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ABSTRACT A discrete time model of a financial market is developed, in which heterogeneous
interacting groups of agents allocate their wealth between two risky assets and a riskless asset. In
each period each group formulates its demand for the risky assets and the risk-free asset
according to myopic mean-variance maximizazion. The market consists of two types of agents:
fundamentalists, who hold an estimate of the fundamental values of the risky assets and whose
demand for each asset is a function of the deviation of the current price from the fundamental, and
chartists, a group basing their trading decisions on an analysis of past returns. The time evolution
of the prices is modelled by assuming the existence of a market maker, who sets excess demand of
each asset to zero at the end of each trading period by taking an offsetting long or short position,
and who announces the next period prices as functions of the excess demand for each asset and
with a view to long-run market stability. The model is reduced to a seven-dimensional nonlinear
discrete-time dynamical system, that describes the time evolution of prices and agents’ beliefs
about expected returns, variances and correlation. The unique steady state of the model is
determined and the local asymptotic stability of the equilibrium is analysed, as a function of the
key parameters that characterize agents’ behaviour. In particular it is shown that when chartists
update their expectations sufficiently fast, then the stability of the equilibrium is lost through a
supercritical Neimark–Hopf bifurcation, and self-sustained price fluctuations along an attracting
limit cycle appear in one or both markets. Global analysis is also performed, by using numerical
techniques, in order to understand the role played by the chartists’ behaviour in the transition to a
regime characterized by irregular oscillatory motion and coexistence of attractors. It is also
shown how changes occurring in one market may affect the price dynamics of the alternative risky
asset, as a consequence of the dynamic updating of agents’ portfolios.

Introduction

One of the key ideas in modern finance is that of diversification among a choice of

risky assets. The standard framework is that of one-period mean-variance

optimization. A key assumption in this framework is that of rational, homogeneous
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agents who have complete knowledge of the distribution of asset returns in the next

period. Studies involving surveys of market participants indicate that investors may

not be homogeneous and that at least two groups (or two groups of strategies)

coexist in the market (Taylor and Allen, 1992; Lui and Mole, 1998). The rationality

assumption, particularly with regard to perfect knowledge of the future distribution

of returns, has started to look tenuous as some economists have come to accept that
extreme versions of rationality give agents more ability to learn that may be possible

in real markets (Gallegati and Kirman, 2000). Thus interest has grown in recent

years in models in which agent heterogeneity is allowed and the different groups of

agents seek to learn about the future return distribution using different information

sets. We cite in particular the models of asset price dynamics based on the interaction

of heterogeneous agents that have been proposed by Caginalp and Ermentrout (1990,

1991), Day and Huang (1990), Brock and Hommes (1998), Lux (1998), Chen and

Yeh (1997), Gaunersdorfer (2000), Chiarella and He (2001, 2002, 2003), Chiarella,
Dieci and Gardini (2001, 2002), and Fernandez-Rodriguez et al., (2002). These

models in general consider a financial market with one risky asset and one risk-free

asset and focus on the effect of agents’ heterogeneous beliefs about expected return

and volatility of the risky asset and different risk attitudes on the dynamics of asset

prices and wealth.1 They show how the interaction of these factors with the

heterogeneity of the agents and the market trading mechanism can, even in the

absence of external random events, cause sustained deviations in prices away from

their equilibrium. Such sustained deviations in the underlying deterministic driving
dynamics constitute one possible source of the fat tails and volatility clustering that

are a key feature of asset returns in financial markets. The heterogeneous agents

paradigm of asset price fluctuations views the financial market as being the result of

the interaction between nonlinear deterministic elements and stochastic elements.

In the development of portfolio theory the one risky/one risk-free asset model is

merely a first step to understanding how investors will spread their investment dollar

among several risky assets. Once several risky assets are available to the investor then

correlation (or rather the beliefs about correlation) also becomes a factor in the
investors’ decision process. A natural question that arises in this context is whether

diversification tends to dampen or to amplify the price fluctuations that arise due to the

interaction of heterogeneous agents, and whether agents’ beliefs about correlation of

returns may generate comovements in the prices of the risky assets. Another question

is to what extent markets may become interdependent (i.e. price dynamics in one

market may be affected by changes in agents’ behaviour and beliefs in the alternative

market), as a result of agents’ portfolio diversification.

In this paper we develop a discrete time model of financial market dynamics,
which combines the essential elements of the interacting heterogeneous agents

paradigm with the classical model of diversification between two risky assets and a

risk-free asset. In common with the earlier cited literature, we assume that the

market consists of two types of traders: fundamentalists, who hold an estimate of the

fundamental value of the risky assets and whose demand for each asset is a function

of the deviation of the current price from the fundamental, and chartists, a group

basing their trading decisions on an analysis of past returns. Each group forms

expectations about asset returns and their variance–covariance structure and
allocates its wealth between two risky assets and a riskless asset. The time evolution
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of the prices of the risky assets is modelled by assuming the existence of a market

maker, who sets excess demand to zero at the end of each trading period by taking an

offsetting long or short position, and who announces the next period prices on the

basis of the excess demand. The model is reduced to a seven-dimensional nonlinear

discrete-time dynamical system that describes the time evolution of prices and
agents’ beliefs about expected returns, variances and correlation. The local

asymptotic stability conditions of the unique equilibrium are investigated using

both analytical and numerical techniques: in particular we clarify how the local

stability is affected by the key parameters, namely the strength of fundamentalist and

chartist demands at the steady state (inversely related to agents’ risk aversion and

beliefs about volatility), the speed of reaction of market prices, the chartist

extrapolation parameter, and the long-run variance–covariance structure. The local

stability analysis, together with the global analysis performed through numerical

experiments, also help us to understand how chartists’ beliefs and behavior may

cause price fluctuations to become more and more irregular and to be transmitted

from one market to the other.

The structure of the paper is as follows. Section 2 derives the asset demand

functions for each asset by each investor type. Section 3 describes the schemes used

by each group to revise expectations. Section 4 describes how demands are

aggregated by the market maker via a price adjustment rule in the market for each

asset. Section 5 describes the resulting dynamical system for the dynamic evolution

of prices, expected returns, variances and correlation. Section 6 considers the

particular case of ‘zero long-run correlation’ between returns, outlines the main

analytical results about the conditions of local asymptotic stability of the unique

steady state of the model and their dependence on the key parameters, and explores

the dynamic behaviour of the model when the parameters are such that the steady

state is unstable. Section 7 considers the general case of ‘nonzero long-run

correlation’ between returns and gives numerical examples where this parameter

can cause the transmission of price fluctuations from one market to the other.

Section 8 considers, via numerical simulations, the effect of changes in agents’

perceptions about long-run risk and return. It turns out that such changes can have a

dramatic effect on the price dynamics. Section 9 contains some conclusions and final
remarks.

Asset Demand

Our starting point is the fundamentalist/chartist model studied in Chiarella, Dieci

and Gardini (2001, 2002) and Fernandez-Rodriguez et al. (2002), whose antecedents

are Zeeman (1974), Beja and Goldman (1980), Day and Huang (1990), and Chiarella

(1992). It should be stressed that the framework we use in this section to derive the

asset demands is in fact that of the standard one-period CAPM; the major difference

being that we allow agents to have heterogeneous beliefs about the distribution

of future returns and that these beliefs are updated dynamically as a function of

observed returns.

We denote by Pi,t the logarithm of the price of the ith risky asset at time t (i51, 2),

and use the subscript j [ f , cf g to denote fundamentalists or chartists. In each time
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period each group of agents is assumed to invest some of its wealth in the risky assets

and some in the risk-free asset. Denote, respectively, by V
jð Þ

t and Z
jð Þ

i, t the wealth of

agent j at time t and the fraction that agent j decides to invest in the ith risky asset.

The evolution of the wealth of agent j can then be written

V
jð Þ

tz1~V
jð Þ

t zV
jð Þ

t 1{Z
jð Þ

t

� �
gzV

jð Þ
t Z

jð Þ
1,t P1,tz1{P1,tzG1,tz1ð ÞzZ

jð Þ
2,t P2,tz1{P2,tzG2,tz1ð Þ

h i

where Z
jð Þ

t ~Z
jð Þ

1,t zZ
jð Þ

2,t is the fraction invested in the risky assets, g is the (constant)

risk-free rate of return, Gi,t+1, (Pi,t+12Pi,t) and (Pi,t+12Pi,t + Gi,t+1), are the

dividend yield, the capital gain and the return of the ith asset in period (t,t+1),

respectively.

We denote by E
jð Þ

t , Var
jð Þ

t , Cov
jð Þ

t the ‘beliefs’ of investor type j, at time t, about

conditional expectation, variance, and covariance, respectively. We assume that

investor type j has exponential utility of wealth function u(V)52exp(2a(j)V), where

a(j) is agent j’s risk aversion coefficient. Agent j seeks the fractions Z
jð Þ

i,t , so as to

maximize expected utility of wealth at time t+1

E
jð Þ

t { exp {a jð ÞV
jð Þ

tz1

� �h i

As is well known, under the assumption of conditional normality of returns, this

problem is equivalent to

max
Z

jð Þ
1,t

, Z
jð Þ

2,t

E
jð Þ

t V
jð Þ

tz1

h i
{

a jð Þ

2
Var

jð Þ
t V

jð Þ
tz1

h i� �

The first order conditions of the foregoing optimisation problem lead to the demand

functions for the risky assets, given by

f
jð Þ

1,t ~Z
jð Þ

1,t V
jð Þ

t ~
V

jð Þ
2,t m

jð Þ
1,t zg

jð Þ
1,t {g

� �
{r

jð Þ
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

jð Þ
1,t V

jð Þ
2,t

q
m

jð Þ
2,t zg

jð Þ
2,t {g

� �

a jð Þ 1{r
jð Þ2

t

� �
V

jð Þ
1,t V

jð Þ
2,t

ð1Þ

f
jð Þ

2,t ~Z
jð Þ

2,t V
jð Þ

t ~
V

jð Þ
1,t m

jð Þ
2,t zg

jð Þ
2,t {g

� �
{r

jð Þ
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

jð Þ
1,t V

jð Þ
2,t

q
m

jð Þ
1,t zg

jð Þ
1,t {g

� �

a jð Þ 1{r
jð Þ2

t

� �
V

jð Þ
1,t V

jð Þ
2,t

ð2Þ

where

m
jð Þ

i,t :E
jð Þ

t Pi,tz1{Pi,t½ �, g
jð Þ

i,t :E
jð Þ

t Gi,tz1½ �

V
jð Þ

i,t :Var
jð Þ

t Pi,tz1{Pi,tzGi,tz1½ �

and r
jð Þ

t is agent j’s ‘belief’, at time t, about the correlation between the risky returns

over the next trading period, i.e.

