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ORGANIZING CENTERS

IN PARAMETER SPACE OF DISCONTINUOUS 1D MAPS.

THE CASE OF INCREASING/DECREASING BRANCHES

Laura Gardini1, Viktor Avrutin2, Michael Schanz2, Albert Granados2 and
Iryna Sushko3

Abstract. This work contributes to classify the dynamic behaviors of piecewise smooth systems in
which border collision bifurcations characterize the qualitative changes in the dynamics. A central
point of our investigation is the intersection of two border collision bifurcation curves in a parameter
plane. This problem is also associated with the continuity breaking in a fixed point of a piecewise
smooth map. We will relax the hypothesis needed in [4] where it was proved that in the case of an
increasing/decreasing contracting functions on the left/right side of a border point, at such a crossing
point, we have a big-bang bifurcation, from which infinitely many border collision bifurcation curves
are issuing.
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Résumé. Cet travail est une contribution à la classification des comportements dynamiques de
systèmes réguliers par morceaux dans lesquels les bifurcations de collision au bord caractérisent les
changements qualitatifs de la dynamique. Un point central de notre étude est l’intersection de deux
courbes de bifurcation de colision au bord dans un plan de paramètre. Ce problème est aussi associé
avec la rupture de continuité en un point fixe d’une application régulière par morceaux. Nous al-
lons relacher l’hypothèse requise dans [4], où il a été montré que dans le cas de fonctions contractantes
croissantes/décroissantes strictement à gauche/droite d’un point du bord, en un tel point de franchisse-
ment, nous avons une bifurcation big-bang, de laquelle est issue une infinité de courbes de bifurcation
de collision au bord.

Mots clefs. applications régulières par morceaux, bifurcations de collision au bord, centres organisa-
teurs.

1. Introduction

The problem of a classification of the phenomena which may occur at a border collision bifurcation1 (BCB
for short) in a piecewise smooth one-dimensional discontinuous map is a problem started several years ago,
and it is far from being completely understood. However, the first results are due to Leonov ( [11, 12], see
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also in [13], where several cases are classified), and since then several authors have published relevant works,
which contribute to the progress in the comprehension of the bifurcation mechanisms and related phenomena.
We recall [1–3, 6, 8], where applied models were investigated, and [5, 10], where the map in canonical form is
considered, and the Leonov’s approach improved. Further results are shown in [22], where assuming a piecewise
linear map with three partitions, it is proved how the so-called period adding scheme can be used. These
bifurcation mechanisms are quite important for their role in applied models, in several contexts. In engineering,
see [9, 14–16,23], but also in economics (see [7, 19–21]).

As already noticed in several works, the BCB curves form complex structures in 2D parameter planes,
typically governed by some organizing centers (codimension-2 bifurcations). Especially interesting in this context
are the so-called big bang bifurcations (BBB for short), defined by the condition that an infinite number of
BCB curves are issuing from the bifurcation point ( [1]). Considering a piecewise-smooth one-dimensional map,
when it has two periodic orbits undergoing BCBs at the curves ΦL and ΦR which are intersecting at some point
P, then in many cases it was observed by numerical experiments that the point P represents a BBB point. The
questions that we have to consider are: (a) Under which conditions the intersection point of two BCB curves
represents a BBB point? (b) If the intersection point of two BCB curves represents a BBB point, what are the
orbits whose existence regions are bounded by the infinitely many BCB curves issuing from the BBB point? As
we shall see below, this dynamic problem is also associated with the continuity breaking in a fixed point of a
piecewise smooth map, and all the possible cases can be classified depending on the shape of the two functions
involved on the right/left sides of the fixed point. The partial results are given in [4], where it is shown that
assuming two contracting functions, one increasing and one decreasing on the two sides of the fixed point, the
BBB occurs, leading to stable cycles of any period, with periodicity regions which are overlapping in pair.

The object of the present work is to characterize the case under the generic assumption of one increasing and
one decreasing function on the two sides of the fixed point, showing that the BBB occurs. The existing cycles
may be stable or unstable.

As recalled above, a crucial point is the intersection of two BCB curves. A BCB curve is the locus of points
in the parameter space at which a periodic point of an existing cycle is colliding with the break point, which
here, without loss of generality, is set to x = 0. Each locus of a BCB separate two regions, on one side the cycle
exists, while on the other side the cycle does not exist. This is independent of the stability of the cycle, which,
as usual, comes from the modulus of its eigenvalue, given by the products of the derivatives in the periodic
points. Let us consider the intersection of two BCB curves, ΦL and ΦR, boundaries of two different periodicity
regions, Π(pl) and Π(pr) of a given piecewise smooth map F . ΦL is the BCB curve such that when a parameter
point belongs to it the map F has a periodic point x∗l (of prime period pl and associated with a symbolic
sequence ρ = ρ1...ρpl) colliding with the point x = 0 from the left side L, while on the other BCB curve, ΦR,
the periodic point x∗r (of prime period pr and associated with a symbolic sequence σ = σ1...σpr ) of F is colliding
with x = 0 from the right side R. Let us define as Hl(x) (resp. Hr(x)) the composite function which gives
the periodic point colliding with x = 0 from the left (resp. right) side. That is: Hl(x) = Fρpl ◦ ...Fρ1(x) and

Hr(x) = Fσpr
◦ ...Fσ1

(x) so that Hl(x
∗
l ) = x∗l and Hr(x

∗
r) = x∗r .

