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We study forward-looking economic models assuming that agents take one step
ahead expectations looking back k time periods. We show that the dynamics of the
economy with such an expectation function are characterized by the coexistence of
perfect foresight and nonperfect foresight cycles. The stability of all these periodic
solutions under bounded rationality is related to the stability of the perfect foresight
cycles. Journal of Economic Literature Classification Numbers: C62, D83, D84, E31,
E32. � 1999 Academic Press

1. INTRODUCTION

In this note we analyze the class of forward looking economic models

xt=F(xe
t+1) (1)

under bounded rationality. The variable xt represents the state of the
economic system at time t and xe

t+1 is the expected state for time t+1
according to the information set at time t. F is a continuously differentiable
map from an open interval of the real line into itself.

This class of models can be characterized by many perfect foresight
stationary (PFS) solutions and perfect foresight cycles (PFC). In [4] and
then in many other papers (e.g. [5, 6]) the relevance of a perfect foresight
(PF) solution has been investigated by analyzing the dynamics of the
model under bounded rationality learning. If a PF solution is stable under
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learning then the agents endogenously learn it as the economy evolves.
Since we want the PF solution to be a trapping set for the dynamics with
learning, then an ad hoc learning mechanism for each PF solution is
assumed. For example, in order to analyze the stability of a PFC of period
k with an expectation function based on past observations of the state, then
we require that the expectation function detects period k, see [4] for a
definition and [4, 5] for the stability conditions of PFC. The expectation
function detecting period k considered in our analysis is the simplest one:

xe
t+1=xt+1&k . (2)

Then the dynamics under learning is governed by a difference equation of
order n=k&1,

xt=F(xt+1&k), k�2, (3)

which is equivalent to a system of first order difference equations

( y$1 , ..., y$k&1)=W� ( y1 , ..., yk&1),

where

W� : {
y$1=F( yk&1)
y$2= y1

b
y$k&1= yk&1

(4)

and $ is the unit time advancement operator. A stable cycle for the
dynamics (4) is said to be W-stable, see [4]. Such learning dynamics have
three interesting properties:

v there are many non-PFC of period different from k associated with
each k periodic PFC;

v only a PFC of period k can be a cycle of period k for the dynamics
with learning;

v if a PFC is locally stable under the backward PF dynamics
(F-stable, see [5]) then it is locally stable for the dynamics in (4), as stated
in [4], and also the associated non-PFC are stable.

These results contribute to the literature showing that under bounded
rationality the dynamics of a forward looking economic model may con-
verge to a non-PFC attractor, e.g. see [2]. The expectation function is dif-
ferent from the one considered in [2] and moreover in our framework
non-PFC coexist with PF equilibria, whereas in [2] non-PF equilibria
appear only when the PF ones lose stability.
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2. THE LEARNING DYNAMICS

Given the expectation function (2) which detects period k�2, the map
(4) has the property that its iterate of order n=k&1 has separated
variables, i.e.,

W� n ( y1 , ..., yn)=(F( y1), ..., F( yn)). (5)

The main results, stated in the next three propositions, are consequences
of this property. Proposition 2.1 characterizes the values of the cycles of the
dynamics under learning. Propositions 2.2�2.3 analyze the stability and the
period of the cycles for the learning dynamics.

Proposition 2.1. Every cycle of period p of the forward dynamics with
learning (4) takes values belonging to some PFC:

v if p is a multiple of n then every cycle of period p of the forward
dynamics with learning (4) is made up of points belonging to PFC of period
p�n (or its divisors);

v if p is not a multiple of n then every cycle of period p of the forward
dynamics with learning (4) is made up of points belonging to PFC of period
p (or its divisors).

Proof. Let p be a multiple of n, i.e., p=nj, j�1. From (5) it follows
that W� nj ( y1, ..., yn)=(F j ( y1), ..., F j ( yn)). Hence W� nj ( y1, ..., yn)=( y1, ..., yn)
if and only if y1=F j ( y1), ..., yn=F j ( yn), i.e. cycles of W� of period p=nj
are associated with PFC of period j or its divisors.

Let p be not a multiple of n, i.e. p=nj+i, 1�i�(n&1), j�0.
If ( y1 , ..., yn) belongs to a p-cycle of W� , then W� n(nj+i) ( y1 , ..., yn)=
(F nj+i ( y1), ..., F nj+i ( yn))=( y1 , ..., yn) and therefore yk=F nj+i ( yk) for
each k=1, ..., n i.e. each yk is a point of a cycle of period p=nj+i (or its
divisors) of the map F. K

An F-stable (F-unstable) PFC generates cycles for the forward dynamics
with learning which are W-stable (W-unstable). We prove this result in two
propositions. The first one concerns a PFC of period k.

