point P ∗

L exists
(−∞, P ∗

R) if only the unstable fixed
point P ∗

R exists
(P ∗

L, P ∗
R) if both unstable fixed

points P ∗
L and P ∗

R exist
(3)

As long as both slopes are less than one, then
no unstable cycle of any period can exist, while
when both the slopes are larger than one, then no
stable cycle can exist and thus only chaos in suit-
able intervals or invariant Cantor sets, or diver-
gent trajectories can occur. But when the slopes
are one less and one larger than one, it may result
in an uncertainty, and we may expect both regu-
lar dynamics (with attracting cycles or quasiperi-
odic trajectories) as well as chaotic dynamics. The
most obvious expectation in this case is a kind of
progressive destabilization of the possible cycles.
However, this expectation turns out to be wrong
and there is no smooth transition to chaos. Instead,
only a sharp transition can occur from a regular
regime with no unstable cycles and no chaos in the
absorbing interval I to a chaotic regime with only
chaos and no stable cycles inside I. The bifurcation
value is determined by the condition that the map
in its absorbing interval I changes from invertible
to noninvertible (see Fig. 1). This — our case —
is in fact just a particular one of the discontinu-
ous piecewise-smooth problems already considered
in [Keener, 1980], where the function is smooth and
increasing, with one point of discontinuity. In that

3It is worth noticing that the clear and simple analysis performed by Feigin in 1978 is the first one for n-dimensional piecewise
linear continuous maps, with n > 1.
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(a) (b)

Fig. 1. The system function is invertible on the absorbing interval I (the mapping is into and 1-1) as long as the point
A = fR(fL(0)) is located on the left side of the point B = fL(fR(0)) (a). Otherwise the map is noninvertible on the interval I
(the mapping is onto but not 1-1) (b). Parameter settings: aL = 0.3, aR = 1.4 (a), aL = 0.8, aR = 1.5 (b), µL = 1, µR = −1.

paper, the author proves that as long as the map is
invertible [as in Fig 1(a)] then the map is regular.
As we will see in this work, depending on the val-
ues of the two slopes, periodic orbits of any period
can exist, which are globally attracting in I, or, for
a set of parameter values of zero Lebesgue mea-
sure, the dynamic behavior in I is bounded and
nonchaotic.

In our notation, the map is invertible as long
as fR(fL(0))< fL(fR(0)), that is, as long as µL(1−
aR) − µR(1 − aL) > 0. Otherwise the map is
nonuniquely invertible in I, and, as already proved
in [Keener, 1980], the nondivergent dynamic behav-
ior is chaotic in some invariant set. The set of
parameters (S) at which the bifurcation occurs is
given by:

(S): µL(1 − aR) − µR(1 − aL) = 0 (4)

We will describe in detail also the dynamics occur-
ring at these particular bifurcation values, showing
that (and when) either all the points in the absorb-
ing interval I are periodic, or all are quasiperiodic
(i.e. the trajectory of any point is quasiperiodic and
dense in the absorbing interval I).

It is already well-known how extremely rich
the structure of the regions associated with sta-
ble cycles (also called periodicity regions) is, and
that the rotation numbers form in this case the self-
similar devil’s staircase structure. Also the analyt-
ical equations of the BCB curves associated with
some cycles, called maximal or principal cycles
in the recent literature, are known. By contrast,

the analytical formulation of the BCB curves of
more complex cycles, in a general setting, is a
quite new subject (although already considered by
Leonov), and this motivates the present work. Due
to Leonov’s technique we will describe how the ana-
lytical expressions of all the bifurcations curves,
bounding the periodicity regions (see Fig. 2), can be
detected by using an iterative process which leads
to a significant simplification of the calculations. As
we will see, the proof given by Leonov represents a
kind of mapping of the coefficients of the system
function. Moreover, we will see that the technique
used by Leonov requires a specific change of vari-
able. We improve this technique showing how this
change of variable may be avoided.

The plan of the work is as follows. In Sec. 2
we describe Leonov’s approach for the calculation
of BCB curves of periodic orbits. First, in Sec. 2.1
we recall some known results for the two infinite
families of maximal cycles, which we denote (fol-
lowing Leonov’s notation) as cycles of complexity
level one. Then, in Sec. 2.2 we describe the recursive
mode of operation which represents the key point of
Leonov’s approach and obtain the analytical expres-
sions for all cycles of the four infinite families of the
complexity level two. In Sec. 2.3 an improvement
of Leonov’s technique is given. Section 2.4 describes
the calculation for the complexity level three and for
the general case. Additionally, Sec. 2.5 deals with
the particular case, not considered in the previous
sections, in which both slopes of the map are equal
to one. As a next step, in Sec. 3 we demonstrate
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Fig. 2. Numerically detected nested period adding bifurcation structure in map (1). The inset shows the marked rectangle
enlarged. Numbers correspond to periods in specific regions. Parameter setting: µL = 1, µR = −1.

that the recursive mode of operation suggested by
Leonov is useful not only for analytical calculation
of BCB curves. First, in Sec. 3.1 we recall some
results on the devil’s staircase structure formed by
rotation numbers. The change of stability due to
the crossing of the set (S) is discussed in Sec. 3.2
while in Sec. 3.3 we consider the dynamics occurring
when the parameters belong to (S).

In this paper, we do not consider in detail the
chaotic regime. The bifurcation structure formed
by crises bifurcation in the regime of robust chaos
is quite complicated and in some cases self-similar
as reported in [Avrutin & Schanz, 2008; Avrutin
et al., 2008a, 2008b, 2009]. It is further shown in
[Avrutin & Schanz, 2009] that an extended Leonov
approach can be used for a significantly simplified
calculation of the crises bifurcations structuring the
chaotic regime.

2. Leonov’s Approach

2.1. Complexity level one

We consider the map in the generic form given in
(1) and the parameters as given in (2). In this and
the following sections we will see how it is possible
to determine analytically the infinitely many bifur-
cation curves which give the boundary of the peri-
odicity regions in the considered parameter space.

For simplicity reasons let us start considering the
case 0 < aL < 1 and 0 < aR < 1 so that
there are no unstable fixed points and the invariant
interval I = [µR, µL] is globally absorbing. Firstly,
we will characterize the asymptotic behavior inside
I and later we will generalize the reasoning to
the whole regular parameter region. When a sta-
ble cycle exists, then it is globally attracting in I,
and we are interested in determining the parameter
regions associated with all the possible stable cycles.
We will do this by using Leonov’s approach. To find
the possible stable cycles we look for fixed points of
the iterated map, whose main property is that to
be again piecewise-linear, with pieces separated by
the discontinuity point x = 0 and its preimages,
and each piece is obtained by composition of the
different components fL and fR in a suitable way.

The simplest cycles to analyze are those called
by Leonov as first level of complexity. The cycles
of first level of complexity (also called maximal or
principal cycles) are characterized by only one point
in one region, say L, and the other points in the
other region R, which leads to the corresponding
symbolic sequence LRn1, for n1 ≥ 1. For such a
cycle of period (n1 + 1) we can order the periodic
points: let us define x∗

0 < 0 and x∗
1 > · · · > x∗

n1
> 0.

