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In this paper we show that unbounded chaotic trajectories are easily observed in the iteration
of maps which are not defined everywhere, due to the presence of a denominator which vanishes
in a zero-measure set. Through simple examples, obtained by the iteration of one-dimensional
and two-dimensional maps with denominator, the basic mechanisms which are at the basis of
the existence of unbounded chaotic trajectories are explained. Moreover, new kinds of contact
bifurcations, which mark the transition from bounded to unbounded sets of attraction, are
studied both through the examples and by general theoretical methods. Some of the maps
studied in this paper have been obtained by a method based on the Schröder functional equation,
which allows one to write closed analytical expressions of the unbounded chaotic trajectories,
in terms of elementary functions.

1. Introduction

The literature on chaotic dynamical systems mainly
concerns bounded attracting sets, while unbounded
trajectories are usually considered as synonymous
of diverging trajectories. Also the definitions of at-
tractor given in the current literature are almost
all referred to compact sets (see e.g. [Robinson,
1995; Katok & Hasselblatt, 1995; Wiggins, 1990]).
The fact that this may be a restrictive point of
view has been recently emphasized by some authors.
For example [Brown & Chua, 1996] write “. . . in
defining chaos, no restrictions as to boundedness is
reasonable”.

Indeed, unbounded chaotic trajectories nat-
urally arise in the iteration of maps with a
denominator which can vanish. For example, the
existence of a “nonbounded chaotic solution” in a
one-dimensional recurrence with denominator, has
been shown in [Mira, 1982] (see also [Mira et al.,
1996a, p. 38]).

The main purpose of this paper is to show
examples of unbounded chaotic trajectories and
to describe some nonclassical (or contact) bifur-
cations which cause the transition from bounded
asymptotic dynamics to unbounded (but not
diverging) dynamics, both in one-dimensional and

∗The early ideas at the basis of this paper have been presented by the authors at the ECIT’98 (European Conference on
Iteration Theory) held in Poland in September 1998 (see [Bischi et al., 1999b]).
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two-dimensional fractional maps. The basic feature
of an unbounded and not diverging trajectory is
that points of arbitrarily large norm may belong
to the trajectory, but they do not give rise to di-
vergence, i.e. these points have images of smaller
norm. Of course, this property may cause some dif-
ficulties in the numerical iteration of a map by a
computer, since an overflow error may occur even if
the numerically generated trajectory is not diverg-
ing. Furthermore, the occurrence of such a numer-
ical error may be strongly dependent on the kind
of computer or the kind of floating-point arithmetic
used to perform the calculations. For this reason,
even if we give some numerical representations of
unbounded sets of attraction in order to help the
reader to visualize the objects we are studying, we
avoid using just computer experiments in order to
prove the existence of such kinds of trajectories.
Indeed, in the examples we give in this paper, we
show the existence of unbounded chaotic trajecto-
ries on the basis of theoretical arguments, and in
some cases we even give the closed analytical ex-
pression of such trajectories in terms of elementary
algebraic and transcendental functions.

The results of this paper are partially based
on the studies published in a previous paper by
the same authors, concerning the properties of two-
dimensional maps which are not defined in the
whole plane, due to the vanishing of a denominator
(see [Bischi et al., 1999a]), and on some studies on
chaotic recurrences with analytic solutions obtained
by a method based on the Schröder functional equa-
tion, published in [Mira, 1982] (see also [Gumowski
& Mira, 1980] or [Mira et al., 1996a]).

The plan of the paper is the following. In
Sec. 2 we introduce the concept of set of non-
definition, δs, for both one-dimensional and two-
dimensional maps, and some consequences of the
presence of δs on the geometrical properties of the
maps are investigated. In Sec. 3 we propose some
simple one-dimensional maps whose iteration gen-
erates unbounded chaotic sequences, and through
these examples we try to explain the basic mech-
anisms and bifurcations leading to the creation of
Unbounded Sets of Attraction. We show that un-
bounded chaotic sets can be easily observed in the
iteration of one-dimensional maps characterized by
the presence of a vertical asymptote, the abscissa
of which cancels the map’s denominator. A simple
one-dimensional noninvertible map with denomina-
tor is proposed in order to show how the transition
from bounded asymptotic dynamics to Unbounded

Sets of Attraction can be explained as the effect of
nonclassical bifurcations, due to a contact between
a critical point and a vertical asymptote. In Sec. 3
we also propose a one-dimensional recurrence with
unbounded chaotic dynamics, whose solutions can
be written in closed form, expressed in terms of ele-
mentary functions. In Sec. 4 we generalize some of
these concepts to two-dimensional recurrences. For
many purposes, a curve where a denominator van-
ishes may be considered as a two-dimensional ana-
logue of a vertical asymptote, and the creation of
two-dimensional unbounded chaotic sets in nonin-
vertible maps may be caused by a contact between
δs and critical curves.

The study of such peculiar dynamical behav-
iors of maps with denominator has been motivated
by practical reasons, because discrete dynamical
systems, obtained by the iteration of maps with
denominator, are often seen in applications. For
example, many iterative methods to find numeri-
cal solutions of equations, based on the well known
Newton method, are expressed by recurrences with
a denominator which can vanish (see e.g. [Curry
et al., 1983; Billings & Curry, 1996; Billings et al.,
1998; Gardini et al., 1999]) as well as implicit
methods for the numerical solution of differential
equations [Yee & Sweby, 1994]. Moreover, some
discrete-time dynamical systems used to model
the evolution of economic and financial systems,
which are often expressed by implicit recurrences
F (xn, xn+1) = 0, assume the form of recurrences
with denominator when they are expressed as
xn+1 = f(xn) (see e.g. [Marimon & Sunder, 1994;
Bischi & Naimzada, 1997]).

2. The Set of Nondefinition and
Related Properties

In this paper we consider one-dimensional and two-
dimensional fractional maps which are, respectively,
not defined in a subset of the real line or of the
plane, due to the vanishing of some denominator.

The one-dimensional maps considered in this
paper are of the form

x→ x′ = f(x) with f(x) =
N(x)

D(x)
(1)

where N(x) and D(x) are functions of the real vari-
able x which are assumed to be continuous in R.
The set of nondefinition for the map (1) is given by



Unbounded Sets of Attraction 1439

the set of points in which the denominator vanishes

δs = {x ∈ R|D(x) = 0} . (2)

We assume that δs is a set of isolated points of R.
The iteration of the map (1) is well defined provided
that the initial condition belongs to the set E given
by

E = R \ Λ (3)

where Λ is the union of the preimages of any rank
of the set of nondefinition

Λ =
∞⋃
k=0

f−k(δs) (4)

where f−k(δs) denotes the set of the rank-k preim-
ages of δs, i.e. the set of points which are mapped
into δs after k applications of f (f0(δs) ≡ δs). From
the definition (3) it follows that E is a trapping set
for the map f , i.e. f(E) ⊆ E, so that the iteration
of the restriction

f : E → E

generates nonterminated trajectories. From the as-
sumption that δs is a set of isolated points it fol-
lows that the set Λ defined in (4) has zero Lebesgue
measure in R, so that it makes sense to consider the
restriction of f to E.

The two-dimensional maps considered in this
paper are of the form

(x, y)→ (x′, y′) = T (x, y) = (T1(x, y), T2(x, y))

(5)

with

T1(x, y) =
N1(x, y)

D1(x, y)
or T2(x, y) =

N2(x, y)

D2(x, y)

where “or” means at least one. The functions
Ni(x, y) and Di(x, y), i = 1, 2, are assumed to be
continuous in the whole plane R2. Hence, the set
of nondefinition of (5) is given by the set of points
where at least one denominator vanishes

δs = {(x, y) ∈ R2|D1(x, y) = 0 or D2(x, y) = 0}
(6)

and we assume that it is formed by the union of
smooth curves of the plane. Following arguments
similar to those given for the one-dimensional case,
in order to have a well defined recurrence by the

iteration of T we shall consider its restriction to the
trapping set E defined as

E = R2 \ Λ (7)

where Λ is given by

Λ =
∞⋃
k=0

T−k(δs) (8)

and T−k(δs) denotes the set of the rank-k preim-
ages of δs, i.e. the set of points which are mapped
into δs after k applications of T (T 0(δs) ≡ δs). Also
in this case, from the assumption that δs is a set of
curves it follows that the set Λ defined in (8) has
zero Lebesgue measure in R2. We shall consider the
recurrences obtained by the iteration of the restric-
tion of (5) to E, i.e.

T : E → E .

Both for the one-dimensional and the two-
dimensional fractional maps, the presence of a
nonempty set δs implies that the map may trans-
form bounded subsets of E into unbounded sets.
This property is trivial in the case of one-
dimensional maps (1). In fact, let us consider a
compact interval I = [a, b] such that I ∩ δs = ∅.
Being N(x) and D(x) continuous functions, and
D(x) 6= 0 for each x ∈ I, the image f(I) is a com-
pact interval. Instead, if I ∩δs contains at least one
point x0 ∈ [a, b] and if N(x0) 6= 0, then the im-
age by f of any neighborhood of x0, deprived of x0,
includes one or two unbounded intervals.