Proposition 2.2. Let [:1 , ..., :k] be a k-PFC with eigenvalue *:=
>k

i=1 DF(:i) and assume that expectations are formed according to (2).
Then the forward dynamics with learning (4) has (kk&2+k&2)�(k&1) cycles:
one of period k corresponding to the PFC with eigenvalues given by the
(k&1) complex roots k&1

- *: , and the remaining (kk&2&1)�(k&1) cycles of
period k(k&1) with eigenvalues *1= } } } *k&1=*: .
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Proof. Given the array :~ =[:1 , :2 , ..., :k&1], formed by the first k&1
points of a k periodic cycle of F, i.e., F(:1)=:2 , ..., F(:k&1)=:k and
F(:k)=:1 , it is straightforward to verify that :~ is a k periodic cycle of W� .
In fact, from (4) we have: W� (:~ )=[:k , :1 , :2 , ..., :k&2], W� 2 (:~ )=
[:k&1 , :k , :1 , ..., :k&3], ..., W� k (:~ )=[:1 , :2 , ..., :k&1]. Any array formed
by a permutation with repetition of (k&1) points taken from [:1 , ..., :k]
is obtained after k(k&1) applications of W� . Let [:i1

, :i2
, ..., :ik&1

] be one
of such permutations, from (5) we have that

W� n[: i1
, :i2

, ..., :ik&1
]=[F(:i1

), F(:i2
), ..., F(:ik&1

)],

W� 2n[:i1
, :i2

, ..., :ik&1
]=[F 2 (: i1

), F 2 (:i2
), ..., F 2 (:ik&1

)],

b

W� kn[: i1
, :i2

, ..., :ik&1
]=[F k (: i1

), F k (:i2
), ..., F k (:ik&1

)]

=[:i1
, :i2

, ..., :ik&1
].

The number of the permutations with repetition from :~ is kk&1; this
number, deprived of the k different permutations generating the k periodic
cycle obtained above, becomes kk&1&k. Since every cycle of period
k(k&1) contains exactly k(k&1) of these permutations, then the number of
distinct cycles generated in this way is

kk&1&k
k(k&1)

=
kk&2&1

k&1
.

Since the Jacobian matrix of (4) is

DW� ( y1 , y2 , ..., yn)=_
0
1

0

0
. . .
. . .
} } }

} } }
. . .
0
1

DF( yn)
b
0
0

& (6)

and

DW� n ( y1 , y2 , ..., yn)=_
DF( y1)

0
b
0

0
DF( y2)

. . .
} } }

} } }
. . .
. . .
0

0
b

0
DF( yn)

& (7)

where n=k&1, then for the PFC we have

DW� k (:~ )=_
0

DF(:2)
0
0

0
0

DF(:3)
0

} } }

. . .
DF(:k&1)

DF(:1) DF(:k)
0
b
0

& , (8)
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so that the corresponding characteristic equation is *n=*: .
For the stability of the cycles of period k(k&1)=kn we have

DW� kn (:i1
, :i2

, ..., :i(k&1)
)

=_
>k

j=1 DF(:j)
0
b
0

0
>k

j=1 DF(: j)
. . .
} } }

} } }
. . .
. . .
0

0
b
0

>k
j=1 DF(:j)

& ,

where (:i1
, :i2

, ..., :i(k&1)
) is a permutation of (k&1) of the k points of the

k periodic cycle of F. Therefore for the cycles of period k(k&1) we have
*1=*2= } } } =*n=*: . K

Let us consider now the case in which a PFC of period p{k exists.

Proposition 2.3. Let Cp=[:1 , ..., :p] be a PFC of period p{k with
eigenvalue *:=> p

i=1 DF(:i) and suppose that expectations are formed
according to the expectation function (2). Then:

(i) if p is multiple of k&1 then the system (4) has ( pk&2)�(k&1)
cycles of period p(k&1), all made up of the points of Cp ;

(ii) if p is not multiple of k&1 then the system (4) has
( pk&2&1)�(k&1) cycles of period p(k&1) and one cycle of period p all
made up of the points of Cp ;

(iii) A cycle made up of points of Cp is W-stable if and only if Cp is
F-stable.

