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In this paper we investigate the effects of herding on asset price dynamics during
continuous trading. We focus on the role of interaction among traders, and we investigate
the dynamics emerging when we allow for a tendency to mimic the actions of other
investors, that is, to engage in herd behavior. The model, built as a mean field in a binary
setting (buy/sell decisions of a risky asset), is expressed by a three-dimensional discrete
dynamical system describing the evolution of the asset price, its expected price, and its
excess demand. We show that such dynamical system can be reduced to a unidirectionally
coupled system. In line with the rational herd behavior literature [Bikhchandani, S.,
Sharma, S. (2000), Herd Behavior in Financial Markets: A Review. Working paper, IMF,
WP/00/48], situations of multistability are observed, characterized by strong path
dependence; that is, the dynamics of the system are strongly influenced by historical
accidents. We describe the different kinds of dynamic behavior observed, and we
characterize the bifurcations that mark the transitions between qualitatively different time
evolutions. Some situations give rise to high sensitivity with respect to small changes of
the parameters and/or initial conditions, including the possibility of invest or reject
cascades (i.e., sudden uncontrolled increases or crashes of the prices).
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1. INTRODUCTION

The traditional view of rational expectations and of rational behavior of investors
explains financial time series essentially by the dynamics of fundamentals. With
the additional hypothesis that information about the latter is publicly available
to all market participants, this view is consistent with the single-representative-
agent paradigm. Within this framework, the possibility that a share of investors
have imperfect information, or a lower “degree of rationality,” is ignored on the
basis that they would be driven out—via market selection—by the “smart money”
investors, and/or by assuming that their impact on aggregate dynamics is negligible
(Friedman, 1953; Lucas, 1978).

This somewhat naı̈ve representation of financial markets is being increasingly
questioned, from both an empirical and a theoretical point of view. From one side,
a number of stylized facts—such as the volatility clustering and fat-tail distribution
of assets returns—do not have a suitable explanation within this framework. Ac-
tually, much of the empirical work is handled by means of “atheoretical” models,
whose aim is the statistical characterization of the stochastic process of price
change.1

On the other hand, results from aggregation theory show that heterogeneity
and nonprice interaction may dramatically change the statistical properties that
characterize economic relationships between aggregate variables (Forni and Lippi,
1997; Kirman, 1992). As regards the literature on modeling of financial markets,
a number of studies have pointed to the rich, and sometimes complex dynamics
that can emerge from allowing for heterogeneity and interaction among investors
(Brock and Hommes, 1997b; Chiarella, 1992; Chiarella et al., 2001; Chiarella and
He 2002; Lux, 1998).

A common feature of these models is that the switch between different fore-
casting strategies is ruled by some fitness function, in some cases accounting also
for imitative effects, as in Kirman and Teyssière (2002) and in Routledge (1999).
A common result is that the cost of signal extraction and information asymmetries
can justify the adoption of forecasting strategies usually labeled as “psychological
trading.” As Brock and Hommes (1998, 1999) put it, there can be such thing as
“rational animal spirits.”

In this paper, we relax the distinction between chartists and fundamentalists
to put the focus on the role of interaction among individuals during continuous
trading. The aim is to investigate the dynamics emerging in a stock market, when
in the investment behavior of its participants we allow for a tendency to mimic the
actions of other investors, that is, to engage in herd behavior. Herding, as technical
trading, is traditionally depicted as being an irrational strategy. The irrational view
focuses on the psychology of investors and on their tendency to disregard their own
prior beliefs and blindly follow rumors and other investors’ behavior. Since the
seminal works of Banerjee (1992), Bikhchandani et al. (1992), and Welch (1992),
however, the possibility of “rational herding” has been recognized in various con-
texts: as an information diffusion mechanism; in the presence of a principal–agent
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problem between a manager and an investor; when the compensation structure
of managers’ contract has, as a benchmark, some average performance of other
managers (see Bikhchandani and Sharma, 2000, for a review).

Although the measurement of the various forms of herding presents some diffi-
culties, its empirical relevance is relatively well documented, mostly in countries
where financial institutions are less developed, among fund managers in the form
of momentum strategies, and more generally in contexts where information is
likely not to be perfectly available to all market participants (Bikhchandani and
Sharma, 2000). As regards the investigation of its effects on assets price dynamics,
however—and apart from the rationale it can give for herd phenomena during bub-
bles and crashes, as in Avery and Zemsky (1998)—the literature is still evolving.

Some interesting studies have been put forth exploiting models borrowed from
statistical physics, which provide some useful tools to deal with the problem of
aggregation. To study the behavior of macrovariables, physicists do not describe
the dynamic pattern of every single atom. They adopt a probabilistic approach to
the analysis of the aggregate behavior, obtaining the dynamics of macrovariables
such as volume and pressure from the joint probability distribution of large num-
bers of atoms. Since the seminal work of Föllmer (1974), this approach has been
adopted to deal with aggregation also in economic modeling, where the role of
atoms is played by a large number of agents.

