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Abstract. We investigate the dynamics of a family of one-dimensional linear-

power maps. This family has been studied by many authors mainly in the con-

tinuous case, associated with Nordmark systems. In the discontinuous case,
which is much less studied, the map has vertical and horizontal asymptotes giv-

ing rise to new kinds of border collision bifurcations. We explain a mechanism

of the interplay between smooth bifurcations and border collision bifurcations
with singularity, leading to peculiar sequences of attracting cycles of periods n,

2n, 4n−1, 2(4n−1),..., n ≥ 3. We show also that the transition from invertible

to noninvertible map may lead abruptly to chaos, and the role of organizing
center in the parameter space is played by a particular bifurcation point re-

lated to this transition and to a flip bifurcation. Robust unbounded chaotic
attractors characteristic for certain parameter ranges are also described. We

provide proofs of some properties of the considered map. However, the com-

plete description of its rich bifurcation structure is still an open problem.

1. Introduction. The large number of applied models characterized by sharp
switching between different states are described by nonsmooth systems. The dy-
namics of such systems can often be investigated using a first return map defined on
some Poincaré section of the phase space. This fact has lead to primary importance
investigations of the bifurcations occurring in piecewise smooth maps, continuous
or discontinuous, which expanded in the last decade. In particular, the well known
Nordmark systems associated with grazing bifurcations have been intensively stud-
ied using one-dimensional (1D for short) piecewise smooth (PWS for short) return
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maps with power function nonlinearities [21, 22]. In the present paper, we consider
such a map, defined by two functions, fL(x) and fR(x), as follows:

x 7→ fµ(x) =

{
fL(x) = ax+ µ if x ≤ 0
fR(x) = bx−γ + µ if x > 0

(1)

where a, b, µ, γ are real parameters and µ < 0, γ > 0.
The PWS map (1) has been considered by many authors, mainly for γ < 0

corresponding to the continuous case. The most studied is the case γ = −1/2
related to the square-root nonlinearity, see [26, 23, 11, 5, 4, 3]. In [9, 7] the normal-
form mapping of sliding bifurcations is derived, leading to an additional linear term
in the function fR(x) in (1), and to the values γ = −3/2, γ = −2 and γ = −3, related
to different cases of sliding bifurcations (see also [3]). Other examples of maps with
nonlinear leading-order terms, associated with grazing and sliding bifurcations in
power converters and in nonsmooth sliding-mode controls can be found in [5, 6, 1].
The piecewise linear case related to γ = −1 leads to the skew tent map, whose
dynamics are well described (see, e.g., [14, 32, 34]). Map (1) with γ = −2 is a
particular case of the linear-logistic map considered in [30, 31].

It is worth noticing that the power term in (1) in the applied context appears
through a Taylor series expansion of a nonlinear function, and so it can take only
particular positive values (as mentioned above). In all these cases the system is
a continuous PWS map, whose characteristic feature is the occurrence of border
collision bifurcations (BCB for short). This term, introduced by Nusse and Yorke
(see [24, 25]) denotes the crossing of a border by an invariant set, typically a periodic
point. The study of continuous PWS systems can take advantage of the skew tent
map as a border collision normal form, a powerful analytical tool which allows to
determine the effect of the border collision of cycles of any period. Applications can
be found in [30, 31, 32, 33, 34], and we shall use it also in the present work.

Besides γ < 0, also the case γ > 0 has been recently analyzed for µ > 0. This
leads to a family of maps in which the function fR(x) has a vertical asymptote at the
discontinuity point x = 0. The dynamic properties of such a family and bifurcations
which can be observed under variation of its parameters are quite different from
those occurring in the continuous case. The discontinuous case with γ > 0 is first
considered in [27], and some remarks for the particular case with γ = 1/2 are
reported in [28]. Detailed analysis of the discontinuous map in this case (µ > 0) is
presented in some recent papers ([15, 16, 17, 18, 19]), where several open problems
are left for further investigations. In the present work we consider the discontinuous
(γ > 0) map (1) for µ < 0.

For a generic discontinuous map the complete classification of the possible results
of a BCB is still an open problem, as well as the use of the piecewise linear map as
a normal form. It concerns especially maps with a vertical asymptote giving rise
to peculiar kinds of BCB. However, one of the main points in the investigation of
PWS systems, especially discontinuous, is related to the fact that besides BCBs
also standard bifurcations characteristic for smooth systems (we call them smooth
bifurcations for short) may be involved in the bifurcation sequences. Thus, it is
important to investigate the interactions between these two kinds of bifurcations.
This is particularly relevant in maps with hyperbolic branches, that applies to
the map considered in the present paper, and we shall explain how smooth and
nonsmooth bifurcations alternate for some parameter ranges, leading to sequences
of attracting cycles with peculiar periods.
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The existence of a vertical asymptote in the applied models, particularly in engi-
neering applications, is not new (see, e.g., [29], [13]). A peculiarity of such systems
is associated with the fact that they can possess unbounded chaotic attractors. Such
attractors are considered in [8] where they are related to structurally unstable sit-
uations, while in [16, 17] it is shown that in the discontinuous map (1) with µ > 0
unbounded chaotic attractors exist and are robust, i.e. persistent under parameter
perturbations in some open set in the parameter space. As we shall see, unbounded
chaotic attractors of the map here considered, with µ < 0, may be robust in some
parameter regions and not robust in others.

The paper is organized as follows. In Sec.2 we first discuss an overall bifurcation
structure of the parameter space of the considered map identifying the regions with
nontrivial dynamics and splitting them in two parts, where the map is invertible
(a < 0, b < 0) and noninvertible (a < 0, b > 0). Then, after the description of the
bifurcations of the fixed points, we present the results associated with the dynamics
of the map in the invertible case. We show that a degenerate flip bifurcation (DFB
for short) of the fixed point occurs simultaneously with a BCB with singularity of a
4-cycle. Such a peculiarity is caused by the existence of the vertical and horizontal
asymptotes of the map. This explains, in particular, a sharp transition from an
attracting fixed point to an attracting 4-cycle. We describe also the flip bifurcation
of the 2-cycle, which can be subcritical (for 0 < γ < 1), degenerate (for γ = 1) and
supercritical (γ > 1). Clearly, the noninvertible case is associated with more rich
bifurcation structures which depend essentially on γ : our analysis is split in two
parts, for γ > 1 and 0 < γ < 1, described in Sec.3.1 and in Sec.3.2, respectively. The
first case is characterized by particular sequences of alternating smooth and border
collision bifurcations. In particular, using the skew tent map as a normal form and
an auxiliary map, we show that smooth fold bifurcation (S-fold for short) and fold-
BCB can occur, ultimately leading to a pair of cycles of map (1), one attracting and
one repelling, whose periods differ by 1, say n and (n − 1), respectively. We show
also that smooth flip bifurcation (S-flip for short) alternates either with flip-BCB or
persistence-BC, so that starting from an attracting cycle of period n, a cascade of
bifurcations leads ultimately to attracting cycles of periods 2n, (4n− 1), 2(4n− 1),
4(4n − 1) − 1, ... that is, the period is alternatingly doubled and ‘doubled-1’. In
Sec.3.2 we show that for 0 < γ < 1 the map may have attracting chaotic intervals,
unbounded and robust, or chaotic repellors coexisting with an attracting fixed point
or an attracting cycle. Sec.4 concludes.

2. Preliminaries. invertible case (a < 0, b < 0, γ > 0). As mentioned in the
Introduction, we are interested in the dynamics of map fµ given in (1) in the case
γ > 0, µ < 0. Using the transformation (x, a, b, µ)→ (−x/µ, a, b(−µ)−γ−1,−1) the
parameter µ < 0 can be scaled to µ = −1, so that without loss of generality we can
consider the map

x 7→ f(x) =

{
fL(x) = ax− 1 if x ≤ 0
fR(x) = bx−γ − 1 if x > 0

(2)

The overall bifurcation structure of the parameter space of map f is shown in
Fig.1, where we present 2D bifurcation diagrams in the (a, S(b))-parameter plane
for 0 < γ < 1 (see Fig.1a) and for γ > 1 (see Fig.1b). Examples of map f are also
shown (see Fig.1c). In the 2D bifurcation diagrams the values of the parameter b are
scaled as S(b) = arctan(b). Given that the transformation S maps an unbounded
interval (−∞,+∞) into a bounded one, (−π/2, π/2), one can see the bifurcation
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Figure 1. 2D bifurcation diagrams of f in the (a, S(b))-
parameter plane, where S(b) = arctan(b), for γ = 0.5 in (a) and
γ = 1.5 in (b); striped regions are related to coexistence, colored
regions to attracting cycles of different periods, uncolored regions
to attracting cycles of higher periods or chaotic attractors, grey
regions to divergence. In (c) examples of map f are shown.

structure for the complete range of b, including the values tending to −∞ and +∞.
The colored regions in Fig.1 are related to attracting cycles of period n, n ≤ 60,
where different colors are associated with cycles of different periods; the gray region
is related to divergent trajectories, the white region is related either to attracting
cycles of higher periods or to chaotic attractors, and striped areas are related to
coexistence.