As we are considering BCBs involving the unique discontinuity point (x = 0), when a parameter point belongs
to the overlapping region then the map F possesses both cycles, while in the non overlapped regions only one
of them exists. It follows that the crossing of two BCB curves in a point P implies the existence of the four
regions shown qualitatively in Fig. 1. When the dynamics of F are bounded into an absorbing interval, say I,
which does not include stable fixed points, then some other attracting set must exist.

Notice that it is not necessary to require a specific number of components of the map F , also it is not
necessary to require that the periods (pl and pr) are different. In any case, the reasoning at the border collision
bifurcations which involve one discontinuity point x = 0 may be done as here described, considering the map T
defined via the two functions TL and TR as follows:

x′ = T (x), T (x) =

{
TL(x) = µl +Hl(x) if x < 0
TR(x) = µr +Hr(x) if x > 0

(1)
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Figure 1. Intersection of two periodicity regions in a BBB point P . The cycle pl is stable in
(a) and unstable in (b). The cycle pr may be stable or unstable.

where we know that when the parameters belong to the point P (in ΦL ∩ ΦR) then we necessarily have
µl = µr = 0. When a parameter point belongs to ΦL then TL(0) = 0 occurs, that is µl = 0 and the eigenvalue
of the cycle with periodic point x∗l = 0 is given by λl = H ′l(0). Similarly, when a parameter point belongs to
ΦR then TR(0) = 0 occurs, that is µR = 0 and the eigenvalue of the cycle with periodic point x∗r = 0 is given
by λr = H ′r(0).

Here we are investigating the case of increasing/decreasing branches on the two sides of x = 0, which is
topologically conjugated with the case of decreasing/increasing branches, as it is easy to see. The particular
case in which, in addition, the colliding fixed points are assumed to be stable just before the bifurcation (that
is, both Hl and Hr are contractive functions near x = 0) was studied in [4], where it was shown that the BBB
occurs leading to the appearance of stable cycles of any period with periodicity regions overlapping in pair.
In the present work, however, we give a different proof and extend the results presented there permitting the
colliding fixed points to be unstable. In particular, we show in Theorem 3 that the same situation holds near
the BBB point when, under some restrictions, only x∗r (the fixed point with negative eigenvalue) is unstable.

The plane of the work is as follows. In the next section we reformulate and generalize some of the arguments
presented in [4] in terms of an appropriate first return map. In Sec. 3 we present our results and their proofs,
illustrated by several examples. Additionally, in Sec. 4 we discuss the possible situations in the case that after
the bifurcation the fixed point with the positive eigenvalue is virtual and the one with the negative eigenvalue
exists.

2. First return map

We can generalize the problem presented in the introduction to that of a continuity breaking of some piecewise
smooth function f , defined as follows:

x′ = f(x), f(x) =

{
fL(x) = µl +Hl(x) if x < 0
fR(x) = µr +Hr(x) if x > 0

(2)

In this map, when the offset parameters are µl = µr = 0 then the point x = 0 is a fixed point: Hl(0) = 0
and Hr(0) = 0. According to the task of this paper we assume that the function Hl is increasing in a left
neighborhood of x = 0 and the function Hr is decreasing in a right neighborhood of x = 0.

We also remark that we limit our analysis only to this case, as the “symmetric one”, that means that
the function Hl is decreasing in a left neighborhood of x = 0 and the function Hr is increasing in a right
neighborhood of x = 0, is topologically conjugated to the first one. To obtain all the results for this second case
it is enough to exchange the letters “left” and “right” in the symbolic sequences that we shell describe below.

Then, breaking the continuity (existing for µl = µr = 0) we are interested in the dynamic behavior of f when
the offsets are varied in the parameter plane (µr, µl) close to (0, 0). A qualitative picture is shown in Fig. 2.
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Figure 2. Different shapes for function f for different combinations of the signs of µl and µr.
The contracting/expanding cases are shown. Black/white circles denote stable/unstable fixed
points.

We notice that the region of existence of the fixed point x∗l on the left side depends on the slope of Hl at
the point colliding on the left side. Especially, if H ′l(0) < 1 the fixed point x∗l exists for µl < 0 and it is stable
for µl in a left neighborhood of 0. While for H ′l(0) > 1 the fixed point x∗l exists for µl > 0 and it is unstable.
Differently, independently on the modulus of H ′r(0) < 0, the fixed point x∗r on the right side exists for µr > 0
and does not exist for µr < 0.