r
jð Þ

t ~
Cov

jð Þ
t P1,tz1{P1,tzG1,tz1ð Þ, P2,tz1{P2,tzG2,tz1ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V
jð Þ

1,t V
jð Þ

2,t

q
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The demand functions (1) and (2) can be rewritten as

f
jð Þ

1,t ~
1

1{r
jð Þ2

t

� �
m

jð Þ
1,t zg

jð Þ
1,t {g

� �

a jð ÞV
jð Þ

1,t

{
r

jð Þ
t

ffiffiffiffiffiffiffiffiffi
V

jð Þ
2,t

q

1{r
jð Þ2

t

� � ffiffiffiffiffiffiffiffiffi
V

jð Þ
1,t

q
m

jð Þ
2,t zg

jð Þ
2,t {g

� �

a jð ÞV
jð Þ

2,t

f
jð Þ

2,t ~
1

1{r
jð Þ2

t

� �
m

jð Þ
2,t zg

jð Þ
2,t {g

� �

a jð ÞV
jð Þ

2,t

{
r

jð Þ
t

ffiffiffiffiffiffiffiffiffi
V

jð Þ
1,t

q

1{r
jð Þ2

t

� � ffiffiffiffiffiffiffiffiffi
V

jð Þ
2,t

q
m

jð Þ
1,t zg

jð Þ
1,t {g

� �

a jð ÞV
jð Þ

1,t

with a fairly standard interpretation as a direct demand (the first term) and a hedging

demand (the second term). The demand for each risky asset is a linear combination

of the expected risk adjusted excess return on each asset, with coefficients being

determined by the expected correlation coefficient.

In the next section we describe how agents update these ‘beliefs’ about future asset

returns and so generate different demand functions.

Expectation Formation

The two groups of agents differ in the way they update their expectations of the

means, variances and correlation between returns over successive time intervals. For

simplicity it is assumed that the dividend yields are i.i.d. and uncorrelated with price

changes in agents’ beliefs, and that agents share the same beliefs about the dividend

yields, with Et Gi,tz1ð Þ:gi, Vart Gi,tz1ð Þ:s2
i , i~1, 2, Covt G1,tz1, G2,tz1ð Þ:ds1s2.

The common beliefs about variances (s2
i , i51, 2) and correlation (d) of the dividend

yields determine the ‘long-run’ or ‘equilibrium’ variance/covariance structure of

returns in this model.

Agents’ heterogeneity is introduced by assuming that the different agent-types use

different ways to form expectations about the ‘price’ component of the return

(Pi,t+12Pi,t), i.e. fundamentalists and chartists are assumed to have heterogeneous

beliefs about expected prices changes, as well as their volatility and correlation.

3.1. Fundamentalist Expectations

We assume that fundamental values of the risky assets grow at constant rates over

time, i.e. for each asset the log fundamental value evolves according to

Wi,tz1~Wi,tzci

so that there is an underlying growth rate of ci in each market (ci § 0).2

Fundamentalists are assumed to know both the fundamental price Wi,t and the

fundamental growth rate ci. They believe that the expected return of asset i contains

a ‘long-run’ or ‘equilibrium’ component and a ‘short-run’ component, the latter

being proportional to the difference between the log asset price Pi,t and the log
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fundamental value Wi,t. Hence they calculate expected change in log-price according

to

m
fð Þ

i,t :E
fð Þ

t Pi,tz1{Pi,t½ �~gi Wi,t{Pi,tð Þzci

where gi.0 represents the estimate of the speed of reversion to the fundamental

price. We also assume that fundamentalist beliefs about variances and correlation do

not vary over time, being given by the long-run variance/covariance structure that is

determined by that of the dividend yield process. Thus we set

V
fð Þ

i,t ~s2
i , r

fð Þ
t ~d so that Cov

fð Þ
t ~ds1s2

The fundamentalist demand functions thus become

f
fð Þ

1,t ~a1 W1,t{P1,tð Þ{b2 W2,t{P2,tð Þzh1

f
fð Þ

2,t ~a2 W2,t{P2,tð Þ{b1 W1,t{P1,tð Þzh2

where

a1~
g1

a fð Þ 1{d2
� �

s2
1

a2~
g2

a fð Þ 1{d2
� �

s2
2

b1~
dg1

a fð Þ 1{d2
� �

s1s2

b2~
dg2

a fð Þ 1{d2
� �

s1s2

h1~
s2

2p1{ds1s2p2

a fð Þ 1{d2
� �

s2
1s2

2

h2~
s2

1p2{ds1s2p1

a fð Þ 1{d2
� �

s2
1s2

2

ð3Þ

and the pi ; (ci + gi2g), represent the long-run expected excess returns (risk premia)

for each asset, determined by the growth of fundamentals and dividend yields.

Notice also that h1 and h2 represent the long-run or equilibrium component of

fundamentalist demand for each asset.

These demand functions generalize in a straightforward way the corresponding

fundamentalist demand function derived in Chiarella, Dieci and Gardini (2002) for

the case of one risky and one riskless asset. In fact if we set d50, so that

fundamentalists expect no correlation between the risky assets, then the demand

function for each risky asset is merely the one obtained in Chiarella, Dieci and

Gardini (2002).

3.2. Chartist expectations

Chartists are assumed to compute expected returns by extrapolating past price

changes according to the weighted average (with exponentially decreasing weights) scheme

yi,t~m
cð Þ

i,t :E
cð Þ

t Pi,tz1{Pi,t½ �~
X?
s~0

ci 1{cið Þs Pi,t{s{Pi,t{s{1ð Þ

(3)
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which results in the well-known adaptive expectations scheme:

yi,t~ 1{cið Þyi,t{1zci Pi,t{Pi,t{1ð Þ ð4Þ

The chartist extrapolation parameter ci (0,ci,1) represents the weight given to the

most recent price change in the computation of the next period expected price

change: the higher is ci, the more sensitive are chartists to recent data in their

expectation formation.

The chartists’ beliefs about variances and correlation have two components. One

component is the long-run variance–covariance structure of the dividend yield

process, the second component is one that varies as a function of the evolution of

returns. In particular we assume that

V
cð Þ

i,t ~vi,tzs2
i ð5Þ

and

r
cð Þ

t ~
Ktzds1s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v1,tzs2
1

� �
v2,tzs2

2

� �q ð6Þ

where s2
i and ds1s2 are the long-run components of the conditional variances and

covariance, respectively. In this way, chartists’ estimates of the variances and covari-

ance include time-varying components that may change in each period according to

the observed volatility and the observed comovements in prices. We assume that the

time varying components, vi,t and Kt in Equations 5 and 6 are computed by chartists

by extrapolating past deviations from expected returns according to

vi,t~
X?

s~0

ci 1{cið Þs Pi,t{s{Pi,t{s{1{yi,t

� �2 ð7Þ

Kt~
X?

s~0

cK 1{cKð Þs P1,t{s{P1,t{s{1{y1,t

� �
P2,t{s{P2,t{s{1{y2,t

� �
ð8Þ

Equations 5 and 7 state that chartists increase their estimate of the variance of each

risky asset in proportion to the historical volatility; Equations 6 and 8 state that they

adjust their estimate of correlation between the two risky assets in proportion to the

historical correlation (calculated using geometrically declining weighting functions

with parameters ci and cK).3

Equations 7 and 8 (see the Appendix) result in the updating rules

vi,t~ 1{cið Þvi,t{1zci 1{cið Þ Pi,t{Pi,t{1{yi,t{1

� �2

Kt~ 1{cKð ÞKt{1zcK 1{c1ð Þ 1{c2ð Þ P1,t{P1,t{1{y1,t{1

� �
P2,t{P2,t{1{y2,t{1

� �

z 1{cKð Þ c1 P1,t{P1,t{1{y1,t{1

� �
y2,t{1{

eyy2,t{1

� �h

zc1c2 P1,t{P1,t{1{y1,t{1

� �
P2,t{P2,t{1{y2,t{1

� �

zc2 P2,t{P2,t{1{y2,t{1

� �
y1,t{1{

eyy1,t{1

� �i
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where the subsidiary quantities eyyi,t i~1, 2ð Þ are defined recursively as

eyyi,t ~ 1{cKð Þ eyyi,t{1 zcK Pi,t{Pi,t{1ð Þ

In terms of these updating rules the chartist demand functions for the risky assets

thus become

f
cð Þ

1,t~
v2,tzs2

2

� �
y1,tzg1{g
� �

{r
cð Þ

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1,tzs2

1

� �
v2,tzs2

2

� �q
y2,tzg2{g
� �

a cð Þ 1{ r
cð Þ

t

� �2
� 	

v1,tzs2
1

� �
v2,tzs2

2

� � ð9Þ

f
cð Þ

2,t~
v1,tzs2

1

� �
y2,tzg2{g
� �

{r
cð Þ

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1,tzs2

1

� �
v2,tzs2

2

� �q
y1,tzg1{g
� �

a cð Þ 1{ r
cð Þ

t

� �2
� 	

v1,tzs2
1

� �
v2,tzs2

2

� � ð10Þ

where r
cð Þ

t is given by Equation 6. As with the fundamentalist demand functions, the

chartist demand functions (9) and (10) also generalize to the case of two risky assets

the one derived for the one risky asset case by Chiarella, Dieci and Gardini (2002),

the difference being the time varying correlation r
cð Þ

t that determines the hedging

demand components.

Clearing the Market: The Role of the Market Maker

We assume that the market clearing function is performed by a market maker, who is

sufficiently rational to know the fundamental price, as well as the dividend growth

rate in each market. The market maker is also assumed to be able to estimate the

‘equilibrium’ demand for each asset.4 The market maker adjusts the prices in each

market according to the price setting rules

Pi,tz1~Pi,tzbi f
fð Þ

i,t zf
cð Þ

i,t {li,t

h i

which imply that he/she increases (decreases) the price of the ith asset, i51, 2, when

the demand for the asset is higher (lower) than a certain threshold. The ‘thresholds’

li,t are chosen by the market maker in a way such that prices are equal to

fundamentals in the long run. In this way the market maker ensures long-run market

stability.