In Fig.1 one can immediately see that the dynamics of f is much simpler for
b < 0 than for b > 0. Moreover, the case 0 < γ < 1 differs essentially from the case
γ > 1. In fact, for a < 0, b < 0 map f is invertible, and, thus, it has rather simple
dynamics which we completely describe below, in the present section. For a < 0,
b > 0, map f is noninvertible, and thus its dynamics are more complicated. As one
can see in Fig.1b (see also an enlargement in Fig.4a) the case γ > 1 is characterized
by periodicity regions issuing from the point (a, b) = (−1, 0) and related to the
attracting cycles of peculiar periods, namely, for decreasing value of the parameter
a one observes the adjacent regions of attracting cycles of periods n, 2n, 4n − 1,
2(4n−1), ..., for n ≥ 3. In the next section we explain the basic mechanism of such
peculiar cascades. The case 0 < γ < 1 (see Fig.1a) is characterized by unbounded
robust chaos which may coexist with an attracting fixed point or an attracting
cycle, as described in the next section as well. For completeness note that the case
a > 0 is rather simple: for γ > 1 any trajectory is either attracted to the fixed point
of map fL or it diverges (see the yellow and gray regions, respectively, in Fig.1b),
while for 0 < γ < 1 also the fixed point of fR may be attracting (see the orange
striped region in Fig.1a).

To begin, let us denote two partitions of the definition range of map f as IL =
(−∞, 0], and IR = (0,+∞), and its fixed points as x = x∗L ∈ IL, and x = x∗R ∈ IR.

To denote an n-cycle {xi}n−1i=0 of map f we use its symbolic representation, as-
sociating the symbol L with xi ∈ IL, and R with xi ∈ IR. For example, an n-cycle
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with x0 ∈ IL and xi = f i(x0) ∈ IR, i = 1, ..., n− 1, has the symbolic representation
LRn−1. With such a notation the point x0 is related to the composite function
FLRn−1(x) = fn−1R ◦ fL(x) and is a solution of the equation FLRn−1(x) = x.

The fixed point x∗L = 1
a−1 exists obviously for a < 1; is attracting for |a| < 1;

and at a = −1 it undergoes a degenerate flip bifurcation (DFB for short), at which
any point of the set [−1, 0] \x∗L is 2-periodic. The result of this bifurcation depends
on the values of parameters b and γ, and we discuss it later. The fixed point x∗R
exists for b > 0; its bifurcations are described in the following

Proposition 1 (bifurcation of the fixed point x∗R). Let a ∈ R, b > 0 and γ > 0.

Then map f given in (2) has a fixed point x∗R ∈ IR satisfying 0 < x∗R < b
1
γ which

is repelling for γ ≥ 1. For 0 < γ < 1 a subcritical S-flip bifurcation of x∗R occurs at

b =
γγ

(1− γ)γ+1
=: bfR (3)

moreover,

x∗R|b=bfR =
γ

1− γ
=: x∗Rf (4)

The fixed point x∗R is repelling for 0 < b ≤ bfR and attracting for b > bfR.

Proof. It is easy to check that for x > 0 the function fR is continuous, monotone
decreasing and convex. From limx→0+ fR(x) = +∞, limx→+∞ fR(x) = −1, it
follows that there is only one point, say x∗R, satisfying fR(x∗R) = x∗R, that is:

b− (x∗R)γ = (x∗R)γ+1 (5)

Moreover, it holds that 0 < x∗R < O−1R where

O−1R := f−1R (0) = b
1
γ (6)

From f
′

R(x) = −bγ
xγ+1 < 0 and (5) it follows that

f
′

R(x∗R) = − b

(x∗R)γ
γ

x∗R
= −

(
1 +

1

x∗R

)
γ (7)

Since (1 + 1
x∗R

) > 1 it holds that for γ ≥ 1 the fixed point is repelling. Differently,

for 0 < γ < 1 the fixed point x∗R may be attracting or repelling. Map f undergoes

an S-flip bifurcation when f
′

R(x∗Rf ) = −1, that is, when (x∗Rf )γ+1 = bγ, or

x∗Rf = (bγ)
1/(γ+1)

(8)

while from (7) it holds that f
′

R(x∗R) ≥ −1 for x∗R ≥
γ

1−γ . Together with (8) this

leads to bγ ≥
(

γ
1−γ

)γ+1

. Thus f
′

R(x∗R) ≥ −1 iff b ≥ bfR, where bfR is the bifurcation

value given in (3). Therefore, for b > 0 and 0 < γ < 1 an S-flip bifurcation curve
denoted ψR is defined as

ψR : b =
γγ

(1− γ)γ+1
(9)

From (8) and (3) we also have that the fixed point at the flip bifurcation value is

given by (4). The fixed point x∗R is attracting for b > bfR, repelling for b < bfR, while

for b = bfR the fixed point x∗Rf is repelling, because, as we prove below, the flip
bifurcation is subcritical.
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To investigate which kind of S-flip bifurcation of x∗R occurs (subcritical, super-
critical or degenerate) we check the sign of the third derivative of

f2R(x) = fR ◦ fR(x) =
b

(bx−γ − 1)
γ − 1 (10)

evaluated at the fixed point x = x∗Rf and at the bifurcation value b = bfR. Namely,

(see, e.g., [36]), if (f2R)′′′(x∗Rf ) < 0 (resp. > 0) then the flip bifurcation of the fixed

point is supercritical (resp. subcritical). Using (4), we obtain

(f2R)′′′(x∗Rf ) =
1− γ2

(x∗Rf )2
=

1

γ2
(1 + γ)(1− γ)3

from which we can conclude that for 0 < γ < 1 it holds (f2R)′′′(x∗R) > 0 and thus
the flip bifurcation is subcritical.

Suppose now that a < 0, b < 0, so that map f is invertible. Below we prove
several propositions describing the dynamics of f in such a case, indicating three
qualitatively different cases, for 0 < γ < 1, γ > 1 and γ = 1, illustrated in Fig.2a,
b, and c, respectively.

Proposition 2 (bifurcations of the 2-cycle LR for b < 0). Let a < 0, b < 0 and
γ > 0. Then map f given in (2) has a unique 2-cycle {x0, x1} with x0 <

1
a < 0,

x1 > 0, which undergoes an S-flip bifurcation at

b =
1

aγ

(
γ
a+ 1

1− γ

)γ+1

=: bfLR for γ 6= 1

a = −1 for γ = 1

For 0 < γ < 1 this S-flip bifurcation occurs at values a ∈ (−1, 0), while for γ > 1 it
occurs at values a < −1, moreover, it is subcritical for 0 < γ < 1 and the 2-cycle

is attracting for b < bfLR; supercritical for γ > 1 and the 2-cycle is attracting for

b ≥ bfLR; degenerate for γ = 1, and the 2-cycle is attracting for a < −1. Moreover, at
a = 0 the 2-cycle LR disappears due to a BCB with singularity: {x0, x1} → {−∞, 0}
as a→ 0−.

Proof. Let {x0, x1} be the points of a 2-cycle of map f with symbolic sequence LR,
and let x0 ∈ IL. Then it must hold that x0 < O−1L = f−1L (0) = 1

a in order to have
x1 = fL(x0) > 0. The existence of a 2-cycle can be shown via the existence of a
unique fixed point x1 for the composite function

FRL(x) := fL ◦ fR(x) =
ab

xγ
− (a+ 1) (11)

For x > 0 the function FRL(x) is continuous, monotone decreasing and convex
(since F ′RL(x) = −γ ab

xγ+1 < 0 and F ′′RL(x) > 0). From limx→0+ FRL(x) = +∞ and
limx→+∞ FRL(x) = −(a + 1) it follows that for any a < 0, the function FRL(x)
intersects the diagonal in exactly one point, say x1, satisfying FRL(x) = x, that is,
x1 is a solution of the equation

ab

xγ
= x+ a+ 1 (12)

Considering

F ′RL(x) = −γ ab

xγ+1
(13)
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by using (12) we obtain

F ′RL(x1) = −γ
(

1 +
a+ 1

x1

)
(14)

The 2-cycle is attracting if F ′RL(x1) > −1, that is −γ
(

1 + a+1
x1

)
> −1, leading to

a+ 1

x1
<

1

γ
− 1 (15)

From this inequality we can see that a sufficient condition for the 2-cycle to be
attracting is 0 < γ ≤ 1 and a < −1. Differently, for γ > 1 and −1 < a < 0 we have
(a+1) > 0 while ( 1

γ −1) < 0, so that the condition in (15) is not satisfied, leading to

F ′RL(x) < −1 and thus the 2-cycle is repelling. The transition attracting/repelling
occurs when F ′RL(x1) = −1 and the 2-cycle undergoes an S-flip, i.e., from (13),

when −abγx−(γ+1)
1 = −1 holds. Thus

x1 = (abγ)
1
γ+1 (16)

From (14) we also have x1 = γ
(
a+1
1−γ

)
leading, at the flip bifurcation value, to

x1 = (abγ)
1
γ+1 = γ

(
a+ 1

1− γ

)
(17)

The rightmost equation has solutions when both sides have the same sign, that is,
for b < 0, 0 < γ < 1 the flip bifurcation occurs at values a ∈ (−1, 0), while for γ > 1
the flip bifurcation occurs at values a < −1. In both cases, the equation leads to
the following flip bifurcation curve in explicit form:

ψLR : b =
1

aγ

(
γ
a+ 1

1− γ

)γ+1

=: bfLR (18)

Moreover, from (15) we have F ′RL(x1) > −1 for x1

a+1 >
γ

1−γ , so that, for 0 < γ < 1

(and thus (a + 1) > 0) the stability condition holds for x1 > γ(a+1)
1−γ leading to

b < bfLR, while for γ > 1 (and thus (a + 1) < 0) the stability condition holds for

x1 <
γ(a+1)
1−γ leading to b > bfLR. Examples of the curve ψLR can be seen in Fig.1a,b.