Then the x∗
i with i = 0, . . . , n1 represent n1+1 fixed

points of the map fn1+1(x) and only the point x∗
0
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is in the negative side. This point is a fixed point of
the linear function fn1

R ◦fL(x), and its range of exis-
tence as a fixed point of fn1+1 in I is the following:

fR(0) = µR ≤ x∗
0 ≤ 0 (5)

The two equations associated with (5) denote the
BCBs leading to emergence and disappearance of
the cycle. The reason why the situation x∗

0 = 0 cor-
responds to a BCB is clear: the periodic point is
merging with the discontinuity point from the left
side. Then the cycle exists until its last periodic
point x∗

n1
is merging with the discontinuity point

x = 0 from the right side. It is worth noticing
that this merging of the last periodic point with
the border x = 0 is equivalent to the merging of the
first periodic point x∗

0 with fR(0) = µR. Notice also
that a periodic point cannot exit from the absorb-
ing interval I = [µR, µL] and thus µR is the lowest
possible value. This cycle is simple because having
only one point on one side and n1 points on the
other, the computation of the power n1 of a linear
map is quite easy, and the formulas (in geometric
progression) can be simplified. We proceed as fol-
lows: consider a point µR ≤ x0 ≤ 0 and apply the
maps in the given order LR · · ·R. Thus we obtain4:

x1 = fL(x0) = aLx0 + µL (6)

x2 = fR ◦ fL(x0) = aR[aLx0 + µL] + µR

· · ·
xn1+1 = fn1

R ◦ fL(x0) = an1
R [aLx0 + µL]

+ µR(an1−1
R + · · · + aR + 1)

= an1
R aLx0 + µLan1

R + µR
1 − an1

R

1 − aR

if aR �= 1 (7)

Consequently, we have the function

fn1
R ◦ fL(x) = (an1

R aL)x +
(

µLan1
R + µR

1 − an1
R

1 − aR

)
=: (Ax + M) (8)

and by using the equality x∗
0 = fn1

R ◦ fL(x∗
0) we

obtain its fixed point, which is the periodic point
x∗

0 for f . This point exists for:

fR(0) = µR ≤ x∗
0

=
1

1 − an1
R aL

(
µLan1

R + µR
1 − an1

R

1 − aR

)
≤ 0.

(9)

The two BCB curves bounding the region of
existence of the cycle are denoted by ξl

LRn1 (respec-
tively, ξr

LRn1 ) as they are associated with the sit-
uations that the boundary x = 0 is collided by a
periodic point from the left (respectively, from the
right) side. Both can be deduced from the two equa-
tions associated with (9). Moreover, we know the
inequality which clarifies on which side of the bifur-
cation curve the periodicity region is located. So,
noticing that an1

R aL is the eigenvalue of the cycle
and in the regular regime the cycle is stable, which
means (1 − an1

R aL) > 0, we get from x∗
0 ≤ 0:

ξl
LRn1 : µLan1

R + µR
1 − an1

R

1 − aR
≤ 0 (10)

or:

ξl
LRn1 : µL ≤ −µRϕR

n1
with ϕR

n1
=

1 − an1
R

(1 − aR)an1
R

(11)

Similarly, from µR ≤ x∗
0 we get:

ξr
LRn1 : µLan1

R + µR
1 − an1

R

1 − aR
− µR

(
1 − an1

R aL

) ≥ 0

(12)

or:

ξr
LRn1 : µL ≥ −µR(aL + ϕR

n1−1). (13)

Clearly, the equalities associated with (11) and (13)
represent the corresponding BCB curves.

There exists a particular case in which aR = 1
comes simply from the formulas given above when
substituting the term (1 − an1

R )/(1 − aR) with n1

(and thus ϕR
n1

= n1).
Now, instead of reasoning with a unique peri-

odic point on the L side we can reason in some sense
“symmetrically” (with respect to the L and R sides)
looking for cycles having the symbolic sequence
RLn1. In this case, we can order the periodic points
as x∗

0 > 0, x∗
1 < · · · < x∗

n1
< 0. Then such a cycle

corresponds again to fixed points of the map fn1+1,
with only one point in the positive side, which is
the fixed point of the function fn1

L ◦ fR(x), and as
a periodic point for f , it exists as long as:

0 ≤ x∗
0 ≤ µL = fL(0) (14)

Due to the structure of the initial map with its sym-
metry in the parameters with respect to the indexes
L and R it is clear that, to get the equations of
the BCB curves associated with these cycles, it is
enough to exchange the symbols L and R in the

4Note that the particular cases aL = 1 and aR = 1 are considered in Sec. 2.5.
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above calculations (L into R and R into L), and
reverse the related inequalities.

Notice, in fact, that changing sign in the pre-
vious sequence x∗

0 < 0, x∗
1 > · · · > x∗

n1
> 0 we get

the new one: x∗
0 > 0, x∗

1 < · · · < x∗
n1

< 0. Chang-
ing the letters and the inequalities in the previous
constraint µR ≤ x∗

0 ≤ 0 we get the correct new one:
µL ≥ x∗

0 ≥ 0. Thus the new periodic point x∗
0 on the

R side and the new BCB curves (which are obtained
from the associated equalities in the conditions) are
obtained from (9) when aL �= 1:

µL ≥ x∗
0 =

1
1 − an1

L aR

(
µRan1

L + µL
1 − an1

L

1 − aL

)
≥ 0

(15)
as (1 − an1

L aR) > 0 we get from (11):

ξr
RLn1 : µR ≥ −µLϕL

n1
with ϕL

n1
=

1 − an1
L

(1 − aL)an1
L

(16)

and from (13):

ξl
RLn1 : µR ≤ −µL(aR + ϕL

n1−1) (17)

Of course, the particular case exists in which aL = 1
comes simply from the formulas given above when

substituting the term (1 − an1
L )/(1 − aL) with n1

(and thus ϕL
n1

= n1).
In Fig. 3 we can recognize the BCB curves

bounding the periodicity regions of the first level
of complexity. Notice that when we plot Eqs. (11)
and (13) for n1 = 1, 2, . . . we obtain the regions of
the cycles of period 2, 3, . . . and similarly when we
plot the Eqs. (16) and (17) for n1 = 1, 2, . . . we
obtain the regions of the cycles of period 2, 3, . . . .
Thus, the region and the borders of the 2-cycle are
obtained from both the families LRn1 and RLn1

for n1 = 1. A similar property holds for the BCB
curves of other periodicity families of complexity
levels larger than one.

2.2. Complexity level two

Before we turn to the calculation of the condi-
tions for the BCB curves for orbits of complex-
ity level two, let us first recall the discussion
given in [Leonov, 1959; Mira, 1978] to prove that
the periodicity regions in this stability regime are
disjoint, and that between any two of them we have
infinitely many other periodicity regions. Consider-
ing Eqs. (11) and (13), we can see that the range
in the parameter (µL/−µR) for the cycle of period

Fig. 3. BCB curves of the first complexity level calculated analytically (red). In the background the numerically calculated
nested period adding bifurcation structure is shown (green). The inset shows the marked rectangle enlarged. Parameter setting:
µL = 1, µR = −1.
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(n1 + 1) for any n1 ≥ 1 is given by an interval. For
the periodicity regions of cycles of type LRn1, we
have the intervals

ϕR
n1−1 + aL ≤ µL

−µR
≤ ϕR

n1
(18)

where

ϕR
n1

=
1 − an1

R

(1 − aR)an1
R

if aR �= 1, ϕR
n1

= n1

if aR = 1

whose width (ϕR
n1

− ϕR
n1−1 − aL) = (1/aR)n1 − aL

increases with n1 when aR < 1 and tends to infinity.
Two consecutive intervals are separated by a fixed
amount, given by aL, which leads to disjoint period-
icity regions (a few of which can be seen in Figs. 2
and 3).