The market clearing mechanism that we have chosen here is of course highly

schematized. It captures the essence of stated role of the market-maker of ensuring

‘orderly market conditions’. In reality of course market makers would also be giving

consideration to their inventory positions. However, taking account of these aspects

of market maker behaviour would result in a far more complicated model and must

be left for future research. We also leave for future research consideration of other

market clearing mechanisms such as limit-order markets. One possible framework
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into which one could incorporate the ideas of this paper is provided by Chiarella and
Iori (2002).

It is convenient to define the new variables

qi,t~Pi,t{Wi,t

the deviation of (log) price from (log) fundamental value, and

ji,t~yi,t{ci

ejji,t~eyyi,t{ci

the expected deviations from the growth trend, calculated using weights ci and cK,

respectively. These latter two state variables cater for the fact that chartists use

different weights for each asset and for the correlation between them. In terms of

these new variables, the time evolution of prices and agents’ beliefs about expected

returns, variances and correlation is described by the nine-dimensional dynamical

system

q1,tz1~q1,t{c1zb1 {a1q1,tzb2q2,tzh1zf
cð Þ

1,t{l1,t

h i

j1,tz1~ 1{c1ð Þj1,tzc1 q1,tz1{q1,tð Þ
ð11Þ

q2,tz1~q2,t{c2zb2 {a2q2,tzb1q1,tzh2zf
cð Þ

2,t{l2,t

h i

j2,tz1~ 1{c2ð Þj2,tzc2 q2,tz1{q2,tð Þ
ð12Þ

v1,tz1~ 1{c1ð Þv1,tzc1 1{c1ð Þ q1,tz1{q1,t{j1,t

� �2

v2,tz1~ 1{c2ð Þv2,tzc2 1{c2ð Þ q2,tz1{q2,t{j2,t

� �2

Ktz1~ 1{cKð ÞKtzcK 1{c1ð Þ 1{c2ð Þ q1,tz1{q1,t{j1,t

� �
q2,tz1{q2,t{j2,t

� �

z 1{cKð Þ c1½ q1,tz1{q1,t{j1,t

� �
j2,t{ejj2,t

� �

zc1c2 q1,tz1{q1,t{j1,t

� �
q2,tz1{q2,t{j2,t

� �

zc2 q2,tz1{q2,t{j2,t

� �
j1,t{ejj1,t

� �i

ejj1,tz1~ 1{cKð Þejj1,tzcK q1,tz1{q1,tð Þ
ejj2,tz1~ 1{cKð Þejj2,tzcK q2,tz1{q2,tð Þ

As far as the price adjustment rule is concerned, we assume that the market maker

chooses l1,t, l2,t so that prices, in equilibrium, are equal to the (growing)

fundamental values, i.e. the equilibrium values of q1 and q2 are overbarq15over-
barq250. With ff

cð Þ
i i~1, 2ð Þ denoting the chartist demand for the ith asset in
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equilibrium, this latter assumption implies that the price setting rules l1,t and l2,t

must satisfy

l1,t~l1~h1z f
cð Þ

1 {c1=b1

l2,t~l2~h2z f
cð Þ

2 {c2=b2

Clearly we are assuming that the market maker has sufficient knowledge of the

market fundamentals and behaviour of the two groups to undertake all the requisite

calculations. Some economists might even use the term ‘rational’ to describe the

market maker in this framework. Under the foregoing assumptions the dynamic

Equations 11 and 12 may be rewritten

q1,tz1~q1,tzb1 {a1q1,tzb2q2,tz f
cð Þ

1,t{ f
cð Þ

1

� �h i
ð13Þ

q2,tz1~q2,tzb2 {a2q2,tzb1q1,tz f
cð Þ

2,t{ f
cð Þ

2

� �h i
ð14Þ

These equations show the price deviations from fundamental of each asset in any

period as being determined by the price deviations of both assets in the previous

period and the deviation of asset demand from its own equilibrium level. The same

equations could also be derived by assuming that the market maker announces the

new price in the ith market according to

Pi,tz1~Pi,tzcizbi f
fð Þ

i,t zf
cð Þ

i,t {Ni,t

� �

where Ni,t represents the (nominal) supply of outside shares at time t and therefore

f
fð Þ

i,t zf
cð Þ

i,t {Ni,t represents the excess demand. This means that the market

maker increases the price according to the fundamental trend in the case of

zero excess demand, while the price trend is higher (lower) than the

fundamental trend in the case of positive (negative) excess demand. By

assuming that the supply Ni,t is constant and equal to agents’ equilibrium demand,

Ni,t~Ni~f
fð Þ

i zf
cð Þ

i , where f
fð Þ

i ~hi, and by using the changes of variables described

before, one again obtains the price setting rules (13) and (14).

The Dynamical System

In order to reduce the dimension of the system and to obtain analytical results about

the dynamic behaviour of the model and its dependence on the key parameters, we

will focus on the particular case where chartists update their calculations of expected

returns, variances and covariance with the same weighting parameters, i.e.

c15c25cK5c, so that the dynamic equations for the state variables ejji,t and ji,t turn

out to be the same. Numerical computations performed in the general case, where

chartist weighting parameters are different across markets, show that the dynamics

and the bifurcation structure of the system are very similar to the ones of the

simplified case c15c25cK5c.
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Under this assumption, the updating rule for the ‘time-varying portion’ of the

covariance becomes

Ktz1~ 1{cð ÞKtzc 1{cð Þ q1,tz1{q1,t{j1,t

� �
q2,tz1{q2,t{j2,t

� �

Denoting by the symbol 9 the unit time advancement operator,5 the time evolution of

the model is thus given by the iteration of the seven-dimensional nonlinear map

T : q1, j1, q2, j2, v1, v2, Kð Þ. q01, j01, q02, j02, v01, v02, K 0
� �

that may be written as

T :

q01~q1zb1 {a1q1zb2q2z f
cð Þ

1 { f
cð Þ

1

� �h i

j01~ 1{cð Þj1zc q01{q1

� �

q02~q2zb2 {a2q2zb1q1z f
cð Þ

2 { f
cð Þ

2

� �h i

j02~ 1{cð Þj2zc q02{q2

� �

v01~ 1{cð Þv1zc 1{cð Þ q01{q1{j1

� �2

v02~ 1{cð Þv2zc 1{cð Þ q02{q2{j2

� �2

K 0~ 1{cð ÞKzc 1{cð Þ q01{q1{j1

� �
q02{q2{j2

� �

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð15Þ

where the chartist demand functions f
cð Þ

1 , f
cð Þ

2 are given by

f
cð Þ

1 ~
v2zs2

2

� �
j1zp1ð Þ{ Kzds1s2ð Þ j2zp2ð Þ

a cð Þ v1zs2
1

� �
v2zs2

2

� �
{d2s2

1s2
2{K2{2Kds1s2


 � ð16Þ

f
cð Þ

2 ~
v1zs2

1

� �
j2zp2ð Þ{ Kzds1s2ð Þ j1zp1ð Þ

a cð Þ v1zs2
1

� �
v2zs2

2

� �
{d2s2

1s2
2{K2{2Kds1s2


 � ð17Þ

and we recall that pi 5 (ci + gi2g) can be interpreted as the long-run expected excess

return on asset i. Notice that the chartist optimal demand for each asset at each time

t is a function of the pi as well as the state variables j1, j2, v1, v2, and K. The map (15)

is nonlinear due to the variance–covariance updating rules and the functional form

of chartists demand functions.

Our dynamic analysis starts from the determination of the unique steady state of

the system that we denote by O. It is easy to see that the steady state is characterized

by the equilibrium levels of the state variables given by

qi ~ ji ~ vi ~0 i~1, 2ð Þ

K~0

The equilibrium values for qi and ji imply that, in equilibrium, prices are equal to

fundamentals, Pi,‘5Wi,‘, chartists’ expected price trends are equal to the rates of

growth of fundamentals, yi~ci, and chartists’ beliefs about variances and

covariance are determined by the long-run variance/covariance structure.

The chartist demand for each asset in equilibrium is thus given by

f
cð Þ

1 ~
s2

2p1{ds1s2p2

a cð Þ 1{d2
� �

s2
1s2

2

f
cð Þ

2 ~
s2

1p2{ds1s2p1

a cð Þ 1{d2
� �

s2
1s2

2

ð18Þ
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Notice from Equations 3 and 18 that the demands of agent-type j in equilibrium may

be written as

f
jð Þ

1 ~
1

1{d2
� � p1

a jð Þs2
1

{
ds2=s1

1{d2
� � p2

a jð Þs2
2

ð19Þ

f
jð Þ

2 ~
1

1{d2
� � p2

a jð Þs2
2

{
ds1=s2

1{d2
� � p1

a jð Þs2
1

ð20Þ

Equations 19 and 20 indicate that the agent j’s demand in equilibrium is a weighted

average of risk-adjusted equilibrium expected excess returns on each asset with

the weight determined by the long-run correlation. These demands may also be

interpreted as consisting of direct and hedging components.

The Case of Zero Long-Run Correlation Between Returns

In this section we investigate an important particular case where analytical

conditions can be derived for the local asymptotic stability of the equilibrium,

namely the case of zero ‘long-run’ correlation between returns (d50). In this case the

dividend yields of the two risky assets are not correlated in agents’ beliefs, but agents

(chartists) may expect a nonzero correlation between returns when the system is out-

of-equilibrium, depending on the observed past comovements in prices.

Since in this case b15b250, the map T in eq. (15) becomes:

T :

q01~q1zb1 {a1q1z f
cð Þ

1 { f
cð Þ

1

� �h i

j01~ 1{cð Þj1zc q01{q1

� �

q02~q2zb2 {a2q2z f
cð Þ

2 { f
cð Þ

2

� �h i

j02~ 1{cð Þj2zc q02{q2

� �

v01~ 1{cð Þv1zc 1{cð Þ q01{q1{j1

� �2

v02~ 1{cð Þv2zc 1{cð Þ q02{q2{j2

� �2

K 0~ 1{cð ÞKzc 1{cð Þ q01{q1{j1

� �
q02{q2{j2

� �

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

where

a1~
g1

a fð Þs2
1

a2~
g2

a fð Þs2
2

denote the strength of fundamentalist demand for asset 1 and 2, respectively.