The remaining case to consider is γ = 1. From (12) we have x21+(a+1)x1−ab = 0

leading to x̃1 = 0.5(−(a+ 1) +
√

(a+ 1)2 + 4ab) and from (15) we have F ′RL(x̃1) ≥
−1 iff a ≤ −1. Thus, the flip bifurcation of the 2-cycle occurs at a = −1, at which
x̃1 =

√
−b. Moreover, at these parameter values (γ = 1 and a = −1), the function

FRL(x) is linear-fractional:

F̃RL(x) =
−b
x

(19)

and its derivative (from (13)) at the unique fixed point x̃1 =
√
−b is always

F̃ ′RL(x̃1) = −1 (for any b), while the second iterate of the function leads to the

identity (that is F̃ 2
RL(x) ≡ x), which means that all the points of the interval

(0,+∞)\x̃1 are 2-periodic for F̃RL and thus 4-periodic for map f . It follows that
for γ = 1 the flip bifurcation occurring at a = −1 is degenerate (see [32]), and for
map f the 2-cycle is attracting (resp. repelling) for a < −1 (resp. −1 < a < 0).

The occurrence of a DFB for γ = 1 suggests that for γ > 1 and γ < 1 the type of
flip bifurcation of the 2-cycle changes. To see in which way we consider the sign of
the third derivative of the second iterate of FRL(x) in (11), that is of the function
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Figure 2. Bifurcation diagrams a vs S(x) at b = −5, where
S(x) = arctan(x). In (a) γ = 0.5, in (b) γ = 2 and in (c) γ = 1,
associated with the subcritical, supercritical and degenerate flip
bifurcations of the 2-cycle LR, respectively.

F 2
RL(x) = FRL ◦ FRL(x), evaluated at the fixed point x1 given in (17), and at the

bifurcation values given in (18):

(F 2
RL)′′′(x1) =

1− γ2

(x1)2
(20)

For 0 < γ < 1 it holds (F 2
RL)′′′(x1) > 0 and thus the flip bifurcation of the 2-cycle

is subcritical (see Fig.2a), while for γ > 1 it is supercritical (see Fig.2b).

As a result, we have that for any γ T 1 and fixed b < 0, besides the attracting

fixed point x∗L a unique repelling 2-cycle LR exists as a → 0−, while it does not
exist for a > 0 (when the fixed point x∗L is globally attracting). Indeed, crossing
a = 0 the fixed point x∗L does not change its stability. However, the map changes
from invertible to noninvertible, and the value a = 0 also corresponds to a BCB
with singularity of the 2-cycle LR which becomes repelling after the flip bifurcation
(necessarily occurring increasing the value of a from −∞ to 0). In fact, the points
of the 2-cycle are given by {fR(ε), ε}, with ε > 0 approaching 0 and, thus, fR(ε)
approaching −∞. At a = 0, due to the flat branch fL(x) the 2-cycle disappears (or
we may consider that it becomes {−∞, 0}) and it does not exist for a > 0.

Considering the results stated in Propositions 1 and 2 we can completely describe
the dynamics of f in the particular case γ = 1 (see Fig.2c).

Proposition 3 (DFB of the 2-cycle). Let a < 0, b < 0 and γ = 1. Then for map
f given in (2) it holds that for −1 < a < 0 the fixed point x∗L is attracting and the
2-cycle LR appearing at a = 0 is repelling; for a = −1 the segment [−1, 0]\x∗L is
filled with 2-cycles, while the segments (−∞,−1)\x0 and (0,+∞)\x1 are filled with
4-cycles; for a < −1 the fixed point x∗L is repelling and the 2-cycle LR is attracting.

Regarding the flip bifurcation of the 2-cycle RL proved so far, in the subcritical
case, i.e. for 0 < γ < 1, at fixed b < 0, as the parameter a is decreased from a = 0,

at a value afLR ∈ (−1, 0) the subcritical flip bifurcation occurs (for fixed values of b

and γ the value afLR is obtained from the equation of ψLR given in (15)). It leads to
an attracting 2-cycle LR and a repelling 4-cycle (RL)2. Thus, for a range of values

of the parameter a we have bistability: for a ∈ (−1, afLR) the fixed point x∗L and the
2-cycle LR are both attracting. The basin of attraction of the 2-cycle is bounded
by the 4-periodic points of the repelling 4-cycle. The other points converge to x∗L.
At a = −1 the DFB of x∗L occurs at which any point of the interval [−1, 0]\x∗L is
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2-periodic, but the 2-cycle {0,−1} on the boundary can also be considered as a
4-cycle {0,−∞,+∞,−1}, and in fact it corresponds to the BCB with singularity of
the repelling 4-cycle, which does not exist for a < −1, when x∗L becomes repelling
and the 2-cycle LR globally attracting (except for x∗L). The bifurcation sequence
in the subcritical case is shown in Fig.2a.

Fig.2b illustrates the bifurcations occurring in the supercritical case, i.e. for
γ > 1. Considering some fixed values of γ > 1 and b < 0, as the parameter a is
increased from −∞ we have the repelling fixed point x∗L and the globally attracting

(except for x∗L) 2-cycle LR. This holds up to the flip bifurcation value afLR < −1, at
which a supercritical flip bifurcation occurs, leading to a repelling 2-cycle LR and

an attracting 4-cycle (LR)2. In the interval a ∈ (afLR,−1) the 4-cycle attracts all the
points except for the unstable 2-cycle and the unstable fixed point x∗L. At a = −1
the DFB of x∗L occurs (the segment [−1, 0]\x∗L is filled with 2-cycles). The 2-cycle
{0,−1} on the boundary can also be considered as a 4-cycle {0,−∞,+∞,−1}, and
in fact it corresponds to the BCB with singularity of the attracting 4-cycle, which
does not exist for a > −1, when x∗L becomes attracting. For a ∈ (−1, 0) the fixed
points x∗L attracts all the points except for the unstable 2-cycle LR.

The BCB of the unstable 2-cycle is described in Proposition 2, while the ar-
guments presented above describe the BCB of the 4-cycle, as summarized in the
following

Proposition 4 (BCB of the 4-cycle (RL)2). Let a < 0, b < 0, γ > 0. Then for map
f given in (2) at a = −1 a BCB with singularity occurs so that for 0 < γ < 1 the
repelling 4-cycle disappears as a→ −1+; for γ > 1 the attracting 4-cycle disappears
as a→ −1−.

3. Dynamics in the noninvertible case (a < 0, b > 0, γ > 0). First note that
for a = −1, b > 0, in the segment [−1, 0]\x∗L filled with 2-cycles (related to the DFB
of the fixed point x∗L), the border 2-cycle {x0, x1}|a=−1 = {0,−1} can be considered
as a 3-cycle {x0, x1, x2}|a=−1 = {0,+∞,−1}. In fact, as a is decreasing through

−1, a 3-cycle LR2 appears due to a BCB with singularity. Below we prove that for
a < −1, at least for a = −1 − ε, for some ε > 0, this 3-cycle LR2 is attracting for
γ > 1, while it is repelling (and belonging to a chaotic attractor) for γ < 1.

Since for a < 0, b > 0 both functions fL(x) and fR(x) are decreasing, we have
that besides a BCB, a cycle of f of odd period may undergo an S-flip bifurcation
because it has a negative eigenvalue, while a cycle of f of even period may undergo
an S-fold bifurcation, given that it has a positive eigenvalue.

Let us now introduce an auxiliary map defined by three functions, fL(x), fM (x) =
f2R(x), and fR(x), which is of help to study the dynamics of map f for some pa-
rameter ranges.

Proposition 5 (map g). Let b > 0, γ > 0. Then the dynamics of map f given in
(2) are in one-to-one correspondence with the dynamics of the map g defined as

x 7→ g(x) =


fL(x) = ax− 1 if x ≤ 0

fM (x) = b
(bx−γ−1)γ − 1 if 0 < x < O−1R = b

1
γ

fR(x) = bx−γ − 1 if x ≥ O−1R

(21)

which is continuous at x = 0, with g(0) = −1, and discontinuous at x = O−1R with
limx→(O−1

R )−
g(x) = +∞ and limx→(O−1

R )+
g(x) = 0.
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Figure 3. Graph of map g(x) given in (21). In (a): a = −1.3,
b = 1.5 and γ = 0.5 < 1; in (b) a = −1.7, b = 10 and γ = 1.5 > 1.

Proof. For b > 0 any point x > O−1R is mapped by fR(x) in one iteration to IL, while

any point 0 < x < O−1R has a trajectory which starts with the symbolic sequence
R2. This implies that the dynamic behavior of map f can be equivalently studied
by using the map g(x) defined above. Moreover, from limx→0+ fR(x) = +∞ and
limx→+∞ fR(x) = −1 it follows limx→0+ g(x) = limx→0+ fM (x) = −1, thus the

function g(x) is continuous in x = 0, while it is discontinuous in x = O−1R with

limx→(O−1
R )−

g(x) = limx→(O−1
R )−

fM (x) = +∞ and limx→(O−1
R )+

g(x) = fR(O−1R ) =

0.
The middle branch fM (x) is monotone increasing for 0 < x < O−1R as follows

from the positive derivative:

d

dx
f2R(x) = f ′R(fR(x))f ′R(x) =

b2γ2

(b− xγ)γ+1
xγ

2−1 > 0

since (b− xγ) > 0 holds for x ∈ (0, O−1R ), so we have g′(x) > 0, and it is easy to see
that

lim
x→0+

g′(x) =

 0 if γ > 1
1 if γ = 1

+∞ if 0 < γ < 1
(22)

Moreover, for γ ≥ 1 the function fM (x) is convex, since g′′(x) > 0 holds. For γ < 1
it holds that g′′(x̃) = 0 where x̃ is the inflection point:

x̃ = b
1
γ (1− γ)

1
γ (23)

so that the function fM (x) is concave for 0 < x < x̃ while it is convex for x̃ < x < b
1
γ

(and clearly at the bifurcation value b = bfR (see (3)) the inflection point corresponds
to the fixed point, i.e. x̃ = x∗Rf ). Examples of map g(x) are shown in Fig.3.