For the other family of periodicity regions of
type RLn1 the symmetry may be seen in the param-
eter −µR/µL for which the intervals are

ϕL
n1−1 + aR ≤ −µR

µL
≤ ϕL

n1
(19)

where

ϕL
n1

=
1 − an1

L

(1 − aL)an1
L

if aL �= 1

ϕL
n1

= n1 if aL = 1

(20)

so that the range in the same parameter µL/−µR

considered above is given by
1

ϕL
n1

≤ µL

−µR
≤ 1

ϕL
n1−1 + aR

(21)

and are always disjoint intervals but now their
width tends to zero.

Thus, considering for example, the region in
the parameter space between the periodicity regions
of the cycles with symbol sequences LRn1 and
LRn1+1, in the interval ϕR

n1
< (µL/−µR) ≤ ϕR

n1
+aL

we can find numerous regions corresponding to
orbits with complexity level larger than one, among
them the orbits of complexity level two.

To obtain the conditions for the BCB curves
of these orbits, the key point is an operator which
leads from one complexity level to the consecutive
one. In order to obtain the operator, i.e. the map-
ping of the coefficients, the main point is to observe
that for some suitable combinations of iterated sys-
tem functions, we are in a situation similar to that
previously considered (when computing the families
of the first level of complexity).

This situation is illustrated in Fig. 4(a). As one
can see, the two pieces of the second iterate f2

labeled as LR and RL (separated by the origin O)
are located above the diagonal and do not have fixed
points any longer. Regarding the original function
f that means that the period-2 orbit corresponding
to the symbolic sequence LR is already destroyed.
Similarly, the three pieces of the function f3 labeled
as LRR, RLR and RRL are located below the diag-
onal. That means, the function f3 still does not have
fixed points, or in other words, the period-3 orbit
of the original system function f corresponding to
the symbolic sequence LRR is still not emerged.
Note also that the origin O separates the pieces
LRR and RLR while its preimage O−1 = f−1

R (0)
is the discontinuity point between the pieces RLR
and RRL.

The reasoning in Leonov’s paper is as follows: if
we consider the preimage of the origin with the map
f2, see the point O′ = (f2)−1(O) = f−1

L ◦ f−1
R (0)

in Fig. 4, and consider the change of coordinate
y = x − O′ then, with respect to the y-axes (see
the enlargement in Fig. 4(b)), the branches LR and
LRR are similar to the original map f . That is, the
slopes are both less than one and no fixed point
exists in an absorbing interval, thus the trajecto-
ries are probably converging to some cycle (for the
parameters used in Fig. 4 we can see that a peri-
odic orbit of period-2 exists with one point on the
branch LR and one point on the branch LRR). And
indeed, for the map constructed in this way, with
one branch of f2 on the left of O′ and one branch
of f3 on the right side, we can repeat the same
reasoning that we have done above for the BCB
curves of cycles of the first level of complexity. We
can also use the same formulas already calculated,
we only have to take into account that the coeffi-
cients of the functions on the right and on the left
side of the discontinuity point are changed: instead
of the coefficients of the function fL we have to
use the coefficients of the function fLR := fR ◦ fL,
and instead of the coefficients of the function fR

we have to use the coefficients of the function
fLRR := fR ◦ fR ◦ fL. Clearly, the periodic points
that we observe in Fig. 4(b) of a 2-cycle for this
composite map

y′ =
{

fLR(y) if y < 0
fLRR(y) if y > 0

(22)

represent periodic points of a 5-cycle for the origi-
nal map f , as they are fixed points for the function
f3 ◦ f2 and f2 ◦ f3. Indeed, we may look for cycles
of the map f associated with fixed points of the
functions (f3)n2 ◦ f2 and (f2)n2 ◦ f3 for any n2.
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(a) (b)

(c) (d)

Fig. 4. In (a) and (c) the system function (red), its second (green) and third (blue) iterated functions are shown at the
parameter values aL = 0.8, aR = 0.7, µL = 2, µR = −1. The rectangle marked gray in (a) is shown enlarged in (b) and (d). As
one can see in (b), at the used parameter values the function composed from the piece LR of the second iterate and the piece
LRR of the third iterate has in the translated coordinate system (shown magenta) with the new origin O′ a period-2 orbit
(shown cyan) colliding with the boundary y = 0, that means x = O′, from the left side. This orbit represents the period-5
orbit corresponding to the symbolic sequence LRLRR of the original map, as shown in (c). The change of coordinates is not
necessary if one considers the function composed from the piece LR of the second iterate and the piece RLR of the third
iterate, as shown in (d).

Such kind of cycles are called the second level of
complexity. Notice that these cycles have two peri-
odic points on the L side of x = 0, but due to the
change of coordinate only one periodic point exists
on the L side of y = 0, so that we are in the same
situation as previously analyzed.

In general, when considering the functions
associated with the symbolic sequence LRn1 and
LRn1+1, the reasoning is the same: if we perform
the change of coordinate shifting the origin in the

preimage of order (n1 + 1) O′ = (fn1
R ◦ fL)−1(0) =

f−1
L ◦ f−n1

R (0), then we can determine the leftmost
periodic point, and the related BCB curves, which
we already know explicitly. In formulae, from

0 = fn1
R ◦ fL(x)

= (an1
R aL)x +

(
µLan1

R + µR
1 − an1

R

1 − aR

)
=: Ax + M (23)
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we have

O′ = −M

A

= −
µLan1

R + µR
1 − an1

R

1 − aR

an1
R aL

= −µL

aL
− µR

ϕR
n1

aL
. (24)

Then we perform a change of coordinate which
shifts the origin in O′:

y = x − O′ (25)

Considering the function fn1
R ◦fL(x) on the left side

and fn1+1
R ◦ fL(x) on the right side of the new dis-

continuity point, with x = y + O′, we obtain the
composite map

y′ = T (y) =
{

TL(y) = ALy + ML, if y < 0
TR(y) = ARy + MR, if y > 0

(26)
The coefficients

AL = aLan1
R

AR = aLan1+1
R

ML =
µL

aL
+ µR

ϕR
n1

aL

MR =
µL

aL
+ µR

(
1 +

ϕR
n1

aL

)
(27)

define the required operator (mapping of the coef-
ficients) leading from the bifurcation curves of the
first complexity level to the bifurcation curves of
the second complexity level.

Now it is only a matter of applications of the
previous results. Given any two consecutive cycles
of the first level of complexity for the map f , and
considering the function fn1

R ◦ fL on the left side
of y = 0 and fn1+1

R ◦ fL on the right side, we can
immediately have the periodic points and the BCB
curves of the cycles obtained as fixed points of the
functions in the form T n2

R ◦ TL(y) and T n2
L ◦ TR(y).

This first complexity level for the composite map
T corresponds to the second complexity level for
the map f . So we substitute the coefficients given
by Eqs. (27) into the expressions for the bifurca-
tion curves corresponding to the sequences LRn2

and RLn2 and obtain the bifurcation curves for the
two families of cycles having the symbolic sequences
LRn1(LRn1+1)n2 and LRn1+1(LRn1)n2 .

