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Abstract

In this paper a discrete-time economic model is considered where the savings are proportional to income and the investment demand

depends on the di�erence between the current income and its exogenously assumed equilibrium level, through a nonlinear S-shaped

increasing function. The model can be ultimately reduced to a two-dimensional discrete dynamical system in income and capital, whose

time evolution is ``driven'' by a family of two-dimensional maps of triangular type. These particular two-dimensional maps have the

peculiarity that one of their components (the one driving the income evolution in the model at study) appears to be uncoupled from the

other, i.e., an independent one-dimensional map. The structure of such maps allows one to completely understand the forward dy-

namics, i.e., the asymptotic dynamic behavior, starting from the properties of the associated one-dimensional map (a bimodal one in

our model). The equilibrium points of the map are determined, and the in¯uence of the main parameters (such as the propensity to save

and the ®rms' speed of adjustment to the excess demand) on the local stability of the equilibria is studied. More important, the paper

analyzes how changes in the parameters' values modify both the asymptotic dynamics of the system and the structure of the basins of

the di�erent and often coexisting attractors in the phase-plane. Finally, a particular ``global'' (homoclinic) bifurcation is illustrated,

occurring for su�ciently high values of the ®rms' adjustment parameter and causing the switching from a situation of bi-stability

(coexistence of two stable equilibria, or attracting sets of di�erent nature) to a regime characterized by wide chaotic oscillations of

income and capital around their exogenously assumed equilibrium levels. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

We consider a discrete-time economic model, described by a two-dimensional dynamical system in in-
come and capital, where we assume that the savings are proportional to the income and the investment
demand depends on the di�erence between the current income and its exogenously assumed equilibrium
level, through a nonlinear S-shaped increasing function. The model we examine is a particular case of a
more general Kaldor-type business cycle model proposed in [14] and investigated in its general dynamic
behavior in [4]. Ultimately it reduces to a family of two-dimensional maps of triangular type. The analysis
of the dynamics generated by the model is therefore a pedagogical tour through the properties of triangular
maps. These particular two-dimensional maps have the peculiarity that one of their components (the one
driving the income evolution in the model at study) is decoupled from the other, i.e., an independent one-
dimensional map. As shown in [6], the particular structure of such maps allows to completely understand
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the forward dynamics, i.e., the asymptotic dynamic behavior, thanks to the fact that the bifurcations can be
deduced from the associated one-dimensional map (a bimodal one in our model).

We show that for economically meaningful values of the parameters the model always has three steady
states and we study the in¯uence of the main parameters, like the propensity to save and the ®rms' speed of
adjustment to the excess demand, on the local stability of the equilibria. More important, we show how the
dynamic behavior of the system is deeply in¯uenced by the switching to the regime of noninvertibility of the
map, leading to more complex structures of the basins of the di�erent attracting sets. Finally, a particular
``global'' bifurcation is analyzed marking the switching from a situation of bi-stability, where the phase-
plane is shared between two coexisting attractors, to a regime characterized by more complex asymptotic
dynamics.

The paper is organized as follows. In Section 2, we give a description of the model and an economic
interpretation of the underlying assumptions. In Section 3, we analyze in detail some important properties
of the two-dimensional map driving the dynamics, such as the triangular structure of the map, the linear
structure of its second component, the existence of ®xed points and the conditions for their local stability,
some symmetry properties and the conditions for the invertibility or noninvertibility of the map. In Section
4, by using both the analytical properties of the map and some numerical tools, we discuss the transition to
more and more complex dynamic behaviors which is observed for increasing values of the ®rms' speed of
adjustment to the excess demand. Some conclusions are contained in Section 5.

2. The model

The model we consider is a particular case of a Kaldor-type business cycle model proposed in [14] and
investigated in its general dynamic behavior in [4]. The model studied in [4,14] starts from a well-known
discrete-time version of the Kaldor model (see e.g., [2,10,11])

Yt�1 ÿ Yt � a�It ÿ St�; �1a�
Kt�1 � �1ÿ d�Kt � It; �1b�

where the dynamic variables Yt and Kt represent the income (or output) value and the capital stock in period
t, respectively, a (a > 0) the ®rms' speed of adjustment to the excess demand, the parameter d �0 < d < 1�
the capital stock's depreciation rate, It � It�Yt;Kt� the investment demand in period t and St � St�Yt� are the
savings in the same period.

As it is well known (see, for instance [5]), under the simple assumption that the investment demand It is
independent of the capital stock Kt, i.e., oIt=oKt � 0, and that both It and St are linear increasing functions
of Yt, with dS=dY > oI=oY , the system is globally asymptotically stable, while by introducing nonlinearities
into the investment demand curve, for example by assuming that It is a sigmoid-shaped function of Yt, we
may have a situation of bi-stability. Figs. 1(a) and (b) qualitatively represent the income adjustment process
in case of disequilibria (captured by Eq. (1a)), in the linear and nonlinear cases.

The essential dynamic feature that enables the model to display cyclical behavior is the long term
``shifting'' of the investment function as a consequence of changes in the capital stock, as qualitatively
described by Kaldor in [7]. By assuming that the investment demand curve shifts downwards (resp. up-
wards) when the income, and consequently the capital stock, increases (resp. decreases), cyclic movements
of the level of income and capital may occur, as qualitatively shown in Fig. 2 (see again [5, pp. 122±129], for
economic justi®cations of these assumptions and for a wider discussion).