It is plain that given the symbolic sequence of a trajectory of map g, that is a
sequence in which the three symbols L, M and R may occur, to obtain the symbolic
sequence of the corresponding trajectory of map f it is enough to replace the symbol
M with R2.
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Recall that in the interval [−1, O−1R ) the PWS map g(x) is unimodal with a local
minimum in the kink point x = 0, thus x = 0 is a local extremum for any composite
function gn(x), n ≥ 1, and the following property holds:

Property 1. Let a < 0, b > 0 and γ > 0, then for any n > 1 the function gn(x)
satisfies

lim
x→0+

d

dx
gn(x) =

 0 if γ > 1
+∞ if 0 < γ < 1 and gn(0) is a local minimum
−∞ if 0 < γ < 1 and gn(0) is a local maximum

(24)

This property immediately follows from the value of the derivative of gn(x) for
n = 1 (as given in (22)) by applying the chain rule for the derivative. For γ > 1
the derivative is always zero, for any n. Similarly for 0 < γ < 1 the derivative is
always infinite, and the sign depends on the local minimum or local maximum of
the function gn(x) at x = 0.

Notice that as long as the inequality fL(−1) = −a− 1 < x∗R holds, the dynamics
of the PWS map g(x) can be restricted to an invariant absorbing interval J ⊂
[−1, O−1R ).

Property 2. Let γ > 0 and a < −1, then map g is continuous and unimodal in
the invariant absorbing interval J defined as follows:

1. when x∗R is repelling (see Proposition 1) and b = bhR, where

bhR := −a(−a− 1)γ (25)

and the first homoclinic bifurcation of x∗R occurs, then J = [−1,−1 − a] =
[−1, x∗R];

2. when x∗R is repelling and b > bhR then J = [−1,−1− a] ⊂ [−1, x∗R];
3. when x∗R is attracting and b > bhR, then J = [−1, x∗R].

To see that this property holds, recall first that the invariant absorbing interval
is determined by the iterates of the local extremum, that is, we have to consider the
interval [g(0), g2(0)] = [−1,−a − 1]. Clearly, when the fixed point x∗R is repelling,
then as long as the inequality fL(−1) = −a − 1 < x∗R holds, the dynamics of the
PWS map g(x) can be restricted to the interval J = [−1,−1 − a] ⊂ [−1, x∗R]. In
fact, any point belonging to the interval (−a − 1, x∗R) has the trajectory entering

J in a finite number of iterations. Moreover, any point of the interval (x∗R, O
−1
R ) is

mapped to x > O−1R in a finite number of iterations while any point belonging to

the interval [O−1R ,+∞) is mapped to x ≤ 0 in J in one iteration.
When the fixed point x∗R is attracting, then as long as it holds fL(−1) = −a−1 <

x∗R, the dynamics of the PWS map g(x) can be restricted to J = [−1, x∗R], which is
invariant (g(J) = J) and any point belonging to the interval (x∗R,+∞) is mapped
in J in a finite number of iterations or converges to x∗R.

So we have to detect when the condition −a−1 ≤ x∗R holds. Given that x∗R must
satisfy fR(x) = x, i.e. bx−γ − 1 = x, we have −a− 1 ≤ bx∗R−γ − 1 leading to b ≥ bhR
where bhR is given in (25). When the fixed point x∗R is repelling, the equation b = bhR
corresponds to the curve in the (a, b)-parameter plane (for fixed γ) at which the
first homoclinic bifurcation of x∗R occurs. In fact, for b > bhR the fixed point x∗R has

no rank-1 preimage in J (since f−1L (x∗R) < −1). At b = bhR we have −1 ∈ g−1(x∗R),
i.e. 0 ∈ g−2(x∗R), and infinitely many critical homoclinic orbits of x∗R exist. For
b > bhR infinitely many noncritical homoclinic orbits of x∗R exist (see e.g. [10]).
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One more relevant change in the dynamics of map f occurring when a < −1,
besides the homoclinic bifurcation at b = bhR, is related to the crossing of the

discontinuity point of map g by the value fL(−1), that is when fL(−1) = O−1R ,

separating the cases in which fL(−1) ≶ O−1R , and only for fL(−1) > O−1R it is

possible to have cycles of f with periodic points in x < 0 and x > O−1R . In particular,
it is possible for map f to have a new pair of 2-cycles LR, as we shall see in Sec.3.1.4.

Given that fL(−1) ≥ O−1R holds for −a−1 ≥ b
1
γ , that is, for b ≤ (−a−1)γ , we have

that in the parameter space the boundary of the region has the following equation:

b = (−a− 1)γ =: bLR3 (26)

and corresponds to the BCB of a cycle of map f . In fact, when fL(−1) = O−1R
we have the repeated sequence {0,−1, O−1R }. Noticing that for a < −1 and b >
(−a− 1)γ a 3-cycle with symbolic sequence L2R cannot exist, it must be the BCB
of a 4-cycle LR3, existing for b > (−a−1)γ , which becomes {0,+∞,−1, O−1R } at the
border collision leading to a 3-cycle with symbolic sequence L2R for b < (−a− 1)γ .

We can describe now the role of the bifurcation curves b = bhR given in (25)
and b = bLR3 given in (26) for the symbolic sequences which are allowed for map
f . Keeping fixed a value of b > 0 and considering the parameter a in the range
a ∈ (aRh ,−1) (where aRh and b satisfy the equation of bhR) the asymptotic dynamics
of map g involve only the symbols L and M (and thus L and R2 for map f).
Differently, at smaller values of a, in the range a ∈ (aLR3 , ahR) (where aLR3 and
b satisfy the equation of bLR3) the asymptotic dynamics of map g involve all the
symbols L, M , and R, but L is necessarily followed by M (that is, for map f the
symbol L is necessarily followed by R2), and since M may be followed by M or R
we have that for map f the symbol L is necessarily followed by at least R3. For
a < aLR3 also the sequence of symbols LRL is allowed, both for map g and map f .

For any γ > 0 the interesting dynamic behaviors which occur for a < −1, when
map f is noninvertible, differ depending on γ ≶ 1 as can be seen in Fig.1a,b, and
the difference is due to the property of map g in the right neighborhood of x = 0 :
with slope 0 (resp. +∞) for γ > 1 (resp. γ < 1). These two cases are considered
separately, in Sec.3.1 and Sec.3.2.

3.1. Periodicity regions (a < −1, b > 0, γ > 1). In the considered parameter
range, several periodicity regions related to attracting cycles exist, while the fixed
point x∗R is always repelling, as well as x∗L. An enlargement of Fig.1b is shown in
Fig.4a in the (a, b)-parameter plane. The periodicity regions are better visible for
larger values of γ (see Fig.4b). Here different colors are related to attracting cycles
of different periods. As one can see, the periodicity regions issue from the point
(a, b) = (−1, 0), which is an intersection point of two straight lines, the one given
by a = −1 associated with the DFB of the fixed point x∗L, and another one defined
by b = 0, related to the transition from invertibility to noninvertibility of map f .
The curves bhR and bLR3 given in (25) and (26), respectively, are also shown. On
the right side of the curve bhR we can see a sequence of adjacent periodicity regions
related to attracting cycles of map f of periods 1, 3, 6, 11, ... or 5, 10, 19, .... Below
we explain why such peculiar periods are observed.

At any fixed value b > 0, decreasing the parameter a through −1 the fixed point
x∗L undergoes a DFB, leading to a unique attracting 3-cycle. In fact, as shown in
Fig.3b, in the interval J in which map g is unimodal, this bifurcation leads (for
a = −1 − ε, for sufficiently small ε > 0) to a 2-cycle with symbolic sequence LM ,



ALTERNATING SMOOTH AND NONSMOOTH BIFURCATIONS 713

Figure 4. 2D bifurcation diagrams of map f in the (a, b)-
parameter plane for γ = 1.5 in (a) and γ = 3 in (b).

Figure 5. Maps g(x) and g2(x) at a = −1.7, b = 10 and γ =
1.5. In the right panel the generic case starting a period doubling
sequence is schematically shown.

having the positive derivative close to 0 at the periodic point on the right side of
x = 0, thus leading to an attracting 2-cycle LM . Fig.5 shows an enlargement of
Fig.3b, where besides map g also map g2 is presented (for which the 2-cycle LM
corresponds to two attracting fixed points).

Thus, as long as this unique 2-cycle of map g(x) is attracting, it attracts all the
points in J except for the fixed point x∗L. This corresponds to the 3-cycle LR2 of
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map f , which attracts all the points, except for x∗L and x∗R and their preimages.
The 3-cycle of f is not related to a fold bifurcation, and thus it does not exist a
companion repelling cycle, because for map g the 2-cycle LM is born (decreasing a
through −1) at the DFB of x∗L at a = −1.

Decreasing the parameter a, the ranges ahR < a < −1, aLR3 < a < ahR and
a < aLR3 , are related to different dynamic properties. In the following subsections
we describe the dynamics occurring in the first range, for a ∈ (ahR,−1), where the
use of map g is very convenient. In particular, we can explain how the first cascade
of flip bifurcations in map g leads to attracting cycles of map f of periods 3, 6, 11,
22, 43, 86, ... (see Fig.4).

As stated in Property 2, for any fixed value b > 0 in the range a ∈ (ahR,−1) (where
ahR and b satisfy the equation of the homoclinic bifurcation bhR given in (25)), the
asymptotic dynamics of map g involve only the symbols L and M since it holds
that fL(−1) < x∗R, and dynamics are confined in the invariant absorbing interval
J = [−1,−1− a] ⊂ [−1, x∗R], inside which map g is continuous and unimodal.

Even if g is not smooth, the bifurcations occurring in the considered parameter
range can be completely described. In fact, when the parameter a is decreased,
the attracting cycles of map g appear in the order described by the well known
U-sequence for a unimodal map (see e.g. [20]). In particular, at a = ahR all the
cycles from the U-sequence exist and are repelling.