For the function T n2
R ◦ TL = (fn1+1

R ◦ fL)n2 ◦
(fn1

R ◦ fL) we have from (9):

TR(0) = MR ≤ y∗0

=
1

1 − An2
R AL

(
MLAn2

R + MR
1 − An2

R

1 − AR

)
≤ 0

(28)

for the periodic point y0 of f satisfying y0 = T n2
R ◦

TL(y0). Similarly, from (11) and (13) we get the
BCB curves

ξl
LRn1 (LRn1+1)n2 : ML ≤ −MR

1 − An2
R

(1 − AR)An2
R

=: −MRΦR
n2

(29)

ξr
LRn1 (LRn1+1)n2 : ML ≥ −MR

(
AL +

1 − An2−1
R

(1 − AR)An2−1
R

)
=: −MR(AL + ΦR

n2−1) (30)

Using the expressions for the composite coefficients given in (27), we obtain the expressions for these
bifurcation curves in terms of the original parameters:

ξl
LRn1 (LRn1+1)n2 : µL ≤ −µR

(
ΦR

n2
aL

1 + ΦR
n2

+ ϕR
n1

)

= −µR




1 − (aLan1+1
R )n2

(1 − aLan1+1
R )(aLan1+1

R )n2
aL

1 +
1 − (aLan1+1

R )n2

(1 − aLan1+1
R )(aLan1+1

R )n2

+
1 − an1

R

(1 − aR)an1
R
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ξr
LRn1 (LRn1+1)n2 : µL ≥ −µR

(
(AL + ΦR

n2−1)aL

1 + (AL + ΦR
n2−1)

+ ϕR
n1

)

= −µR




(
aLan1

R +
1 − (aLan1+1

R )n2−1

(1 − aLan1+1
R )(aLan1+1

R )n2−1

)
aL

1 + aLan1
R +

1 − (aLan1+1
R )n2−1

(1 − aLan1+1
R )(aLan1+1

R )n2−1

+
1 − an1

R

(1 − aR)an1
R




(31)
We remark that for the cycles of complexity

level larger than one, we assume always AR �= 1
and AL �= 1 as such cases are considered separately
in Secs. 2.5 and 3.3, related with the particular case
aL = aR = 1 and the set (S), respectively.

To find the fixed point of the function

T n2
L ◦ TR = (fn1

R ◦ fL)n2 ◦ (fn1+1
R ◦ fL) (32)

we start either from (16), (17) repeating the mech-
anism of substitution or, more simply, we take the
formulas (29) and (30), exchange L and R and
invert the inequalities to get the “symmetric” (in
the symbols) case. So we have:

TL(0) = ML ≥ y∗0

=
1

1 − An2
L AR

(
MRAn2

L + ML
1 − An2

L

1 − AL

)
≥ 0 (33)

and

ξr
LRn1+1(LRn1 )n2 :

MR ≥ −ML
1 − An2

L

(1 − AL)An2
L

=: −MLΦL
n2

(34)

ξl
LRn1+1(LRn1 )n2 :

MR ≤ −ML

(
AR +

1 − An2−1
L

(1 − AL)An2−1
L

)

=: −ML(AR + ΦL
n2−1) (35)

Eventually, using the expressions for the composite
coefficients given in (27), we can obtain the bifurca-
tion curves with respect to the original parameters.
The resulting bifurcation curves for all four families
of cycles with the second complexity level are shown
in Fig. 5.

Note that the periodic point y∗0 detected in
(28) as the fixed point of the map T n2

R ◦ TL,
represents for the map f the fixed point of the
function (fn1+1

R ◦ fL)n2 ◦ (fn1
R ◦ fL), that means

the leftmost periodic point of the cycle of period
(n1 + 1) + n2(n1 + 2). In order to get its expression

in the x-coordinate we have to consider the point
x∗

0 = y∗0 + O′ (in the example shown in Fig. 4 the
periodic point x∗

0 is denoted x0).
Now, as already done at the beginning of

Sec. 2.2, we can perform the analysis of the ranges
of existence, we have:

ΦR
n2−1 + AL ≤ ML

−MR
≤ ΦR

n2
(36)

which gives disjoint intervals for any n2 ≥ 1 and
the relation between this and the previous parame-
ter is as follows: from the definition in (27) we have
aLML = µL + µRϕR

n1
so that

µL

−µR
= ϕR

n1
+ aL

ML

−MR

1 +
ML

−MR

(37)

and similarly for the second family we have intervals
in the parameter

ΦL
n2−1 + AR ≤ −MR

ML
≤ ΦL

n2
(38)

that is
1

ΦL
n2

≤ ML

−MR
≤ 1

ΦL
n2−1 + AR

(39)

and thus the two families of the second level
constructed above give cycles in disjoint boxes,
which are cumulating on the BCB curves at
the boundaries of the two cycles considered ini-
tially, which means that inside the starting interval
]ϕR

n1
, ϕR

n1
+ aL[ we have the first family of disjoint

intervals which are approaching the right side as
n2 tends to ∞, and the second family of disjoint
intervals which are approaching the left side as n2

tends to ∞.
The BCB curves of the remaining two fam-

ilies of the second level of complexity can be
calculated analogously. Instead of starting from
two consecutive cycles of the first level with
symbolic sequences LRn1 and LRn1+1 we start now
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Fig. 5. BCB curves of complexity level two calculated analytically using Leonov’s approach (blue). The inset shows the marked
rectangle enlarged. Numerically calculated nested period adding bifurcation structures are shown in background (green) as
well as the curves of the analytical curves of complexity level one (red). Parameter setting: µL = 1, µR = −1.

with the other two consecutive cycles of the first
level with symbolic sequences RLn1 and RLn1+1

with parameter µL/−µR belonging to the interval
]1/(ϕL

n1
+ aR), 1/ϕL

n1
[.

Well, here we do not have to do much work,
only notice that instead of reasoning on the map
operator with the function fn1

R ◦ fL on its L side
and fn1+1

R ◦fL on the R side as previously done, we
can consider as TL the function fn1

L ◦ fR(x) and as
TR the function fn1+1

L ◦ fR(x) which means that on
the right side of the coefficients of the operator we
have to exchange L and R. Then we have:

AL = aRan1
L

AR = aRan1+1
L

ML =
µR

aR
+ µL

ϕL
n1

aR

MR = µL + ML =
µR

aR
+ µL

(
1 +

ϕL
n1

aR

) (40)

Now it is only a matter of applications of the pre-
vious results, given the new composition of the
coefficients. For the function T n2

R ◦ TL = (fn1+1
L ◦

fR)n2 ◦ (fn1
L ◦ fR) which now represents the family

of cycles with symbolic sequence RLn1(RLn1+1)n2

we have formally the same equations as given above

in (29) and (30):

ξl
RLn1 (RLn1+1)n2 :

ML ≤ −MR
1 − An2

R

(1 − AR)An2
R

=: −MRΦR
n2

ξr
RLn1 (RLn1+1)n2 :

ML ≥ −MR

(
AL +

1 − An2−1
R

(1 − AR)An2−1
R

)

=: −MR(AL + ΦR
n2−1)

(41)

but now with the coefficients given in (40). These
BCB curves can be rewritten as:

ξl
RLn1 (RLn1+1)n2 :

µL ≤ −µR(1 + ΦR
n2

)
aRΦR

n2
+ (1 + ΦR

n2
)ϕL

n1

ξr
RLn1 (RLn1+1)n2 :