A similar reasoning applies to the case of two-
dimensional fractional maps (5). Consider first a
bounded curve segment γ such that γ ∩ δs = ∅, so
that the map T is continuous for all the points of γ.
Since γ is a compact subset of R2, its image T (γ) is
also compact.

Now, let us consider a bounded and smooth
simple arc γ which crosses an arc belonging to the
set of nondefinition δs, say γ ∩ δs = {(x0, y0)}. We
study how γ is transformed by the application of the
map T , i.e. what is the shape of its image T (γ). On
taking the image T (γ), we assume that the arc γ is
deprived of the point (x0, y0) in which it intersects
δs. Let us assume that in a neighborhood of (x0, y0)
γ is represented by the parametric equations

γ(τ) :

{
x(τ) = x0 + ξ1τ + ξ2τ

2 + · · ·
y(τ) = y0 + η1τ + η2τ

2 + · · ·
τ 6= 0 (9)



(a) (b)

(c) (d)

(e) (f)

Fig. 1. Qualitative sketches to describe how an arc γ, which crosses the set of nondefinition δs, is transformed by an application
of the map (5). (a) Only the denominator D1 vanishes, and changes its sign, crossing the arc of δs shown in the upper part
of the figure. (b) Only the denominator D1 vanishes along the arc of δs, but it does not change its sign as γ crosses δs.
(c) Only the denominator D2 vanishes, and changes its sign, crossing the arc of δs. (d) Only the denominator D2 vanishes
along the arc of δs, but it does not change its sign as γ crosses δs. (e) and (f) Both the denominators D1 and D2 vanish along
the arc of δs.
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The portion of γ in such a neighborhood can be seen
as the union of two disjoint pieces, say γ = γ−∪γ+,
where γ− and γ+ denote the portions of γ located on
opposite sides with respect to the arc of δs, obtained
from (9) with τ < 0 and τ > 0 respectively. The
closure γ(τ) is such that γ−(0) = γ+(0) = (x0, y0)
(see Fig. 1). As (x0, y0) ∈ δs we have, accord-
ing to the definition (6) of δs, D1(x0, y0) = 0 or
D2(x0, y0) = 0 or both.

If only D1 vanishes in (x0, y0) and the corre-
sponding numerator N1(x0, y0) 6= 0 then we have

lim
τ→0

T (γ(τ)) =

(
∞, N2(x0, y0)

D2(x0, y0)

)
(10)

where ∞ means either +∞ or −∞. This means
that the image T (γ) is made up of two disjoint un-
bounded arcs asymptotic to the horizontal line of
equation

y =
N2(x0, y0)

D2(x0, y0)
(11)

If the denominator D1(x, y) changes sign as the
point (x, y) crosses δs, moving along the arc γ, then
the two unbounded branches of T (γ) are asymptotic
to the line (11) as in Fig. 1(a), otherwise a situation
like the one shown in Fig. 1(b) is obtained.

Analogously, if only D2 vanishes in (x0, y0) and
the corresponding numerator N2(x0, y0) 6= 0 then
we have

lim
τ→0

T (γ(τ)) =

(
N1(x0, y0)

D1(x0, y0)
, ∞

)
(12)

so that the image T (γ) is made up of two disjoint
unbounded arcs asymptotic to the vertical line of
equation

x =
N1(x0, y0)

D1(x0, y0)
. (13)

If the denominator D2(x, y) changes sign as the
point (x, y) crosses δs, moving along the arc γ, then
the two unbounded branches of T (γ) are asymptotic
to the line (13) as in Fig. 1(c), otherwise a situation
like the one shown in Fig. 1(d) is obtained.

Finally, if both the denominators D1 and D2

vanish in (x0, y0), and the corresponding numera-
tors Ni(x0, y0) 6= 0, i = 1, 2, then we have

lim
τ→0

T (γ(τ)) = (∞, ∞) (14)

so that the image T (γ) is made up of two disjoint
unbounded arcs asymptotic to a line of slope

m =
N2(x0, y0)

N1(x0, y0)
lim
τ→0

D1(x(τ), y(τ))

D2(x(τ), y(τ))
(15)

[see Figs. 1(e) and 1(f)].
In the particular case in which both a denom-

inator and the corresponding numerator vanish in
(x0, y0) ∈ δs, so that forms of the type 0/0 are seen
in the limits given above, we may have bounded
images T (γ) of an arc γ crossing δs in (x0, y0). In
this case the point (x0, y0) is called focal point (see
[Bischi et al., 1999a]). In order to see the differ-
ence between a focal point and a nonfocal point of
δs, let us consider different arcs γi which cross an
arc of δs, as in Fig. 2. We assume, without loss of
generality, that along the considered arc of δs only
D2(x, y) vanishes. The arcs γ1 and γ3 cross through
δs at the nonfocal points (x1, y1) and (x3, y3), such
that D2(x1, y1) = 0 and D2(x3, y3) = 0 with
N1(x1, y1) 6= 0 and N1(x3, y3) 6= 0, whereas the
point (x2, y2) is assumed to be a focal point, that
is, it satisfies D2(x2, y2) = N2(x2, y2) = 0. Of
course, analogous situations are obtained for arcs
of δs where only D1, or both D1 and D2, vanish,

(a)

(b)

Fig. 2. Qualitative representation of the images of three dif-
ferent arcs γi, i = 1, 2, 3, such that γ1 and γ3 cross the set
of nondefinition δs at points where only D2 vanishes, and
N2 6= 0 whereas γ2 crosses δs at a focal point, denoted by Q,
where both N2 and D2 vanish. In (a) the three arcs γi are
represented, and the corresponding images T (γi) are shown
in (b).



1442 G.-I. Bischi et al.

corresponding to the cases of horizontal and oblique
asymptotes respectively.

From these results it is immediate to deduce
that a contact between a bounded curve segment
γ and an arc of δs may cause noticeable qualita-
tive changes in the shape of the image T (γ). As
shown in [Bischi et al., 1999a] these contacts may be
particularly important when the segments of curves
considered are portions of phase curves of the map
T , such as invariant closed curves as well as un-
stable sets of saddle fixed points or saddle cycles.
In these cases the contacts with δs can cause the
occurrence of new types of global bifurcations, spe-
cific to maps with a vanishing denominator, that
may change the structure of the attracting sets or
of their basins (see [Bischi et al., 1997, 1999a]).

In this paper we shall focus our attention on the
bifurcations leading to the creation of unbounded
sets of attraction, related to a contact between an
attractor and δs.

To understand the geometric and dynamic
properties of fractional maps, which are at the basis
of such bifurcations, we describe now what happens
to the image of a bounded curve segment γ when it
has a tangential contact with δs and subsequently
crosses it at two points. Again, we assume, without
loss of generality, that only D2(x, y) vanishes along
the arc of δs considered. If γ lies entirely in a region
in which no denominator of the map T vanishes, so
that the map is continuous at all the points of γ,
then also its image T (γ) is a bounded curve, as qual-
itatively shown in the two sketches of Fig. 3(a). We
now imagine to move γ towards δs, until it becomes
tangent to it at a point P0 = (x0, y0) which is not
a focal point. This implies that the image T (γ) is
given by the union of two disjoint and unbounded
branches, both asymptotic to the line σ of equation
x = N1(x0, y0)/D1(x0, y0). In Fig. 3(b) two possi-
ble situations, which may be seen as possible evo-
lutions of the two arcs T (γ) of Fig. 3(a), are quali-
tatively represented. At the tangential contact be-
tween γ and δs we have T (γ) = T (γa)∪T (γb), where
γa and γb are the two portions of γ separated by the
point P0 = γ ∩ δs. For P0 the map T is not defined
and the limit of T (x, y) assumes the form (12) as
(x, y) → P0 along γa, as well as along γb. In such
a situation any image of γ of rank k > 1, given by
T k(γ), includes two disjoint unbounded branches,
asymptotic to the rank-k image of the line σ,
T k(σ) .