We know that in smooth maps the U-sequence is characterized by fold bifurca-
tions (which open periodic windows) and cascades of period doubling bifurcations.
In map g the critical point x = 0 is a kink point, and, thus, the fold bifurcation
in J may be either standard S-fold bifurcations or fold-BCBs, leading to a pair of
cycles, one of which is necessarily repelling. We shall prove that for the considered
parameter range the second cycle is necessarily attracting. Similarly, in the cas-
cade of period-doubling bifurcations, it is possible to observe both standard S-flip
bifurcations and flip-BCBs. First we discuss a cascade originating by a 2-cycle born
via the DFB at a = −1 (see Sec. 3.1.1). Then we generalize the result proving (in
Sec.3.1.2) the following

Proposition 6. Let b > 0 and γ > 1 be fixed, and a ∈ (ahR,−1), where a = ahR
satisfies the condition b = bhR given in (25) of the first homoclinic bifurcation of x∗R,
then
• any fold bifurcation (either fold-BCB or S-fold) of map g given in (21) is

associated with the appearance of a pair of cycles of map f , one attracting and one
repelling, whose periods differ by 1 (say n and n− 1).
• Let x = x∗ > 0 be a periodic point, closest to x = 0, of an attracting n-

cycle of f with a negative eigenvalue, which attracts all the points of the interval
(0, x∗), and let R2ρ̃0 be the symbolic sequence of this cycle (here ρ̃0 stands for the
remaining symbolic sequence, necessarily starting with L). Then, decreasing a it
is observed a cascade of alternating S-flip bifurcations and border collisions (BCs)
leading to attracting cycles whose symbolic sequences can be written as R2ρ̃k, where
ρ̃k = ρ̃k−1T ρ̃k−1, k = 1, 2, ..., with the alternating symbols T = R2 and T = L. The
symbol T = R2 corresponds to an S-flip bifurcation, so that an attracting m-cycle
in this cascade is followed by an attracting 2m-cycle, while the symbol T = L is
associated with a BC and the m-cycle is followed by an attracting (2m− 1)-cycle.

For example, starting from an attracting n-cycle with symbolic sequence R2ρ̃0
undergoing an S-flip bifurcation, one can observe the following cascade:
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Figure 6. Attracting 4-cycle (ML)2 of map g(x) corresponding
to the 6-cycle R2LR2L of map f(x). The cycle is close to its border
collision. In (b) the enlargement of the small rectangle indicated
in (a). Here a = −2.155, b = 10, γ = 1.5.

R2ρ̃0
S−flip⇒ R2 ρ̃0R

2ρ̃0︸ ︷︷ ︸
ρ̃1

BC⇒ R2 ρ̃1Lρ̃1︸ ︷︷ ︸
ρ̃2

S−flip⇒ R2 ρ̃2R
2ρ̃2︸ ︷︷ ︸

ρ̃3

BC⇒ R2 ρ̃3Lρ̃3︸ ︷︷ ︸
ρ̃4

⇒ ... (27)

and the period pi of a cycle related to this cascade is defined as pi = 2pi−1 for i
odd, and pi = 2pi−1 − 1 for i even, where p0 = n.

3.1.1. Cascade of S-flip and flip-BCB of the 2-cycle. We already know that for
b > 0 and γ > 1, decreasing the parameter a from −1 an attracting 2-cycle ML
of map g appears due to a DFB which is also a BCB for the outermost 2-cycle
{−1, 0} of g (or fL) existing at a = −1 in the invariant interval [−1, 0] filled with
2-periodic points. If we continue to decrease a the eigenvalue of the 2-cycle ML
approaches −1. As map g2 is smooth at the two corresponding fixed points, this
first flip bifurcation is a standard one, S-flip. That is, decreasing the value of a
the two fixed points of g2 become repelling and an attracting 2-cycle appears in a
neighborhood of each repelling fixed point, leading to an attracting 4-cycle (ML)2

for map g. This bifurcation is also a pitchfork bifurcation for map g4 leading to 4
attracting fixed points. Considering the fixed point of g4 closest to the kink point on
its right side, say x∗ > 0, we have that decreasing a the local minimum decreases,
this fixed point x∗ approaches x = 0 and undergoes a BC at some value (which
in smooth maps corresponds to the crossing of the critical point, associated with
superstable cycles), at which x∗ collides with x = 0.

As an example, for the parameter values related to Fig.5 we show the attracting
2-cycle ML of map g and the two attracting fixed points of g2. One can see that
the derivative at the periodic points is close to −1, i.e. the parameters are close to
the flip bifurcation value of the 2-cycle. In Fig.6 we show the map g4 before the
BC, and the point x∗ > 0 in the enlargement of Fig.6b.

The result of this BC can be predicted by using the skew tent map as a normal
form (as described for example in [32]). In fact, evaluating left- and right side
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derivatives of the function at the kink point x = 0 one obtains two values:

α = lim
x→0−

d

dx
gn(x), β = lim

x→0+

d

dx
gn(x) (28)

where n = 4. Then the point (α, β) in the 2D bifurcation diagram of the skew tent
map with minimum (slope α < 0 on the left side and β ≥ 0 on the right one),
determines the result of the collision. Due to Property 1 we have that it always
holds that β = 0. This simplifies the analysis, as there are only two possibilities: the
border collision is either (i.1) flip-BCB or (i.2) persistence-BC, occurring as follows:

(i.1) If α ≤ −1 then the bifurcation is a flip-BCB (leading to a cycle of double
period). That is, after the collision the fixed point x∗ of g4 belongs to the left side,
i.e. x∗ < 0, and becomes repelling, while an attracting 2-cycle of g4 appears, with
periodic points on the opposite sides of x = 0 (attracting fixed points of g8 related
to an attracting 8-cycle of g).

(i.2) If −1 < α < 0 then a persistence-BC is observed. That is, after the
collision the fixed point x∗ of g4 belongs to the left side, i.e. x∗ < 0, and persists as
attracting. The eigenvalue of the attracting 4-cycle of map g becomes negative, i.e.
the slope of g4 at x∗ < 0 is negative. As a is decreased further an S-flip bifurcation
must occur, leading to an attracting 2-cycle of g4 (constituting an attracting 23-
cycle of map g). Then the periodic point of the attracting cycle closest to the kink
point on the left side collides with it, and another persistence-BC occurs (since the
cycle is attracting one slope is larger than −1 and the other is 0), leading to an
attracting 23-cycle of map g with different symbolic sequence.

Notice that independently on the occurrence of (i.1) or (i.2) the ultimate result of
the bifurcation sequence described above is the same, as summarized in the following
diagram for the symbolic sequences of the cycles of map g:

ML attr.
S−flip→

ML rep.

MLML attr. (i.1)
flip−BCB→ LLML rep.

(MLML)LLML attr.

ML rep.

MLML attr. (i.2)
BC→ (persist.-BC) LLML attr.

(S-flip) LLML rep. (and (LLML)2 attr.)
(persist.-BC) (MLML)LLML attr.

In the example considered above it holds α < −1 and thus a flip-BCB occurs
(case (i.1)), as shown in Fig.6, Fig.7 and the enlargements. The enlargement in
Fig.7b also shows the local shape of the function g8.

Considering the fixed point x∗ of g8 closest to x = 0 on the right side, one can
see that the map has negative slope at this point. Decreasing the parameter a the
bifurcation sequence is repeated: first an S-flip bifurcation of this point leads to a
24-cycle of map g, then a BC (either (i.1) or (i.2)) occurs.

In our example, the periodic point closest to x = 0 on its right side collides with
x = 0, with derivatives β = 0 on the right side and α < −1 on the left side, leading
to a flip-BCB which gives an attracting 25-cycle of map g, and so on. The full
cascade occurs, with alternating S-flip and flip-BCB, leading to attracting cycles of
doubled periods for map g. Note that this cascade occurs in a very narrow interval
of values of the parameter a.
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Figure 7. In (a), repelling 4-cycle ML3 of map g corresponding
to the repelling 5-cycle R2L3 of map f. In (b), the enlargement of
the small rectangle marked in (a), which shows also the graph of
g8(x) with an attracting 8-cycle L2(LM)3 of map g corresponding
to the attracting 11-cycle L2(LR2)3 of map f. Here a = −2.16,
b = 10, γ = 1.5.

As we have already mentioned, this sequence of bifurcations for the original map
f is very peculiar. In fact, the 2-cycle ML of map g corresponds to the 3-cycle
R2L of map f and its S-flip bifurcation leads to the attracting 6-cycle (R2L)R2L
of map f. But then, the attracting 6-cycle of f undergoes a BC from the right side
(a periodic point collides with x = 0 from the right side, and thus its image collides
with +∞) after which, i.e. decreasing a, after the crossing of the kink point, it
becomes a repelling 5-cycle R2L3 of map f, while the attracting 11-cycle L2(R2L)3

of map f appears. The symbolic sequences of the cycles of map f are summarized
in the following diagram:

R2L attr.
S−flip→ R2L rep.

R2LR2L attr. (i)
BC→ LLR2L rep.

(R2LR2L)LLR2L attr.

This peculiar transition of the 6-cycle of f into a 5-cycle is due to the BC which in-
volves infinity. In fact, the attracting 6-cycle (R2L)R2L has periodic points which
at the BC tend to the values {0,+∞,−1, R,R,L} that means for f the 5-cycle
{0,−1, R,R,L}, and after the BC the periodic point in 0 moves to the left side,
so that the repelling cycle which is left after the collision has symbolic sequence
{L,L,R,R,L}. It follows that for map f the bifurcation sequence leads (alternat-
ingly) to cycles with double period, say, 2m, when it is an S-flip and to cycles of
period 2m− 1 when it is a BC.