It is clear that one of the interesting regions in which we are led to study the dynamic behaviors is the upper
left quadrant in Fig. 2, that is, µr ≤ 0 and µl > 0. In this sections we will consider this case. In this quadrant,
the shape of the map is such that when we move the offsets from (0, 0) an absorbing interval I exists, given by

I = [fR ◦ fL(0), fL(0)] = [fR(µl), µl] (3)

where µl > 0 and fR(µl) < 0. Under our assumption, for µr ≤ 0 and µl > 0 close to (0, 0) the function fL(x)
is increasing in I for x < 0, while fR(x) is decreasing in I for x > 0. As already mentioned, depending on the
slope of fL(x) an unstable fixed point x∗l (µl) may exist or not. When an unstable fixed point x∗l (µl) exists, then
the absorbing interval I exists as long as the inequality fR ◦ fL(0) > x∗l (µl) holds, that means for

fR(µl) > x∗l (µl). (4)

The bifurcation occurring at fR(µl) = x∗l (µl) is a contact bifurcation leading to the destruction of the absorbing
interval I, and for fR(µl) < x∗l (µl) the absorbing interval does not exist any more. We are restricting our
analysis to the constraint in (4), as this condition is sufficient to give a feed back mechanism, leading to a well
defined first return map. Then, fixed any parameter value µl > 0 close to 0, we decrease µr starting from 0 up
to fR(µl) = x∗l (µl) if a fixed point exists (see Fig. 2). Although the global dynamics of the map also depend on
the nonlinear functions fL and fR, under the only assumption of increasing/decreasing shape of the functions
Hl and Hr, we shall see that all the cycles with the symbolic sequence RLk must exist, with BCB curves in the
parameter plane (µr, µl) issuing from (0, 0).

From the assumptions that the function fL(x) is increasing and fR(x) decreasing, considering µl > 0 close
to 0, and µr ≤ 0, it follows that any initial condition in the right neighborhood of x = 0 is mapped by fR(x) in
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the left side, from which fL(x) is applied as long as we obtain again a point in the right side. Thus the dynamic
behavior of the map f can be completely described by the first return map in the right side, that is, in the
interval J ⊂ I given by

J = [0, fL(0)] = [0, µl]. (5)

For each point x ∈ J , x 6= 0, its first return value FR(x) is given by fkL ◦ fR(x) where k ≥ 1 is the first integer
such that fkL ◦ fR(x) ∈ J .

Notice that a cycle of the map f associated with a fixed point of the first return map FR is necessarily of
the so-called maximal type. That is, it has only one periodic point on the right side, followed by one or more
points on the left side, thus of the symbolic sequence RLk . The periodic point on the right side (say x0) of such
a cycle is obtained as a solution of the equation fkL ◦ fR(x0) = x0. A BCB of this cycle occurs when x0 = 0.
Therefore, the equation

fkL ◦ fR(0) = 0 (6)

describes one BCB curve bounding the periodicity region Π(RLk). The other BCB of the same cycle occurs
when the periodic point xk collides with the boundary x = 0 from the left side, or equivalently if the point x0
collides with the right boundary of the absorbing interval I (i.e. J), that is, collides with the point µl. Hence,
the corresponding BCB curve is given by fkL ◦ fR(µl) = µl, or, equivalently:

fkL ◦ fR ◦ fL(0) = fL(0)

that is,

fk−1L ◦ fR ◦ fL(0) = 0, (7)

where f0L is the identity function. An immediate result is that the BCB curves given by Eqs. (6) and (7)
associated with the periodicity region Π(RLk) intersect at the origin (0, 0) in the parameter plane (µr, µl), as
the equations are satisfied by µr = 0 and µl = 0, and cannot exist in the half-plane µl < 0, thus they necessary
belong to the half-plane µl > 0.

The first return map FR(x) is clearly piecewise smooth, and discontinuous in the points where its definition
changes, i.e. when the integer k changes in the function fkL ◦ fR(x) giving the first return in the interval J . The
discontinuity points of FR(x) are given by the preimages of the origin x = 0 located in the interval J , which,
in their turn, depend on the shape of fL(x). However, the functions fL(x) and hence also fkL(x) are increasing,
thus invertible, as well as fR(x) is decreasing and thus invertible. So let us define the point dk as the first
preimage of the origin belonging to the positive side, given by

dk := f−1R ◦ f−kL (0). (8)

Then it is clear that the map FR(x) is defined as FR(x) := fkL ◦ fR(x) for x ∈ [0, dk] with FR(0) = fkL ◦ fR(0) =
fkL(µr) ∈ J (as fkL(µr) ∈ (0, µl]) and at the point dk we have FR(dk) = fkL ◦ fR(dk) = 0. For this first branch of
the first return map we immediately have that the graph of the function FR(x) is decreasing and intersecting
the diagonal only once, that is, a fixed point of FR must exist (as the function G(x) = FR(x)− x takes values
of opposite signs at the extrema of the interval [0, dk], and thus must have a zero which corresponds to a fixed
point of FR). If dk > µl this is the only branch of the first return map, otherwise, if dk < µl, then the function