In the form proposed in [14], savings are assumed, as usual, proportional to income

St � rYt; �2�
where the coe�cient r, 0 < r < 1, represents the propensity to save. On the other hand, investment demand
is assumed to be an increasing and sigmoid-shaped function of income and a linear decreasing function of
capital stock

It � rl� c
rl
d

�
ÿ Kt

�
� arctan�Yt ÿ l�; �3�
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where c is a positive parameter, l �l > 0� the exogenously assumed equilibrium level of income and
therefore rl represents the equilibrium level of savings (and also of investment demand), while rl=d is the
equilibrium capital stock. As usual in Kaldor business cycle models, one of three steady states may exist: in
this latter case, besides the exogenously assumed equilibrium P � �l; rl=d�, two more steady states exist, a
``wealth'' equilibrium Q, characterized by high equilibrium levels of income and capital, and a ``poverty''
equilibrium R, with low levels of income and capital. As shown in [4], a large variety of dynamic behaviors
can occur, in particular bi-stability, with the exogenous equilibrium P acting as a watershed between the
basins of attraction of the two stable steady states Q and R, and self-sustaining oscillations, regular or
chaotic, around the equilibrium P. Moreover, regions in the space of the parameters can be determined
where a large attracting limit cycle coexists with the two stable equilibria Q and R, surrounding their basins
of attraction.

Fig. 2. Shifting of the investment function, as a consequence of changes in the income level and thus in the capital stock: the sequence

(a)±(d) shows the mechanism which may generate endogenous oscillations of income.

Fig. 1. E�ect of the introduction of nonlinearities into the investment function: linear investment function (a) and sigmoid-shaped

investment function (b).
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The aim of the present paper is to analyze in more detail the dynamic behavior of the model under the
assumption that the investment demand curve is not a�ected by changes in the capital stock, i.e.,
oI=oK � 0. In fact, even in this case, usually described as a simple situation of bi-stability, di�erent and
more complex dynamic phenomena may occur: this complexity is related, on one hand, to the asymptotic
dynamics, i.e., to the nature of the attracting sets, and on the other hand to the structure of their basins of
attraction.

By setting c � 0 in Eq. (3) and substituting into the system (1a)±(1b), the model ultimately reduces to the
following two-dimensional dynamical system in income and capital:

Yt�1 � Yt � arl� a arctan�Yt ÿ l� ÿ arYt; �4a�
Kt�1 � rl� arctan�Yt ÿ l� � �1ÿ d�Kt: �4b�

The study of the dynamical properties of the system (4a)±(4b) allows us to explore the long-run behavior of
income and capital stock, starting from a given initial condition.

3. Some general properties

As described at the end of the previous section, the time evolution of income and capital is obtained by
the iteration of a two-dimensional nonlinear map T : �Yt;Kt� ! �Yt�1;Kt�1� given by

T :
Y 0 � �1ÿ ar�Y � arl� a arctan�Y ÿ l�; �5a�
K 0 � �1ÿ d�K � rl� arctan�Y ÿ l�; �5b�

(
where the symbol 0 denotes the unit time advancement operator, that is, if the right-hand side variables are
income and capital at time t, then the left-hand ones represent income and capital at time t � 1.

We shall now consider in detail some properties of the map T, such as the consequences of its triangular
structure, the particular form of the second component (5b), the existence of ®xed points and their local
stability analysis, some symmetry property and the role of invertibility or noninvertibility of the map. In
order to analyze these properties, we brie¯y recall the meaning of terms that will be used in the following.

Let A be a subset of the plane. Then we say that A is a trapping set of T (or T is trapping on A) if
T �A� � A (that is, if A is mapped into itself by T); T is invariant on A (or A is invariant by T) if T �A� � A,
i.e., if A is trapping and for any y 2 A, there exists x 2 A such that T �x� � y. A p-cycle of T is a periodic
orbit of T of least period p, p P 1. A p-periodic point of T is a point belonging to some p-cycle of T.

In the following, we also will denote by DT �Y ;K� the Jacobian matrix of the map T, by T n, n P 1, the nth
iterated of the map T and by DT n�Y ;K� the Jacobian matrix of the map T n.

3.1. The triangular structure of the map

We can observe that the ®rst component of the map T does not depend on K: the map is therefore, a
triangular map, i.e., it has the following structure:

T :
Y 0 � F �Y �; �6a�
K 0 � G�Y ;K�: �6b�

(
This means that the dynamics of the income Y are only a�ected by income itself, being Yt�1 � F �Yt�,
whereas the time evolution of the capital stock is also in¯uenced by the income, being Kt�1 � G�Yt;Kt�.
By using the terminology of the engineering systems (see, e.g. [15]) we may say that the one-dimensional
system (6a) is the ``driving system'' and the capital stock is ``driven'' by the income dynamics. 1 As a
consequence, the dynamics of the map T is deeply in¯uenced by the dynamics of the one-dimensional

1 In the physical and engineering literature triangular maps are often referred to as skew products.
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map Y 0 � F �Y �. In particular, many of its bifurcations are associated to those of the one-dimensional
map Y 0 � F �Y � and all the cycles of T stem from cycles of F. Moreover, since the Jacobian matrix of the
map T, given by

DT �Y ;K� �
1� a

1��Yÿl�2 ÿ ar 0
1

1��Yÿl�2 1ÿ d

" #
�7�

is lower triangular, it cannot have complex eigenvalues and thus the occurrence of regular oscillations,
similar to those usually observed in Kaldor-type models, is ruled out.

Let us brie¯y recall some useful properties of two-dimensional triangular maps (for a wider discussion,
see [6,8,9]).

Property 1. The eigenvalues of DT �Y ;K� are always real, given by z1 � F 0�Y � and z2 � GK�Y ;K�. Any ®xed
point of T is therefore, either a node or a saddle.

Property 2. The eigenvalues of DT n�Y ;K�, for any integer n P 1, are real. Any cycle of T is therefore, either
a node or a saddle. If Cp � f�Yi;Ki�, i � 1; 2; . . . ; pg is a p-cycle of T, then the eigenvalues of the cycle (i.e.,
the eigenvalues of the Jacobian matrix of T p in any point of the cycle) are given by z1 �

Qp
i�1 F 0�Yi� and

z2 �
Qp

i�1 GK�Yi;Ki�.

Property 3. Let Cp � f�Yi;Ki�; i � 1; 2; . . . ; pg be a p-cycle of T. Then fY1; Y2; . . . ; Ypg is a periodic orbit of
the one-dimensional map F of least period r, where r is such that rm � p for some integer m P 1.