This explains the sequence of periods of the attracting cycles, which is observed
in Fig.4a starting from the attracting 3-cycle of map f , namely, the periods 3, 6, 11,
22, 43, ... We can also notice that the cascade which starts from the attracting 5-
cycle of map f consists of the attracting cycles with periods 5, 10, 19, 38, 76, ... and
so on. In fact, the mechanism described above can be generalized.
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Figure 8. Qualitative representation of the S-fold and BCBs
of map gn in a neighborhood of x = 0, in all the possible cases,
showing the shape of gn at the bifurcation and after: In (a) a fold-
BCB; in (b) an S-fold, related to a local maximum of gn in x = 0;
in (c) a fold-BCB; in (d) an S-fold, related to a local minimum of
gn in x = 0.

3.1.2. Proof of Proposition 6 (a ∈ (ahR,−1), b > 0, γ > 1). Let us first consider
the fold bifurcations (either S-fold or fold-BCB) initiating each new set of adjacent
periodicity regions or, in other words, leading to the different “boxes” of the PWS
map g. It is known that in unimodal PWS maps a fold-BCB may lead not only to
one attracting and one repelling cycle, but also to two repelling cycles (as it may
occur for example in the skew tent map). However, such a case can not occur in
map g as can be shown making use of the skew tent map as a normal form.

Consider a fold bifurcation of a pair of n-cycles of map g. We can restrict our
analysis to the n-th iterate of g, i.e., gn, in a neighborhood of the kink point x = 0.
A fold may be associated with a local maximum or a local minimum of gn at x = 0,
as qualitatively shown in Fig.8. We describe these cases separately.

Fold-BCB and S-fold related to a local maximum.
Let x = 0 be a local maximum of gn, approaching the diagonal from below. It

occurs, for example, at all the fold bifurcations leading to basic cycles MRMk, for
any k ≥ 1. What matters are the slopes α and β on the right and left side of x = 0,
respectively (see (28)). From Property 1 we know that gn is locally flat on its right
side, thus β = 0, while gn(x) must be monotone increasing on the left side of x = 0
so that α > 0. Two cases, either α ≥ 1 or 0 < α < 1, are possible. By using the
skew tent map as a normal form, we have that:

(j.1) if α ≥ 1 then a fold-BCB occurs (as shown as in Fig.8a);
(j.2) if 0 < α < 1 then an S-fold bifurcation occurs first (as shown as in Fig.8b),

followed by a persistence-BC.
If α ≥ 1 then a contact with the diagonal must necessarily occur exactly in the

kink point x = 0 (i.e. it cannot occur before), and thus it is a fold-BCB, leading to
two fixed points of gn on opposite sides of x = 0. For map g the symbolic sequences
of the related n-cycles differ only in the first symbol, which are L and M , say
with symbolic sequence Mρ which is attracting and Lρ which is repelling, where ρ
represents a suitable sequence of symbols L and M, starting with the symbol L.

If α < 1 then the contact with the diagonal must occur in smooth way, in a point
on the left side of x = 0. That is, an S-fold bifurcation occurs, leading to two cycles
having the same symbolic sequence, Lρ, where the fixed point on the left side of the
tangency point is repelling and the other one, on the right, is attracting, so that
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Figure 9. In (a): fold-BCB leading to a pair of 3-cycles of map
g; In (b): fold-BCB leading to a pair of 4-cycles of map g. Here
a = −2.5, b = 10, γ = 1.5.

the attracting cycle is the one closest to the origin. Thus, when the local maximum
is increased, the attracting cycle undergoes a BC, and since it holds that 0 < α < 1
and β = 0, the collision leads to persistence of the attracting cycle, which however
changes its symbolic sequence to Mρ.

In both cases, ultimately we have a pair of n-cycles of map g, one with symbolic
sequence Lρ which is repelling and Mρ which is attracting. Map g has negative
slope at the periodic point of the attracting cycle Mρ on the right side of x = 0, as
qualitatively shown in the rectangle in Fig.5, approaching an S-flip bifurcation. For
the map G(x) = gn(x) a sequence of attracting cycles of doubled period is initiated,
as the parameter a decreases, via alternating S-flip and BC, as explained below.

It is worth to note that these fold bifurcations are particular when referred to
map f . In fact, ultimately in both cases the bifurcation leads to a pair of cycles
whose periods differ by 1, an attracting cycle with symbolic sequence R2ρ̃ (where
ρ̃ is obtained from ρ substituting M by R2), and a repelling one with symbolic
sequence Lρ̃. This is due to the BC with singularity which involves infinity, as in
the cases commented above.

Two examples of fold bifurcations of the basic cycles MRMk for k = 1 and
k = 2, which both are fold-BCB as in the case (j.1) described above, are shown in
Fig.9. In Fig.9a we show map g and its third iterate g3 at the parameter values
soon after the fold-BCB leading to an attracting cycle MLM and a repelling one
LLM. For map f this leads to the attracting 5-cycle R4L (whose periodicity region
is clearly visible in Fig.4a) and a repelling 4-cycle L2R2. In Fig.9b we show map g
and its fourth iterate g4 at the parameter values soon after the fold-BCB leading to
an attracting cycle MLM2 and a repelling one LLM2. For map f this leads to the
attracting 7-cycle R6L (see the related periodicity region in Fig.4a), and a repelling
6-cycle L2R4.

BC and S-fold related to a local minimum.
If we consider a local minimum of gn at x = 0, approaching the diagonal from

above (see Fig.8.c,d), the fold bifurcation is necessarily smooth as gn is locally flat
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on its right side, thus an S-fold leads to a pair of cycles both with symbolic sequence
Mρ (where ρ represents a suitable sequence of symbols L and M, starting with L).
The attracting cycle is the one closest to the origin, and the other one is repelling.
Thus, as the minimum decreases the attracting cycle undergoes a BC, merging with
x = 0 from the right side. For the slope α on the left side of x = 0 it holds that
α < 0, and the slope on the right side is β = 0. We have two cases: either α ≤ −1
or −1 < α < 0. By using the skew tent map as a normal form, it is easy to show
that

(jj.1) if α < −1 then a flip-BCB occurs, leading to a repelling cycle with sym-
bolic sequence Lρ and an attracting cycle of double period, with symbolic sequence
MρLρ;

(jj.2) if −1 < α < 0 then a persistence-BC occurs first, leading to an attracting
cycle Lρ, and as the minimum decreases the attracting cycle undergoes an S-flip,
it becomes repelling leading to an attracting cycle of double period, with symbolic
sequence LρLρ. Then the periodic point closest to x = 0 from the left side undergoes
a persistence-BC, leading to an attracting cycle with symbolic sequence MρLρ.

In both cases, ultimately we have a repelling cycle Mρ, a repelling cycle Lρ and
an attracting cycle MρLρ of double period. In particular, considering the map g2n,
it has a local maximum at x = 0, and its slope is negative at the periodic point
of the attracting cycle MρLρ on the right side of x = 0 (as qualitatively shown in
the rectangle indicated in Fig.5) approaching an S-flip bifurcation. For the map
G(x) = g2n(x) a sequence of attracting cycles of doubled periods is initiated, as the
parameter a decreases, via alternating S-flip and BC, as explained below.

As in the previous case, it is worth to emphasize the peculiarity of the sequence
of bifurcations in map f . The S-fold leads to a pair of cycles, one is attracting and
one repelling, with symbolic sequence R2ρ̃, where ρ̃ is obtained from ρ substituting
M by R2. The attracting cycle undergoes a BC and then ultimately, in both cases
(jj.1) and (jj.2), the bifurcation leads to a pair of repelling cycles whose periods
differ by 1, with symbolic sequence R2ρ̃ and Lρ̃, plus an attracting cycle with
symbolic sequence R2ρ̃Lρ̃. Note that for map f , independently on the symbols in ρ̃,
the period of this attracting cycle is necessarily odd, and the periodic point closest
to x = 0 on the right side, say x∗, attracts all the points of the interval (0, x∗), and
thus a flip bifurcation can occur as a decreases.

The difference in the periods of the two repelling cycles is due to the BC with
singularity which involves infinity: when a k-cycle of map f with a periodic point in
the R side close to 0, and thus with symbolic sequence R2L..., undergoes a BC, its
periodic points tend to {0,+∞,−1, ...}, that also means for f the cycle {0,−1, ...},
whose period is decreased by 1, that is, k − 1.

Cascade of S-flip and BC for a generic cycle
Consider now a generic attracting m-cycle of map g with negative eigenvalue, and

let x∗ > 0 be the fixed point of gm closest to x = 0, which attracts all the points of
the interval (0, x∗). For example, after a fold bifurcation related to local extremum
in x = 0 as described above, we consider gn at a local maximum and g2n at a local
minimum. Let us denote by Mρk symbolic sequence of the m-cycle, where ρk starts
with L. Locally the graph of gm is as in the rectangle shown in Fig.5, and we can
reason as it is done for the 2-cycle of g (corresponding to the simplest case ρk = L,
although the appearance of the 2-cycle is not related to a fold bifurcation). As the
parameter a decreases, the sequence starts with an S-flip, leading to repelling cycle
Mρk and an attracting cycle MρkMρk of double period. Then the periodic point
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closest to x = 0 on its right side undergoes a BC, and what matters are the slopes
α and β on the right and left side, respectively, of the function g2m at the critical
point x = 0, at the collision (the slopes are given in (28) with n = 2m). We have
two cases:

(ii.1) If α ≤ −1 then the a flip-BCB occurs. That is, after the collision the
considered fixed point of g2m crosses x = 0 and belongs to the left side becoming
repelling with symbolic sequence LρkMρk, while an attracting 2-cycle of g2m ap-
pears, with periodic points on the two sides of x = 0, which for map g is a cycle
with symbolic sequence (MρkMρk)LρkMρk.