µL ≥ −µR(1 + (AL + ΦR
n2−1))

aR(AL + ΦR
n2−1) + (1 + (AL + ΦR

n2−1))ϕL
n1

(42)

For the function T n2
L ◦ TR = (fn1

L ◦ fR)n2 ◦ (fn1+1
L ◦

fR) which now represents the family of cycles
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RLn1+1(RLn1)n2 we have formally the same equa-
tions as given above in (34) and (35):

ξr
RLn1+1(RLn1 )n2 :

MR ≥ −ML
1 − An2

L

(1 − AL)An2
L

=: −MLΦL
n2

ξl
RLn1+1(RLn1 )n2 : (43)

MR ≤ −ML

(
AR +

1 − An2−1
L

(1 − AL)An2−1
L

)

=: −ML(AR + ΦL
n2−1)

but now with the coefficients given in (40). These
BCB curves can be rewritten as:

ξr
RLn1+1(RLn1 )n2 : µL ≥ −µR(1 + ΦL

n2
)

aR + (1 + ΦL
n2

)ϕL
n1

ξl
RLn1+1(RLn1 )n2

: µL ≤ −µR(1 + AR + ΦL
n2−1)

aR + (1 + AR + ΦL
n2−1)ϕL

n1

(44)

Moreover, for any n2 ≥ 1, from the inequality

ΦR
n2−1 + AL ≤ ML

−MR
≤ ΦR

n2
(45)

and from (40) we get:

1
aR(AL + ΦR

n2−1)
1 + (AL + ΦR

n2−1)
+ ϕL

n1

≤ µL

−µR
≤ 1

aRΦR
n2

1 + ΦR
n2

+ ϕL
n1

(46)
and for the second one, from (44) we get:

1
aR

(1 + ΦL
n2

)
+ ϕL

n1

≤ µL

−µR

≤ 1
aR

(1 + AR + ΦL
n2−1)

+ ϕL
n1

(47)

so that they belong to disjoint intervals inside the
starting range ]1/(ϕL

n1
+ aR), 1/ϕL

n1
[, such that the

first family approaches the left boundary as n2

tends to ∞, while the second family approaches the
right boundary.

2.3. Improvement of Leonov’s
technique

We have reported above the proof given by Leonov
for historical reasons. However, we can improve this

technique and avoid the steps associated with the
change of the coordinate system. In fact, the idea
of this simplification is clearly visible in Fig. 4.

It is clear that the pieces of the function f2

and f3 close to the origin are in a situation sim-
ilar to that of the original function, and indeed,
for the parameter values used in Fig. 4 we can see
that a periodic orbit of period-2 exists not only with
points on the branches LR and LRR, but there also
exists a periodic orbit of period-2 with one point on
the branch LR and one point on the branch RLR
(and clearly a periodic orbit of period-2 exists also
with one point on the branch RL and one point
on the branch RRL). Therefore, without chang-
ing the coordinate system, we can consider the two
branches of functions which are immediately on the
left and on the right of the origin. In general, con-
sidering any two consecutive cycles with symbolic
sequence LRn1 and LRn1+1, or equivalently with
symbolic sequence LRn1 and RLRn1, we consider
the composite function T̃L(x) = fn1

R ◦ fL(x) on the
left side of x = 0 and T̃R(x) = fn1

R ◦ fL ◦ fR(x) on
the right side of x = 0:

x′ = T̃ (x) =

{
T̃L(x) = ALx + M̃L, if x < 0

T̃R(x) = ARx + M̃R, if x > 0
(48)

with

AL = aLan1
R

AR = aLan1+1
R

M̃L = µLan1
R + µR

1 − an1
R

1 − aR

M̃R = ALµR + M̃L

(49)

As in the previous case, for aR = 1 the term
(1 − an1

R )/(1 − aR) must be replaced by n1. Now, it
is only a matter of applications of the results of the
first level. By using the equality x∗ = T̃ n2

R ◦ T̃L(x∗)
we obtain the periodic point of f which is the first
one on the left of the origin:

M̃R ≤ x∗ =
1

1 − An2
R AL

(
M̃LAn2

R + M̃R
1 − An2

R

1 − AR

)
≤ 0 (50)

(in the example shown in Fig. 4 this periodic point
corresponds to x2) and the BCB curves of the cycles
obtained by using T̃ n2

R ◦ T̃L(x) with this first level
for the map T̃ correspond to cycles of the second
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level for the map f. From (11) and (13) with obvi-
ous changes we obtain:

ξl
LRn1 (RLRn1 )n2 :

M̃L ≤ −M̃R
1 − An2

R

(1 − AR)An2
R

=: −M̃RΦR
n2

ξr
LRn1 (RLRn1 )n2 : (51)

M̃L ≥ −M̃R

(
AL +

1 − An2−1
R

(1 − AR)An2−1
R

)

=: −M̃R

(
AL + ΦR

n2−1

)
which can be rewritten as:

ξl
LRn1 (RLRn1 )n2 :

µL ≤ −µR

(
ΦR

n2
aL

1 + ΦR
n2

+ ϕR
n1

)

ξr
LRn1 (RLRn1 )n2 : (52)

µL ≥ −µR

(
aL(AL + ΦR

n2−1)
1 + AL + ΦR

n2−1

+ ϕR
n1

)

and the BCB curves of the second complexity level
previously determined in (31) are the same as
those determined now in (52) (without the change
of variable). That is, the analytic expressions of
ξr
LRn1 (RLRn1 )n2 (respectively, ξl

LRn1 (RLRn1 )n2 ) are
the same as that of ξr

LRn1 (LRn1+1)n2
(respectively,

ξl
LRn1 (LRn1+1)n2

) representing the border-collision
bifurcation of the same cycle of f , but computed
referring to a different periodic point (x∗ instead
of y∗0).

Similarly we can reason for all the other BCB
curves of the second complexity level, avoiding the
change of coordinate, and we know that the analytic
expressions of the BCB curves will be the same as
those given in (42) and (44).

As the BCB curves analytically determined are
the same, also the same are comments related to
the intervals of existence of such cycles.

2.4. Level of complexity larger
than two

It is clear that the process described above can be
repeated recursively, considering any pair of consec-
utive intervals of existence of cycles of the second
complexity level. Between these intervals there is
an empty space inside which one can repeat the
same reasoning, obtaining two families of intervals

of existence of cycles of the third complexity level,
and so on.

So the third level of complexity comes in
a similar way: given two consecutive functions
involved in the second level, for example T̃LT̃

n2

R ,
and T̃LT̃ n2+1

R (i.e. corresponding to the symbolic
sequences LRn1(RLRn1)

n2 and LRn1(RLRn1)n2+1)
we consider the functions T ′

L = T̃
n2

R ◦ T̃L on the
left side of x = 0 and T ′

R = T̃
n2

R ◦ T̃L ◦ T̃R on the
right side. Assuming that T̃L has coefficients AL and
ML and T̃R has coefficients AR and MR, we apply
the same operator in (48)–(49), which we denote as
T ′, substituting the coefficients AL, ML, AR, MR

for aL, µL, aR, µR to obtain the coefficients
A′

L, M ′
L, A′

R, M ′
R of the new composite map T ′:

x′ = T ′(x) =
{

T ′
L(x) = A′

Lx + M ′
L, if x < 0

T ′
R(x) = A′

Rx + M ′
R, if x > 0

(53)
with

A′
L = ALA

n2

R

A′
R = ALAn2+1

R

M ′
L = MLAn2

R + MR
1 − A

n2

R

1 − AR

M ′
R = A′

LMR + M ′
L

= ALA
n2

R MR + MLA
n2

R + MR
1 − A

n2

R

1 − AR

(54)