As γ continues to move so that it crosses
δs at two points, say P1 = (x1, y1) and P2 =

(x2, y2), both nonfocal points, then the asymp-
tote σ splits into two disjoint asymptotes σ1 and
σ2 of equations x = N1(x1, y1)/D1(x1, y1) and
x = N1(x2, y2)/D1(x2, y2) respectively, and the
image T (γ) is given by the union of three dis-
joint unbounded branches, T (γ) = T (γa) ∪ T (γc) ∪
T (γb), where γa, γb and γc are the three portions
of γ separated by the two points P1 and P2 at
which the denominator vanishes. In Fig. 3(c) some

(a)

(b)

(c)

Fig. 3. Qualitative sketches to show how the image of an arc
γ changes when the arc moves until it has a tangential con-
tact with δs and then crosses it at two points. The arc γ and
the curve of nondefinition δs are shown on the left, the cor-
responding images on the right. Only the denominator D2 is
assumed to vanish along δs. (a) γ∩δs = ∅: T (γ) is a compact
curve (two different situations are shown) (b) γ ∩ δs = P0:
T (γ) is formed by two unbounded branches, asymptotic to
the line x = N1(P0)/D1(P0). Two different situations are
shown, possible evolutions of the two situations shown in (a).
(c) γ ∩ δs = {P1, P2}: T (γ) is formed by three unbounded
branches, asymptotic to the lines x = N1(P1)/D1(P1) and
x = N1(P2)/D1(P2). Three different situations are shown.
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different possible shapes of T (γ) are qualitatively
shown, according to the sign of the denominator
D2(x, y) along the curve γ (i.e. whether D2(x, y)
changes the sign or not, or whether N2(P1) and
N2(P2) have the same sign or not). Of course, also
the image of γ of rank k > 1, T k(γ), includes three
disjoint unbounded arcs, asymptotic to the curves
T k(σ1) and T k(σ2), rank-k images of σ1 and σ2

respectively.
The qualitative change of T (γ), due to a con-

tact between γ and δs, may represent an important
contact bifurcation of a fractional map T when γ is,
for example, the unstable set W u of a saddle point
or saddle cycle. In fact, if A is an attracting set and
p ∈ A denotes a point of A, then the whole unstable
set of p is necessarily included in A, i.e. W u(p) ⊆ A.
Hence, if W u(p) includes unbounded branches, due
to a crossing with δs, then also A must necessarily
be unbounded. In the following sections we show
many examples of such unbounded attracting sets,
both in one-dimensional and two-dimensional maps.

3. One-Dimensional Examples

3.1. A simple recurrence with an
unbounded chaotic set

Let us consider the recurrence xn+1 = f(xn), where
f is the fractional rational map

x′ = f(x) =
x2 − 1

2x+ 1
. (16)

For this map, the set of nondefinition is δs =
{−1/2}. So, the recurrence is well defined pro-
vided that the initial condition x0 belongs to the
set E = R \ Λ, where Λ is defined as

Λ =
∞⋃
k=0

f−k
(
−1

2

)
.

At x = −1/2, where the denominator of (16) van-
ishes, the graph of the map has a vertical asymp-
tote. Moreover, for large values of |x| the graph
approaches an asymptote of equation x′ = 1

2x −
1
4

(see Fig. 4). The shape of the graph of (16) gives us
an intuitive understanding of the mechanism which
is at the basis of the existence of an unbounded
chaotic set. In fact, points arbitrarily close to
x = −1/2 have images of arbitrarily large modulus
(close to infinity) and the iterated images of points
very far from the origin have images of smaller and
smaller modulus, because for large values of |x| the

Fig. 4. Graph of the map (16) together with the early it-
erates of a typical trajectory, shown by the König–Lemeray
staircase diagram.

map (16) is approximated by the linear contraction
x′ = 1

2x −
1
4 . So, starting from arbitrarily large

values of |x|, smaller values are obtained by the it-
eration of f , until x approaches the value x = −1/2,
so that large values are obtained again, and so on.

Indeed, it is easy to prove that the iteration of
the map (16) generates chaotic trajectories. In fact,
(16) is conjugate to the map

z′ = s(z) =


2z for 0 ≤ z ≤ 1

2

2z − 1 for
1

2
< z ≤ 1

(17)

by the conjugacy transformation (see [Billings et al.,
1997])

z = h(x) =
1

2
+

1

π
arctan

2x+ 1√
3

. (18)

The dynamics of (17) are well known, from both a
topological and a measure theoretical point of view:
It has chaotic dynamics in the interval [0, 1] with
an absolutely continuous invariant ergodic measure
associated with it. Hence the fractional map (16)
has chaotic dynamics in the unbounded interval
(−∞, +∞) with an absolutely continuous invariant
measure on it. It can be noticed that the map (17)
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(a) (b)

(c)

Fig. 5. Graph of the map (19) for three different values of the parameter b. (a) b > bc: Two trajectories are represented, one
starting with x0 < q∗, which diverges to −∞, one starting with x0 > q∗ which enters the bounded absorbing interval [c, c1].
(b) bf < b < bc: Two trajectories are represented, one starting with x0 < q∗, which diverges to −∞, one starting with x0 > q∗

which is not divergent, but involves arbitrarily large values of x. (c) b < bf : the generic trajectory diverges to −∞.

has two repelling fixed points, z = 0 and z = 1,
corresponding, respectively, to x = −∞ and x =
+∞ by the homeomorphism (18).

To sum up, the chaotic trajectories gener-
ated by the map (16) include arbitrarily large

values, due to the presence of the vertical asymptote,
but such trajectories do not diverge, because the
infinity is repelling. This is the basic mecha-
nism for the existence of an unbounded chaotic
set.
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3.2. Contact bifurcations causing
the appearance and the
disappearance of unbounded
nondiverging trajectories

Let us consider the one-dimensional noninvertible
map

x′ = fb(x) = x+
b

x2
− 2, b > 0 (19)

whose set of nondefinition, due to the vanishing of
the denominator, is δs = {0}. The graph of (19) is
characterized by the presence of a vertical asymp-
tote at x = 0 and an oblique asymptote of equation
x′ = x − 2. The map (19) is noninvertible follow-
ing the terminology of [Mira et al., 1996a], it is a
Z1 − Z3 map, because the critical point

c =
3√
2b+

3

√
b

4
− 2 , (20)

image of c−1 = (2b)1/3, local minimum of fb(x),
separates the range of the map into the intervals
Z1 = (−∞, c) and Z3 = (c, +∞) whose points have
one or three preimages respectively [see Fig. 5(a)].
The critical point c is characterized by two merging
preimages, located in c−1 =

3√
2b. The map (19)

has two fixed points at finite distance:

q∗ = −
√
b

2
and p∗ =

√
b

2
(21)

It is immediate to see that q∗ is repelling for any
b > 0, whereas p∗ is stable for b > 8, and at b = 8
it loses stability via a flip bifurcation, which creates
a stable cycle of period 2, followed, as b is further
decreased, by a sequence of period-doubling bifur-
cations, leading to the creation of chaotic attrac-
tors, and by the complex sequence of bifurcations
known as “box-within-a-box” structure, typical of
unimodal maps (see e.g. [Mira, 1987]).

As far as c > 0, any trajectory {xn = fnb (x0)}
with x0 > q∗ enters the interval I = [c, c1], with
c1 = fb(c), and then never escapes, i.e. such trajec-
tories are ultimately bounded inside I. The inter-
val I is called absorbing interval (see [Mira et al.,
1996]), and inside I the asymptotic dynamics may
converge to the fixed point p∗ (for b > 8) or to an
attracting cycle or to a bounded chaotic attractor.

The unstable fixed point q∗ constitutes the
boundary which separates the basin of attraction
B(I) = (q∗, +∞) of the absorbing interval I, de-
fined as the set of points whose trajectories have

ω-limit sets inside I, from the basin of infinity
B(−∞) = (−∞, q∗), defined as the set of points
which generate trajectories diverging to −∞. We
can say that for the map (19) −∞ is attracting and
+∞ is repelling. This means that points arbitrar-
ily close to +∞ are mapped into points of smaller
modulus until they enter I after a finite number of
iterations, whereas points sufficiently close to −∞
generate sequences diverging to −∞. In Fig. 5(a),
obtained for b = 2.5, two trajectories are repre-
sented by the König–Lemeray staircase diagram:
one, starting from x > q∗, shows an apparently
chaotic behavior inside I, the other one is a diverg-
ing trajectory starting from x = −1.2 < q∗.

As b decreases, the critical point c also de-
creases, until it reaches the value c = 0 at b = bc =
32/27. This contact between the critical point c and
the point x = 0, belonging to δs, marks the occur-
rence of a bifurcation at which the bounded absorb-
ing interval I is transformed into an interval which
is not bounded above. In fact, c1 → +∞ as b→ b+c ,
and for b < bc we have c < 0. This implies that af-
ter the contact bifurcation the trajectories starting
with x0 > q∗ may involve arbitrarily large values,
even if they are not divergent. In Fig. 5(b) the
early points of a typical trajectory obtained with
b < bc, and starting from x0 = 0.3 > q∗, are shown.
In the same figure also a typical diverging trajec-
tory starting from x = −1 < q∗ is represented, so
that the difference between a diverging trajectory
and an unbounded not diverging trajectory can be
easily seen.