Chartist optimal demands in Equations 16 and 17 reduce to

f
cð Þ

1 ~
v2zs2

2

� �
j1zp1ð Þ{K j2zp2ð Þ

a cð Þ v1zs2
1

� �
v2zs2

2

� �
{K2


 �

f
cð Þ

2 ~
v1zs2

1

� �
j2zp2ð Þ{K j1zp1ð Þ

a cð Þ v1zs2
1

� �
v2zs2

2

� �
{K2


 �
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with equilibrium levels:

f
cð Þ

1 ~
p1

a cð Þs2
1

f
cð Þ

2 ~
p2

a cð Þs2
2

From an analytical point of view, the main feature of this particular case is the

existence of lower dimensional invariant subsets of the phase space, associated with

asset 1 and asset 2, respectively. Assume, for example, that the state variables

associated with asset 1 are at their equilibrium levels, i.e. q15j15v150, and assume,

in addition, K50. It is immediate to see that the iteration of the map does not move

the system away from the three-dimensional subset of the phase-space defined by

q15j15v15K50, since

T 0, 0, q2, j2, 0, v2, 0ð Þ~ 0, 0, q02, j02, 0, v02, 0
� �

This means that such a subset of the phase space (let us denote it by I2) is invariant,

and that along such an invariant manifold the dynamics of the system are obtained

by iteration of a three-dimensional map, say T 2ð Þ : q2, j2, v2ð Þ. q02, j02, v02
� �

.

Similarly, along the invariant set I1 defined by q25j25v25K50 (i.e. with market 2

‘in equilibrium’) the dynamics are governed by the three-dimensional map

T 1ð Þ : q1, j1, v1ð Þ. q01, j01, v01
� �

. More precisely, the three-dimensional map T(i) (i51, 2)

governing the dynamics along the invariant manifold associated with the ith risky

asset is given by

T ið Þ :

q0i~qizbi {aiqiz
jizpi

a cð Þ vizs2
ið Þ{

pi

a cð Þs2
i

� 


j’
i~ 1{cð Þjizc q0i{qi

� �
,

v0i~ 1{cð Þvizc 1{cð Þ q0i{qi{ji

� �2

8>>>><
>>>>:

ð21Þ

As one can verify, this invariancy property no longer holds in the general case of

nonzero long-run correlation, d?0.

The economic story behind this case is that when agents expect no correlation

between the dividend yields, and one of the markets starts from an equilibrium

situation, then it will remain in equilibrium, no matter what is occuring in the other

market. Of course, as our numerical simulations will suggest, this does not mean that

this ‘partial’ equilibrium outcome will always be attained by the system when both

markets start out-of-equilibrium.

6.1. Local Stability Conditions

As usual, the local stability analysis of a fixed point is performed through the

location, in the complex plane, of the eigenvalues of the Jacobian matrix evaluated at

the fixed point. The case of zero long-run correlation between the risky assets is

characterized by a very simple structure for the Jacobian matrix computed at the

steady state, which allows us to derive analytical conditions for the local asymptotic

stability of the steady state, and to study analytically its dependence on the key

parameters of the model. Denoting by f
cð Þ

i,j1
, f

cð Þ
i,j2

, f
cð Þ

i,v1
, f

cð Þ
i,v2

, f
cð Þ

i,K , i~1,2, the partial
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derivatives (at the steady state) of the chartist optimal demands with respect to

the state variables, we can write the Jacobian matrix computed at the steady state

O as

DT Oð Þ~

1{a1b1 b1f
cð Þ

1,j1
0 0 b1f

cð Þ
1,v1

0 b1f
cð Þ

1,K

{cb1a1 1{czcb1f
cð Þ

1,j1
0 0 cb1f

cð Þ
1,v1

0 cb1f
cð Þ

1,K

0 0 1{a2b2 b2f
cð Þ

2,j2
0 b2f

cð Þ
2,v2

b2f
cð Þ

2,K

0 0 {cb2a2 1{czcb2f
cð Þ

2,j2
0 cb2f

cð Þ
2,v2

cb2f
cð Þ

2,K

0 0 0 0 1{c 0 0

0 0 0 0 0 1{c 0

0 0 0 0 0 0 1{c

2
66666666666664

3
77777777777775

:

Calculation of the partial derivatives (at the steady state) yields

f
cð Þ

1,j1
~

1

a cð Þs2
1

, f
cð Þ

2,j2
~

1

a cð Þs2
2

f
cð Þ

1,v1
~

{p1

a cð Þ s2
1

� �2
, f

cð Þ
2,v2

~
{p2

a cð Þ s2
2

� �2

f
cð Þ

1,K~
{p2

a cð Þs2
1s2

2

, f
cð Þ

2,K~
{p1

a cð Þs2
1s2

2

and f
cð Þ

1,j2
, f

cð Þ
1,v2

, f
cð Þ

2,j1
, f

cð Þ
2,v1

~0.

Since the Jacobian matrix is upper block triangular, its eigenvalues may be

computed as roots of the characteristic polynomials associated with each block on

the diagonal (Gantmacher, 1990). It follows that the first two eigenvalues, say l1 and

l2, are the roots of the two-dimensional block associated with the variables q1 and j1,

while the third and fourth eigenvalues, say l3 and l4, are the roots of the block

associated with the variables q2 and j2. The remaining eigenvalues are

l55l65l75(12c), and thus they are smaller than one in modulus.

In order to alleviate the notation, we denote by hi:f
cð Þ

i,ji
~ 1

a cð Þs2
i

the partial

derivative of the chartist demand for the ith risky asset, with respect to the expected

return of that asset, evaluated at the steady state. We shall see later that the

parameters hi, which we will refer to as strengths of chartist demand (at the steady

state) play a determining role in the dynamical outcomes of the financial market. We

also denote by Ai the two-dimensional submatrices associated with the state

variables qi and ji (i51, 2), i.e.

Ai~
1{aibi bihi

{cbiai 1{czcbihi

� 


Let Tri and Deti be the trace and the determinant of Ai, and 2i lð Þ~l2{TrilzDeti

the associated characteristic polynomial. A well known necessary and sufficient
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condition for all of the roots of 2i lð Þ to be smaller than 1 in absolute value consists

of the inequalities6

2i 1ð Þ~1{TrizDeti > 0

2i {1ð Þ~1zTrizDeti > 0

2i 0ð Þ~Deti < 1

8><
>:

ð22Þ

Since the eigenvalues l5, l6, l7 are all equal to (12c), 0,(12c),1, it follows that

when the set of inequalities (22) holds for both the blocks Ai (i51, 2) then the

equilibrium O is locally attracting. The conditions (22) may be rewritten,

respectively, as:

aibic > 0

aibi 2{cð Þ < 2 2{cð Þz2cbihi

aibi 1{cð Þ > c bihi{1½ �

8><
>:

ð23Þ

These conditions are very similar to the ones obtained for the simpler two-

dimensional, single asset model analyzed in Chiarella, Dieci and Gardini (2002).

Figure 1 represents, in the space of the parameters (c, ai), 0,c,1, ai.0, the region Si

where the system of inequalities (22) is satisfied for asset i (and thus the eigenvalues

of Ai are less than one in modulus). Depending on the parameters bi and hi, the

region Si may have qualitatively different shapes, as shown by Fig. 1a (for the case

bihiƒ1) and Fig. 1b (bihi.1).

In the particular case of a single risky asset, where the dynamical system would be

described by the three-dimensional map (21), the system of inequalities (23) would

precisely define, in the space of the parameters, the region of local asymptotic

stability of the steady state. In the case of two risky assets, the local stability and

bifurcations of the steady state can be analysed by ‘combining’ the two regions Si

(i51, 2) associated with the two markets.

Assume that for i51, 2, i.e. for both assets, the parameters c, ai are inside the

region Si, and therefore the steady state O is locally asymptotically stable. Since

the first inequality of (23) is always satisfied for economically meaningful values of

the parameters, it follows that when one of the parameters c, ai, i51, 2, is varied a

loss of stability may occur in one of two ways. The first is due to the crossing of the

‘flip’ curve whose equation is given by

2i {1ð Þ~1zTrizDeti~0 i:e: ai~
2

bi

z
2chi

2{c
ð24Þ

along which one of the eigenvalues of Ai is equal to 21. The second is due to the

crossing of the ‘Neimark–Hopf’ curve whose equation is given by

2i 0ð Þ~Deti~1 i:e: ai~
c bihi{1½ �
bi 1{cð Þ ð25Þ

along which a pair of complex eigenvalues of Ai are equal to 1 in modulus. In this

second case a Neimark–Hopf bifurcation occurs, changing the equilibrium from an

attracting focus into a repelling focus, and we will find numerical evidence of the

supercritical nature of this bifurcation by showing the existence of an invariant
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attracting closed curve around the repelling focus soon after the crossing of the

bifurcation curve (25).7

As far as the economic interpretation of the local stability conditions is concerned,

we notice that by assuming the market maker’s speed of adjustment of the ith price

bi.0 as fixed, the shape of region Si in the parameter plane (c, ai) (indicated in grey

in Fig. 1) is greatly affected by the strength of chartists’ demand at the steady state

(hi).
8 In particular, when bihiƒ1, i.e. when the risk aversion a(c) or the variance s2

i are

sufficiently high (Fig. 1a) the region appears wider than in the opposite case (Fig. 1b).

Figure 1a shows that, when the strength of chartist demand is relatively weak (hi,

1/bi), at a given level of chartists reaction speed (c) the eigenvalues associated with

the ith market are less than one in modulus for sufficiently low values of the

fundamentalists reaction parameter ai, but fundamentalists can cause instability by

reacting too strongly to the deviation from the fundamental value. Figure 1b shows

that when the strength of chartist demand is relatively strong (hi.1/bi), the ability of

fundamentalists’ demand to stabilise the ith market is restricted to a fairly narrow

range of the parameter ai.