Then from the function

T ′n3
R ◦ T ′

L(x) = A′n3

R A′
Lx + M ′

LA′n3
R

+ M ′
R

1 − A′n3
R

1 − A′
R

(55)

we obtain the periodic point of f which is the first
on the left of the origin:

M ′
R ≤ x∗ =

1
1 − A′n3

R A′
L

×
(

M ′
LA′n3

R + M ′
R

1 − A′n3
R

1 − A′
R

)
≤ 0 (56)

Eventually, we express the coefficients A′
L, M ′

L,
A′

R, M ′
R in terms of aL, µL, aR, µR, n3 and n1

and obtain the expressions for the BCB curves
of the family of cycles of the third level of com-
plexity obtained from the function T ′n3

R ◦ T ′
L(x)
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for any n3 ≥ 1:

− M ′
R(A′

L + ϕR
n3−1) ≤ M ′

L ≤ −M ′
RϕR

n3

with ϕR
n3

=
1 − A′n3

R

(1 − A′
R)A′n3

R

(57)

This family of orbits with complexity level
three corresponds to symbolic sequences
LRn3(RLRn3)n2(RLRn3LRn3(RLRn3)n2)

n1 or,
written in a more compact way (which is equiv-
alent to the previous form up to a cycli-
cal shift) LRn3(LRn3+1)n2(LRn3(LRn3+1)n2+1)

n1 .
The second family of complexity level three
is obtained exchanging L and R so that
the symbolic sequences of this family are
(RLn3)(RLn3+1)n2((RLn3)(RLn3+1)n2+1)

n1 . For
the calculation of the regions of existence the
inequalities must be inverted, that is, the periodic
point and the BCB curves of this family of cycles
of complexity level three, obtained in the form
T ′n3

L ◦ T ′
R(x) for any integer n3 ≥ 1, are given by:

M ′
L ≥ x∗ =

1
1 − A′n3

L A′
R

×
(

M ′
RA′n3

L + M ′
L

1 − A′n3
L

1 − A′
L

)
≥ 0 (58)

−M ′
L(A′

R + ϕL
n3−1) ≥ M ′

R ≥ −M ′
LϕL

n3

with ϕL
n3

=
1 − A′n3

L

(1 − A′
L)A′n3

L

(59)

Similarly, the other families of the complexity level
three can be obtained, as for example, the fam-
ilies with symbolic sequences LRn3(LRn3+1)n2+1

(LRn3(LRn3+1)n2)n1 and LRn3+1(LRn3)n2+1

(LRn3+1(LRn3)n2)n1 . So from the four families
of the second level obtained in the previous sec-
tions, we obtain eight families of the third level
of complexity. As one can see, this process can be
continued iteratively. It is clear that the number of
families is doubled from one level to the consecutive
one.

As we have already noticed in the Introduction,
as long as we are in the regular regime, we can have
stable cycles of any period. Some of them may even
have the same period. However, it is not true that
for any given set of parameter values we are inside a
periodicity region or on its boundary, and thus, that
a stable cycle always exists. In fact, each periodicity
region is a limit set of other periodicity regions, but
also the union of all the existing periodicity regions
does not cover the regular parameter region com-
pletely. Some points are left (the complementary

set, which is a set of zero measure in the parameters
space) at which we have no cycles, but quasiperiodic
trajectories.

2.5. Particular case aR = aL = 1

In this section, we consider the map (1) in the par-
ticular case aR = aL = 1. The results are already
stated in the previous sections, so we only summa-
rize the dynamic behavior of the simple map:

x′ = f(x) =
{

fL(x) = x + µL, if x < 0
fR(x) = x + µR, if x > 0

(60)

It can be easily shown by simply looking at the
shape of the system function that in the following
three cases: (i) µL < 0, µR < 0, (ii) µL < 0, µR > 0,
(iii) µL > 0, µR > 0 the only possible asymptotic
behavior is divergent. Obviously, in the degenerate
case µL = 0 and µR = 0 each point x is a fixed
point. For µL = 0, µR �= 0 each point x < 0 is a
fixed point and for the initial values x > 0 there
are two possibilities: for µR < 0 each initial value
x > 0 converges in a finite number of steps to one
of the fixed points on the interval (µR, 0), and for
µR > 0 each initial value x > 0 diverges. In the case
µR = 0, µL �= 0 the situation is vice versa. Hence,
the only region of periodic dynamics is

µL > 0, µR < 0 (61)

Obviously no fixed point exists in this case (as both
the slopes are equal to one) and the invariant inter-
val I = (µR, µL) is globally absorbing.

Then considering the periodic orbits corre-
sponding to the symbolic sequences LRn1 of com-
plexity level one we have

fn1
R ◦ fL(x) = x + µL + n1µR (62)

and all the points inside I are periodic of period
n1 + 1 (and eventually periodic outside I) when

µL + n1µR = 0 (63)

More generally, given a periodic orbit of any com-
plexity level with p ≥ 1 distinct points on the left
side and q ≥ 1 distinct points on the right side, we
have

fp+q(x) = fp
R ◦ f q

L(x) = x + pµL + qµR (64)

thus all the points inside I are of period p + q (and
eventually periodic outside I) when pµL + qµR = 0,
that is when we have

µL

−µR
=

p

q
(65)
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Fig. 6. Straight lines in the plane (µL, µR) corresponding to some orbits of the complexity levels one and two for aL = aR = 1.

This leads us to the following

Proposition 1. Let aR = aL = 1, µL > 0, µR < 0
in (1) and ρ = µL/−µR. Then

— if ρ is a rational number ρ = p/q where p and q
are integers with no common divisors, then each
orbit starting in the globally absorbing invari-
ant interval I = (−µR, µL) is periodic with the
period (p + q), whereby p points of the orbit are
located on the left side and q points on the right
side.

— if ρ is an irrational number then each orbit in I
is quasiperiodic and dense in I.

Thus in the parameter plane (−µR, µL) the first
quadrant (see Fig. 6) is filled with a cone of straight
lines µL = −ρµR. To each of these lines corresponds
an absorbing interval I in the state space filled with
periodic orbits when ρ is rational, or quasiperiodic
orbits when ρ is irrational.