To get a more complete, description of the dynamical effects of herding, we
model the interaction among individuals by means of a mean-field effect such as
in the work of Kaizoji (2000), but allowing for feedback between excess demand
and actual asset price. Furthermore, in our work the external field (i.e., the natural
tendency of an agent to invest or not) is endogenously determined by the asset-price
fundamental solution. The structure of the model is rather simple and is meant
to grasp the “raw” implications of herding for the fluctuations of asset prices.
We therefore assume homogeneity between individuals, but for an idiosyncratic
random term in their benefit function. In particular, we assume constant and homo-
geneous prior beliefs about the price that will prevail in the market (the expected
price), P(t), which is adjusted according to the realized price sequence, P(t).

The model we obtain is a discrete-time three-dimensional dynamical system,
where the three dynamic variables are the current excess demand, w(t), the current
price, P(t), and the expected price at time t , P(t), computed using the information
set available at time t − 1. In each time period, the expected price adjusts to the
current price according to an adaptive adjustment mechanism, the current price is
updated according to an increasing function of the excess demand, and the excess
demand is influenced by the difference between the current price and the expected
price, according to the mean individual interaction based on the herding behavior
described above.

The analysis, in the space of the parameters, of the stability properties and the
main bifurcations of the three-dimensional dynamical system is facilitated by a
simple change of variables that reduces the model to an equivalent unidirection-
ally coupled system, where the driving system is formed by a two-dimensional
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subsystem that gives the dynamics of w(t) and q(t) = ln P(t) − ln P(t) =
p(t) − p(t), whereas the driven variable is the log of the expected price p(t).

The economic intuition behind this mathematical structure, and the related
dynamical properties, can be explained using the herding behavior framework.
Because of the incompleteness of the information set it is rational for the agent
to consider more than the fundamental solution in order to compute the expected
price. Because there is some piece of the agents’ information set (the observed
choices of the others) that is not used to compute the fundamental solution, agents
also try to incorporate this “information subset” into their decision processes to
improve the forecast of asset price movements. This nonprice interdependence
between agents’ decisions is characterized, in the short run, by a certain degree of
strategic complementarity. As is well known from the work of Cooper and John
(1988) and Brock and Durlauf (2001), this may generate multiple equilibria in the
expected value of excess demand even though, as is shown in Section 2, equilibria
with excess demand different from zero may not persist, because they imply price
movements. Expected value dynamical inconsistency is the main source of asset
price fluctuations in the model described in the following sections. In other words,
multiple of equilibria in expectations are not equilibria of the market. Because
they imply positive or negative expected excess demand, they will cause price
movements not depending on changes in fundamentals.

This paper is organized as follows. In Section 2 we derive the dynamic model
and we introduce the change of variable that reduces it to a unidirectionally coupled
structure. In Section 3 we analyze the stability properties and the local bifurcations
of the driving system, and we describe how the behavior of the driven variable,
the expected price, can be deduced. In Section 4 some numerical simulations
are given to confirm the analytical results of Section 3 and to show the strong
path dependence that characterizes the market dynamics according to our model.
Concluding remarks will follow in Section 5.

2. THE MODEL

We consider a population of investors facing a binary choice problem. The agents
who decide to trade have to choose a strategy wi(t) ∈ {−1;+1}, where −1 stands
for “willing to sell,” whereas +1 stands for “willing to buy” a unit of a given
share. We do not model explicitly an optimal portfolio problem; rather the trade
decisions wi(t) have to be interpreted as the marginal adjustment the agents make
as they try to be advantaged by profit opportunities arising due to continuous
trading information diffusion. In the following we use the following, assumptions:

(i) There exist two assets: a risk-free asset with a constant real return on investment r

and a risky asset with price P(t) that pays a dividend, say every year, assumed to be
an IID stochastic process with mean d .

(ii) The number of agents who decide to trade the risky asset in period t , N(t), is a
stationary process—with mean N—independent of agents’ decisions.
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(iii) Agents observe past prices, the relative excess demand, w(t) = N(t)−1
∑

wi(t),
and the real interest rate, r , and have rational expectations about the dividend (their
expected value is equal to d , the mean of the process). This means that the information
set of the agent is the union of his/her private characteristics, say the set �i(t),2 and the
public information set �(t) = {r, d, w(t −1), w(t −2), . . . , P (t −1), P (t −2), . . .}.

(iv) To make their buy/sell decision, agents evaluate an expected benefit function Vi(t),
which will depend on their prior believes on the price that will prevail in the market.
We assume that agents engage in rational herd behavior; that is, they expect that Vi(t)

will be positively related to the other agents’ buy/sell decisions.
(v) Price dynamics is assumed to follow the difference equation3

p(t + 1) − p(t) = f (w(t)), (1)

where p(t) is the logarithm of P(t), and f (w(t)) is a deterministic term, which
measures the influence of excess demand on current price variations, with properties
f (0) = 0, f ′(w(t)) > 0.

(vi) Agents have homogeneous expectations on the relative excess demand at period t ,
say w(t)e. Following Brock and Durlauf (2001), agents’ static expectations4 with
respect to their information set are assumed; that is, w(t)e = w(t − 1).