FR is given by fk+1
L ◦ fR(x) for x ∈ [dk, dk+1] where dk+1 = f−1R ◦ f−(k+1)

L (0). So, for example, if dk+1 > µl
then the first return map is defined by only two pieces

FR(x) :=

{
T0(x) := fkL ◦ fR(x), if 0 ≤ x < dk
T1(x) := fk+1

L ◦ fR(x), if dk < x ≤ µl

where T0(0) ∈ (0, µl], T0(dk) = 0, and we also have also that T1(dk) = fk+1
L ◦ fR(dk) = fL ◦ fkL ◦ fR(dk) =

fL(0) = µl > dk, T1(µl) ∈ (0, µl]. Thus also T1(x) must be decreasing and must have a fixed point in the

interval [dk, µl]. Similarly, if dk+1 ≤ µl, then we have T1(x) defined for x ∈ [dk, dk+1] and T2(x) = fk+2
L ◦ fR(x)
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for x > dk+1, so that the function FR becomes defined on three pieces, and so on. It is clear that depending
on the shape of the function fL(x), we can have also several preimages of the origin inside the interval J , that
is several discontinuity points dj , and each branch of definition of the first return map must be decreasing and
with a unique fixed point.

In order to demonstrate that the dynamics of the first return map as defined above reflects completely the
dynamics of the map f , we prove the following

Proposition. Suppose the function Hl increasing in a left neighborhood of x = 0 and the function Hr

decreasing in a right neighborhood of x = 0. Then for 2 µl > 0 and µr ≤ 0 the first return map FR shows all the
local and global properties and bifurcations of f .

Proof. Let us first consider the map f with fixed parameters. For a given function f we can construct the
first return map FR as described above, determining all the discontinuity points dk, dk+1, ... belonging to J , and
the functions defining the components of FR, which are given by T0(x) = fkL ◦ fR(x), T1(x) = fk+1

L ◦ fR(x), ...
whereby the number of branches of FR does not play any role. Then for any initial condition z ∈ J the trajectory
of this point under application of f is given by the sequence

z : f(z), f2(z), f3(z), ...

We can also specify explicitly the application of fR and fL. Proceeding in this way, it is enough to declare
which function is applied to the last computed point. For example, for the trajectory of the point z shown in
Fig. 5 this leads to

z : [fR, fL], [fR, fL], [fR, fL, , fL], [fR, fL, fL], [fR, fL], ...

where the parenthesis are added in such a way that whenever we apply fR we close the previous parenthesis
and open the new one. Then we have

z : [fL ◦ fR], [fL ◦ fR], [f2L ◦ fR], [f2L ◦ fR], [fL ◦ fR], ...

which can also be written as
z : [T0(z)], [T0], [T1], [T1], [T0], ...

and this is exactly the trajectory of z under application of the first return map FR

z : FR(z), FR
2(z), FR

3(z), ...

The backward reasoning is also valid, since in a trajectory of FR we can “expand” the definitions of the maps
and in this way we obtain exactly the trajectory under f (see the trajectory of z with f in Fig. 5a and with
FR in Fig. 5b, the points of the trajectory in J clearly are the same). Thus also the stability of cycles and
homoclinic orbits can be studied equivalently via f and FR.

As the parameters of f change, the shape of FR also changes, i.e. the number and position of the discontinuity
points dk, and this implies that all the global bifurcations of f associated with the break point can be studied
by using FR. Which means that these are associated with the exit/entrance of a new branch in the definition
of FR (which also correspond to the exist/entrance of a new discontinuity point in J).

The exit of a branch in the definition of FR occurs at the merging of a discontinuity point dk with 0, and
dk = 0 leads to f−1R ◦ f−kL (0) = 0, that is

dk = 0 : fkL ◦ fR(0) = 0

The entrance of a branch in the definition of FR occurs at the merging of a discontinuity point dj with µl, and

dj = µl leads to f−1R ◦ f−jL (0) = µl, that is f jL ◦ fR(µl) = 0 which corresponds to

dj = µl : f jL ◦ fR ◦ fL(0) = 0

2The same property clearly holds also for µr > 0 assuming FR(x) := f(x) for x ∈ (0, d0), d0 = f−1
R (0).
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which are the two BCB curves already obtained above. �

3. Continuity breaking

3.1. General case

Let us prove the existence of all the periodicity regions associated with the maximal cycles corresponding to
symbolic sequences RLk.

Theorem 1. Consider the map f in (2) assuming Hl(0) = 0 = Hr(0), the function Hl(x) increasing in a
left neighborhood of x = 0 and the function Hr(x) decreasing in a right neighborhood of x = 0. Then infinitely
many BCB curves are issuing from the point (0, 0) in the parameter plane (µr, µl) (i.e. (0, 0) is a big bang
bifurcation point).