In Chiarella, Dieci and Gardini (2002) we have observed a similar phenomenon in

the case of a single risky asset. The foregoing analysis confirms the economic

intuition that we would expect a similar picture in the case of multiple risky assets

Figure 1. Conditions of local stability and bifurcation curves in the space of the parameters, in
the case of zero ‘long-run’ correlation between returns (d50). The parameters a(f) and a(c)

denote fundamentalist and chartist risk aversion, respectively; c is the chartist extrapolation
parameter. For i~1, 2, s2

i denotes agents’ belief about ‘long-run’ variance of asset i, gi is the

fundamentalist parameter and ai is the ‘strength’ of fundamentalist demand (ai:gi

�
a fð Þs2

i

� �
),

hi is the ‘strength’ of chartist demand (hi:1
�

a cð Þs2
i

� �
), bi is the price reaction coefficient of

asset i. For fixed values of the parameters bi and hi, the grey area Si represents the

combinations of the parameters (c, ai) for which both the eigenvalues ‘associated’ with the ith

risky asset are of modulus smaller than one (i51, 2). The ‘shape’ of the region Si depends on

the aggregate parameter bihi~bi

�
a cð Þs2

i

� �
: (a) shows the case bihiƒ1, while the case bihi.1 is

shown in (b).
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amongst which there is no ‘long-run’ correlation. Of course it is still possible that out

of equilibrium dynamic behaviour is different, and that is indeed the case, as we shall

see below.

6.2. Out-of-Equilibrium Dynamics

In this section we investigate the dynamics of the map when the equilibrium is not

locally asymptotically stable, mainly in order to analyse the dynamic effect of

increasing values of the chartist extrapolation parameter (c). Precisely, we will show

how chartists can destabilize the system by reacting too quickly to recent price

changes, and how high values of the parameter c may cause persistent irregular price

oscillations and complex dynamic scenarios with coexisting attracting sets. Since we

are considering a high-dimensional system, the numerically obtained trajectories will

be visualized by representing their projections in the planes of the state variables

(q1, j1), in black, and (q2, j2), in grey. This will allow us to evaluate and compare the

effects of the dynamics on each market. Moreover, throughout the numerical

simulations of Sections 6.2.1, 6.2.2 and 7 we will assume that asset 1 has higher

expected risk premium and volatility than asset 2 in equilibrium (p1.p2, s1.s2)

and therefore the strength of chartist demand in market 2 (h2~
1

a cð Þs2
2

) is greater

than the strength of chartist demand in market 1 (h1~
1

a cð Þs2
1

). We will also assume

that chartists are less risk averse than fundamentalists. We will fix the values of the

following parameters: p1~0:05, p2~0:025, s2
1~0:005, s2

2~0:0025, a(f)~100, and we

will vary the values for the remaining parameters.

6.2.1. Price fluctuations in a single market. Let us begin with the case where a(c)575,

b15b250.3, g15g250.3. In this case the strengths of fundamentalist demand for the

two assets become a150.6 and a251.2, respectively, while the strengths of chartist

demand at the steady state are characterized by h1^2:667, h2^5:333. The regions S1

and S2 where, respectively, the eigenvalues associated with asset 1 and asset 2 are

smaller than one in modulus are represented by the grey areas in Fig. 2. From the

shape of the region S1 we can see that for sufficiently low values of the

fundamentalists reaction parameter in market 1 (a1), the eigenvalues associated

with asset 1 will be less than one in modulus for any value of the chartist parameter c,

0,c,1 (Fig. 2a). On the contrary, by increasing the parameter c starting from inside

the region S2, the crossing of the Neimark-Hopf curve (occurring at c~c�2~0:375)

will cause the couple of (complex) eigenvalues associated with asset 2 to become

greater than one in modulus (Fig. 2b). Figure 3a, b (where c50.5) represents the

effect of this bifurcation on the dynamics of the markets for the two assets: while in

market 2 an invariant attracting closed curve appears (in grey), ‘trajectories’ in

market 1 converge with dampened oscillations to the ‘equilibrium’ (in black). Of

course the system as a whole is not in equilibrium, but the existing attracting limit

cycle is located in the three-dimensional invariant manifold I2 characterized by q150,

j150, v150, K50 (and therefore the projection of the trajectory in the plane (q1, j1)

shows convergence to the fundamental). By increasing further the speed of

adjustment c, we notice that the shape of the invariant closed curve in market 2

becomes more and more irregular, until it changes into a chaotic attractor (see
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Fig. 3c, e, where c50.75 and c50.9, respectively). However, these global bifurcations

only determine qualitative changes of the asymptotic dynamics in market 2, but they

do not affect the asymptotic dynamics in market 1, that still converges to the

fundamental price (Fig. 3d, f). Of course the increasing complexity of the asymptotic

dynamics in market 2 may affect the transient part of the price adjustment process in

market 1.

6.2.2. Price fluctuations in both markets. A different situation is met in the case

where we increase the market price reaction coefficients to b15b250.6, and decrease

the chartist risk aversion, by setting a(c)550. The strengths of chartist demand in the

two markets is now given by h154, h258. Also in this case it is useful to look at the

shapes of the regions S1 and S2 where the eigenvalues associated with asset 1 and

asset 2, respectively, are less than one in modulus (Fig. 4a, b). Starting from

parameters a1, a2, c such that (c, a1) is inside the region S1 and (c, a2) is inside S2, and

by increasing the chartist parameter c, first we observe the crossing of the Neimark-

Hopf curve of the region S2 (occurring at c~c�2^0:159, Fig. 4b). Similarly to the

previous numerical example, the effect of this bifurcation is the creation of an

attracting invariant closed curve in market 2, while trajectories in market 1 converge

to the ‘equilibrium’ (see Fig. 5a, b, where c50.175). We will denote this limit cycle by

Ca. At the crossing of the Neimark-Hopf curve of the region S1 (occurring at

Figure 2. Case of zero ‘long-run’ correlation (d50). A situation where the structure of the
domain of stability of the steady state in the space of parameters allows a Neimark–Hopf
bifurcation to occur (only) in one of the two markets. The values of the parameters are:
a fð Þ~100, a cð Þ~75, s2

1~0:005, s2
2~0:0025, h1:1

�
a cð Þs2

1

� �
^2:667, h2:1

�
a cð Þs2

2

� �
^5:333, b1~b2~0:3.

The regions S1 (a) and S2 (b) are the projections of the stability domain in the (c, a1) and (c, a2)

parameter planes, respectively. A typical bifurcation path is the one obtained by choosing

g15g250.3, i.e. a1:g1

�
a fð Þs2

1

� �
~0:6, a2:g2

�
a fð Þs2

2

� �
~1:2, and by increasing the chartist

extrapolation parameter c. When c becomes greater than the bifurcation value c�2, the pair of

(complex) eigenvalues associated with market 2 become of modulus greater than one,

determining a Neimark–Hopf bifurcation (b); both the eigenvalues associated with market 1

remain smaller than one in modulus for any economically meaningful value of c, 0,c,1, as

shown in (a).

34 C. Chiarella et al.



Figure 3. Dynamic effect observed by following the path represented in Fig. 2, after the
crossing of the Neimark-Hopf bifurcation curve in Fig. 2b. The values of the parameters are:
d50, a(f)5100, a(c)575, s2

1~0,005, s2
2~0:0025, g15g250.3 (i.e. h1^2:667, h2^5:333, a150.6,

a251.2), b15b250.3, p150.05, p250.025. In (a), (c), (e) the numerically obtained trajectories

are visualized by means of their projections in the planes of the state variables q1, j1 (i.e.

market 1), in black, and q2, j2 (market 2), in grey, while (b), (d), (f) represent the time series of

the log price/fundamental ratios in the two markets. For c50.5, market 2 is characterized by

long-run fluctuations of price (q2) and chartists’ expected return (j2), while in market 1 motion

is to steady state (see (a), (b)). For increasing values of c, fluctuations become more and more

irregular in market 2, with no effect on the long-run behavior of market 1(see (c), (d), where

c50.75, (e), (f), where c50.9).
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c~c�1^0:205, Fig. 4a) also the (complex) eigenvalues associated with asset 1 become

greater than one in modulus: this second crossing is not associated with a local

bifurcation of the equilibrium, which is already unstable (a repelling focus), and

therefore at the exact ‘bifurcation’ value c~c�1 no structural change affects the

attracting limit cycle Ca. However, strictly related to this second crossing, a sequence

of global bifurcations can be numerically observed, in the parameter range where two

couples of eigenvalues are greater than one in modulus. Although such phenomena

are illustrated through a particular numerical example, they are quite general and

can be obtained with several different parameter regimes.

The first bifurcation occurs at a parameter value c�^0:281 > c�1, determining the

structural change of the limit cycle Ca into a torus (Fig. 5c, d). After this bifurcation,

the asymptotic oscillatory dynamics are no longer restricted to the invariant

manifold I2 and the effect is that long-run fluctuations (on the torus) also appear in

market 1. A second bifurcation occurs at a parameter value c�� > c� > c�1, whose

effect is the abrupt appearance of a new attracting limit cycle (denoted by Cb),

characterized by fluctuations in both markets. The global bifurcation that creates the

Figure 4. Case of zero ‘long-run’ correlation (d50). A situation where the structure of the
domain of stability of the steady state in the space of parameters allows a sequence of two
Neimark–Hopf bifurcations to occur. The values of the parameters are: a(f)5100, a(c)550,
s2

1~0:005, s2
2~0:0025, h1:1

�
a cð Þs2

1

� �
~4, h2:1

�
a cð Þs2

2

� �
~8, b15b250.6. The regions S1 (a)

and S2 (b) are the projections of the stability domain in the (c, a1) and (c, a2) parameter planes,

respectively. A typical bifurcation path is the one obtained by choosing g15g250.3, i.e.

a1:g1

�
a fð Þs2

1

� �
~0:6, a2:g2

�
a fð Þs2

2

� �
~1:2, and by increasing the chartist extrapolation

parameter c. When c becomes greater than the first bifurcation value c�2, the pair of (complex)

eigenvalues associated with market 2 become of modulus greater than one (b), determining a

first Neimark–Hopf bifurcation (and creating an attracting closed orbit); at the second

bifurcation value c�1 > c�2, also the pair of (complex) eigenvalues associated with market 1

become of modulus greater than one (a); the second ‘crossing’ anticipates a ‘secondary’ Hopf

bifurcation (taking place from the existing closed orbit), that will occur at a higher value of the

chartist extrapolation rate c.
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Figure 5. Dynamic effect observed by following the path represented in Fig. 4, after the
crossing of the Neimark–Hopf bifurcation curve in Fig. 4b. The values of the parameters are:
a(f)5100, a(c)550, s2

1~0:005, s2
2~0:0025, g15g250.3 (i.e. h154, h258, a150.6, a251.2),

b15b250.6, p150.05, p250.025. In (a), (c), (e) the numerically obtained trajectories are

visualized by means of their projections in the planes of the state variables q1, j1 (market 1), in

black, and q2, j2 (market 2), in grey. The Neimark–Hopf bifurcation occurring at

c~c�2^0:159 generates long-run fluctuations only in market 2, while market 1 ‘converges’

to steady state (see (a), (b), where c50.175). On the right of the Hopf-curve in Fig. 4a, for

c~c�^0:281 > c�1^0:205, a secondary Hopf bifurcation changes the limit cycle into a torus,

and long-run fluctuations appear also in market 1 (see (c), (d), where c50.285). A new,

competing limit cycle appears, via global bifurcation, at a higher value of the chartist

extrapolation rate: the creation of the new attractor (at c~c��^0:2965) is ‘anticipated’ by the

transient dynamics of the system before the convergence to the torus Ca (see (e), (f) where

c50.296).
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new attracting closed curve Cb may be a so-called saddle-node bifurcation for closed

curves; in this example the bifurcation value of the parameter is c��^0:2965 At

c50.296, immediately before the bifurcation, the appearance of the new attractor is

anticipated by the transient part of some trajectories, that fluctuate for a high

number of iterations where the new limit cycle will appear, before converging to the

existing attractor (torus) (Fig. 5e, f).