Property 4. Let �Yi;Ki�, i � 1; 2; . . . ; p, be a point of a p-cycle of T and �Yi;K� a point on the vertical line
Y � Yi. Then there exists some integer m P 1 such that T r�Yi;K�, where r � p=m, is trapping on the line
Y � Yi and may be considered a one-dimensional map of the state variable K.

In particular Property 4 implies that:
1. no points on the vertical line Y � Yi can belong to the stable set of some other cycle of T with periodic

points all outside that line;
2. any p-periodic point of T must belong to trapping (for some T r, with rm � p, m P 1) vertical lines Y � Yi,

where Yi is a r-periodic point of the one-dimensional map F;
3. if Cr � fY1; Y2; . . . ; Yrg is an r-cycle of the map F and a p-cycle Cp of T exists, on the vertical lines Y � Yi,

i � 1; 2; . . . ; r, of period p � rm for some integer m P 1, then the eigenvalue z1 of the p-cycle Cp is related
to that of the r-cycle Cr of F (let us denote it by s) as follows: z1 � sm;

4. if a p-cycle Cp of the two-dimensional triangular map T is a saddle with jz1j � j
Qp

i�1 F 0�Yi�j > 1 and
jz2j � j

Qp
i�1 GK�Yi;Ki�j < 1, then the points of the local stable set of Cp belong to the vertical lines

through the periodic points.

Property 5. If Cr � fY1; Y2; . . . ; Yrg is an r-cycle of the map F, then the restriction of the map T r to any of
the vertical lines Y � Yi, i � 1; 2; . . . ; r, is trapping on that line. If the r-cycle of F is attracting (resp. re-
pelling), then the vertical lines Y � Yi, i � 1; 2; . . . ; r, are attracting (resp. repelling) for T r.

As far as the bifurcations of the map T are concerned, it is easy to see from the above properties that any
bifurcation of the one-dimensional map F gives a bifurcation of T. In particular, a fold bifurcation of F
creates a couple of cyclical trapping lines of T (one repelling and one attracting). At a flip bifurcation of a
cycle of F, trapping cyclical vertical lines from attracting (for T) become repelling and new cyclical at-
tracting lines are created.

Finally, it is well known that if the two-dimensional map T is a noninvertible endomorphism, with F and
G continuously di�erentiable, then the locus LCÿ1 (critical curve of rank 0) of T is generally given by
det DT �Y ;K� � 0 (see, e.g. [13]). Therefore, for a noninvertible triangular map the following property
holds:
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Property 6. The locus LCÿ1 of the phase-plane is made up of curves LCÿ1;ak and LCÿ1;b such that
(i) LCÿ1;ak are vertical lines of equation Y � cÿ1;ak , where the cÿ1;ak satisfy F 0�cÿ1;ak � � 0;
(ii) LCÿ1;b is the locus GK�Y ;K� � 0.

The critical curves LCi;ak � T i�1�LCÿ1;ak �, for i P 0, belong to vertical lines x � ci;ak , where ci;ak � F i�1�cÿ1;ak �
are critical points of F �Y �.

3.2. The structure of the second component of the map

It can be noticed that the second component of the map (5a)±(5b) is separable with respect to the
variables Y and K and linear in K, i.e., it has the following structure:

K 0 � �1ÿ d�K � I�Y �; �8�
where I�Y � � rl� arctan�Y ÿ l� is the investment demand function.

This property, together with the above-mentioned properties of two-dimensional triangular maps,
enable us to formulate the following propositions, which are proved in Appendix A.

Proposition 1. The fixed points and the cycles of the map (5a)±(5b) can only be either stable nodes or saddles.

Proposition 2. The stable manifold W s of a saddle cycle of T is the union of the lines of equation Y � Yi, where
Yi, i � 1; 2; . . . ; r, are the periodic points of the corresponding cycle of the one-dimensional map F, and of the
lines of equation Y � Yÿj, where Yÿj, j � 1; 2; . . ., are the preimages of any rank of the periodic points.

3.3. Fixed points

The equilibrium points (or steady states) of the map T are the solutions of the algebraic system

rl� arctan�Y ÿ l� ÿ rY � 0;

rl� arctan�Y ÿ l� ÿ dK � 0;

obtained by setting Y 0 � Y and K 0 � K in (5a) and (5b). This system can be rewritten as

K � r
d

Y ; �9a�
r�Y ÿ l� � arctan�Y ÿ l�: �9b�

It is trivial to realize that the steady states are independent from the ®rms' adjustment parameter a. The ®rst
equation says that the ®xed points belong to the line K � r

d Y in the phase-plane, and from the second
equation we have that the Y-values (which are the ®xed points of the one-dimensional map F) can be
obtained as intersections of the two curves of equation f �Y � � r�Y ÿ l� and g�Y � � arctan�Y ÿ l�. It
follows that if r P 1, then the system (9a)±(9b) admits the point P � �l; l r

d� as unique solution, while in the
case 0 < r < 1 three solutions exist, the point P and the points Q and R, which are symmetric with respect
to P, as we shall see in Section 3.4. Of course, since r represents the propensity to save and the case
0 < r < 1 includes the interval of values of interest for us, the case of three ®xed points is the only one
economically meaningful. The explicit coordinates of the ®xed points Q and R cannot be written. We can
numerically compute them as �YQ;

r
d YQ� and �YR;

r
d YR�, where YQ and YR are obtained from Eq. (9b) and

YR � 2lÿ YQ due to the symmetry property (see, Section 3.4).