Proof. Consider the function fkL(x) for any k ≥ 1. For µl = 0 we have fkL(x) = Hk
l (x) increasing for x < 0

and fkL(0) = Hk
l (0) = 0, for any k > 0. Thus for µl > 0 close enough to 0 we have f−kL (0) < 0 also close to zero.

Then set µr = f−kL (0) so that we have f−1R ◦ f−kL (0) = 0 which implies that the point (µr, µl) belongs to the
BCB curve of a cycle RLk for f which, as shown in the previous section, is necessarily issuing from the point
(0, 0) in the (µr, µl) plane. Then, by continuity of the function fkL ◦ fR(x) in a right neighborhood of x = 0, for

a suitable value µr = f−kL (0) + ε there exists a point x0 > 0 such that fkL ◦ fR(x0) = x0, i.e. a periodic point of
a (k + 1)-cycle of f with symbolic sequence RLk. �

Notice that in the assumptions of Theorem 1 we require monotone functions3, and in the case of smooth
functions their derivative may be H ′l(0) ≥ 0 and H ′l(x) ≥ 0 in a left neighborhood of the origin, and H ′r(0) ≤ 0
and H ′r(x) ≤ 0 in a right neighborhood of the origin.

It is clear that the proof given above is only an existence proof. It shows the existence of the BCB curves
already written in (6). Each one, for any k > 0, gives one boundary of the periodicity region associated with
the cycle with symbolic sequence RLk, the other side (for the same cycle RLk) being the curve given in (7),
which also is a BCB curve which must issue from the point (µr, µl) = (0, 0) of the parameter plane. Then more
properties can be investigated on the structure of the existing periodicity regions.

For example we have the following
Property: for any µl > 0 at µr = 0 a 2-cycle RL exists, assuming fL(x) increasing and fR(x) decreasing

in I.
In fact, as already remarked, in such a case the function fL ◦ fR(x) is decreasing in J and must have a fixed

point, which means a 2-cycle for f . �

Also, notice that the structure formed by the periodicity regions associated with the maximal cycles of
symbolic sequence RLk is different in the following two situations:

(i) an unstable fixed point x∗l (µl) does not exist (as for H ′l(0) < 1),
(ii) an unstable fixed point x∗l (µl) exists.
In case (i) the functions fkL(x) become more and more flat as k is increased, which implies that the BCB

curves have as limit set the µr−axis (an example is shown in Fig. 4). While in case (ii) the BCB have as limit
set the curve defined by the constraint in (4) (i.e. the curve of equation fR(µl) = x∗l (µl), see Fig. 7 for an
example).

Before considering some particular cases in the next subsection, let us here remark the connection between our
results stated above on the continuity breaking with the intersection point P of two border collision bifurcation
curves in a parameter plane, as described in the Introduction (and similar reasoning works also for the results
given in the following). Assume that the function Hl(x) (resp. Hr(x)) is given by a composite function
Hl(x) = Fρpl ◦ ... ◦ Fρ1(x) (resp. Hr(x) = Fσpr

◦ ... ◦ Fσ1(x)) where ρ = ρ1...ρpl (resp. σ = σ1...σpr ) is the

symbolic sequence associated with a cycle of F of prime period pl (resp. pr), both colliding with x = 0 when the
parameters are in P . Then the proof of Theorem 1 shows that the equations fkL◦fR(0) = 0 and fkL◦fR(x0) = x0,

3and thus constant pieces are excluded
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x0 > 0 , have a solution for suitable values of µl > 0 and µr < 0 so that, for suitable values of the parameters
of the map F (corresponding to the region µl > 0 and µr < 0 as qualitatively shown in Fig. 1), we have that
also the solutions of the following equations

(Fρpl ◦ ... ◦ Fρ1)k ◦ Fσpr
◦ ... ◦ Fσ1

(x0) = x0, x0 ≥ 0

exist for any k > 0.

3.2. Particular cases

It is clear that the above existence conditions do not regard the stability of the cycles, which depend on the
eigenvalues λ(RLk) of the cycles, and thus on the derivatives of the functions fL and fR in the periodic points.
However, under specific assumptions we can establish some more results.

Theorem 2. Consider the map f in (2) assuming fL(x) increasing and fR(x) decreasing in I = [fR(µl), µl],
for µl > 0 fixed and µr < fL ◦ fR(µl) < 0. Then map f can have at most two coexisting stable cycles, with
symbolic sequence RLk and RLk+1.