3. Further Applications

3.1. Rotation numbers

To find the boundaries of the BCB curves we have
followed a recursive rule. Between any pair of con-
secutive cycles associated with the complexity level

n there are two families of infinitely many (count-
able) periodicity regions of the complexity level
n+1. In order to distinguish between different cycles
of the same period we can associate a number to
each periodic orbit, called rotation number. Follow-
ing this idea a periodic orbit of period k is char-
acterized not only by the period but also by the
number of points in the two partitions separated by
the discontinuity point, here x = 0, denoted by L
and R, respectively. So, we say that a cycle of period
k = (p + q) has a rotation number p/q if it has p
points on the left side (represented by the symbol
L) and the other q points on the right side (repre-
sented by the symbol R). Obviously, the eigenvalue
of such a cycle is λ = ap

Laq
R. As one can see, the

cycles of complexity level one corresponding to the
symbolic sequences LRn1 and RLn1 have the rota-
tion numbers

ρ(LRn1) =
1
n1

and ρ(RLn1) =
n1

1
(66)

Then between any pair of adjacent regions of
first level, associated for example with the sym-
bolic sequences LRn1, LRn1+1 and hence with the
rotation numbers 1/n1 and 1/(n1 + 1), we have
constructed two infinite families of regions of the
complexity level two. The rotation numbers for the
cycles of the family of level two with the symbolic
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sequence LRn1(LRn1+1)n2 are given by

ρ(LRn1(LRn1+1)n2) =
n2 + 1

n1n2 + n1 + n2
(67)

and the rotation numbers of the cycles with the
symbolic sequence LRn1+1(LRn1)n2 are given by

ρ(LRn1+1(LRn1)n2) =
n2 + 1

n1n2 + n1 + 1
(68)

The values given by Eqs. (67) and (68) can be cal-
culated easily by counting the letters L and R in
the corresponding symbolic sequences. However, it
is also possible to obtain these values in a more gen-
eral way, by expressing them in terms of the rotation
numbers of the previous level of complexity. Using
the well-known Farey-addition rule

a

b
⊕ c

d
=

a + c

b + d
(69)

we can write

ρ(LRn1) ⊕ ρ(LRn1+1)

=
1
n1

⊕ 1
n1 + 1

=
2

2n1 + 1
= ρ(LRn1LRn1+1)

ρ (LRn1) ⊕ ρ
(
LRn1+1

)︸ ︷︷ ︸
ρ
(
LRn1LRn1+1

) ⊕ρ(LRn1+1)

=
2

2n1 + 1
⊕ 1

n1 + 1

=
3

3n1 + 2
= ρ(LRn1(LRn1+1)2)

(70)

and so on, so that in general we have

ρ(LRn1(LRn1+1)n2)

= ρ(LRn1) ⊕ (ρ(LRn1+1) ⊗ n2)

ρ(LRn1+1(LRn1)n2)

= ρ(LRn1+1) ⊕ (ρ(LRn1) ⊗ n2)

(71)

where ⊗ denotes a repeated application of the
Farey-addition (similar to multiplication with a nat-
ural number) defined as follows:

a

b
⊗ n =

a

b
⊕ · · · ⊕ a

b︸ ︷︷ ︸
n times

=
a · n
b · n (72)

Note also that the result of the application of the
operator ⊗ represents only an auxiliary value which

is not associated with any periodic orbit and can-
not be considered as a usual fraction (especially, it
must not be reduced). However, applied in Eq. (71)
in a combination with ⊕, it leads to irreducible
fractions:

ρ(LRn1) ⊕ (ρ(LRn1+1) ⊗ n2)

=
1
n1

⊕
(

1
n1 + 1

⊗ n2

)

=
1
n1

⊕ n2

(n1 + 1)n2

=
n2 + 1

n1n2 + n1 + n2

= ρ(LRn1(LRn1+1)n2) (73)

ρ(LRn1+1) ⊕ (ρ(LRn1) ⊗ n2)

=
1

n1 + 1
⊕
(

1
n1

⊗ n2

)

=
1
n1

⊕ n2

n1 n2
=

n2 + 1
n1n2 + n1 + 1

= ρ(LRn1+1(LRn1)n2) (74)

It is not difficult to see that the resulting values are
organized as follows

ρ(LRn1+1) < ρ(LRn1(LRn1+1)n2+1)

< ρ(LRn1(LRn1+1)n2)

< · · · < ρ(LRn1+1LRn1)

< · · · < ρ(LRn1+1(LRn1)n2)

< ρ(LRn1+1(LRn1)n2+1)

< ρ(LRn1) (75)

that means, for each fixed n2 the families of rota-
tion numbers given by Eq. (71) are bounded in the
interval [ρ(LRn1+1), ρ(LRn1)] and also that the two
sequences of rotation numbers are accumulating at
the boundaries of the interval, since

lim
n2→∞ ρ(LRn1(LRn1+1)n2) =

1
n1 + 1

= ρ(LRn1+1)

lim
n2→∞ ρ(LRn1+1(LRn1)n2) =

1
n1

= ρ (LRn1)

(76)

Clearly, this reasoning can be repeated for
further complexity levels. Especially, between any
pair of adjacent regions of complexity level



November 11, 2010 18:33 WSPC/S0218-1274 02757

Border Collision Bifurcations in 1D Piecewise-Linear Maps and Leonov’s Approach 3101

two, for example, having the rotation num-
bers ρ′ = (n2 + 1)/(n1n2 + n1 + n2) and ρ′′ =
(n2 + 2)/(n1(n2 + 1) + n1 + n2 + 1) there exist two
infinite families of periodicity regions of complexity
level three with the rotation numbers ρ′⊕ (ρ′′⊗n3)
and ρ′′ ⊕ (ρ′ ⊗ n3) located between ρ′ and ρ′′. This
self-similar process can be continued ad infinitum
and results in the well-known devil’s staircase struc-
ture of the rotation numbers.

3.2. Change of stability

As we can see in Figs. 3 and 5, all the BCB curves
bounding the existence regions of the cycles inter-
sect at points which belong to the set (S) defined
by Eq. (4). For parameter values on one side of (S)
all the cycles are stable (globally attracting) and
their periodicity regions are nonoverlapping. On the
other side of (S) the regions are overlapping and all
the cycles are unstable. This region represents the
domain of robust chaos: for any point in the param-
eters space outside of (S) there exist infinitely many
unstable cycles and if the trajectories are bounded,
then they belong to a chaotic attractor consisting
of one or more intervals (bands).

Now we prove the following

Proposition 2. For a periodic orbit of any complex-
ity level the following holds:

(1) One of the intersection points of two BCB
curves confining the existence region of this
orbit belongs to the set (S).

(2) At this intersection point, the orbit changes its
stability.

Proof. First let us consider the bifurcation curves
for the first family of orbits of complexity level one,
with symbolic sequence LRn1. From (11) and (13)
for each n1 ≥ 1, the two BCB curves:

ξl
LRn1 : µL = −µRϕR

n1
(77)

ξr
LRn1 : µL = −µR(aL + ϕR

n1−1) (78)

intersect at the parameter values where the eigen-
value λ1,n1 = aLan

R of the cycle LRn1 is equal to
one, and hence the cycle changes its stability. In
fact, the equation

aL + ϕR
n1−1 = ϕR

n1
(79)

leads to

aL =
1 − an1

R

(1 − aR)an1
R

− 1 − an1−1
R

(1 − aR)an1−1
R

=
1

an1
R

(80)

that means

aLan1
R = 1 (81)

Moreover, it is easy to see that for any n1 > 0, the
intersection point of each pair of BCB curves (77)
and (78), given by

(aL, µL) = (aL,−µRϕR
n1

)

=
(

1
an

R

,−µR
1 − an1

R

(1 − aR)an1
R

)
(82)

belongs to the set (S), i.e. satisfies Eq. (4). In fact,
using (81) we get from (82)

µL = −µR
1 − an1

R

(1 − aR)an1
R

= −µR
aL(1 − an1

R )
(1 − aR)

= −µR
(aL − 1)
(1 − aR)

so that

µL(1 − aR) = µR(1 − aL) (83)

Similarly, for any n1 > 0, the intersection of each
pair of BCB curves for the second family of orbits of
complexity level one, corresponding to the symbolic
sequence RLn1, given by Eqs. (16) and (17) leads to
λn1,1 = aRan1

L = 1 and µR(1−aL) = µL(1−aR) that
means the intersection point belongs to the set (S)
also in this case. Hence, the proposition is proved
for the cycles of the first level of complexity.