3.4. Symmetry property

It is worth noting that the map T is symmetric with respect to the ®xed point P � �l; l r
d�. This means

that symmetric points are mapped into symmetric points (with respect to P). Denote by F �Y � and G�Y ;K�
the two components of the map T
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F �Y � � �1ÿ ar�Y � arl� a arctan�Y ÿ l�;
G�Y ;K� � �1ÿ d�K � rl� arctan�Y ÿ l�

and observe that the symmetry of the point �Y ;K� with respect to P is the point �2lÿ Y ; 2 rl
d ÿ K�. The

above property, which can easily be veri®ed, can be formalized as follows:

F �2lÿ Y � � 2lÿ F �Y �;
G�2lÿ Y ; 2

rl
d
ÿ K� � 2

rl
d
ÿ G�Y ;K�:

We can so state the following propositions:

Proposition 3. Let S�Y ;K� � �2lÿ Y ; 2 rl
d ÿ K� be the symmetry with respect to the fixed point P � �l; l r

d�.
Then 8�Y ;K� we have

S�T �Y ;K�� � T �S�Y ;K��:

This implies that a cycle of T is either symmetric with respect to P or admits a symmetric cycle. That is:

Proposition 4. Let C � f�Y1;K1�; . . . ; �Yp;Kp�g be a cycle of T of period p P 1. Then
either S�C� � C
or S�C� � C0 6� C,

where C0 � fS�Y1;K1�; . . . ; S�Yp;Kp�g is another different cycle of T, of the same period p, with periodic points,
which are symmetric with respect to P of the periodic points in C.

3.5. Local stability analysis of the ®xed points

Let us now turn to the local stability of the ®xed points P � �l; l r
d�, Q � �YQ;

r
d YQ� and R � �YR;

r
d YR�. The

results about the nature of the ®xed points and their local stability analysis are summarized by the following
proposition, proved in Appendix B, which de®nes, for each equilibrium point, the stability region in the
parameters space X � f�a; r� 2 R2 j a > 0; 0 < r < 1g.

Proposition 5. The equilibrium P is a saddle for each �a; r� 2 X. The equilibria Q and R are stable nodes for
each �a; r� in the region Xs�Q� defined as

Xs�Q� � a; r� � 2 Xja�
< af �r�

	
;

where af �r� � 2=frÿ �1� �YQ ÿ l�2�ÿ1g > 2. Outside this region, Q and R are saddles.

It is worth noting that the only way the ®xed point Q (and thus R) can lose stability is through a bi-
furcation with z1�Q� � ÿ1, i.e., a ¯ip (or period doubling) bifurcation, where the stable ®xed point becomes
unstable (a saddle in our case) giving rise to a stable cycle of period two. The determination of the ¯ip-
bifurcation curve of the ®xed points Q and R, in the parameters' plane �a; r�, can only be done through

numerical evaluation of the quantity af �r� � 2=frÿ �1� �YQ ÿ l�2�ÿ1g.

3.6. Invertibility conditions

For some regions of the parameters' space the map T is a noninvertible map of the plane. This
means that while starting from some initial values of income and capital stock, say �Y0;K0�, the iter-
ation of (5a)±(5b) uniquely de®nes the trajectory �Yt;Kt� � T t�Y0;K0�, t � 1; 2; . . ., the backward iteration
of (5a)±(5b) is not uniquely de®ned. In fact, a point �Y 0;K 0� of the plane can have several Rank-1
preimages.
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As we already pointed out, many of the properties of the map at study are related to those of the one-
dimensional map

Y 0 � F �Y � � �1ÿ ar�Y � arl� a arctan�Y ÿ l�:
It can be immediately proved that the two-dimensional map T is invertible if and only if the one-dimen-
sional map F is. It is worth noting that this property is not simply due to the triangular structure of the map
T but also due to the fact that the second component of T, i.e., the function

G�Y ;K� � �1ÿ d�K � rl� arctan�Y ÿ l�;
is linear in K.

Turning to the conditions under which the one-dimensional map F �Y � is invertible, it is easy to show that
a point Y 0 has a unique preimage if and only if ar6 1, while in the opposite case, ar > 1, a point may have
one, two, or three di�erent preimages. In fact, in the case ar > 1, F is a bimodal map with a local minimum
point, critical point of Rank 0 2 denoted by cÿ1;m, and a local maximum point, critical point of Rank 0
denoted by cÿ1;M, where

cÿ1;m � lÿ
����������������������

a
arÿ 1

ÿ 1

r
; cÿ1;M � l�

����������������������
a

arÿ 1
ÿ 1

r
: �10�

The critical points of Rank 1 are given by their images

cm � F �cÿ1;m�; cM � F �cÿ1;M�:
Thus the points Y with Y < cm or Y > cM have a unique preimage, the points satisfying cm < Y < cM have
three distinct preimages and the points Y � cm and Y � cM have two preimages merging in a critical point,
together with another distinct preimage, called extra-preimage.

If we consider again the two-dimensional map T, then we can see that if Y is a point with three (resp.
one, two) preimages for the one-dimensional map F, then the whole vertical line through this point has
three (resp. one, two) preimages for the two-dimensional map T. Thus, following the notation used in [13],
we have that the map T is, for ar > 1, of type Z1 ÿ Z3 ÿ Z1, which means that the phase-plane is subdivided
in di�erent regions Zj�j � 1; 3� each point of which has j distinct Rank-1 preimages. The critical curves of
Rank 1, denoted by LC generally bound such Zj regions (see again [13]). They are de®ned as the locus of
points having at least two merging Rank-1 preimages, and for our map T they are given by the union of two
vertical lines

Y � cm; Y � cM:

The locus of merging Rank-1 preimages, which constitutes the critical curve of Rank 0 of T, denoted by
LCÿ1, is made up of the two lines

Y � cÿ1;m; Y � cÿ1;M:

We remark that we obtain the equations of LC and LCÿ1 starting from the critical points of the one-di-
mensional map F, i.e., by substantially applying Property 6, which holds for any two-dimensional trian-
gular map.

4. Numerical exploration of the dynamic behaviors

In this section we explore, by numerical simulations, the dynamic behaviors of the map. We shall ®x the
exogenous equilibrium level of the income at the value l � 100, and the depreciation rate of capital at the
value d � 0:2. This latter assumption is without loss of generality, because the stability of the equilibrium

2 We follow the terminology of Mira et al., see [13].
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points and of the cycles of the map does not depend on d, and the same qualitative dynamics as those
commented in this section can be obtained with a di�erent value of d, 0 < d < 1.