The bifurcations described above can also be
seen by a bifurcation diagram, like the one shown in
Fig. 6(a). This bifurcation diagram is obtained by
the usual procedure: For each value of the param-
eter b a trajectory starting from the critical point
is numerically generated and, after a transient of
the early 1000 iterates has been discarded, 3000
points are plotted along the vertical line through
b. For b > 8 the asymptotic dynamics is charac-
terized by convergence to a fixed point [this is not
visible in the range of b considered in Fig. 6(a)],
then for decreasing values of b the usual sequence
of period-doubling bifurcations leading to chaotic
behavior, and the “box-within-a box” bifurcation
structure typical of unimodal maps, is obtained.
At b = bc, the contact bifurcation, at which the
absorbing interval [c, c1] becomes unbounded, is re-
vealed by a sudden decrease of the density of the
iterated points, due to the fact that they are dis-
tributed over an unbounded interval. Just after the



(a)

(b)

Fig. 6. (a) Bifurcation diagram for the map (19). For each value of b, 4000 points of the trajectory starting from the critical
point are numerically generated, and the last 3000 are plotted along the vertical line x = b. For b > bc the asymptotic values
are trapped inside the bounded absorbing interval [c, c1]. For b < bc they are spread along an interval without any upper
bound. (b) Enlargement of a portion of the bifurcation diagram shown in (a): two windows (or boxes) associated with stable
periodic orbits, of periods two and three respectively, are clearly visible. It is easy to prove that infinitely many such boxes
exist for bf < b < bc, associated with stable cycles of any order, in a complex sequence of “box-within-a-box” bifurcation
structure.
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(a) (b)

Fig. 7. A piecewise smooth version of the map (19). For x < 0 the slope is always greater than 1, for 0 < x < xa and
xa < x < xb the slopes are less than −1, for x > xb the slope is equal to 1. (a) If the relative minimum B is above the x
axis then the generic initial condition x0 > q∗ generates a chaotic trajectory, ultimately bounded inside the interval [B, f(B)].
(b) If the relative minimum B is below x and above the unstable fixed point q∗ then the generic initial condition x0 > q∗

generates an unbounded chaotic trajectory which densely covers the interval [B, +∞).

bifurcation, for b < bc, other sequences of “box-
within-a-box” bifurcations occur. The “windows”
associated with attracting cycles of periods two and
three, obtained for values of the parameters b ap-
proximately given by b = 0.5921 and b = 0.66389
respectively, are clearly visible in the enlargement
of a portion of the bifurcation diagram, with b < bc,
shown in Fig. 6(b).

For b < bc, even if a bounded attractor
exists, generally an attracting cycle of very high
period, the trajectories converging to it may have
an unbounded transient, i.e. a transient involving
arbitrarily large values of xn. Moreover, no upper
bound exists for the periodic points.

It is easy to modify the shape of the function in
order to get a map for which we have “persistent”
unbounded chaotic attractors. Consider the graph
of the map shown in Fig. 7(a). The unbounded
branch on the left, for x < 0, may be assumed like
that of the map (19), with slope always greater than
1. For x > 0 the map of Fig. 7 is piecewise smooth,
made up of three portions which have slopes less
than −1 for 0 < x < xa and for xa < x < xb, and
slope equal to 1 for x > xb (the two portions with
xa < x < xb and x > xb may be considered linear).
Now assume that a parameter, say b, decreases, the
minimum B moves downwards until it crosses the x

axis at b = bc, it becomes negative [like in Fig. 7(b)]
and then it assumes the same ordinate as the un-
stable fixed point q∗ at b = bf . This implies that as
far as b is in the interval (bf , bc] no attracting cy-
cles can exist, and the dynamics are chaotic in the
whole unbounded absorbing interval I = [B, +∞).

Now consider again the map (19). It can be
noticed that for b > bc, i.e. before the contact,
any trajectory starting with x0 > 0 is trapped in
the region x > 0, and any trajectory starting with
x0 ∈ (q∗, 0) is mapped into the region x > 0 af-
ter a finite number of iterations. This implies that
for b > bc the asymptotic dynamics of nondiverging
trajectories is ultimately bounded into the absorb-
ing interval I = [c, c1], and it is only determined by
the branch of the graph of fb with x > 0, so that
the asymptotic dynamics are essentially that of a
unimodal map. Instead, after the contact, i.e. for
b < bc, the region x > 0 is no longer trapping,
since the points in a neighborhood of the minimum
c−1 are mapped in the region x < 0, so that the
asymptotic dynamics also involve the left branch of
the graph. This implies that the asymptotic behav-
ior is no longer that of a unimodal map: loosely
speaking, we can say that the map behaves like a
bimodal map, with a maximum at cM−1 = 0, even if

the corresponding critical point cM is at +∞.
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(a)

(b)

Fig. 8. (a) Graph of the map (22) with parameters a = 0.1 and b = 1.7. (b) Bifurcation diagram which represents the
asymptotic behavior of the map (22) with a = 0.1 and b ∈ [0.6, 4].
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To emphasize more this point, we may consider
the map (19) as a limiting case of a bimodal map,
such as

x′ = fa,b(x) = x+
b

x2 + a
−2, a > 0, b > 0 . (22)

This map has a local minimum, say cm−1, with
critical point cm = fa,b(c

m
−1) which decreases as

b decreases, and a local maximum cM−1, such that

cM−1 → 0+ as a → 0+, with critical point cM =

fa,b(c
M
−1) such that cM → +∞ as a → 0+ [the

graph of the map (22) is shown in Fig. 8(a)]. Also
the asymptotic dynamics of the map (22) shows a
change as b decreases, due to the merging of cm and
cM−1 (which implies cm1 = cM ). Before this merg-
ing, the nondiverging trajectories are ultimately
bounded inside the absorbing interval I = [cm, cm1 ],
where the dynamic behavior is that of a unimodal
map, whereas when cm < cM−1 the nondiverging
trajectories are ultimately bounded inside the ab-
sorbing interval J = [cm, cM ], where the dynamic
behavior is that of a bimodal map since the absorb-
ing interval includes both the local extrema. This
can be seen in the bifurcation diagram of Fig. 8(b),
where the asymptotic behavior of the map (22) is
represented as a function of the parameter b with
the parameter a fixed at the value a = 0.1. The
condition cm1 = cM corresponds with the maximum
amplitude of the absorbing interval inside which
the asymptotic dynamics are ultimately trapped,
because cm1 decreases with b, whereas cM is an in-
creasing function of b. In the limiting case a→ 0+

the behavior of the recurrence remains essentially
the same for b > bc, bounded inside I = [cm, cm1 ],
because the vanishing of the parameter a does
not have a big effect on the critical point cm. In-
stead, for b < bc the absorbing interval J becomes
unbounded, since it includes the singular point
x = 0 ∈ δs.

We now consider, again, the map (19). For b <
bc, just after the contact bifurcation at which the
absorbing interval is transformed from a bounded
interval I = [c, c1] into an unbounded interval
I = [c, +∞), the basin of I is still B(I) = (q∗, +∞),
and also the basin of infinity is unchanged,
given by B(−∞) = (−∞, q∗). Another important
bifurcation occurs at b = bf = 1/2, when the criti-
cal point c has a contact with the basin boundary,
i.e. c = q∗. This is the final bifurcation (or boundary
crisis) which causes the disappearance of the un-
bounded absorbing interval. For b < bf the generic
trajectory diverges to −∞ [see Fig. 5(c)].

3.3. A chaotic recurrence with
analytic closed form solution

Another example of a one-dimensional recurrence
characterized by chaotic and unbounded trajecto-
ries is obtained by the iteration of the map

x′ = f(x) =
x2 + 2x− 1

2x2
. (23)

This map is not defined for x = 0, where the graph
has a vertical asymptote (see Fig. 9) and the recur-
rence xn+1 = f(xn) is well defined if the restriction
of f to the set E = R \ ⋃k≥0 f

−k(0) is considered.
The map (23) has three fixed points:

x∗1 = −1, x∗2 =
1

2
, x∗3 = 1

with multipliers

f ′(x∗1) = −2, f ′(x∗2) = 4, f ′(x∗3) = 0

respectively. From the graph shown in Fig. 9 it
is evident that the fixed point x∗2 constitutes the
boundary which separates the basin of the stable
fixed point x∗3, given by B(x∗3) = E ∩ (1/2, +∞),
from the subset of E with x < 1/2, whose points
generate complex trajectories which appear to move
erratically in the whole interval (−∞, 1/2).

Indeed, the trajectories starting with an initial
condition x0 < 1/2 are unbounded and chaotic. In
fact, a peculiarity of the map (23) is that for the
recurrence

xn+1 = f(xn) , x0 ∈ E (24)

it is possible to write the general solution xn, n ≥ 0,
in closed form and in terms of elementary algebraic
and transcendental functions.

If x0 ≤ 1/2 then the solution is

xn =
cos(2nC)

1 + cos(2nC)
, with C = arccos

x0

1− x0

(25)

where the arccos function is, as usual, the inverse
of the cosine function that maps the interval [−1, 1]
to the interval [0, π].

If x0 ∈ (1/2, 1) then the solution is

xn =
cosh(2nK)

1 + cosh(2nK)
, with K = cosh−1 x0

1− x0

(26)
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Fig. 9. Graph of the map (23) together with the König–Lemeray staircase diagram of two typical trajectories: an unbounded
chaotic trajectory, starting with x0 = 0.2, whose points can be analytically computed by (25) x; a trajectory starting with
x0 = 2 and converging to x∗3.

where the cosh−1 function is the inverse of the
hyperbolic cosine function that maps the interval
[1, +∞) to [0, +∞). Furthermore, if x0 > 1 then
its image x1 ∈ (1/2, 1), hence (26) holds with n
shifted by 1.