Next we have to demonstrate that the same
results hold also for complexity levels larger than
one. As an example, let us consider the family of
cycles of the second complexity level with symbolic
sequences LRn1(LRn1+1)n2 . As these cycles repre-
sent the cycles of the first complexity level for the
map (48) we can apply Eq. (81) for this map and
obtain

ALAn2
R = 1 (84)

where the coefficients AL and AR are defined by
Eq. (49). Inserting (49) into Eq. (84) we obtain
immediately

(aLan1
R )(aLan1+1

R )n2 = 1 (85)

As the eigenvalue of a cycle with the sym-
bolic sequence LRn1(LRn1+1)n2 is given by
(aLan1

R )(aLan1+1
R )n2 , we conclude that Eq. (85) rep-

resents the condition that this cycle changes its sta-
bility. Obviously, the same reasoning can be applied
for any other family of cycles of complexity level two
and then iteratively for each next complexity level.
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The proof that the intersection point of the
BCB curves for any complexity level belongs
to the set (S) is similar. For the same family
LRn1(LRn1+1)n2 of complexity level two we have

M̃L(1 − AR) = M̃R(1 − AL) (86)

because we can consider again this family as a fam-
ily of complexity level one for the map (48). From
Eq. (86) we obtain, by using the definition of M̃R

given by Eq. (49),

M̃L(1 − AR) = (ALµR + M̃L)(1 − AL)

and therefore

M̃L(AL − AR) = ALµR(1 − AL)

Then, by using AR = ALaR, we have

M̃L(1 − aR) = µR(1 − AL)

and eventually by substituting the definitions of M̃L

and AL we obtain(
µLan1

R + µR
1 − an1

R

1 − aR

)
(1 − aR) = µR(1 − aLan1

R )

µLan1
R (1 − aR) + µR(1 − an1

R ) = µR(1 − aLan1
R )

µLan1
R (1 − aR) = µR(an1

R − aLan1
R )

µL(1 − aR) = µR(1 − aL)

that means the definition of the set (S). Iteratively
the proof can be continued for each next complexity
level. �

Note also that above the set (S) the equa-
tions for the BCB curves related to the existence
of cycles are valid also but in this case the inequal-
ities must be inverted. To demonstrate that let us
consider the family of orbits of complexity level one
corresponding to the symbolic sequences LRn. In
fact, the basic condition given by Eq. (9) is valid
in any case (below and above the set (S)). How-
ever, the sign of the denominator (1 − an1

R aL) in
Eq. (9) changes at the boundary between the regu-
lar and the chaotic domains, as proven by Proposi-
tion 2. As long as we are in the regular domain the
denominator is positive and the inequalities given
in (11) and (13) hold. By contrast, in the chaotic
domain the denominator (1 − an1

R aL) is negative
and therefore the inequalities (11) and (13) must be
inverted. As an example, let us consider the period-
icity region associated with the period-3 cycle LRR
shown in Fig. 7. For parameters inside the stability
region (shown red) the curve ξr

LRR represents the
upper boundary of the region and the curve ξl

LRR
the lower boundary. For parameters in the region

Fig. 7. Regions in the parameter plane (aL, aR) where the period-3 orbit LRR is stable (red), respectively unstable (blue).
The insets show the system function and its third iterate at the marked points in the parameter space. Parameter setting:
µL = 1, µR = −1.
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(shown blue) the boundaries are exchanged. The
insets show the graph of the map f in the absorbing
interval I and the graph of the map f3, whose fixed
points define the stable 3-cycle. When the parame-
ters belong to the set (S) then the three pieces of
the map f3 inside I coincide with the diagonal, cov-
ering the complete interval I so that all the points
in I are periodic with period three.

The same reasoning holds also for all other
orbits of any complexity level.

3.3. Dynamics on the locus (S)

Next the question arises, what is the dynamic
behavior when a parameter point belongs to the set
(S)? The property that we have seen in the example
in Fig. 7 holds for any periodicity region. In fact,
we prove the following

Proposition 3. When the parameters belong to the
set (S) at the intersection of a pair of BCB curves
for a cycle with a given symbolic sequence, then each
point of the absorbing interval I = [µR, µL] is peri-
odic and belongs to a cycle with the same symbolic
sequence and hence with the same period and rota-
tion number.

Proof. Let us consider a point of the parameter
space belonging to the set (S) which is the inter-
section point of a pair of BCB curves belonging to
the first complexity level, associated with the sym-
bolic sequence LRn1. Then considering the function
fn1

R ◦ fL we can show that

fn1
R ◦ fL(x) = x, ∀n1 > 0, ∀x ∈ (µR, 0) ⊂ I

(87)
That means, the function fn1

R ◦ fL for any n1

is the identity map in (µR, 0) This implies that
in the phase space, inside the absorbing inter-
val I = [µR, µL] all the points are periodic with
the same symbolic sequence, because all functions
fm

R ◦ fL ◦ fn1−m
R are also identity maps in their cor-

responding subintervals of I.
To prove the identity (87) let us consider the

expression given in (8). Then for any x ∈ (µR, 0)
we have:

fn1
R ◦ fL(x) = (an1

R aL)x + µLan1
R + µR

1 − an1
R

1 − aR

(88)

Then from (77) and (81) we get

fn1
R ◦fL(x) = (an1

R aL)x+µLan1
R −µLan1

R = x (89)

Similarly, when we consider a point on (S) at
the intersection of BCB curves for the second fam-
ily of cycles of complexity level one (exchanging
L and R) we have the same behavior due to the
identity

fn1
L ◦ fR(x) = x, ∀n1 > 0, ∀x ∈ (0, µL) (90)

For the cycles associated with families of com-
plexity two we can argue in the same way as before.
For the corresponding composite map we will get
the identity similar to Eq. (87). Hence, for this
map each point of the absorbing interval is peri-
odic and belongs to a cycle with the same symbolic
sequence. Hereby this symbolic sequence belongs to
complexity level one. As each point of an orbit of
the composite map corresponds by definition to a
sequence of points of the original map, all points of
the absorbing interval are periodic for the original
map too. In the same manner, the reasoning can be
continued for all complexity levels larger than two.
So the proof is complete. �

If the point on the locus (S) is not related with
a periodicity region, then the trajectories in I are
quasiperiodic, dense in I and associated with an
irrational rotation number. Hence, if the param-
eters belong to the set (S) then the map in the
invariant interval I is topologically conjugated with
a rotation of the circle: all the points are periodic
if the rotation number is rational and quasiperiodic
otherwise.

4. Summary

In this work, we recalled the technique introduced
50 years ago by Leonov for the calculation of border-
collision bifurcation curves in piecewise-linear dis-
continuous 1D maps. Applied to the nested period
adding bifurcation structure, this technique makes
extensive use of the self-similarity of this bifurcation
structure and allows to obtain analytical expres-
sions for bifurcations involving periodic orbits with
arbitrary large period and (at least in principle)
complexity. Furthermore, we improved the tech-
nique proposed in the original work by Leonov and
demonstrated that the shift of coordinates which
was necessary in his work can in fact be avoided.

Additionally, we demonstrated that Leonov’s
approach can be used not only for the calculation of
BCB curves. Due to its recursive nature, it is per-
fectly suited for proofs by induction of certain prop-
erties of the infinite nested period adding structure.
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