In order to comment the local and global behaviors of the map we shall follow the particular bifurcation
route, in the �a; r� plane, obtained by assuming the propensity to save as ®xed at the value r � 0:4 and
increasing the adjustment parameter a.

We will show how the bifurcations and dynamic behaviors of the two-dimensional map T can be
completely described starting from those of the one-dimensional map F. It is worth noting that this result is
not a consequence of the triangular structure only, but of the joint e�ect of the triangular structure and the
linearity of the second equation of T.

In Fig. 3(a), obtained with a � 2, we show the basins of attraction B�Q� and B�R� of the two stable
nodes Q and R , separated by the stable manifold of the saddle P, which, as we know from Proposition 2, is
the vertical line of equation Y � l. Fig. 3(b) shows how this simple situation of bi-stability is related to the
shape of the one-dimensional map F: here it is evident that the initial conditions Y0, with Y0 < l, originate
trajectories converging to YR, while the initial conditions Y0, with Y0 > l, originate trajectories converging
to YQ.

The economic interpretation of the structure of the basins represented in Fig. 3 is straightforward: if the
economic system starts with a high level of income (Y0 > l), then it will maintain a high level of income over
time and it will eventually settle down on the wealth equilibrium Q, while if it starts with a low level of
income (Y0 < l), then it will converge to the poverty equilibrium Q, by maintaining a low level of income
during the whole time evolution.

We already know, from the local stability analysis of the ®xed points, that for any given r, 0 < r < 1, the
equilibria Q and R are stable for a < af �r� � 2=�rÿ u�YQ��, where u�Y � � �1� �Y ÿ l�2�ÿ1

. Numerical
computations show that, when r � 0:4, the bifurcation value is af ' 6:47: here, as we shall see, a ¯ip bi-
furcation occurs, where the stable nodes Q and R become saddles and two symmetric stable cycles of period
two appear. But the simple structure of the basins shown in Fig. 3(a) changes before this bifurcation value,
as soon as the map enters the regime of noninvertibility, i.e., for a > 1=r � 2:5. The main structural
changes occur at this point. The basins of the two ®xed points Q and R become nonconnected and
structured in vertical strips and the stable manifold of the saddle P, which separates the basins of Q and R,
is now made up of several vertical lines (see, Fig. 4(a)). In fact, in the regimes in which the one-dimensional
map F is noninvertible, the ®xed point P of the map T has three di�erent preimages, P itself and two more

Fig. 3. Representation in the phase-plane of the basins of attraction of the stable nodes Q and R, obtained for parameters' values in the

invertibility region: the stable manifold W s�P � of the saddle point P behaves like a watershed (a), and this situation of bi-stability is

strictly related to the shape of the one-dimensional map driving the income evolution (b).
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points symmetric with respect to P, say Pÿ1;1 and Pÿ1;2 (as well as l, lÿ1;1, lÿ1;2 are the preimages of the ®xed
point l of the one-dimensional map F). Then by Proposition 2 the stable manifold of the saddle point P is
made up of the vertical lines of equation Y � l, Y � lÿ1;1, Y � lÿ1;2, and of the lines Y � lÿ2;1, Y � lÿ2;2,
where lÿ2;1 and lÿ2;2 are the (unique) Rank-1 preimages of lÿ1;1 and lÿ1;2, respectively, and of the lines
corresponding to the preimages of any rank of these points (see Fig. 4(b)). In Fig. 4(b), the ``immediate''
basins B0�Q� and B0�R� of the two coexisting equilibria are given by the intervals �l; lÿ1;2� and �lÿ1;1; l�,
respectively, but the global basin of each equilibrium is made up of in®nitely many more disjoint intervals.
Let us consider, for instance, the global basin B�Q� of the ®xed point Q. Besides B0�Q� and B0�R�, the
global basins of the equilibria include all the preimages of any rank of the immediate basins: for example it
can be easily seen from Fig. 4 that the set Tÿ1�B0�Q�� of points which are mapped by T into B0�Q� by one
iteration, is given by the vertical strip corresponding to the interval �lÿ2;2; lÿ1;1�, while the set Tÿ1�B0�R�� is
the strip given by �lÿ1;2; lÿ2;1�. In this way, in®nitely many disjoint strips Tÿr�B0�Q�� and Tÿr�B0�R�� are
obtained, whose points are mapped into B0�Q� or B0�R� by r iterations.

In economic terms, this new structure of the basins of the equilibria implies that the basin of poverty
includes also regions with a high level of income and vice versa, the basin of wealth includes regions with a
low level of income.

The noninvertibility of F, i.e., the existence of two local extrema, also causes the appearance of diverging
trajectories, due to the appearance of a repelling 2-cycle fs�1; s�2g separating the basin of divergent trajec-
tories from the basin of bounded trajectories (see again, Fig. 4(b), where also the map F 2 � F � F is rep-
resented). Correspondingly, a saddle cycle for the two-dimensional map T is created, whose stable manifold
is made up of the two vertical lines Y � s�1, Y � s�2 acting as a watershed between the basin B�1� of di-
vergent trajectories and the basin of bounded trajectories in the phase-plane (Fig. 4(a)).

The following proposition, proved in Appendix C, states the existence of such a repelling 2-cycle in the
region Xc of the parameters' space de®ned as

Xc � a; r� � 2 Xjaf > ac�r� � 2=rg;
included in the noninvertibility region of the map T.

Proposition 6. By increasing the adjustment parameter a for a fixed value of the propensity to save r, a re-
pelling 2-cycle fs�1; s�2g for the one-dimensional map F is created at a � ac�r� � 2=r.

Fig. 4. E�ects of the noninvertibility on the structure of the basins of the coexisting equilibria: the basins of Q (light grey) and R

(intermediate grey) become nonconnected and structured in vertical strips separated by the stable manifold of the saddle P, made up of

several vertical lines which accumulate on the boundary of the basin B�1� (dark grey) of divergent trajectories (a); each vertical line

corresponds to a preimage (of a given rank) of the ®xed point l of the associated one-dimensional map (b).
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We can see from Fig. 4(b) that the points Y0 2 �s�1; s�2� have bounded trajectories, while the points
Y0 62 �s�1; s�2� have diverging trajectories. It is also evident that when a is further increased the basin B�1� of
divergent trajectories approaches the ®xed points P, Q and R.