These solutions can be easily checked by di-
rect substitution inside the recurrence (24). For

example, for the solution (25) we have

xn+1 =
cos 2(2nC)

1 + cos 2(2nC)
=

2 cos2(2nC)− 1

2 cos2(2nC)

where the duplication formula of cosine has been
used, and

f(xn) =
cos2(2nC) + 2 cos(2nC)(1 + cos(2nC))− [1 + cos(2nC)]2

2 cos2(2nC)
=

2 cos2(2nC)− 1

2 cos2(2nC)
.

The solution (26) can be analogously verified.
The possibility to explicitly write the closed

form solution for the recurrence (24) is due to the
fact that the map (23) has been obtained by a par-
ticular procedure, based on the Schröder functional
equation, as shown in the Appendix A.

From (26) it is easy to see that every trajec-
tory starting from an initial condition x0 ∈ (1/2, 1)

is an increasing sequence converging to x∗3 = 1.
From the arguments given above, the convergence
to x∗3 also holds for all the trajectories starting with
x0 > 1.

For the purposes of this paper the most in-
teresting trajectories are those generated starting
with x0 < 1/2, since any trajectory whose points
are obtained by (25) is chaotic and its points are
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spread along the whole unbounded chaotic interval
(−∞, 1/2). In fact, every sequence expressed by
P (2nC), where P is a periodic function, exhibits
sensitive dependence on initial conditions [Mira,
1987; Mira et al., 1996]) and is a candidate to be
conjugate to the shift-map [Brown & Chua, 1996].

We observe that, like in the two examples
examined in the previous subsections, a point of
nondefinition, given by x = 0 in this case, is in-
cluded in the closure of the unbounded chaotic set,
given by E ∩ (−∞, 1/2) in this case. As argued in
Sec. 2, this is a necessary condition to have an un-
bounded set of attraction in an iterated map with
a denominator which can vanish.

In this example the point x = 0 plays the role
of a “minimum” (critical point c−1 of rank-0) of
f(x), with related “minimum value” (critical point
c of rank-1) at −∞. In the same limiting sense,
the critical point c = −∞ may be thought to be
mapped in c1 = f(c) = x∗2. So, the chaotic inter-
val (c, c1) = (−∞, x∗2) totally fills up its basin. It
is worth noticing that the maps generated by the
method based on the Schröder equation (described
in the Appendix A) have the above property, i.e. in
general they lead to chaotic solutions which totally
fill up their immediate basin, as indicated in [Mira,
1987] and [Mira et al., 1996a]. We also remark
that the method used to obtain the chaotic map
(23), based on the Schröder functional equation, is
a general and easy method to obtain maps with
chaotic trajectories which can be written in a closed
form. By a proper choice of the functions (like the
one called g in the Appendix A) many recurrences
with a vanishing denominator, characterized by the
presence of unbounded chaotic trajectories, can be
easily obtained. This method can be extended to
two-dimensional maps, as we shall see in the first
example of the next section.

4. Two-Dimensional Examples

Unbounded sets of attraction are easily observed
in two-dimensional recurrences obtained by the it-
eration of a map T : (x, y) → (x′, y′) which is
not defined in the whole plane, due to the pres-
ence of one or more curves at which a denominator
vanishes. For noninvertible two-dimensional maps,
unbounded sets of attraction may be created by
contact bifurcations similar to the one described
in Sec. 3.2. In fact, a curve which belongs to the
set of nondefinition δs may be considered as a two-
dimensional analogue of a vertical asymptote. As

argued in Sec. 2, if A is an attracting set for the re-
currence (xn+1, yn+1) = T (xn, yn), and some por-
tion of δs is included inside the closure of A, then
A may be an unbounded set of attraction. More-
over, for a two-dimensional noninvertible map, a
chaotic area A is often bounded by segments of
critical curves LCi = T i(LC), where LC is the
critical curve of rank-1 (the two-dimensional ana-
logue of critical points of one-dimensional maps, see
e.g. [Gumowski & Mira, 1980; Mira et al., 1996;
Abraham et al., 1997]. Hence, the first crossing
of A with δs occurs just after the first contact be-
tween a critical curve, on the boundary of A, and
δs. This represents the two-dimensional analogue of
the contact bifurcation occurring at b = bc for the
one-dimensional map (19).

4.1. From bounded to unbounded
chaotic sets in a two-dimensional
recurrence

Let us consider the two-dimensional recurrence
(xn+1, yn+1) = T (xn, yn) where T is defined by

T :


x′ =

y2 + 2xy − x2 − 2x− 2y + b

x2 + 6xy + y2 − 6x− 6y + 3

y′ =
x2 + 2xy − y2 − 2x− 2y + b

x2 + 6xy + y2 − 6x− 6y + 3

(27)

The set δs is given by

δs = {(x, y) ∈ R2|x2 + 6xy + y2 − 6x− 6y + 3 = 0}

which is an hyperbola with centre in (3/4, 3/4) and
symmetry lines of equation y = x and y = −x+3/2.
The recurrence obtained by the iteration of the map
(27) is well defined provided that the initial con-
dition (x0, y0) ∈ E, where E is the trapping set
defined in (7).

The map (27) is symmetric with respect to the
reflection through the diagonal ∆ = {(x, x) ∈ R2}.
In fact, if we denote by S : (x, y)→ (y, x) the map
which reflects through ∆, we have that T commutes
with S, i.e. S(T (x, y)) = T (S(x, y)). This symme-
try property implies that any orbit G = {(xn, yn)}
of T is either symmetric with respect to ∆, i.e. for
each point (xn, yn) ∈ G also S(xn, yn) ∈ G, or
the set S(G) = {S(xn, yn)}, symmetric of G with
respect to ∆, is an orbit of T as well. This also
implies that T (∆) ⊆ ∆, i.e. x = y implies x′ = y′.
Hence the diagonal ∆ is a trapping one-dimensional
submanifold for T , and the trajectories embedded
inside ∆ are governed by the restriction of T to ∆,
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(a)

(b)

Fig. 10. (a) Critical set of rank-0, LC−1, (on the left) and critical set of rank-1, LC, (on the right) for the map (27) with
b = 0.93. (b) Critical set of rank-0, LC−1, (on the left) and critical set of rank-1, LC, (on the right) for the map (27) with
b = 1. In all the figures the set of nondefinition δs, given by the hyperbola of Eq. (29), is represented by the green curve.

T |∆ : ∆ → ∆, which can be identified with the
one-dimensional map

z′ = g(z) =
2z2 − 4z + b

8z2 − 12z + 3
(28)

obtained by setting x = y = z and x′ = y′ = z′ in
(27).

The map (27) is a noninvertible map of Z0 −
Z2 − Z4 type, where Z0, Z2 and Z4 represent the
regions of the phase plane whose points have two or
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four distinct rank-1 preimages respectively. These
regions are separated by the critical set of rank-1
LC, defined as the locus of points having at least
two merging preimages, located on the so-called
critical set of rank-0, denoted by LC−1 (we fol-
low the notations of [Mira et al., 1996]). The set
LC−1 is obtained as the locus of points where the
Jacobian determinant of T , detDT (x, y), vanishes,
and LC = T (LC−1) (see [Mira et al., 1996] for more
complete definitions). For the map (27) the condi-
tion detDT (x, y) = 0 becomes

b(3x2 + 3y2 + 2xy − 3x− 3y)

− 3x2 − 3y2 − 2x2y − 2xy2 + 3x+ 3y = 0 . (29)

The set of points which satisfy (29), i.e. the set
LC−1 of the map (27), is represented by the red
curves of Fig. 10(a), obtained with b = 0.93, and
its image LC = T (LC−1) is represented by the blue
curves, which separate the regions Zi characterized
by different number of preimages. In Fig. 10 also
the set of nondefinition δs is represented.