Soon after this bifurcation (c50.3), two different coexisting attractors, the torus

Ca and the new limit cycle Cb, share the phase-space. The two coexisting attractors

Figure 6. Coexistence of attractors and role of the basins of attraction. In the same parameter
situation as in Fig. 5, with c50.3, the coexisting attractors are a newly appeared limit cycle Cb

(a) and a torus Ca (c). A trajectory of the system may converge to the limit cycle Cb (see (b)), or
to the torus Ca (see (d)), according as it starts with market 1 sufficiently ‘far from equilibrium’
or ‘close to equilibrium’, respectively: the trajectory (b) is obtained with the initial condition
q1,05q2,050.1, j1,05j2,050.01, v1,05v2,05K050.005, while the trajectory (d) is obtained by
choosing q1,05q2,050.01, j1,05j2,05v1,05v2,05K050.001.
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are both characterized by long-run fluctuations in the two markets. Looking at the

projections of the coexisting attractors in the planes (q1, j1) and (q2, j2) (Fig. 6a, e)

and at the time series of q1 and q2 (Figs. 6b, c), we can observe that both attractors

generate oscillations of greater amplitude in market 2 (the one with higher strength

of chartist demand) than in market 1. We also notice that the range of fluctuations in

market 1 is wider when the system fluctuates on the newly appeared limit cycle Cb,

than on the torus Ca. Of course in the case where different asymptotic states coexist

in the phase-space, the study of the basins of attraction becomes important, i.e. the

identification of the sets of initial conditions generating trajectories converging to

each of the different coexisting attractors. For dynamical systems of dimension

greater than one, this kind of analysis can only be performed through numerical

simulations: in the case of Fig. 6, we have numerically checked that only the

trajectories starting with initial values of j1, q1, v1 sufficiently close to 0 (i.e. with

market 1 sufficiently close to its ‘equilibrium’) converge to the torus Ca, while in the

opposite case trajectories converge to the limit cycle Cb. When the parameter c is

further increased, both attractors increase in size, and evolve towards a chaotic

structure (Fig. 7a, b represent the projections in market 1 of the coexisting attractors

for c50.415), while the structure of their basins of attraction becomes more and

more complex, as can be verified numerically.

The economic intuition behind the above sequence of global bifurcations is that

when price reaction coefficients (bi, i51, 2) are sufficiently high and chartist risk

aversion (a(c)) sufficiently low, the chartist sensitivity to recent price movements (c)

can be the reason for the onset of sustained price fluctuations in both markets, even

though the two risky assets are not ‘intrinsically’ correlated in agents’ beliefs (d50).

Phase space transitions similar to the one presented in this example could also have

been obtained by taking the chartist parameter c as fixed and decreasing the chartist

risk aversion (a(c)).

From an analytical point of view we remark that, whilst the steady state and the

local stability conditions of the model with two risky assets, in the case d50, are

merely a multiple copy of the corresponding single risky asset model analyzed in

Chiarella, Dieci and Gardini (2002), the out-of-equilibrium dynamics are in general

quite different. As we have shown in this section, due to the agents’ diversification

policy and the updating of expected covariance by chartists, the dynamics of prices

and expected returns in the two markets may interact in a very complicated way.

The Case of Nonzero Long-Run Correlation

The case of zero long-run correlation (d50) studied in the previous section is a good

starting point from which to understand the local and global dynamics in the general

case of nonzero long-run correlation between returns. However, different from the

previous case, in the case with d?0 we cannot have situations with one market ‘in

equilibrium’ and the second market ‘out of equilibrium’. Rather, as our previous

analysis suggests and our numerical experiments will confirm, the Neimark–Hopf

bifurcation of the first couple of eigenvalues will cause the simultaneous appearance

of persistent oscillations in both markets.

Dynamic Interaction of Speculation and Diversification 39



7.1. Local Stability Conditions

The Jacobian matrix computed at the steady state has a more complicated structure

than in the previous case. Using, as before, f
cð Þ

i,j1
, f

cð Þ
i,j2

, f
cð Þ

i,v1
, f

cð Þ
i,v2

, f
cð Þ

i,K i~1, 2ð Þ to denote

the partial derivatives of the chartist demand for each asset with respect to the state

variables, we can write the Jacobian matrix computed at the steady state O as

DT Oð Þ~
A B

0 1{cð ÞI

� 


where 0 is the null (364) matrix, I is the three-dimensional identity matrix. The

submatrices A and B are given by

A~

1{a1b1 b1f
cð Þ

1,j1
b1b2 b1f

cð Þ
1,j2

{cb1a1 1{czcb1f
cð Þ

1,j1
cb1b2 cb1f

cð Þ
1,j2

b2b1 b2f
cð Þ

2,j1
1{a2b2 b2f

cð Þ
2,j2

cb2b1 cb2f
cð Þ

2,j1
{cb2a2 1{czcb2f

cð Þ
2,j2

2
6666664

3
7777775

and

B~

b1f
cð Þ

1,v1
b1f

cð Þ
1,v2

b1f
cð Þ

1,K

cb1f
cð Þ

1,v1
cb1f

cð Þ
1,v2

cb1f
cð Þ

1,K

b2f
cð Þ

2,v1
b2f

cð Þ
2,v2

b2f
cð Þ

2,K

cb2f
cð Þ

2,v1
cb2f

cð Þ
2,v2

cb2f
cð Þ

2,K

2
6666664

3
7777775

where

f
cð Þ

1,j1
~

1

a cð Þ 1{d2
� �

s2
1

f
cð Þ

2,j2
~

1

a cð Þ 1{d2
� �

s2
2

f
cð Þ

1,j2
~f

cð Þ
2,j1

{d

a cð Þ 1{d2
� �

s1s2

f
cð Þ

1,v1
~

{p1s2
2zdp2s1s2

a cð Þ 1{d2
� �2

s2
1

� �2
s2

2

f
cð Þ

2,v2
~

{p2s2
1zdp1s1s2

a cð Þ 1{d2
� �2

s2
1 s2

2

� �2

f
cð Þ

1,v2
~

{p1d2s2
2zp2ds1s2

a cð Þ 1{d2
� �2

s2
1 s2

2

� �2
f

cð Þ
2,v1

~
{p2d2s2

1zp1ds1s2

a cð Þ 1{d2
� �2

s2
1

� �2
s2

2

f
cð Þ

1,K~
2p1ds1s2{p2s2

1 1zd2
� �

a cð Þ 1{d2
� �2

s2
1

� �
s2

2

f
cð Þ

2,K~
2p2ds1s2{p1s2

2 1zd2
� �

a cð Þ 1{d2
� �2

s2
1 s2

2

� �2

Again the Jacobian matrix is upper block triangular, but in this case the eigenvalues

l1, l2, l3 and l4 associated with the variables q1, j1, q2, and j2, respectively, cannot

be computed separately as roots of second-order characteristic polynomials, but the
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Figure 7. The coexisting attractors considered in Fig. 6 (as well as their basins of attraction)
evolve towards a more complex structure for higher values of c, as shown by the projections
in the (q1, j1)-plane of the ‘limit cycle’ Cb (a), and of the torus Ca (b), obtained for c50.415. In
this case, starting from the same initial conditions used in Fig. 6, the system behaves exactly in
the opposite way: the initial condition q1,05q2,050.01, j1,05j2,05v1,05v2,05K050.001 generates
a trajectory converging to the ‘limit cycle’ Cb, now characterized by a more irregular shape,
while the initial condition q1,05q2,050.01, j1,05j2,050.01, v1,05v2,05K050.005 generates a
trajectory converging to the torus Ca.
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four-dimensional submatrix A must be considered as a whole. Of course the

eigenvalues of this matrix can be computed numerically. As in the case d50, the

remaining eigenvalues are l55l65l75(12c), and thus are less than one in modulus.

This implies that a sufficient condition to have a locally attracting equilibrium is that

all the eigenvalues of the submatrix A be less than one in modulus. Although it is

difficult to derive analytical conditions for this, and to study their dependence on the

key parameters of the model, the case of zero long-run correlation studied in the

previous section allows us to understand the local and global dynamics of the system.

7.2. Out-of-Equilibrium Dynamics

As outlined before, also in the general case with d?0 a supercritical Neimark–Hopf

bifurcation occurs for sufficiently high values of the chartist parameter c, creating an

attracting limit cycle. But in this case the bifurcation generates fluctuations

simultaneously in both markets. As an example, Fig. 8a, b, c and Fig. 8d, e, f are

obtained with the same parameters as Fig. 3a and Fig. 3e, respectively except that

now the long-run correlation assumes the values d50.15 (Fig. 8b, e) and d50.3

(Fig. 8c, f). The corresponding basic cases with d50 are reported in Fig. 8a and

Fig. 8d, respectively. Figure 8a, b, c show the projections in market 1 (in black) and

market 2 (in grey) of the attracting limit cycle existing soon after the Neimark-Hopf

bifurcation: while in the case d50 (Fig. 8a) market 1 is ‘in equilibrium’ when the

system fluctuates on the limit cycle, this is no longer true in the cases with d?0

(Fig. 8b, c) so that in these latter cases oscillations appear simultaneously in both

markets. However, in some sense the asymptotic behavior of the general case ‘keeps

track’ of the basic case d50, in that the size of fluctuations is wider in market 2 (the

market characterized by stronger chartist demand). Similar pictures characterize the

case of negative correlation. Notice also that the absolute value of d seems to have an

effect on the relative amplitude of the fluctuations in the two markets, in the sense

that the higher is |d|, the more similar is the range of the fluctuations in the two

markets. Similarly to the previous example, Fig. 8e, f represent the effect of long-run

correlation on the basic case of Fig. 3e (reported in Fig. 8d), where market 2

fluctuates on a chaotic attractor.