Proof. Let us consider a vector y~ # Rn, y~ =(: i1
, ..., : in

), with [i1 , ..., in] #
[1, ..., p] and n=k&1, i.e. the components of y~ are a permutation with
repetition of the p points of the cycle Cp . From (5) we have that
W� np ( y~ )=(F p (:i1

), ..., F p (:in
)), since (:i1

, ..., : in
) are p-periodic points of F

we have W� np ( y~ )= y~ . This implies that y~ is a periodic point of W� of period
np. In fact it cannot be a periodic point of period which divides np since
Wnp�u ( y~ )= y~ would imply, from (5), that F p�u (:i)=:i , i.e. : ij

, j=1, ..., n,
belongs to a cycle of F of period less than p, a contradiction. The same
argument holds for every permutation of n points taken from the periodic
points of Cp , so that the total number of np periodic points of W� is pn.
Since each cycle of period np of W� is made up of np periodic points then
the number of distinct cycles of W� of period np is pn�(np)= pn&1�n. This is
the number of the cycles of period np if p is a multiple of n.

If p is not multiple of n then from Proposition 2.1 we know that a cycle
of W� with the same period p exists and therefore the p periodic points of
such cycle must be subtracted from the total number of np-periodic points.
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Summing up, the number of distinct cycles of W� of period np is
( pn& p)�(np)=( pn&1&1)�n.

To prove part (iii) we consider the Jacobian matrix of (4), given by (6).
A straightforward computation gives

DW� i ( y1 , ..., yn)

0 0 } } } DF ( yn&i) 0 } } } 0

0 0
. . . 0 DF ( yn&i+1) } } } 0

b . . .
. . .

. . .
. . . b

= 1 0 } } } 0 0 0 DF ( yn)

0 1 0 0 0
. . . b

b b . . . b . . .
. . . 0

0 0 } } } 1 } } } 0 0

and when i=n we obtain (7). Hence, for p multiple of n, say p=nj, j�1,
the matrix DW� nj (: i1

, ..., : in
) is diagonal with eigenvalues *1= } } } =*n=*: .

The same holds for the cycles of period np generated by a cycle Cp when
p is not multiple of n, say p=nj+i, j�0 and 1�i�(n&1), whereas for
the cycle of period p the matrix DW� nj+i (:i1

, ..., :in
) has the same structure

as the matrix DW� i (:i1
, ..., :in

), hence its characteristic equation is *n=*: .
In both cases, if |:: |<1 then the eigenvalues of all the cycles are inside the
unit circle of the complex plane. K

A interesting case is obtained when k=3 which has been fully
investigated in [1, 7]. In this case, given a F-stable PFC of period three we
have that it is stable under learning together with a non-PFC of period six.
Given a PFC of period p{3 we have that if p is even then (4) has p�2
cycles of period 2p, if p is odd then (4) has ( p&1)�2 cycles of period 2p
and one cycle of period p.

In addition to the cycles described above (homogeneous type), W-stable
cycles of mixed type (cycles made up of points belonging to different PFC)
can be obtained with an expectation function of the type described in (2)
if the map F has more than one F-stable cycles. Following [1, 7], the
following Proposition can be stated for k=3.

Proposition 2.4. Let C (:)
3 =[:1 , :2 , :3] and C (;)

p =[;1 , ..., ;p] be two
cycles of the pap F of period three and p, respectively, with eigenvalues
*:=>3

i=1 DF (:i) and *;=> p
i=1 DF (;i), and assume that expectations are

formed according to the expectation function (2) with k=3. Then the
forward dynamics with learning (4) has the two cycles C� 3 and C� 6 , p�2 cycles
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of period 2p if p is even, or ( p&1)�2 cycles of period 2p and one of period
p if p is odd, all of homogeneous type, and 3p�m mixed cycles of period 2m,
where m is the least common multiple between three and p. The mixed type
cycles are generated as follows C� (s)

2m=[W� i (;1 , :s), i=1, ..., 2m], s=
1, ..., 3p�m, the eigenvalues associated with the mixed type cycles are: *1=*n1

:

and *2=*n2
; , where n1=m�3 and n2=m�p.

The existence of mixed type cycles can be easily verified iterating 2m
times each point (;1 , :s), s=1, ..., 3p�m; it can be easily verified that for
s>3p�m one of the cycles described above is obtained again. A similar
result for a generic p, q and k can be stated in our setting. As an example,
suppose that the map F is characterized by the stable PFSE ; and the
stable PFC of period three C (:)

3 . Then a stable cycle of mixed type of period
six exists for the forward dynamics with learning, i.e. C� 6=[(;, :1), (:2 , ;),
(;, :2), (:3 , ;), (;, :3), (:1 , ;)], the corresponding six period cycle for the
state xt is C6=[;, :2 , ;, :3 , ;, :1].