A particular case is obtained for b = 1, as in
this case Eq. (29) reduces to 2xy(1− x− y) = 0, so
that LC−1 is given by the union of three lines

LC−1 = LC
(a)
−1 ∪ LC

(b)
−1 ∪ LC

(c)
−1

= {x = 0} ∪ {y = 0} ∪ {y = 1− x} (30)

(a)

Fig. 11. (a) The numerically generated points of a typical chaotic trajectory of the map (27) with b = 1 are represented by
black dots, which cover the unbounded chaotic area A(1) = A1 ∪ A2 defined in (31). The red and yellow regions represent
the basins of the stable fixed points E1 and E2 respectively. (b) Two images of the portion of LC−1 included inside the
chaotic area A(1), belonging to the critical curves LC = T (LC−1) and LC1 = T (LC) respectively, are enough to cover the
whole boundary of the chaotic area A(1). In both figures, the set of nondefinition δs, given by the hyperbola of Eq. (29), is
represented by the green curve.
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(b)

Fig. 11. (Continued )

represented by the red curves of Fig. 10(b). In
this particular case, also the equations of the curves
which form the critical set

LC = LC(a) ∪ LC(b) ∪ LC(c)

= T (LC
(a)
−1 ) ∪ T (LC

(b)
−1) ∪ T (LC

(c)
−1)

can be analytically computed:

LC = T{x = 0} ∪ T{y = 0} ∪ T{x+ y = 1}

= {2x+ y = 1} ∪ {x+ 2y = 1} ∪ {x+ y = 1}

as shown by the blue curves of Fig. 10(b).
The map (27) with b = 1 has the peculiar prop-

erty that for any initial condition (x0, y0) ∈ A(1),
where A(1) = A1 ∪A2 with

A1 = {(x, y) ∈ R2|x < 1 and

y < 1 and 2x+ y < 1 and x+ 2y < 1}

A2 = {(x, y) ∈ R2|x > 1 and y > 1} (31)

the recurrence (xn+1, yn+1) = T (xn, yn), obtained
by the iteration of T , has a closed form solution
{xn, yn} expressed in terms of elementary functions

xn =
cos(2nC1)

cos(2nC1) + cos(2nC2)
,

yn =
cos(2nC2)

cos(2nC1) + cos(2nC2)

(32)

where the constants C1 and C2 are determined by
the initial condition (x0, y0) ∈ A

C1 = arccos
x0

x0 + y0 − 1
, C2 = arccos

y0

x0 + y0 − 1
.

Indeed, the map (27) with b = 1 has been ob-
tained by the method described in the Appendix B,
based on the Schröder functional equation (see
[Gumowski & Mira, 1980; Mira et al., 1996,
Chap. 1]). The sequence (32) defines a typical
chaotic trajectory, characterized by sensitive depen-
dence on initial conditions, which spans the whole
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Fig. 12. A trajectory of the map (27) with b = 0.93 which belongs to an absorbing area bounded by critical curves.

chaotic area A(1). Hence A(1) is an unbounded
chaotic area. In Fig. 11(a) the early points of a
trajectory starting inside A(1) = A1∪A2 are repre-
sented, and in Fig. 11(b) we show that the bound-
ary of the chaotic area A(1) can be obtained by
segments of critical curves. Indeed, the images of
the portions of LC−1 which are included inside A(1)
are sufficient to bound the chaotic area (see [Mira

et al., 1996, Chap. 4]). This implies that LC
(c)
−1 can

be neglected in order to obtain such a boundary.

Moreover, two images of the portions of LC
(a)
−1 and

LC
(b)
−1, given by

LC(a) ∪ LC(b) = T ({x = 0}) ∪ T ({y = 0})

= {2x+ y = 1} ∪ {x+ 2y = 1}

and

LC
(a)
1 ∪ LC(b)

1 = T ({2x+ y = 1})∪ T ({x+ 2y = 1})

= {x = 1} ∪ {y = 1}

are sufficient to obtain the complete boundary of
A(1) [see Fig. 11(b)].

In the case b = 1, the initial conditions belong-
ing to the set complementary to A(1), i.e. (x0, y0) ∈
E \A(1), generate trajectories converging to one of
the stable fixed points E1 = (1, 0) and E2 = (0, 1),
whose basins are represented in Fig. 11(a) by the
red and yellow regions respectively. In the particu-
lar case b = 1, also, the lines x = 1 and y = 1 are
trapping lines, and belong to the boundary of the
basins of the fixed points E1 and E2.

In Fig. 11 it is evident that some portions of
the hyperbola δs are included inside A(1), and this
is consistent with the fact that the chaotic area A(1)
is unbounded, as already remarked in the previous
sections.

The property that the boundaries of the chaotic
area are formed by segments of critical curves also
holds for b 6= 1, when a closed form solution of
the recurrence is not known in terms of elementary
functions. In order to show the kind of bifurcation
that leads to the creation of the unbounded chaotic



1456 G.-I. Bischi et al.

area existing for the map (27) with b = 1, we con-
sider a value of the parameter b for which the at-
tractor does not contain portions of δs, so that it is
included inside a bounded absorbing area A(b), and
then we gradually change the value of the parame-
ter b until a contact between δs and the boundary of
A(b), formed by segments of critical curves, occurs.

Our starting value is b = 0.93. At this stage a
numerically generated trajectory fills up the chaotic
area A(b) shown in Fig. 12. As b is increased the
chaotic area enlarges until it has a contact with the
lower branch of the hyperbola δs. This occurs for
b = bc = 0.933 . . . [see the enlargement in Fig. 13(a)]
and it can be described as a contact between LC
and δs [see Fig. 13(b)]. After this contact an
unbounded attracting set appears, as shown in
Fig. 14, obtained with b = 0.934.

At the contact between LC and δs the chaotic
area A(b) is transformed from a bounded one-piece
chaotic area into an unbounded chaotic area. It is

worth noticing that also the map T 2 has the same
attracting set, i.e. it is not a two-piece (or two-
cyclic) attracting set. In order to understand why,
at the contact, the upper portion of the chaotic area
suddenly appears, it is convenient to consider the
restriction (28) of the map T to the invariant di-
agonal ∆. The graphs of this one-dimensional map
before and after the contact bifurcations are shown
in Figs. 15(a) and 15(b) respectively. The graph
of the function (28) is characterized by two vertical
asymptotes, whose abscissas correspond to the two
intersections of δs with ∆

δs ∩∆ =

{
3−
√

3

4
,

3 +
√

3

4

}
(33)

and by two local extrema, a local maximum point
at

cM−1 =
1

4
(4b− 3−

√
16b2 − 48b+ 33)

(a)

Fig. 13. For b = 0.933 the absorbing area is very close to δs. (a) Iterated points in the portion of the absorbing area near δs.
(b) Boundary of the absorbing area, obtained by segments of critical curves, in the region near δs.
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(b)

Fig. 13. (Continued )

and a local minimum at

cm−1 =
1

4
(4b− 3 +

√
16b2 − 48b+ 33) .

There are three fixed points, p∗ < q∗ < r∗: q∗

is stable, whereas p∗ and r∗ are unstable. The
basin, along ∆, of the stable fixed point is B(q∗) =
(r∗−1, r

∗), where r∗−1 = g−1(r∗) is the rank-1 preim-
age of r∗ distinct from r∗ itself (see Fig. 15). The
bifurcation which marks the transition from a one-
piece bounded absorbing interval into a two-piece
unbounded absorbing interval is due to the merg-
ing of the abscissa of the local maximum value
cM = g(cM−1) with that of the vertical asymptote

x = (3 −
√

3)/4. In fact, for b < bc we have
cM < (3 −

√
3)/4, and all the trajectories which

start with initial conditions out of the basin of q∗

enter the absorbing interval

I1 = [cM1 , cM ] (34)

where cM1 = g(cM ). For b > bc we have cM >
(3−

√
3)/4, so that the absorbing interval becomes

unbounded, given by

I2 = (−∞, cM ] ∪ [cM1 , +∞) (35)

with basin

B(I2) = (−∞, r∗−1] ∪ [r∗, +∞)

The absorbing interval I2 is unbounded because it
includes the point (3 −

√
3)/4 ∈ δs. Moreover, it is

formed by the union of two pieces because a neigh-
borhood of cM exists whose points are mapped by
g into the interval ((3−

√
3)/4, r∗−1) and then, after

another application of g, in the region with x > r∗

[see the trajectory whose early points are repre-
sented in Fig. 15(b)]. Then the trapping interval
I2 is entered after a finite number of iterations.

The unbounded absorbing interval I2 exists as
far as cM < r∗−1. The bifurcation condition cM =

r∗−1 (or equivalently, cM1 = r∗) represents the final
bifurcation (or boundary crisis) which leads to the



Fig. 14. A trajectory of (27) with b = 0.934, just after the contact bifurcation between LC and δs. The absorbing area is
unbounded, the upper-right and lower-left portions are connected at infinity (on the Poincaré Equator).

(a) (b)

Fig. 15. Graph of the one-dimensional restriction (28) of (27) to the invariant line ∆ of equation x = y. (a) b < bc; (b) b > bc.
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Fig. 16. Basins of the two stable points E1 and E2, represented by red and yellow colors respectively, obtained for b = 1.001,
just after the final bifurcation. At b = 1 the whole boundary of the chaotic area merges with the boundary of its basin, so
that the usual contact bifurcation between critical curves and basin boundaries does not occur at isolated points, but involves
the merging of whole portions of critical segments with segments of basin boundaries.

disappearance of I2. This occurs at b = 1. In fact,
for b = 1 we have p∗ = 1/4, q∗ = 1/2 and r∗ = 1,
together with cM−1 = 0, which implies cM = g(0) =

1/3 and cM1 = g(1/3) = 1. For b > 1 the generic
trajectory embedded inside ∆ converges to q∗.