Proof. Consider µl > 0 fixed and µr ≤ 0, then the map f is invertible in I as long as fL(fR(µl)) > µr, and
when this condition is satisfied all the existing cycles of f must be stable. Now let dk be the first preimage
of the origin belonging to the positive side, given by f−1R ◦ f−kL (0) = dk, and thus the fixed point of the first
return map FR(x) defined as T0(x) = fkL ◦ fR(x) for x ∈ [0, dk] exists and is stable, so that a stable cycle RLk

for f exists. We know that T0(0) = fkL(µr) ∈ J and T0(dk) = fkL ◦ fR(dk) = 0. Then either dk ≥ µl, in which
case the stable cycle RLk is globally attracting in I, or dk < µl in which case another cycle necessarily exists,
with symbolic sequence RLk+1, associated with a fixed point of the first return map T1(x) = fk+1

L ◦ fR(x), for
dk < x ≤ µl. That is, necessarily it must be dk+1 > µl because we know that T1(dk) = µl, T1(dk+1) = 0 and
the length of T−11 ([0, µl]) (equal to (dk+1 − dk)) is larger than the length of [0, µl] (equal to µl)). �

Also, a sufficient condition to have all stable cycles is that, on the one hand, there exists εl > 0 such that

Hl(x) is increasing, 0 ≤ H ′l(x) < 1 ∀x ∈ (−εl, 0) (9)

and, on the other hand, there exists εr > 0 such that

Hr(x) is decreasing, − 1 < (Hl ◦Hr)
′(x) ≤ 0 ∀x ∈ (0, εr) (10)

Then, for µl and µr such that [fR(µl), µl] ⊂ (−εl, εr), the cycles, which exist according to Theorem 1, must
have the eigenvalues −1 < λ(RLk) ≤ 0 for any k ≥ 1. In such cases, for fixed µl > 0, when we start to decrease
the offset µr from zero, the first return map has at first no discontinuity point d1 in J , and a fixed point of FR
must exist in J (corresponding to a stable 2−cycle of f). As µr decreases a first bifurcation occurs when d1 = µl
after which d1 < µl and the first return map is defined by two pieces T0(x) and T1(x) with k = 1, corresponding
to the coexistence of two stable cycles. As µr is further decreased, one discontinuity point exit from J leaving
one only stable cycle, then another discontinuity point enters in J with k increased by one, leading to bistability
and so on. This leads us to conclude that all the stable cycles must necessarily exist, and at most two of them
coexist, because at most one discontinuity point dk belongs to J , as proved in the following

Theorem 3. Consider the map f in (2) fulfilling the conditions in (9) and (10). Then any neighborhood of
the origin (0, 0) in the parameter space contains infinitely many periodicity regions Π(RLk), k ≥ 1, which are
issuing from the origin and ordered in anticlockwise direction in the quadrant µl > 0 and µr < 0. In addition,
for any k ≥ 1 every region Π(RLk) has a central part where RLk is the unique attractor and a part where RLk

coexists with RLk+1.

Proof. From the assumption, let 0 < µl < εr, then we have that for µr = 0, fL(fR([0, µl])) = fL([fR(µl), 0]) =
[fL(fR(µl)), µl] is an interval included in x > 0 , so that the range of fR, given by the interval fR([0, µl]) =
[fR(µl), 0] = [Hr(µl), 0] has a length smaller than the length of the interval [f−1L (0), 0]. As f−1L is expanding,
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Figure 3. First return map FR under the assumptions of Theorem 3.

we have that the length µ([f
−(k+1)
L (0), f−kL (0)]) increases with k, while for decreasing µr the range of the

function on the right side is of constant length, as for any µr < 0 we have fR([0, µl]) = [µr + Hr(µl), µr] and
µ([µr + Hr(µl), µr]) = µ([Hr(µl), 0]). This implies that for any µr < 0 the range fR([0, µl]) either does not
include any preimage of the origin, or it includes at most one preimage. Stated in other words, in the interval
J either there is no discontinuity point dk (which means that a unique stable cycle RLk exists) or there is at
most one discontinuity point dk ∈ J (which means that a pair of stable cycles RLk and RLk+1 coexist). Notice
that when µl > 0 is fixed and small enough, as µr is decreased from 0, then the cycles (which exist for any
k ≥ 1 according to Theorem 1) all appear for increasing values of k, thus leading to periodicity regions ordered
in anticlockwise direction, and necessarily of stable cycles as −1 < λ(RLk) ≤ 0 for any k ≥ 1, coexisting in pair
in suitable regions. �

Note that the proved coexistence between cycles of periods RLk and RLk+1 as well as between the cycles
RLk+1 and RLk+2 implies that the existence region of the cycle RLk+1 has a central part in which it is the
unique attractor, surrounded by two regions in which it coexists (on one side with RLk and on the other side
with RLk+2).

We remark that this results extends the one presented in [4] as the condition based on the contraction of the
right branch is replaced here by the contraction of the composite function Hl ◦Hr(x) in a right neighborhood
of the origin.

The structure of the first return map under the assumptions of Theorem 3 is illustrated in Fig. 3. The BCB
occurs when dk = µl, which means fkL ◦ fR(µl) = 0 that is fkL ◦ fR ◦ fL(0) = 0 corresponding to the condition
defined in (7). While a stable cycle disappears when dk = 0, which means fkL ◦ fR(0) = 0 corresponding to the
condition defined in (6).