Fig. 4(a) shows that the vertical strips constituting the basins of Q and R accumulate on the vertical lines
for s�1 and s�2. In fact, since the vertical lines Y � s�1 and Y � s�2 constitute a repelling set for the forward
iteration of T (see Property 5 of triangular maps in Section 3.1), this set behaves as an attracting set for the
iteration of the inverses of T (see, for instance [1]). Such a situation leads to a loss of predictability about the
long run evolution of the economy: if the initial state is for instance near the boundary of the region of
bounded trajectories, then a small change in the initial state may give a completely di�erent long run
evolution of the system, if the change causes a crossing of some basin boundary. This can be observed from
Figs. 5(a) and (b), which represent the income Y as a function of time in di�erent situations. Fig. 5(a) shows
two trajectories, corresponding to initial conditions slightly di�erent from each other, one bounded and
converging to the equilibrium point R, the other diverging. Fig. 5(b) illustrates a similar situation, with two
initial conditions converging to di�erent equilibria.

At a ' 6:47 a ¯ip bifurcation of the stable nodes Q and R occurs, transforming them into saddle points
and creating two symmetric stable 2-cycles. We point out that such a ``local'' bifurcation does not modify
the global structure of the basins: it simply replaces each stable steady state with an attracting 2-cycle. At
a ' 7:6 each attracting 2-cycle of F undergoes a ¯ip bifurcation, transforming it into a repelling cycle and
creating a new attracting 4-cycle and correspondingly the 2-cycles (nodes) of T become saddles and two new
attracting 4-cycles (nodes) are created (Fig. 6).

Fig. 6(a) represents the coexisting two stable 2-cycles for a � 7:25 and Fig. 6(b) the two coexisting stable
4-cycles for a � 7:75. The basins of attraction of the stable cycles are contained in the vertical strips rep-
resented in Figs. 6(a) and (b), more precisely, each set of vertical strips is the closure of the basin of the
corresponding cycle.

By further increasing a the map F undergoes a typical sequence of ¯ip bifurcations leading to chaotic
dynamics. Fig. 7 shows the evolution of the attracting sets sharing the phase-plane for high values of a. In
Fig. 7(a) we observe two symmetric chaotic attractors, each one made up of two pieces, which merge giving
rise to two disjoint one-piece chaotic attractors, increasing in size as a increases (Fig. 7(b)). These attractors
in turn merge into the attractor shown in Fig. 7(c), whose shape is symmetric with respect to the saddle P.
The merging of the two attractors is due to an homoclinic bifurcation of the saddle P. Again, due to the
triangular structure of the map T, the occurrence of this global bifurcation can be completely described
starting from the one-dimensional map F driving the income evolution.

Fig. 5. Di�erent asymptotic behaviors of income generated by slightly di�erent initial conditions taken near the boundary of

B�1�: the i.c. �77:2; 175� generates a bounded trajectory (dark grey), while the i.c., �77; 175� generates a divergent trajectory (light

grey) (a); the points �77:2; 175� and �77:4; 175� converge to the poverty equilibrium (dark grey) and the wealth equilibrium (light grey),

respectively (b).
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Let us consider Fig. 8 (where c1;m and c1;M denote the images of cm and cM, respectively). Before the
homoclinic bifurcation value ah ' 8:6215 (Fig. 8(a)) the intervals J1 � �cm; c1;m� and J2 � �c1;M; cM� are in-
variant. The homoclinic bifurcation occurs when the critical values cm and cM are mapped by F into the
repelling ®xed point l. After the homoclinic bifurcation we have a remarkable qualitative change in the
trajectories of the system: the intervals J1 and J2 are no longer invariant intervals, but so is their union
J � J1 [ J2, i.e., the interval �cm; cM� (Fig. 8(b)). This can also be observed from Figs. 9(a) and (b), which
represent the versus time trajectories of the income Y before and after the bifurcation (a � 8 and a � 8:65,
respectively): the bifurcation value ah ' 8:6215 marks the switching from a regime of bi-stability to a regime
characterized by oscillating (although chaotic) behavior.

The local and global bifurcations described in the present section are summarized in Fig. 10. The bi-
furcation diagram of Fig. 10(a) describes the changes occurring to the attracting sets sharing the phase-
plane when the adjustment parameter a is varied, while Fig. 10(b) represents the relevant bifurcation curves
in the parameters' plane X.

We remark that, as it is also evident from Fig. 9(a), for each of the two disjoint invariant intervals J1

and J2 including the coexisting attracting sets, the map F undergoes exactly the same bifurcations which
are met by the well-known one-dimensional logistic map f �x� � ax�1ÿ x� when the parameter a ranges
between the values 3 and 4 (see, for instance [3,12]). Comparing again the dynamics of F with those of
the logistic map, we notice that the described homoclinic bifurcation of the repelling ®xed point P is
equivalent to the one occurring in the logistic map when the parameter a crosses the value 4, with the
di�erence that in the case of the logistic map after this value the generic trajectory becomes divergent,
while here we still have bounded trajectories in the invariant interval J � �cm; cM�. These bounded tra-
jectories exist as long as the invariant interval J exists. Thus, increasing a, this situation persists until the
invariant interval J has a contact with the boundary of its basin of attraction �s�1; s�2�: this bifurcation,
called final bifurcation in [1,13], occurs when cm � s�1 and cM � s�2, being fs�1; s�2g the repelling 2-cycle on
the boundary of the basin of divergent trajectories. After this contact the generic trajectory will be
divergent.