Also for the two-dimensional map (27) b = 1
corresponds to the final bifurcation of the chaotic
attractor A(1). We remark that at b = 1 the whole
boundary of the chaotic area, given in (31), merges
with the boundary of its basin. In other words,
the usual contact bifurcation between critical curves
and basin boundaries (see [Mira et al., 1996a]) does
not occur at isolated points, but involves a merging
of whole portions of critical segments with segments
of basin boundaries. After this contact bifurcation
the chaotic attractor is transformed into a chaotic
repellor, and the generic trajectory converges to
one of the stable fixed points, E1 and E2, after a
chaotic transient. In Fig. 16 the basins of the two

attracting fixed points are shown for b = 0.001, just
after the final bifurcation of the unbounded chaotic
attractor. The fixed point Q = (q∗, q∗) ∈ ∆ is a
saddle point for the two-dimensional map T , with
stable set along ∆ (and belonging to the boundary
between the basins of the two stable fixed points)
and unstable set transverse to it.

4.2. From bounded invariant
closed curves to an
unbounded attractor

As a further two-dimensional example, we consider
the map T : (x, y)→ (x′, y′) defined by

T :


x′ = ax+ γy +

b

(x+ y)2
− c

y′ = αx+ βy

(36)
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(a)

(b)

Fig. 17. (a) Critical curves LC−1 and LC for the map (36),
together with the set of nondefinition δs. (b) Riemann folia-
tion for the map (36).

whose set of nondefinition is

δs = {(x, y)|x+ y = 0} (37)

As usual, the recurrence obtained by the iteration
of the map (36) is well defined provided that the ini-
tial condition (x0, y0) ∈ E, where E is the trapping
set defined in (7).

The map (36) is a noninvertible map of Z1−Z3

type. In fact, if we solve the algebraic system (36)
to express the variables x and y as functions of
x′ and y′, we get a third degree algebraic system,
which may have one or three distinct real solu-
tions. From the condition detDT (x, y) = 0, where

Fig. 18. A trajectory of the map (36) with a = −0.6,
b = 100, γ = 0.6, β = 0.7 and c = 1.935, which converges
to a two-cyclic attractor. The fixed point S, located between
the two-cyclic attracting closed curves, is a saddle point.

DT (x, y) =

a− 2b

(x+ y)3
γ − 2b

(x+ y)3

α β


the equation of the critical curve of rank-0 LC−1 is
readily obtained

y = −x+
3
√

2b(α− β)

αγ − aβ (38)

i.e. LC−1 is a line parallel to δs. It is immedi-
ate to see that the critical curve of rank-1, LC =
T (LC−1), is the line of equation

y =
α− β
a− γ x+

α− β
a− γ

×

c− γ 3
√

2b(α− β)

αγ − aβ −
αγ − aβ
2(α− β)



+β
3
√

2b(α− β)

αγ − aβ (39)

The three lines δs, LC−1 and LC are shown in
Fig. 17(a). The line LC separates the plane into
two regions: the points belonging to the region be-
low LC, denoted by Z1 in Fig. 17, have one rank-1
preimage, and the points belonging to the region
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Fig. 19. Qualitative picture to show how an arc ω, which crosses the line of nondefinition δs, is transformed by one or more
applications of the map (36). (a) On the left an arc ω is shown which crosses δs at one point, (x0, y0), and on the right two
possible images T (ω) are shown, constituted by unbounded arcs asymptotic to the line x = αx0 + βy0. (b) Curves obtained
by further applications of T , given by T (ω) and T 2(ω) respectively. (c) If ω crosses the curve δs at two points, (x0, y0) and
(x1, y1), then its image T (ω) is made up of three branches, an example is given by the qualitative sketch shown on the right.
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above LC, denoted by Z3 in Fig. 17, have three
distinct rank-1 preimages. We may say that three
distinct inverses T−1

i , i = 1, 2, 3, are defined in the
region Z3, whereas only one inverse, T−1

1 , exists
in the region Z3. This may be visualized by the
Riemann foliation of the plane (see [Mira et al.,
1996b] or [Mira et al., 1996a, Chap. 3]) where each
inverse mapping T−1

i is considered as defined in a
different sheet SHi [see Fig. 17(b)]. The two sheets
SH1 and SH2 only exist in the region Z3, and they
join along a fold represented by the critical curve
LC, where the preimages obtained by the two in-
verses T−1

1 and T−1
2 merge and disappear. On the

basis of the structure of the Riemann foliation, we
may say that the map (36) is, in some sense, a two-
dimensional extension of the one-dimensional map
(19), whose foliation is simply given by its graph
(see Fig. 5).

We now illustrate a contact bifurcation which
leads to the creation of an unbounded set of attrac-
tion for the recurrence obtained by the iteration of

the map (36). We start from the situation shown in
Fig. 18, obtained with a = −0.6, b = 100, γ = 0.6,
β = 0.7 and c = 1.935, where the generic trajec-
tory converges to an attractor, say A, belonging
to period-two invariant closed curves, created via
a supercritical Neimark–Hopf bifurcation of a cycle
of period two, on which the asymptotic dynamics
are either periodic or quasiperiodic, depending on a
rotation number rational or irrational respectively.
The fixed point S, located between the two-cyclic
attracting orbits, is a saddle point. It can be no-
ticed that the attractor A is very close to the line
of nondefinition δs. If the parameter c is increased
with respect to the value used to obtain Fig. 18, the
attractor A has a contact with δs.

On the basis of the results given in Sec. 2,
we try to understand what will happen after the
first contact between A and δs. Let us suppose
that an arc ω ∈ A crosses δs at a point (x0, y0)
[Fig. 19(a)]. Then its image T (ω) must include two
unbounded arcs, asymptotic to the horizontal line

(a)

Fig. 20. (a) A trajectory of the map (36) with a = −0.6, b = 100, γ = 0.6, β = 0.7 (the same as in Fig. 18) and c = 2. (b) A
trajectory of the map (36) with a = −0.6, b = 100, γ = 0.6, β = 0.7 [the same as in (a)] and c = 2.1.
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(b)

Fig. 20. (Continued )

y = αx0 + βy0 . (40)

In fact, as (x, y)→ (x0, y0) along ω, we have

lim
(x,y)→(x0,y0)

T (ω) = (±∞, αx0 + βy0)

where +∞ is obtained if b > 0 and −∞ is ob-
tained if b < 0 [see Fig. 19(a)]. Thus, if A crosses
δs in (x0, y0) then it necessarily includes at least
two unbounded arcs asymptotic to the line (40).
Furthermore, A must also include T 2(ω) which con-
tains unbounded arcs as well, asymptotic to T ({y =
αx0+βy0}), which, for sufficiently high values of |x|,
is well approximated by the line

y =
α

a
x+H(x0, y0) (41)

where H(x0, y0) is a constant depending on the
point (x0, y0). Of course, if T (ω) crosses δs, say
at a point (x1, y1), then T 2(ω) includes other
unbounded arcs, asymptotic to the horizontal line
y = αx1 + βy1. Analogously, T 3(ω) must include

unbounded arcs asymptotic to the image of the
line (41), which for high values of |x| is close to
the line

y = α

(
a+ β

a2 + γα

)
x+ L(x0, y0) (42)

and so on [see Fig. 19(b)]. An interesting case is
obtained if the arc ω crosses δs at two points, as
shown in Fig. 19(c). In this case, T (ω) is asymp-
totic to two distinct horizontal lines, of equations
y = αx0 + βy0 and y = αx1 + βy1, as shown in
Fig. 19(c) for the case b > 0.

These considerations should help to under-
stand the sequence of numerical iterations shown
in Figs. 20 and 21, obtained with increasing val-
ues of the parameter c. In Figs. 20(a) and 20(b),
obtained with c = 2 and c = 2.1 respectively, we
can see that as the chaotic attractor A approaches
δs the “germs” of the asymptotes, which will
appear inside A after the contact, are growing
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up. Figure 21(a) is obtained for c = 2.3, just af-
ter the contact. The structure of the attracting
set A is now characterized by the presence of un-
bounded arcs which are asymptotic to the lines of
the type (41), (42). . . , images of the horizontal line
of the type (40), visible on the right. The shape of
the phase curves which form A clearly shows that,
after the contact, at least two intersections between
A and δs exist. In Fig. 21(b) a much larger view of
the unbounded attracting set A is shown.

The unbounded attracting set persists for a
wide range of parameters: In Fig. 22 a trajectory
is shown, obtained numerically with a higher value
of the parameter c, c = 2.7. The red region visi-
ble in Figs. 21 and 22 represents the basin of at-
traction of a stable fixed point, which has been
created, together with an unstable one, via a fold
bifurcation.

5. Conclusions

In this paper we have shown, through theoretical
arguments and examples, that unbounded chaotic
trajectories are naturally met in the study of
iterated maps with a denominator which can van-
ish. Such trajectories densely cover an unbounded
set, but they do not diverge.