(ii.2) If −1 < α < 0 then a persistence-BC occurs. That is, after the collision the
fixed point of g2m belongs to the left side (which is the 2m-cycle LρkMρk for g), and
persists as attracting. Moreover, in this case the eigenvalue of the attracting 2m-
cycle of map g becomes negative, and as a is decreased further an S-flip bifurcation
must occur, leading to an attracting 4m-cycle of map g with symbolic sequence
(LρkMρk)LρkMρk. After this bifurcation the periodic point closest to x = 0 on
the left side (fixed point of g4m) collides with x = 0 from the left side, leading
necessarily to a persistence-BC (as the slopes on both sides are one 0 and the other
smaller than 1 in modulus). Then this attracting fixed point of g4m moves to the
right side, leading to an attracting 4m-cycle for map g with symbolic sequence
(MρkMρk)LρkMρk.

Notice that independently on the occurrence of (ii.1) or (ii.2) the ultimate result
of the existing attracting and repelling cycles is the same, as summarized in the
following diagram for the symbolic sequences of the cycles of map g:

Mρk attr.
S−flip→

Mρk rep.

MρkMρk attr. (ii.1)
flip−BCB→ LρkMρk rep.

(MρkMρk)LρkMρk attr.

Mρk rep.

MρkMρk attr. (ii.2)
BC→ (persist.-BC) LρkMρk attr.

(S-flip) LρkMρk rep., (LρkMρk)2 attr.
(persist.-BC) (MρkMρk)LρkMρk attr.

We can summarize the cascade of period-doubling bifurcations of any m-cycle
of map g by use of the following mechanism. Let Mρ0 be the symbolic sequence
of an attracting cycle (for example the one born due to a fold bifurcation), where
ρ0 stands for the remaining symbolic sequence starting with L (in the case of the
2-cycle occurring as a is decreasing from −1, it is ρ0 = L), then for decreasing a we
have alternating S-flip and BC leading to cycles whose symbolic sequences can be
written as follows, starting from k = 0 :

Mρk attr.
S−flip→

Mρk rep.

Mρk+1 attr. ρk+1 = ρkMρk (ii)
BC→ Lρk+1 rep.

Mρk+2 attr. ρk+2 = ρk+1Lρk+1

i.e. the attracting cycles of map g have symbolic sequence Mρ0, Mρ1, Mρ2, Mρ3, ...
where the updating of the symbolic sequence of the cycles of doubled periods ρk+1 =
ρkTρk occurs with the symbol T = M and T = L alternatingly.
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Similarly we can write the symbolic sequences for map f . Starting from k = 0,
the attracting cycles of map f have the symbolic sequences R2ρ̃k where ρ̃k (which
starts with L) is obtained from ρk substituting M by R2, and in the updating
sequence ρ̃k+1 = ρ̃kT ρ̃k the symbol T = R2 and T = L alternate. Thus when
T = R2 (when the S-flip occurs) the period is doubled, say, 2m, while when T = L
(i.e. the BC occurs) the period is 2m− 1.

We have so proven Proposition 6.

3.1.3. Unbounded chaotic intervals for a ∈ (ahR,−1). Let us discuss other properties
of map f given in (2) making use of the continuous unimodal map g defined in the
interval J (see (5)). In particular, it holds that all the cycles of map g, except for
the fixed points, have even periods as long as the fixed point x∗L is not homoclinic.
The first homoclinic bifurcation of x∗L occurs when fM ◦ fL(−1) = x∗L leading to
the following condition:

bhL :
b

(b(−a− 1)−γ − 1)
γ =

a

a− 1
(29)

More relevant is the fact that for the considered parameter range, for any fixed
b > 0 and a varying in the interval (ahR,−1) there are open intervals dense in
[ahR,−1] related to attracting cycles. However, the set of values of a in the interval
(ahR,−1) at which map g has chaotic attractors (which are chaotic intervals with
dense periodic points and aperiodic trajectories) is most likely a totally disconnected
set of positive Lebesgue measure (and, thus, such attractors do not persist under
parameter perturbations), as it occurs in smooth maps with negative Schwarzian
derivative (see e.g. [12], or [35] for a survey). This is because the values at which the
fold and flip bifurcations occur are only slightly modified, but all these bifurcations
take place (even if border collisions are involved) and thus also the values of a at
which all the homoclinic bifurcations of the repelling cycles occur, exist also here,
as it happens in smooth maps.

As mentioned above, attracting chaotic intervals of map g (and, thus, of map
f) are structurally unstable. Moreover, it is worth to note that for map f such
attractors are unbounded. In fact, for map g, which is continuous in J , the images
of the kink point give the boundaries of the chaotic interval(s). If it is a unique
interval then it necessarily coincides with the interval J = [−1,−a − 1], while if
it consists of k-cyclic chaotic intervals then ci = gi(0) for i = 1, ..., 2k are the
boundary points of the intervals, and x = 0 necessarily belongs to one of them, say
to interval B0. For map f this means that the discontinuity point always belongs
to the chaotic intervals, and thus also f(B0 ∩ IR) belongs to the chaotic attractor.
Given that fR(B0 ∩ IR) = [x+,+∞) with x+ > x∗R, we have that for f the chaotic
intervals are necessarily acyclic and unbounded (see e.g. [2]).

Clearly, a unique chaotic interval J = [−1,−a − 1] for map g exists at a = ahL
when the homoclinic bifurcation of x∗L occurs (i.e. the parameters b and ahL satisfy
the equation of bhL given in (29)), and map f has two chaotic intervals: [−1,−a−1]∪
[fR(−a− 1),+∞). At a = ahR related to the homoclinic bifurcation of x∗R (i.e. the
parameters belong to the curve bhR given in (25)), g is chaotic in J = [−1,−a− 1] =
[−1, x∗R] and f is chaotic in the interval [−1,+∞) = [−1,−a−1]∪[fR(−a−1),+∞).
Thus, we can state the following

Property 3. Let b > 0 and γ > 1. At any value a ∈ [ahR,−1) at which g has at-
tracting chaotic intervals, map f has attracting unbounded acyclic chaotic intervals.
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Figure 10. 1D bifurcation diagram as a function of a at b = 4,
γ = 1.5 for map g in (a), and for map f in (b). The values of x are
scaled as y = arctan(x) in order to show the values tending to +∞.

Examples of 1D bifurcation diagrams for map g and map f are presented in
Fig.10.

So, the dynamics related to the considered parameter range is well explained,
however, this is not the case for a < ahR, as discussed in the next subsection.

3.1.4. Other S-fold bifurcations for a ≤ ahR. After the homoclinic bifurcation of the
fixed point x∗R map g is no longer unimodal in an invariant absorbing interval. Thus,
map g or map f has to be considered in its complete range, which is [−1,+∞). Both
maps, f and g, are discontinuous in the absorbing interval [−1,+∞) (with discon-

tinuity points x = 0 and x = O−1R = b
1
γ , respectively), and fold bifurcations may

occur in which fn becomes tangent to the diagonal also at points larger than x∗R.
The occurrence of fold bifurcations is confirmed by Fig.4, where several periodicity
regions of attracting cycles are evidenced, especially at large values of γ.

The bifurcation structure formed by the periodicity regions of attracting cycles
existing for a < ahR is still not well described. Below we give only some simple
remarks leaving the detailed analysis of this structure for future study.

For any fixed value b > 0, in the range a ∈ (aLR3 , ahR) (where aLR3 and b satisfy
the equation of bLR3 given in (26)), from the asymptotic dynamics of map g it
follows that in the symbolic sequence of a trajectory of map f the symbol L is
necessarily followed by at least three symbols R, that is, it includes LR3. This
is the reason why among the several periodicity regions existing in the considered
parameter range, the last one (for decreasing a) is related to a 4-cycle LR3, which
appears by S-fold bifurcation involving two cycles with the same symbolic sequence,
one attracting and one repelling.

The considered parameter range is confined by the values related to the BC of
the attracting 4-cycle LR3, detected at the beginning of Sec.3 (see (26)). At the
bifurcation value (a = aLR3) there exists the attracting 4-cycle of f with periodic
points {0,+∞,−1, O−1R } (applying fR to x = 0) or also {0,−1, O−1R } (applying fL
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Figure 11. Fold bifurcation of the pair of 2-cycles LR at a = −3,
γ = 1.5 and b = 0.35 in (a), b = 0.2 in (b).

to x = 0), and for a < aLR3 the BC of this attracting 4-cycle leads to a repelling
3-cycle with symbolic sequence L2R.

For a < aLR3 the sequence of symbols LRL is also allowed, both for map g and
map f . Thus, periodicity regions of different attracting cycles may exist where the
last one (for decreasing a) is related to a pair of 2-cycles LR with points one smaller
than x∗L and the other larger than x∗R. To detect this S-fold let {x0,2, x1,2} be the
periodic points of a 2-cycle of map f with x0,2 ∈ IL and x1,2 = fL(x0,2) ∈ IR.
Consider the composite function

FLR(x) := fR ◦ fL(x) =
b

(ax− 1)γ
− 1 (30)

whose derivative is F ′LR(x) = −abγ(ax−1)−γ−1. The S-fold bifurcation is obtained

solving both FLR(x) = x and F ′LR(x) = 1, leading to x0,2 = 1−aγ
a(1+γ) and the fold

bifurcation curve

ϕLR : b = − 1

aγ

(
−γ a+ 1

γ + 1

)γ+1

=: bLR (31)

This curve is marked in Fig.1 and Fig.4, bounding the periodicity region of the
2-cycle LR. Clearly, also a repelling 2-cycle with the same symbolic sequence exists.
An example of the occurring fold bifurcation is shown in Fig.11. The pair of 2-cycles
exists for any parameter values (a, b) belonging to the region between the curve ϕLR
and the axis b = 0.