We have also performed numerical simulations in order to see the effect of a

nonzero long-run correlation on the bifurcation sequence analysed in Section 6.2.2.

Again, the main difference is that in this case oscillations on a limit cycle appear in

both markets simultaneously at the first Neimark–Hopf bifurcation (differently from

the case of Fig. 5a). The important result is that all of the rich dynamics shown in

Figs. 5, 6, 7 still exist, in particular the appearance of a coexisting attractor and the

transition to complexity associated with increasing values of the chartists

extrapolation parameter.

Of course it is not possible to state any general result concerning the influence of d
on the dynamics. The important message of the simulations of this section is that the

existence of long-run correlation seems to have a significant effect both on the local

stability properties of the steady state, and on the structure of the attracting sets that

determine the out-of-equilibrium behaviour.
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Effect of Agents’ Beliefs about Risk and Return

The aim of this section is to provide some initial insights concerning the role that

agents’ beliefs about the long-run risk/return structure of the two assets play in the

asymptotic behaviour of the system, and especially in the transition from regular to

irregular fluctuations of prices and returns. In particular, we are interested in how

the irregular price behaviour of one market may propagate to the market for the

alternative risky asset, as the result of changes in beliefs about the ratio (s2
1

�
s2

2) of

the long-run variances of the returns, or about the ratio (p1/p2) of the expected long-

run risk premia. To do this, we consider a case with zero long-run correlation, and

start from the parameter situation of Fig. 9a, b, where prices exhibit fluctuations in

market 2 (see the projection of the attractor in Fig. 9a), while in market 1 motion is

to ‘steady state’, with dampened fluctuations (Fig. 9b). Such a parameter regime is

qualitatively similar to the one associated with the bifurcation curves of Fig. 2, or

Fig. 4, in the parameter range where only the pair of (complex) eigenvalues

associated with market 2 are of modulus greater than one. We notice that the effect,

Figure 8. Dynamic effect of non-zero ‘long-run’ correlation (d?0), compared with the basic
case of zero ‘long-run’ correlation of Fig. 3a (enlarged in (a)), and Fig. 3e (reported in (d)). In
the case d?0 the Neimark–Hopf bifurcation causes the simultaneous appearance of
oscillations in both markets, and it cannot happen that one market is in equilibrium while
in the other market price fluctuations are occurring: the two markets are always characterized
by the same qualitative behaviour (see (b), the case of a limit cycle and (e), the case of a chaotic
attractor, where d50.15). Moreover, the higher is |d|, the more similar is the range of the
fluctuations in the two markets (see (c) and (f), respectively, where d50.3).
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Figure 9. Effect of changes in agents’ beliefs about the ratio s2
1

�
s2

2 of the ‘long-run’ variances

of the returns, in the case of zero ‘long-run’ correlation (d50). The values of the parameters

are: a(f)5100, a(c)550, g15g250.4, s2
1~0:01 (i.e. h152, a150.4), c50.65, b15b250.6, p150.05,

p250.025. The parameter regime is characterized by wide price fluctuations in market 2 (a)

and motion to steady state in market 1 (b). The parameter s2
2 is gradually diminished (and

therefore h2:1
�

a cð Þs2
2

� �
and a2:g2

�
a fð Þs2

2

� �
are increased). Under decreasing values of

s2
2 from s2

2~0:004 to s2
2~0:002, the dynamics in market 2 become increasingly irregular and

chaotic: see the projections in the (q2, j2)-plane in (c), where s2
2~0:003, h2^6:667, a2^1:333,

and (e), where s2
2~0:002, h2510, a252); on the other hand, both the transient and the

asymptotic behaviour in market 1 remain qualitatively unchanged (see the corresponding time

series of the log fundamental/price ratio in market 1 in (d) and (f)).
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on such bifurcation curves, of changing the ratio s2
1

�
s2

2, may be quite complicated

because both the strengths of the chartist demandhi~1
�

a cð Þs2
i

� �
and the strengths of

fundamentalist demandai~gi

�
a fð Þs2

i

� �
, i51, 2, are in general simultaneously affected

by such a change. The numerical experiments of Figs. 9 and 10 consist in simulating

the long-run behaviour of the system under decreasing values of the (common) belief

about risk in market 2 (s2
2), that is the market of the asset that exhibits the

more irregular price path. In Fig. 9 the parameter s2
2 is decreased from

s2
2~0:004 to s2

2~0:003 and then to s2
2~0:002. It can be seen that such changes

only affect the dynamics in market 2, which become increasingly irregular and

chaotic (Fig. 9a, c, e) while both the transient and the asymptotic dynamics in market

Figure 10. Effect of changes in agents’ beliefs about the ratio s2
1

�
s2

2 of the ‘long-run’ variances

of the returns, starting from the situation represented in Fig. 9e, f. The parameter regime is

characterized by highly irregular price fluctuations in market 2 and motion to steady state in

market 1. Under decreasing values of s2
2 from s2

2~0:002 to s2
2~0:0015, the dynamics in

market 2 remain qualitatively much the same (see (a), (d)), while complex behaviour

‘propagates’ from market 2 to market 1: first, the transient part of the trajectories is affected,

before ‘convergence’ to steady state (see (b), (c), where s2
2~0:0016, h2512.5, a252.5); then a

dramatic change in the asymptotic dynamics occurs, which results in oscillatory behaviour

characterized by intermittency (see (e), (f), where s2
2 is slightly decreased to s2

2~0:0015, and

thus h2^13:333, a2^2:667).
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1 remain qualitatively much the same, with the price converging to the fundamental

with dampened fluctuations (Fig. 9b, d, f). Further reduction of the value of s2
2 down

to s2
2~0:0016 has no remarkable effect in market 2 (Fig. 10a), but it starts to affect

the transient part of the trajectories in market 1, where the time paths of prices and

returns become more and more irregular, before convergence occurs (Figs. 10b and

10c, respectively). In Figs. 10d, e, f the value of s2
2 is decreased to s2

2~0:0015.
However this slight change leads to a dramatic change in the asymptotic dynamics in

market 1, where prices and returns are successively attracted to the ‘steady state’ and

then pushed away (Figs. 10e and 10f, respectively). The price behaviour in market 2

remains qualitatively much the same (Fig. 10d). We stress that the foregoing

numerical example shows an abrupt change occurring (only) in market 1, even if the

unique assumed parameter change concerns agents’ beliefs about asset 2. Such a

phenomenon could be interpreted in the sense that a reduced perception of risk in

market 2 (the one with more irregular price behaviour in our numerical example)
causes agents to increase their average wealth invested in asset 2. But this in turns

causes more and more irregular changes in agents’ portfolios and thus also in agents’

demands for asset 1. As a consequence, due to the price reaction to an increasingly

unpredictable excess demand in market 1, irregular price and return behavior

propagates also to asset 1.

Dynamic phenomena very similar to the ones illustrated in the foregoing

numerical example are observed if, ceteris paribus, the ratio p1/p2 between the

expected long-run risk premia is modified (via changes in agents beliefs about
expected dividend yields). For instance, the same dynamic effect represented in

Fig. 10 can also be obtained by starting from parameter values of Figs. 10a, b, c and

by increasing the long-run risk premium for asset 2 (p2) from the value p250.025 to

p250.026.

Conclusions

We have set up a model of heterogenous agents (fundamentalists and chartists)
investing in a portfolio of a risk-free asset and two risky assets. The investors differ

with respect to attitudes to risk as well as to how they form expectations about the

conditional means, variances and covariance of the returns on the risky assets.

Market clearing is effected by a market maker whose price adjustment rules ensure

that long-run equilibrium prices in each market grow at exogenously determined

fundamental rates.

We have set up the dynamical system arising from the interaction and dynamic

updating of beliefs of the various agents across the markets for the two risky assets.
Without loss of generality in terms of the dynamic analysis, we have focused on the

special case where chartists weight equally returns in both markets when updating

their beliefs. The dynamic interaction between the two markets is driven by a seven-

dimensional dynamical system. Despite the high dimension of the system, we have

been able to characterize the steady state of the model, and to analyse with both

analytical tools and numerical simulations the dependence of the local stability

property of the steady state from the key parameters of the model.

In order to study the dynamics we have considered first the case when there is zero
long-run correlation between the returns on the two risky assets. We have found that
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the characteristic feature of this case is that the local dynamics near the steady state

are driven by two lower-dimensional dynamical systems associated with each

market. As might have been expected the steady state and eigenvalue structure are

merely a double copy of the corresponding situation for the single risky asset case

analysed in Chiarella, Dieci and Gardini (2002). However the out-of-equilibrium

dynamics can be quite different. In particular it is possible to observe that price

movements in one market are tranquil while in the other market quite complex price

patterns are occurring. Particularly important is the appearance of complex

dynamics associated with increasing values of the chartists extrapolation parameter,

as well as with decreasing values of the chartists’ risk aversion coefficient.

We then considered the case in which there is non-zero long-run correlation

between the two markets. Here analytical results seem impossible, though we were

able to give some broad characterization of the eigenvalue structure. Numerical

simulations of the out-of-equilibrium behaviour reveal a parameter dependence very

similar to the basic case of zero long-run correlation. The main peculiarity is the

existence of similar price patterns in both markets simultaneously, presumably

brought about by the non-zero long-run correlation.

Finally we have considered the impact on the price dynamics in both markets of

changes in agents’ beliefs about the long-run risk/return structure of the two assets.

Our simulations here suggest that a sufficiently large change in this belief in one

market can cause volatility to spill-over into the other market.

This has been a very preliminary study of the effect of agents heterogeneity on

portfolio diversification. It still remains to undertake a more thorough numerical

study of the effect of changes of key parameters such as strength of fundamentalist

and chartist demand, and the market-maker’s price adjustment parameters.

Furthermore we need to consider the impact of exogenous stochastic factors. The

analysis here has focused on the underlying deterministic trend, which interacts with

the exogenous stochastic factors to produce the volatility patterns observed in real

markets. This kind of analysis will require an interplay among theoretical and

numerical methods, which is typical for the study of the global dynamic properties of

nonlinear dynamical systems of dimension greater than one, as stressed in Mira et al.