In this paper we have given, besides the
theoretical arguments which are at the basis of the
existence of unbounded chaotic attractors, some
examples of unbounded chaotic trajectories and
we have described some contact bifurcations which
cause the transition from bounded asymptotic dy-
namics to unbounded (but not diverging) dynam-
ics, both in one-dimensional and two-dimensional
fractional maps. The contact bifurcations which
mark the transformation of a bounded attracting

(a)

Fig. 21. (a) A trajectory of the map (36) with a = −0.6, b = 100, γ = 0.6, β = 0.7 (the same as in Fig. 20) and c = 2.3, just
after the contact with δs. The structure of the attracting set A is characterized by the presence of unbounded arcs which are
asymptotic to the lines of the type (41), (42). . ., images of the horizontal line of the type (40), visible on the right. The red
region represents the basin of attraction of a stable fixed point, which has been created, together with an unstable one, via a
fold bifurcation. (b) A larger view of the trajectory shown in (a).
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(b)

Fig. 21. (Continued )

set into an unbounded one have been studied by
the definition of a new kind of singularity, called
set of nondefinition and denoted by δs, defined as
the locus of points where at least one denomina-
tor vanishes. For noninvertible maps, such bifurca-
tions can often be described as contacts between
critical curves (or critical points, in the case of
one-dimensional maps) and the set of nondefini-
tion (which is simply given by the abscissas of the
vertical asymptotes in the case of one-dimensional
maps).

Two of the examples proposed throughout the
paper are given by particular recurrences, obtained
by a method based on the Schröder functional equa-
tion, for which a closed analytical expression of the
unbounded chaotic trajectories can be written in
terms of elementary functions.

Many other interesting situations which char-
acterize the dynamics and the global bifurcations
of maps with denominator may be related to the
presence of δs. Some of these phenomena have

been studied in [Bischi et al., 1999a], where it is
shown that a contact between the unstable set of
a saddle fixed point (or a saddle cycle) and the set
of nondefinition may cause the sudden creation of
unbounded branches of the unstable set, thus giv-
ing a new mechanism for the occurrence of homo-
clinic bifurcations, specific to maps with a vanishing
denominator.

Other interesting situations may arise when an
attractor with a bounded basin approaches δs as
some parameter is varied. In such a case, the con-
tact between the boundary of the attractor and δs
is necessarily preceded by a contact between the
basin boundary and δs. At this contact the basin
becomes unbounded, and this may give rise to an
unbounded chaotic transient before the convergence
to the bounded attractor. This dynamic behavior
may sometimes reveal that a second global bifur-
cation is going to occur as the parameter is fur-
ther varied, due to a contact between the attractor
and δs. These and other situations related to the
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Fig. 22. A trajectory of the map (36) with a = −0.6, b = 100, γ = 0.6, β = 0.7 (the same as in Fig. 21) and c = 2.7.

presence of the set of nondefinition will be the
object of further studies.
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Appendix A

One-dimensional recurrence obtained
by Schröder functional equation

The Schröder functional equation

ϕ[f(x)] = λϕ(x) (A.1)

has an important role in many different fields of
mathematics (see e.g. [Lattès, 1906] or [Targonski,
1981]). The use of such functional equation for the
determination of recurrences of the form

xn+1 = f(xn) (A.2)

having a solution written by a closed form ex-
pressed in terms of elementary functions, has been
described, both from an historical and a practical
point of view in [Gumowski & Mira, 1980], see also
[Mira, 1987; Mira et al., 1996]. We recall here the
essential steps necessary to obtain the map (23).

Given a function ϕ, we consider the recurrence
(A.2) with the function

f(x) = ϕ−1(λϕ(x)) (A.3)

where ϕ−1 is an inverse of ϕ. Then Eq. (A.1)
becomes

ϕ[xn+1] = λϕ(xn)

which, given an initial condition x0, becomes

ϕ[xn] = λnϕ(x0) .

This allows one to write by using the inverse ϕ−1,
the following closed form solution of the recurrence
(A.2) with map f given by (A.3)

xn = ϕ−1[λnϕ(x0)] . (A.4)

This method allows one to build up recurrences with
chaotic solutions if the function ϕ is given by

ϕ(x) = P−1[g(x)]

where P : R → [a, b] is a periodic function and
g : I → [a, b], with I ⊆ R.

We now apply this method to obtain the func-
tion (23). Let

g(x) =
x

1− x and P (x) = cos x (A.5)

The function ϕ and its inverse ϕ−1 are defined as

ϕ(x) = P−1(g(x)) = arccos

(
x

x− 1

)
with x ≤ 1/2, so that g(x) ∈ [−1, 1], and

ϕ−1(x) = g−1(P (x)) =
cos x

cos x+ 1

with g−1(u) = u/(u+ 1).
Then the function f can be obtained according

to (A.3). If we choose λ = 2 we get

f(x) = ϕ−1(2ϕ(x)) =
cos

(
2 arccos

x

1− x

)
1 + cos

(
2 arccos

x

1− x

)

=
2cos2

(
2 arccos

x

1− x

)
− 1

2 cos2

(
2 arccos

x

1− x

)

=

2
x2

(1− x)2
− 1

2
x2

(1 − x)2

=
x2 + 2x+ 1

2x2
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and the solution (A.4) coincides with (25) with
C = ϕ(x0). The same map f is obtained if we
consider P (x) = cosh(x) with x ∈ (1/2, 1), so that
g(x) ∈ [1, +∞). This gives the solution (26).

Appendix B

Two-dimensional recurrence
obtained by Schröder functional
equation

The method outlined in the Appendix A can be
extended to obtain two-dimensional recurrences
with solution written in a closed form and expressed
by elementary functions.

Given a vector function ϕ : R2 → R2 defined
as

ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)) (B.1)

we consider the recurrence

ϕ(xn+1, yn+1) = (λ1ϕ1(xn, yn), λ2ϕ2(xn, yn))

which, starting with the initial condition (x0, y0),
gives

ϕ(xn, yn) = (λn1ϕ1(x0, y0), λ
n
2ϕ2(x0, y0)) . (B.2)

This allows one to obtain the closed form solution
of the two-dimensional recurrence

(xn+1, yn+1) = (f1(xn, yn), f2(xn, yn)) (B.3)

with

(f1(x, y), f2(x, y)) = ϕ−1(λ1ϕ1(x, y), λ2ϕ2(x, y))

(B.4)

where ϕ−1 is an inverse of the mapping (B.1). On
the basis of (B.2), the solution of (B.3) can be
written as

(xn, yn) = ϕ−1(λn1ϕ1(x0, y0), λ
n
2ϕ2(x0, y0)) .

(B.5)

In order to obtain the map (27), whose iteration
generates the chaotic sequence (32), we consider
the two-dimensional periodic function P : R2 →
[−1, 1]× [−1, 1] given by

P (x, y) = (P1(x, y), P2(x, y)) = (cos x, cos y)

and the function g : R2 → R2 given by

g(x, y) = (g1(x, y), g2(x, y))

=

(
x

x+ y − 1
,

y

x+ y − 1

)
and we define the function ϕ as

ϕ(x, y) = P−1(g(x, y))

=

(
arccos

x

x+ y − 1
, arccos

y

x+ y − 1

)
(B.6)

where the arccos function is, as usual, the inverse of
the cosine function that maps the interval [−1, 1] to
the interval [0, π], so that ϕ is well defined provided
that the range of the function g is included inside
[−1, 1] × [−1, 1], i.e. (x, y) ∈ A1 ∪ A2, where A1

and A2 are given in (31). The inverse ϕ−1 is easily
obtained as

ϕ−1(x, y) = g−1(P (x, y))

=

(
cos x

cos x+ cos y − 1
,

cos y

cos x+ cos y − 1

)
(B.7)

with g−1(u, v) = (u/(u+ v − 1), v/(u+ v − 1)).
The two-dimensional map (27) is obtained from

(B.4) with ϕ and ϕ−1 given by (B.6) and (B.7)
respectively, and with λ1 = λ2 = 2:

f(x, y) =

 cos

(
2 arccos

x

x+ y − 1

)
cos

(
2 arccos

x

x+ y − 1

)
+ cos

(
2 arccos

y

x+ y − 1

)
− 1

,

cos

(
2 arccos

y

x+ y − 1

)
cos

(
2 arccos

x

x+ y − 1

)
+ cos

(
2 arccos

y

x+ y − 1

)
− 1


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=


2

x2

(x+ y − 1)2
− 1

2
x2

(x+ y − 1)2
+ 2

y2

(x+ y − 1)2
− 3

,

2
y2

(x+ y − 1)2
− 1

2
x2

(x+ y − 1)2
+ 2

y2

(x+ y − 1)2
− 3


=

(
y2 + 2xy − x2 − 2x− 2y + 1

x2 + 6xy + y2 − 6x− 6y + 3
,
x2 + 2xy − y2 − 2x− 2y + 1

x2 + 6xy + y2 − 6x− 6y + 3

)

where the identity cos(2 arccos(z)) = 2z2−1 has been used. The solution (32) is obtained from (B.5) with
ϕ and ϕ−1 given by (B.6) and (B.7) respectively.