Notice that the results obtained above for the fold bifurcation of a 2-cycle LR
hold for any γ > 0 and thus the S-fold bifurcation curve given in (31) is related to
a pair of cycles both for γ > 1 and 0 < γ ≤ 1. Thus, we can state the following

Proposition 7 (S-fold bifurcation of 2-cycle LR for b > 0). Let a < −1 and
γ > 0, then at b = bLR where bLR is given in (31), an S-fold bifurcation occurs.
For 0 < b < bLR a pair of 2-cycles of map f with symbolic sequence LR exist, one
attracting and one repelling.
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Figure 12. 1D bifurcation diagram of map f as a function of a at
fixed b = 1.9 and γ = 0.5. The variable x is scaled by y = arctan(x).
In (b) an enlargement of (a) is shown for −1.1 < a < −1.

The boundaries ϕLR marked in Fig.1 and Fig.4 are plotted using the equation

given in (31). In particular, the curve ϕLR intersects the straight line b = bfLR (in
the figures mentioned above the intersection point is out of the window), thus there
is a bistability region related to the attracting fixed point x∗R and the attracting
2-cycle LR .

3.2. Dominant chaos for a < −1, b > 0, 0 < γ < 1. For −1 < a < 0 the
dynamics of f are characterized by convergence to fixed points, while for a < −1
the dynamics abruptly become chaotic, as can be seen in Fig.4a where the white
region is related mainly to chaos. In fact, at a = −1 the DFB of x∗L occurs, and
for a < −1 an invariant chaotic set necessarily exists, attracting or repelling. We
have different dynamic behaviors depending on the value of b, that is, depending

on the existence of a repelling (0 < b ≤ bfR) or attracting (b > bfR) fixed point x∗R,
as described below.

3.2.1. Chaos and a repelling fixed point x∗R. For any fixed value b ∈ (0, bfR] (so that
x∗R is repelling) and ahR < a < −1, we can restrict the asymptotic dynamics to the
interval J which is invariant for map g. Decreasing the value of a from −1, as long
as the fixed point x∗L is not homoclinic the invariant intervals of g are given by
[g(0), g3(0)] ∪ [g4(0), g2(0)] = [−1, f2R(−a − 1)] ∪ [fL ◦ f2R(−a − 1),−a − 1]. Then
at the parameter value related to the homoclinic bifurcation of x∗L the invariant
interval of g becomes [g(0), g2(0)] = [−1,−a−1], which persists up to the homoclinic
bifurcation of x∗R. Since it holds that |g′(x)| > 1 for any x ∈ J, an attracting cycle
cannot exist, and due to the large slope of the function at the right side of the kink
point (see Property 1), we can expect that map g really is chaotic in these invariant
intervals.

For a < ahR we have to consider map f in the interval [−1,+∞), and even if it

holds that |g′(x)| > 1 for any x ∈ [−1, O−1R ], there are points with slope smaller

than 1 in modulus for x > O−1R , thus attracting cycles may exist. This depends on
the value of b. An example of the 1D bifurcation diagram is presented in Fig.12

for γ = 0.5 and b = 1.9 < bfR = 2 showing that the interval [−1,+∞) looks
like an unbounded chaotic attractor for any a ∈ (aLR, a

h
R] (here aLR is the value

of a correspondinng bLR). However, for example, at γ = 0.5 and b = 0.1, for



726 LAURA GARDINI, ROYA MAKROONI AND IRYNA SUSHKO

Figure 13. Graphs of map g(x) at γ = 0.5 and b = 0.5 < bfR. In
(a) a = −1.1; in (b) a = −2; in (c) a = −4.5.

a ∈ (−1.25,−1.248) an attracting 4-cycle of map f exists, with symbolic sequence
RL3. Thus, attracting cycles of f may appear also for a > aLR, before the crossing
of the S-fold bifurcation curve ϕLR. So, as long as a > aLR the unbounded interval
U = [−1,+∞) may be a chaotic attractor of map f , or it may include a chaotic
repeller. Thus, we can state the following

Property 4 (robust unbounded chaos). Let 0 < γ < 1 and 0 < b ≤ bfR then
(1) for ahL < a < −1 map f has an unbounded chaotic attractor consisting of

three intervals: [−1, f2R(−a− 1)] ∪ [fL ◦ f2R(−a− 1),−a− 1] ∪ [fR(−a− 1),+∞);
(2) for ahR < a ≤ ahL map f has an unbounded chaotic attractor consisting of two

intervals: [−1,−a− 1] ∪ [fR(−a− 1),+∞);
(3) for aLR < a ≤ ahR, depending on the value of b, map f has either an un-

bounded chaotic attractor [−1,+∞) or an unbounded chaotic repellor;
(4) for a < aLR almost all trajectories converge to the attracting 2-cycle born

crossing the curve ϕLR, and a chaotic repeller exists.

Examples of map g in the cases 2, 3 and 4 listed in Property 4 are shown in
Fig.13.

3.2.2. Chaos and an attracting fixed point x∗R. Differently from the previous case, for

any fixed value b > bfR, decreasing the parameter a from −1, x∗R is an attracting fixed
point of map g (and thus of map f) and two repelling fixed points of map g exist,
x1RR and x2RR, which are periodic points of a repelling 2-cycle of map f, bounding
the immediate basin of x∗R. However, as long as fL(−1) < x1RR (one can consider
the related interval of values of a), there is coexistence of an invariant chaotic
interval and the attracting fixed point. In fact, as long as the fixed point x∗L is not
homoclinic, the invariant intervals of g are given by [g(0), g3(0)] ∪ [g4(0), g2(0)] =
[−1, f2R(−a− 1)]∪ [fL ◦ f2R(−a− 1),−a− 1]. Then at the homoclinic bifurcation of
x∗L the invariant interval of g becomes [g(0), g2(0)] = [−1,−a−1], which persists up
to the homoclinic bifurcation of x1RR. Let us denote ahRR the value of a at which this
occurs. The invariant absorbing interval J includes a chaotic attractor of map g,
as follows from the same arguments used above (since |g′(x)| > 1 for any x ∈ J, an
attracting cycle cannot exist). The basin of attraction of the fixed point x∗R is the

union of the immediate basin (x1RR, x
2
RR) and its unique preimage f−1L ((x1RR, x

2
RR)):

B(x∗R) = (x1RR, x
2
RR) ∪ f−1L ((x1RR, x

2
RR)).



ALTERNATING SMOOTH AND NONSMOOTH BIFURCATIONS 727

Figure 14. Graphs of map g at γ = 0.5 and b = 2.2 > bfR. In
(a) a = −1.2; in (b) a = −1.6. The fixed point is the unique
attractor.

For a < ahRR a chaotic repeller exists in [−1,+∞). If x∗R is the unique attractor,
then it attracts almost all the points. However, a coexisting attracting cycle may
appear (due to an S-fold bifurcation). For example this occurs for a < aLR when the
attracting 2-cycle LR coexists with x∗R. In such cases the chaotic repeller belongs to
the boundary separating the two basins of attraction. We can so state the following

Property 5. Let 0 < γ < 1 and b > bfR then
(1) for ahL < a < −1 the attracting fixed point x∗R of map f coexists with the

unbounded chaotic attractor given by the intervals [−1, f2R(−a− 1)]∪ [fL ◦ f2R(−a−
1),−a− 1] ∪ [fR(−a− 1),+∞);

(2) for ahRR < a ≤ ahL the attracting fixed point x∗R of map f coexists with the
unbounded chaotic attractor [−1,−a− 1] ∪ [fR(−a− 1),+∞);

(3) for aLR < a ≤ ahRR depending on the value of b, the fixed point x∗R may be
the unique attractor of map f, a chaotic repeller exists;

(4) for a < aLR the attracting fixed point x∗R coexists with an attracting 2-cycle
born due to an S-fold for parameter point crossing the curve ϕLR, and a chaotic
repeller exists.

Examples of map g in the cases 2 and 3 of Property 5 are shown in Fig.14.

4. Conclusions. We have considered some bifurcations occurring in the 1D dis-
continuous linear-power map f defined in (1), where a, b, γ > 0 and µ < 0 are
real parameters. The bifurcations of the fixed points have been classified. As the
dynamics are quite different depending on b < 0 and b > 0, we have considered
these two different ranges separately. The case a < 0, b < 0 is related to an invert-
ible map for which we have proved that particular sets of 2-cycles and 4-cycles are
involved both in smooth and border collision bifurcations, leading to coexistence
with an attracting fixed point. The case a < 0, b > 0 is associated with a nonin-
vertible map, for which we have described quite a rich bifurcation structure of the
parameter space emphasizing its dependence on γ. In particular, for γ > 1, when
the repelling fixed point in the right partition is not homoclinic, we have shown
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that fold bifurcations (either smooth fold or fold-BCB) ultimately lead to a pair of
cycles of f, one attracting and one repelling, whose periods differ by 1. We have
completely described, by using the skew tent map as a normal form, the peculiar
sequences of alternating smooth flip bifurcations and border collision bifurcations
starting from an attracting cycle of period n and followed by attracting cycles of
periods 2n, (4n − 1), 2(4n − 1), 4(4n − 1) − 1, .... The existence of unbounded
chaotic attractors has been proved, which may be structurally unstable or robust.
For 0 < γ < 1, we have shown that as long as the fixed point in the right partition
is repelling, map f has either an unbounded chaotic attractor, or an attracting
cycle coexisting with a chaotic repeller on the boundary of its basin of attraction.
Differently, when the fixed point in the right partition is attracting, it may coexist
with an unbounded chaotic attractor or with some attracting cycle. Many problems
related to the dynamics of the considered map are left open, which require further
investigations.
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