Clearly if the functions fR(x) and fL(x) have a simple structure, then it is also possible to get the BCB
curves in analytic form explicitly (from the Eqs. (6) and (7) given in implicit form). For example, considering
the piecewise linear case

x′ = f1(x), f1(x) =

{
fL(x) = µl + alx if x < 0
fR(x) = µr + arx if x > 0

(11)

it is very easy to get the BCB curves explicitly in analytic form (the results are shown in Fig. 4a).
One more example is given by the following piecewise smooth map

x′ = f2(x), f2(x) =

{
fL(x) = µl + a(ex − 1) if x < 0
fR(x) = µr + b(e−x − 1) if x > 0

(12)

which fulfills the conditions of Theorem 3 for 0 < ab < 1. For the case a = 0.7 and b = 1.3 the periodicity
regions of this map are shown in Fig. 4b.

As already remarked, in general the stability of the maximal cycles depends on the derivatives in the periodic
points. However, as long as the first return map is uniquely invertible in I, unstable cycles (and therefore chaos)
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Figure 4. Bifurcation scenario in the (µr, µl) parameters space. (a) System (11) with al = 0.7
and ar = −1.3. (b) System (12) with a = 0.7 and b = 1.3.

cannot occur. As stated by Theorem 2 only stable cycles can exist, at most pairwise coexisting. While when
the first return map is non uniquely invertible in I then chaos can occur. As an example consider the map

x′ = f3(x), f3(x) =

{
fL(x) = µl + ax if x < 0
fR(x) = µr + b(e−x − 1) if x > 0

(13)

whose graph for a = 1.2 and b = 1.5 is shown in Fig. 5. In this case we can have the analytic BCB curves of
the maximal cycles. In fact we have

fkL(x) = µl
1− ak

1− a
+ akx (14)

and

fkL ◦ fR(x) = µl
1− ak

1− a
+ akµr + bak(e−x − 1) (15)

so that the BCB curves defined by the condition fkL ◦ fR(0) = 0 are given by

ξrk : µl = −µr
(
ak

1− a
1− ak

)
(16)

and from

fk−1L ◦ fR ◦ fL(x) = µl
1− ak−1

1− a
+ ak−1µr + bak−1(e−(µl+ax) − 1) (17)

we obtain the BCB curves defined by the condition fk−1L ◦ fR ◦ fL(0) = 0 which are given by

ξlk : µr = −b(e−µl − 1)− µl
1− ak−1

(1− a)ak−1
) (18)

shown in Fig. 6 for k = 1, ..., 5.
Let us close this section showing another example in which the function Hl(x) = (x + 1)2 − 1 leads to an

unstable fixed point x∗l (µl) for fL(x). Consider

x′ = f4(x), f4(x) =

{
fL(x) = µl + (x+ 1)2 − 1 if x < 0
fR(x) = µr − 0.1x if x > 0

. (19)
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Figure 5. In (a) graph of the map f3 in (13) and of the first return map in (b), at a = 1.2,
b = 1.5, µl = 1 and µr = −0.5.

Figure 6. Bifurcation scenario for example (13) in the (µr, µl) parameter space for a = 1.2
and b = 1.5. In (a) periodicity regions of stable cycles, which are overlapping in pair for ab > 1.
The white region corresponding to chaotic behavior. In (b) the BCB curves whose analytical
expressions are given in (18) and (16).

In Fig. 7a we show a two-dimensional bifurcation diagram of this map, which in large is dominated by the
quadratic function Hl(x). However, locally (in a neighborhood of (0, 0) in the parameter plane) we have Hl(x)
increasing, so that Theorem 1 can be applied, and we shall see the BCB curves issuing from (0, 0) which are
accumulating on the constraint in (4). Here we have fR ◦ fL(0) = −0.1µl + µr, the unstable fixed point is

x∗l (µl) = −1+
√
1−4µl

2 so that the periodicity regions issuing from (0, 0) in the parameter plane belong to the
region satisfying

−0.1µl + µr >
−1 +

√
1− 4µl

2
(20)
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Figure 7. Bifurcation scenario for example (19) in the (µr, µl) parameter space.

and only a few of them are associated with stable cycles. In any case the curves are accumulating on the set
denoted as C in Fig. 7b, given by the equation

C: µr = 0.1µl +
−1 +

√
1− 4µl

2
(21)

and the white region shown in Fig. 7b is associated with a chaotic behavior.