(1996) and Brock and Hommes (1997). Another topic for future research is to study

how the capital asset pricing model relationships are modified in this dynamic

framework. For instance the time varying variances and correlation could provide a

basis for a theory of time varying beta, which is widely reported as an empirical fact

but poorly explained in the standard CAPM framework.

Notes

1 See however Böhm and Chiarella (2004) for a heterogeneous agent framework that allows for multiple

risky assets. Caginalp and Balenovich (1996) also give some discussion of this issue. Westerhoff (2004)

considers a fundamentalist-chartist model with multiple assets. The framework of these papers and

questions addressed are somewhat different from those studied in this paper.
2 This assumption can be justified by considering our model as a deterministic skeleton of a stochastic

model with a dividend process characterized by a constant expected dividend growth rate.
3 Under the assumption that chartists update variances and covariance consistently with the way they

update expected returns, the extrapolation parameters c1 and c2 used in Equation 7 are the same used to

update expected returns in Equation 4, while the parameter cK of Equation 8 should take some average
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value between c1 and c2. In particular, it can be shown that by taking cK~1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{c1ð Þ 1{c2ð Þ

p
, the

return deviations of asset i, i51, 2, in Equation 8 are discounted at the same rate as in the expected return

and variance calculations (Equations 4 and 7, respectively).
4 We may assume that he/she is able to compute the equilibrium demands for each asset as long-run

averages, based for example on the past order flow.
5 If y is the value of a state variable at time t, then y9 denotes the value of the same variable at time (t+1).
6 See, for instance, Gumowski and Mira (1980), p. 159.
7 Of course, in the case represented in Fig. 1. (bihiƒ1), the crossing of the Neimark–Hopf bifurcation curve

does not occur for economically meaningful values of the parameter c.
8 We recall that the strength of chartist demand for the i-th asset at the steady state hi:f

cð Þ
i,ji

~ 1
a cð Þs2

i

decreases as long as the chartists risk aversion coefficient a(c) or the long-run variance s2
i increase;

similarly, the strength of fundamentalist demand for the ith asset ai~
gi

a fð Þs2
i

is a decreasing function of the

fundamentalist risk aversion coefficient a(f) and of the long-run variance s2
i .
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Appendix

Derivation of the chartist updating rule for the variance

The time varying components, vi,t, i51, 2, of the variances of the returns are

computed by extrapolating past deviations from expected returns according to

Equation 7, i.e.

vi,t~
X?

s~0

ci 1{cið Þs Pi,t{s{Pi,t{s{1{yi,t

� �2

where the expected return yi,t is defined as

yi,t:E
cð Þ

t Pi,tz1{Pi,t½ �~
X?

s~0

ci 1{cið Þs Pi,t{s{Pi,t{s{1ð Þ

or, recursively as

yi,t~ 1{cið Þyi,t{1zci Pi,t{Pi,t{1ð Þ ð26Þ

In this Appendix we show that vi,t satisfies the recurrence relation

vi,t~ 1{cið Þvi,t{1zci Pi,t{Pi,t{1{yi,t

� �2
z 1{cið Þ yi,t{yi,t{1

� �2 ð27Þ

or, equivalently

vi,t~ 1{cið Þvi,t{1zci 1{cið Þ Pi,t{Pi,t{1{yi,t{1

� �2 ð28Þ

In fact, starting from Equation 7 we can write:

vi,t~ci Pi,t{Pi,t{1{yi,t

� �2
zci 1{cið Þ Pi,t{1{Pi,t{2{yi,t

� �2

zci 1{cið Þ2 Pi,t{2{Pi,t{3{yi,t

� �2
z . . .

and

1{cið Þvi,t{1~ci 1{cið Þ Pi,t{1{Pi,t{2{yi,t{1

� �2

zci 1{cið Þ2 Pi,t{2{Pi,t{3{yi,t{1

� �2
z . . .
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By summing up we obtain

vi,t{ 1{cið Þvi,t{1~ci Pi,t{Pi,t{1{yi,t

� �2

zci 1{cið Þ Pi,t{1{Pi,t{2{yi,t

� �2
{ Pi,t{1{Pi,t{2{yi,t{1

� �2
h i

zci 1{cið Þ2 Pi,t{2{Pi,t{3{yi,t

� �2
{ Pi,t{2{Pi,t{3{yi,t{1

� �2
h i

z . . .

i.e.

vi,t{ 1{cið Þvi,t{1~ci Pi,t{Pi,t{1{yi,t

� �2

zci 1{cið Þ y2
i,t{y2

i,t{1{2 Pi,t{1{Pi,t{2ð Þ yi,t{yi,t{1

� �h i

zci 1{cið Þ2 y2
i,t{y2

i,t{1{2 Pi,t{2{Pi,t{3ð Þ yi,t{yi,t{1

� �h i
z . . .

and finally

vi,t~ 1{cið Þvi,t{1zci Pi,t{Pi,t{1{yi,t

� �2

z 1{cið Þ y2
i,t{y2

i,t{1

� �X?
s~0

ci 1{cið Þs

{2 1{cið Þ yi,t{yi,t{1

� �X?

s~0

ci 1{cið Þs Pi,t{s{1{Pi,t{s{2ð Þ

Notice that

X?
s~0

ci 1{cið Þs~1

X?

s~0

ci 1{cið Þs Pi,t{s{1{Pi,t{s{2ð Þ~yi,t{1

from which we obtain

vi,t~ 1{cið Þvi,t{1zci Pi,t{Pi,t{1{yi,t

� �2

z 1{cið Þ y2
i,t{y2

i,t{1{2 yi,t{yi,t{1

� �
yi,t{1

h i

and finally Equation 27, i.e.

vi,t~ 1{cið Þvi,t{1zci Pi,t{Pi,t{1{yi,t

� �2
z 1{cið Þ yi,t{yi,t{1

� �2

To obtain the alternative expression (Equation 28) notice that, from the recurrence

relation (26) of the expected return yi,t we have:

yi,t{yi,t{1~ci Pi,t{Pi,t{1{yi,t{1

� �
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and

Pi,t{Pi,t{1{yi,t~ 1{cið Þ Pi,t{Pi,t{1{yi,t{1

� �

and thus Equation 27 may be rewritten in the alternative form, Equation 28:

vi,t~ 1{cið Þvi,t{1zci 1{cið Þ Pi,t{Pi,t{1{yi,t{1

� �2
:

Derivation of the chartist updating rule for the covariance

The time varying component, Kt, of the covariance between returns is computed

according to Equation 8, i.e.

Kt~
X?
s~0

cK 1{cKð Þs P1,t{s{P1,t{s{1{y1,t

� �
P2,t{s{P2,t{s{1{y2,t

� �

Here we prove that Equation (8) results in the updating rule

Kt~ 1{cKð ÞKt{1zcK P1,t{P1,t{1{y1,t

� �
P2,t{P2,t{1{y2,t

� �

z 1{cKð Þ y1,t{y1,t{1

� �
y2,t{

eyy2,t{1

� �
z y2,t{y2,t{1

� �
y1,t{1{

eyy1,t{1

� �h ið29Þ

or, equivalently

Kt~ 1{cKð ÞKt{1

zcK 1{c1ð Þ 1{c2ð Þ P1,t{P1,t{1{y1,t{1

� �
P2,t{P2,t{1{y2,t{1

� �

z 1{cKð Þ c1 P1,t{P1,t{1{y1,t{1

� �
y2,t{1{

eyy2,t{1

� �h

zc1c2 P1,t{P1,t{1{y1,t{1

� �
P2,t{P2,t{1{y2,t{1

� �

zc2 P2,t{P2,t{1{y2,t{1

� �
y1,t{1{

eyy1,t{1

� �i

ð30Þ

where the quantities eyyi,t, i~1,2,, are defined recursively as

eyyi,t ~ 1{cKð Þ eyyi,t{1 zcK Pi,t{Pi,t{1ð Þ i~1, 2ð Þ

In fact, by following the same reasoning as for the variance, we obtain

Kt~ 1{cKð ÞKt{1zcK P1,t{P1,t{1{y1,t

� �
P2,t{P2,t{1{y2,t

� �

z 1{cKð Þ y1,ty2,t{y1,t{1y2,t{1

� �X?

s~0

cK 1{cKð Þs

{ 1{cKð Þ y1,t{y1,t{1

� �X?
s~0

cK 1{cKð Þs P2,t{s{1{P2,t{s{2ð Þ

{ 1{cKð Þ y2,t{y2,t{1

� �X?

s~0

cK 1{cKð Þs P1,t{s{1{P1,t{s{2ð Þ

ð31Þ
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where
P?

s~0 cK 1{cKð Þs~1. By defining

eyyi,t ~
X?

s~0

cK 1{cKð Þs Pi,t{s{Pi,t{s{1ð Þ i~1, 2ð Þ

or, recursively

eyyi,t ~ 1{cKð Þ eyyi,t{1 zcK Pi,t{Pi,t{1ð Þ ð32Þ
Equation 31 becomes

Kt~ 1{cKð ÞKt{1zcK P1,t{P1,t{1{y1,t

� �
P2,t{P2,t{1{y2,t

� �

z 1{cKð Þ y1,ty2,t{y1,t{1y2,t{1

� �
{ y1,t{y1,t{1

� � eyy2,t{1

h

{ y2,t{y2,t{1

� � eyy1,t{1

i

and may finally be rewritten in the form of Equation 29. Since the following relations

hold for i51, 2 (from Equation 26 and 32)

yi,t{yi,t{1~ci Pi,t{Pi,t{1{yi,t{1

� �

Pi,t{Pi,t{1{yi,t~ 1{cið Þ Pi,t{Pi,t{1{yi,t{1

� �

yi,t{
eyyi,t{1 ~yi,t{1{

eyyi,t{1 zci Pi,t{Pi,t{1{yi,t{1

� �

Equation 29 is easily reduced to the alternative form of Equation 30, that only

contains the expectations at time (t21).

If in particular we assume c15c25cK5c, we obtain yi,t~
eyyi,t i~1,2, and

Equation 30 can be reduced to the simpler form

Kt~ 1{cð ÞKt{1zc 1{cð Þ P1,t{P1,t{1{y1,t{1

� �
P2,t{P2,t{1{y2,t{1

� �

which is the one used in our model.
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