3. TWO EXAMPLES

Let us consider a model of the type in (1) with the standard logistic map
F (x)=+x(1&x), +>0. Such a map has been considered by many authors
as the prototype of hill-shaped function, often appearing in overlapping
generations models, see [4, 6]. For +=3.83 the map has a stable cycle of
period three C3=[:1 , :2 , :3]=[0.1561494..., 0.5046667..., 0.9574166 } } } ]
with eigenvalue *:=0.325. Let us assume that the agents believe in a three
periodic evolution of the economy and that they form their expectations as
in (2) with k=3. Then the dynamics with learning is described by the
second order difference equation

xt=+xt&2 (1&xt&2) (9)

and the equivalent system of two first order difference equations becomes

W� : {y$1=+y2 (1& y2)
y$2= y1

. (10)

According to the analysis developed above, the map (10) has the PFC
[(:1 , :2), (:3 , :1), (:2 , :3)] and the non-PFC of period six, [(:1 , :1),
(:2 , :1), (:2 , :2), (:3 , :2), (:3 , :3), (:1 , :3)]. The points of the correspond-
ing cycles of (9) are obtained by taking the first coordinate of each point
of the cycles of (10). Since the forward dynamics with learning has two
coexisting attractors, it is important to delimitate their basins of attraction.
In Fig. 1 the two basins of attraction are represented by different colors in
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FIG. 1. Numerical representation, in the two-dimensional phase space of the dynamical
system (10), of the basins of attraction of the two stable cycles existing for +=3.83: the white
region represents the basin of the cycle of period 3 (PFC), the grey region represents the basin
of the cycle of period 6. The black dots represent the periodic points.

the phase plane of the two-dimensional dynamical system (10): the white
region represents the set of points belonging to the basin of the cycle of
period three and the grey-shaded region represents the basin of the stable
cycle of period six (the black dots inside the white region and the block
dots inside the grey region represent the periodic points of the cycle of
period three and six, respectively).

From this figure it turns out that the basin of attraction of the three peri-
odic PFC is smaller than the basin of the non-PFC of period six. There-
fore, starting from a random initial condition, the dynamics with learning
has a large probability of converging to the not PFC.

Similar results can be obtained if the logistic map has a stable PFC of
period k>3 and the agents use the expectation function (2) which detects
cycles of period k. For example, with +=3.5 the logistic map has a stable
cycle of period four, C4=[:1 , :2 , :3 , :4]=[0.5009..., 0.8741..., 0.3838...,
0.8269...] with eigenvalue *:=&0.03. If the expectation function (2) with
k=4 is considered then, according to Proposition 2.2, the three-dimen-
sional dynamical system (4) has six distincts cycles: the PFC of period
four C� 4=[W� i (:1 , :2 , :3), i=1, ..., 4], with eigenvalues given by the three
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FIG. 2. Versus-time representation of six trajectories of the forward dynamics with learn-
ing obtained by the iteration of (4) with logistic map with +=3.5 and expectation function
(2) with k=4. The six trajectories converge to six different stable cycles: one of period 4
(PFC) and five of period 12.
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complex roots 3
- *: , and five cycles of period twelve given by C� (1)

12 =
[W� i (:1 , :1 , :1), i=1, ..., 12], C� (2)

12 =[W� i (:1 , :2 , :1), i=1, ..., 12], C� (3)
12 =

[W� i (:1 , :1 , :2), i=1, ..., 12], C� (4)
12 =[W� i (:1 , :3 , :1), i=1, ..., 12], C� (5)

12 =
[W� i (:1 , :1 , :3), i=1, ..., 12], with eigenvalues *1=*2=*3=*: . By taking
six different initial conditions we can easily obtain convergence to the six
different cycles, represented in Fig. 2. The cycle shown in the upper graph
is the PFC of period 4, the other graphs show the five cycles of period 12.
Each of these stable cycles has its own basin of attraction which belongs to
R3. The basins of attraction look like six three-dimensional boxes with an
intermingled pattern similar to that in Fig. 1.

To highlight the results on mixed type non-PFC we can consider a
model characterized by multiple PFS, for example the one in [3] where an
overlapping generations model with production and increasing returns to
labor is analyzed. In this setting the forward-looking map (1) has multiple
PFSE. In particular, if strong enough increasing returns are considered
then we have four stationary equilibria, say [x0 , xL , xU , xH], of which xL

and xH are F-stable and x0 and xU are F-unstable. If the agents compute
xe

t+1 using an expectation function of the form in (2) with k>2, then the
model with learning has stable cycles of period (k&1) made up of sequen-
ces of xL and xH . For example, with k=3, the dynamics with learning can
converge to the periodic sequence [... xL , xH , xL , xH , ...], whereas with
k=4, the dynamics with learning has two possible three periodic cycles,
namely [... xL , xH , xL , xL , xH , xL , ...] and [... xH , xL , xH , xH , xL , xH , ...].
Both these periodic solutions of the model with learning are stable, each
with its own basin of attraction.
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