3.3. Particular case fR(x) = const

This particular case is quite simple. The periodicity regions associated with k−cycles described above all
exist without overlapping. In fact, considering

fR(x) = µr for any x ≥ 0

and fL(x) increasing in [µr, 0], we have that the range of fR(x) is the unique point µr and the first return map
is given by a constant function with the value fkL(µr) > 0 for a suitable k ≥ 1, which is then mapped into a
periodic point (as we necessarily have fR ◦ fkL(µr) = µr). It is clear that fixed any value µl > 0, then decreasing

µr all the n−cycles, for any integer n ≥ 2 can be obtained. In fact, given µl, consider the value f−1L (0), then

for f−1L (0) ≤ µr < 0 we have a 2−cycle, for f−2L (0) ≤ µr < f−1L (0) we have a 3−cycle, and so on, defining

f−0L (0) = 0, for f−kL (0) ≤ µr < f
−(k−1)
L (0), k ≥ 1, we have a (k + 1)−cycle with symbolic sequence RLk. The

BCB curves of the cycles are given by

µr = f−kL (0).

4. The quadrant µl > 0 and 0 < µr < µl

Let us here assume that Hl(x) fulfills the conditions stated in Eq. (9) and that Hr(x) is a decreasing function
in a right neighborhood of x = 0. As we have seen in Sec. 2, at µr = 0 the BCB of the fixed point x∗r occurs and
a 2-cycle of f exists (at least for µl close to 0). Thus the BCB curve leading to the appearance of the 2-cycle
belongs to the region with µl > 0; and a region of coexistence between the fixed point x∗r and the 2-cycle must
exist. Only in the case fR(x) = µr (constant function) the BCB curve corresponding to the creation of the cycle
RL is the same as the destruction of the fixed point x∗r and it is the line µr = 0. Otherwise, this BCB curve
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Figure 8. Different situations for the first return map FR when x∗r is stable.

Figure 9. Different situations for the first return map FR when x∗r is unstable.

has a portion in the quadrant µr > 0. Here the dynamical behaviors are different and depend on the existence
of a stable or unstable fixed point x∗r on the right side. In any case we can investigate the dynamics by using
again the first return map.

For µr = 0 we have fr(0) = 0 (see Fig. 8a) and thus for µr > 0 a fixed point x∗r exists in x > 0 which may
be locally stable or unstable. Let us distinguish between these two cases

(I) x∗r is stable. For µr = 0 we have d1 = f−1R ◦ f−1L (0) > µl (as f−1L is expanding) and the point

d0 = f−1R (0) = 0, so that the first return map in the interval J = [0, µl] is given by the decreasing function
fL ◦ fR(x) which has a stable fixed point (a 2-cycle for the original map). For µr > 0 we have

d0 = f−1R (0) > 0 (22)

and clearly d0 is a discontinuity point. For x ∈ (0, d0) the map is positive, decreasing and a stable fixed point
x∗r exists whose basin in the positive side is (0, d0), so that here the first return map is the map itself, while the
first return map in the interval (d0, µl] is given by fL ◦ fR(x) and has a stable fixed point (a 2-cycle for the map
f) as fL ◦ fR(d0) = µl and fL ◦ fR(µl) > 0 (see Fig. 8b). Thus we have the coexistence of two attracting cycles,
the fixed point x∗r and a 2-cycle with symbolic sequence RL. Increasing µr > 0 also d0 increases and the BCB
leading to the disappearance of the 2-cycle occurs when d0 = µl, i.e. when f−1R (0) = µl, which we can write
also as

fR(µl) = 0 or fR ◦ fL(0) = 0 (23)

and after that, for higher values of µr we have a unique stable fixed point x∗r .

(II) x∗r is unstable. For µr = 0 we have d1 = f−1R ◦ f−1L (0) > µl and the point d0 = f−1R (0) = 0, so that
the first return map in the interval [0, µl] is given by the decreasing function fL ◦ fR(x) which has a stable fixed
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Figure 10. One-dimensional bifurcation diagrams for example (12) with a = 0.7 and b = 1.3.
(a) µl = 0.04 and (b) µl = 0.004.

Figure 11. One-dimensional bifurcation diagrams for example (12) with a = 0.7 and b = 1.1.
(a) µl = 0.04 and (b) µl = 0.004.

point (a 2-cycle for the original map) (see Fig. 9a). For µr > 0 we have a discontinuity point in

d0 = f−1R (0) > 0. (24)

For x ∈ (0, d0) the map is positive, decreasing and an unstable fixed point x∗r exists. As long as d0 < µl for
x ∈ (0, d0) the first return map is the map itself, while the first return map in the interval (d0, µl] is given by
fL ◦ fR(x) and has a stable fixed point (a 2-cycle for the map f). Thus the behavior of the map f for points
x ∈ (0, d0) depends on the shape of fR. However, we recall that a decreasing function besides the fixed point
x∗r , can have at most cycles of period 2 in pair, alternated stable and unstable. Also if fL ◦ fR(µl) > µr then
the first return map is invertible (Fig. 9b), which means that chaos cannot occur, while for fL ◦ fR(µl) < µr
(Fig. 9c) chaos can occur. Clearly the BCB leading to the disappearance of the 2-cycle occurs, as before, at
d0 = µl, i.e. as in Eq. (23).
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Examples of one-dimensional bifurcation diagrams with the exponential functions in (12) are given in Figs. 10
and 11.
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