Remark. The particular shape of the attractors shown in Figs. 7(b) and 7(c) deserve some comments. The
lateral borders of these attractors are very clear while their upper and lower borders are ``fuzzy''. This
situation is typical of the so-called mixed absorbing areas (see [13, Ch. 4]). As well as for one-dimensional
maps trapping intervals bounded by critical points can be determined, for two-dimensional maps trapping

Fig. 6. Flip-bifurcations sequence of the equilibria: these local bifurcations do not a�ect the topological structure of the basins.
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regions of the phase-plane can be de®ned by means of critical curves: usually such a trapping region is an
absorbing area of standard type, de®ned as a bounded region A of the plane whose boundary is given by
critical curve segments (segments of the critical curve LC and its images) such that a neighborhood U �A
exists whose points enter A after a ®nite number of iterations and never escape it (see again [13, Ch. 4] or [1]
for a practical procedure in order to obtain the boundary of such an area). But boundaries of trapping
regions can also be obtained by the union of segments of critical curves and portions of unstable sets of
saddles: in this case we have a so-called absorbing area of mixed type. This is the case, for instance, of the
area containing the one-piece chaotic attractor represented in Fig. 7(c): here the lateral borders are given by
the critical lines LCa and LCb of equation Y � cm and Y � cM, respectively, while the area is upperly and
lowerly bounded by portions of the unstable manifolds W u�Q� and W u�R� of the saddle ®xed points Q and
R, and portions of the unstable sets of some other saddle cycles. This feature determines the fuzzy shape of
the borders of the attractor observed in Fig. 7(c) and in its enlargement.

Fig. 7. Transition to complex dynamics: two symmetric chaotic attractors, each one made up of two pieces (a), merge giving rise to two

disjoint one-piece chaotic attractors, increasing in size as a increases (b); these attractors in turn merge into a unique attracting set (c),

whose shape is symmetric with respect to the saddle P, due to an homoclinic bifurcation of the saddle P.
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5. Conclusions

In this paper we have analyzed the dynamic behavior of a discrete-time economic model, described by a
two-dimensional dynamical system in income and capital, where we have assumed that the savings are
proportional to the income and that the investment demand depends only on the di�erence between current
income and its exogenously assumed equilibrium level, through a nonlinear sigmoid-shaped increasing
function, being not a�ected by changes in the capital stock. The model can be viewed as a particular case of
a more general Kaldor-type business cycle model, proposed in [14] and analyzed in [4], where the invest-
ment demand is also a decreasing function of the level of capital: as stressed by the economic literature (see

Fig. 9. Representation of the income as a function of time before (a) and after (b) the homoclinic bifurcation of the saddle P. (a) shows

two di�erent paths, corresponding to initial conditions near the wealth equilibrium and the poverty equilibrium, respectively, while the

path shown in (b) is given by an initial condition near the poverty equilibrium. The homoclinic bifurcation marks the switching from a

regime characterized by bi-stability to a regime characterized by wide chaotic oscillations of income and capital around their exog-

enously assumed equilibrium levels.

Fig. 8. E�ects of the homoclinic bifurcation of the repelling ®xed point l of the one-dimensional map F on the invariancy property of

the intervals J1 and J2.
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e.g. [5]), this latter property is the reason for the appearance of cyclical behavior, i.e., self-sustained os-
cillations of income and capital.

The time evolution of the system is driven by a family of two-dimensional maps of triangular type. These
particular two-dimensional maps have the peculiarity that one of their components (the one driving the
income evolution in the model at study) is an independent one-dimensional map. The structure of such
maps allows to completely understand the forward dynamics, i.e., the asymptotic dynamic behavior,
starting from the properties of the associated one-dimensional map (a bimodal one in our model).

We have shown that the system always has three equilibria, the central one (the saddle point P) being
related to the exogenous equilibrium level of income and the others (Q and R) corresponding to a high level
and a low level of the economy, respectively. Our analysis has been addressed both to the conditions for the
local stability of the equilibria and to the global bifurcations, occurring for increasing values of the ®rms'
adjustment parameter a, which cause deep changes in the nature of the existing attracting sets and in the
structure of their basins. In fact, while for su�ciently low values of the adjustment parameter the dynamics
are quite simple, with the saddle P acting as a watershed between the basins of the wealth and poverty
equilibria Q and R, more and more complex dynamic phenomena are observed when a increases. Our
analysis has shown the existence of two independent routes to complexity:

(i) the switching from invertibility to noninvertibility, which deeply modi®es the structure of the basins of
attraction of the stable equilibria and also creates the basin of diverging trajectories;
(ii) the homoclinic bifurcation of the saddle P, which determines a big qualitative change in the asymp-
totic behavior of the system, marking the switching from a regime of bi-stability (where the attractors
may be ®xed points, cycles or even chaotic attractors) to a regime characterized by oscillations, although
not regular, but chaotic, around the saddle point P .
We stress that this kind of oscillating behavior occurs, provided that the adjustment parameter a is

high enough, even though we have assumed that the investment demand is independent from the capital
stock (see, Section 2), i.e., we have ruled out the possibility of cyclical shifting of the investment demand
function.
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Fig. 10. Bifurcation diagram of the one-dimensional map driving the time evolution of income (a); representation of the local and

global bifurcation curves in the parameters' plane X (the white area is the region of local stability of the equilibria) (b).
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Appendix A. Nature of the ®xed points and cycles of the map T

Proof of Proposition 1. Here, we prove that the ®xed points and the cycles of the map T are either stable
nodes or saddles. Since T r; r P 1, is a triangular map, by Properties 1 and 2 the ®xed points of T r are either
nodes or saddles. The particular structure (8) of the second component of the map T implies that also the
second component of the rth iteration of the map, T r, r > 1, has the same structure, i.e., it is separable with
respect to the variables and linear in K. More precisely, it is easy to prove by induction that the map T r

(r P 1) has the following form:

T r :
Y 0 � F r�Y �; �11a�

K 0 � �1ÿ d�rK �Pr
s�1�1ÿ d�rÿsI�F sÿ1�Y ��; �11b�

8<:
from which we can easily see that one of the eigenvalues of the Jacobian matrix DT r�Y ;K� is constant and
equal to z2 � �1ÿ d�r. As in our model we have 0 < d < 1, it follows that the ®xed points of T r can only be
either stable nodes or saddles with 0 < z2 < 1. Since the points belonging to an r-cycle of T are ®xed points
of T r, the statement follows. �

Proof of Proposition 2. Here, we prove that the stable manifold of a saddle cycle of T is made up of the
vertical lines through the periodic points and through the preimages of any rank of the periodic points.
Since T is a triangular map we know (from the implication (4) of Property 4) that the points of the local
stable set of a saddle cycle belong to the vertical lines through the periodic points. We can conversely easily
show that, for our particular map, any point on these vertical lines belongs to the stable set. In fact, let
�Y �;K�� be a point belonging to a saddle cycle of period r for the map T. Since Y � is a ®xed point of the one-
dimensional map F r�Y �, i.e., F r�Y �� � Y �, we can see from (11a) and (11b) that a point �Y �;K� is mapped,
after r iterations into a point �Y �;K 0� lying on the same vertical line, where

K 0 � �1ÿ d�rK �
Xr

s�1

�1ÿ d�rÿsI�F sÿ1�Y ���: �12�

This means that the trajectory obtained by iterating the map T r is driven by the one-dimensional map (12),
having the only ®xed point

K� �
Pr

s�1�1ÿ d�rÿsI�F sÿ1�Y ���
1ÿ �1ÿ d�r ;

globally stable. The speed of the dynamics of the map T r on the vertical line Y � Y � is a�ected by the
depreciation rate d, 0 < d < 1: the higher is d the faster is the convergence to the ®xed point.

Finally, the points with coordinates �Y �ÿj; ��, where Y �ÿj is a preimage of Rank-j of Y � are mapped, after j
iterations, into a point �Y �; �� on the vertical line Y � Y �. This completes the proof. �

Appendix B. Local stability analysis of the ®xed points

Here we analyze the local stability of the ®xed points of the map (5a)±(5b). Since the map T is triangular,
the Jacobian matrix (7) of T has real eigenvalues, located on the main diagonal, given by

z1�Y � � 1� a
1��Yÿl�2 ÿ ar, z2 � 1ÿ d, with 0 < z2 < 1.

Consider the ®xed point P � �l; l r
d�, for which the ®rst eigenvalue is: z1�P � � 1� a�1ÿ r�. Since

z1�P � > 1 for each �a; r� in the space of the parameters X, we can conclude that the ®xed point P is always a
saddle.

Let us consider the ®xed points Q and R (it is enough to consider only one of them, since the symmetry
property implies DT �Q� � DT �R�). We can rewrite the ®rst eigenvalue as

z1�Q� � z1�R� � 1ÿ a�rÿ u�YQ��;
where u�Y � � �1� �Y ÿ l�2�ÿ1

.
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We already know (Proposition 1) that the ®xed points of the map T are either stable nodes or saddles. As
0 < z2 < 1, a su�cient condition for the local stability of Q and R is given by jz1�Q�j < 1, i.e.,

r > u�YQ�; �13a�
r < 2=a� u�YQ�: �13b�

Recalling condition (9b), we notice that for a ®xed l the equation

r�YQ ÿ l� ÿ arctan�YQ ÿ l� � 0 �YQ > l; 0 < r < 1� �14�

implicitly de®nes the income equilibrium level YQ as a (di�erentiable) function of the parameter r. By
denoting with h�r; YQ� the left-hand side of Eq. (14), from the implicit function theorem we have

dYQ

dr
� ÿ hr�r; YQ�

hYQ�r; YQ� � ÿ
YQ ÿ l

rÿ u�YQ� :

Since it can be proved through simple geometrical considerations that the income equilibrium value YQ is a
strictly decreasing function of r, it follows that rÿ u�YQ� > 0 and therefore condition (13a) is satis®ed for
any �a; r� in the space of the parameters.

Condition (13b) can be rewritten as

a <
2

rÿ u�YQ� � af �r�:

Since 0 < u�YQ� � �1� �YQ ÿ l�2�ÿ1
< 1 and condition (13a) holds, it follows that 0 < rÿ u�YQ� < 1 which

implies: af �r� > 2. Of course, for a > af �r�, the ®xed points Q and R are saddles. �

Appendix C. Appearance of divergent trajectories

The existence of divergent trajectories in a particular region of the parameters space (included in the
noninvertibility region) is proved by showing that, by increasing a, a repelling 2-cycle for the map F is
created at the value ac�r� � 2=r. First, observe that for any r, 0 < r < 1, the following inequality holds:
2=r � ac�r� < af �r� � 2=�rÿ u�YQ��, which means that the curve of equation a � ac�r� lies inside the
stability region of YQ in the space X of the parameters. Observe also that F 2��1� � �1 and
F 2�ÿ1� � ÿ1. In order to prove the statement it is enough to show that, when YQ is stable: (a) in a right
neighbourhood of the ®xed point YQ the graph of the map F 2 is below the line u�Y � � Y and (b)
limY!�1 d

dY �F 2�Y ��6 1 for a6 2=r, limY!�1 d
dY �F 2�Y �� > 1 for a > 2=r.

At the ®xed point YQ we get

d

dY
�F 2�Y ��jY�YQ

� F 0�F �YQ��F 0�YQ� � F 0�YQ�
� �2

:

In the stability region of YQ, i.e., for a < af �r�, jF 0�YQ�j < 1 and therefore,

0 <
d

dY
F 2�Y �jY�YQ

� �F 0�YQ��2 < 1:

This means that F 2�Y � intersects the line u�Y � � Y at the point Y � YQ with positive slope less than 1. This
implies (a).

As limY!�1 F 0�Y � � 1ÿ ar, we obtain

lim
Y!�1

d

dY
�F 2�Y �� � lim

Y!�1
F 0�F �Y ��F 0�Y �� � � �1ÿ ar�2;

and since �1ÿ ar�2 > 1 i� a > 2=r, (b) is proved. �
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As a consequence, taking into account the symmetry property of the map, two new repelling ®xed points
of F 2, and thus a repelling 2-cycle of F, appear as soon as a crosses the line ac�r� � 2=r.
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