The agent’s choice wi(t) is modeled as a binary random variable that describes,
from the point of view of the modeler, the choice of agent i between the two
strategies at time t . In other terms, the random variable wi(t) gives the probability
distribution of agents’ decisions conditionally on their expectations.

Because the N(t) random variables are independent, conditionally on agents’
expectation, w(t)e, the average choice, will converge to the expected value due
to the law of large numbers. This quantity depends, among other things, on the
number of agents willing to trade. In real markets, changes in the volatility of N(t)

affect the volatility of prices. The assumption of stationarity of N(t) is analytically
convenient and it makes it possible to identify changes in prices that do not strictly
depend on it.

Put differently, w(t) converges to its expected value, which may be computed
using the law of iterated expectations:

E

(
N(t)−1

N(t)∑
i=1

wi(t) | w(t)e

)

= E

[
E

(
N(t)−1

N(t)∑
i=1

wi(t) | w(t)e, N(t)

)
| w(t)e

]

= E[E(wi(t) | w(t)e) | w(t)e] = E(wi(t) | w(t)e). (2)

Let us turn now to how the agents take their decision. With perfect information
and perfect market efficiency, the relevant statistic to compute would be the ratio
between the expected value of the fundamental solution of price dynamics, F =
d/r , and the actual price, P(t), which measures the expected rate of profit (loss)
when the price reaches the fundamental. Defining p̄(t) as the logarithm of the
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expected value of the fundamental in the case of imperfect information, the relevant
statistic, in logs, is p̄(t) − p(t).

However, we assume that the agents do not consider the latter a sufficient
statistic [assumption (iv)] to analyze the implications of herding for the assets’
price dynamics. The rationale for this imitative behavior is that the agents try to
extrapolate/exploit from the observed choices of the others the piece of information
they are lacking.

A convenient way to model the herd component in the behavior of investors is
by means of a binary choice framework with interaction (see Brock and Durlauf,
2001). Namely, we assume that the expected benefit function for the strategy wi(t)

is

Vi(t + 1, wi(t)) = (p̄(t) − p(t))wi(t) + J (t)wi(t)w(t)e + εi(t + 1, wi(t)). (3)

This equation is a standard assumption in the social interaction literature (see
Brock and Durlauf, 2001). It implies that the utility, or benefit function, is affected
by three additive components. The first component gives the private benefit in
choosing strategy wi(t). The second is an interaction term (proportional spillovers)
measuring the benefit of that choice in a situation where the expected average
choice is w(t)e. Finally, the last term introduces, stochastically and from the
point of view of the modeler, idiosyncratic factors and private information, �i(t),
affecting agents’ decisions.

To be precise, the first term on the right-hand is the benefit of the strategy “to
buy one unit of share” (wi(t) = 1) or “to sell one unit of share” [wi(t) = −1] in
case the agent considered only the fundamental solution of price. The second term
captures the positive spillover agent i expects from following the others’ expected
choices. It captures the interaction among investors, in the form of a proportional
spillover Jwi(t)w(t)e. In other words, the benefit expected by agent i depends
on his or her expectation about the average choice of the market, w(t)e. The
positive function J (t) measures the weight given to the choices of other agents.
We assume that the strength of the interaction is endogenous: when the price is far
from individual expectations, the agent is less confident in the mood of the market,
and gives a smaller weight to the interaction term of his/her forecast. Therefore,
J (t) = J (p(t)) is a decreasing function of | p̄(t)−p(t)| with J (p̄(t)) < ∞. This
assumption is made for two reasons: (1) research on herding in U.S. equity markets
indicates that herding does not take place during periods of market stress or high
price volatility—during periods of extreme market movements (Gleason et al.,
2003; Christie and Huang, 1995); (2) to show that a sufficient level of herding
may generate asset price fluctuations, which do not depend on changes in the
fundamental, even when there is an adjustment mechanism in herding behavior,
that is, when the herding component, in the agent’s decision process, tends to
disappear when the asset price goes far from the fundamental solution.5

The discrete choice literature calls the term (p̄(t)−p(t))wi(t)+J (t)wi(t)w(t)e

the “deterministic component of the expected benefit function.” The third term,
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εi(t + 1, wi(t)), represents the random variables that may have different distribu-
tions under the two choices. As said previously, they capture agents’ unknown (to
the modeler) features. The standard assumption is that the difference between the
random components is logistically distributed;6 that is,

Prob[εi(t + 1,−1) − εi(t + 1,+1) ≤ z] = 1

1 + exp(−βz)
.

This probability distribution function has zero mean and variance equal to
π2/(3β).

Because each agent choice is modeled as a binary random variable, with sample
space {−1, 1} and a probability measure that depends on the expected average
choice, these assumptions identify the probability measure of agents’ choices.
Stochastic decisions regarding whether to buy or to sell could be described by the
probability that a given decision will yield a higher benefit than the other choice,
conditional on the expectation of the aggregate choice that will prevail in period t ,

Prob[wi(t) | w(t)e] = Prob[Vi(t + 1, wi(t)) > Vi(t + 1,−wi(t)) | w(t)e]. (4)

Substituting equation (3) into (4) and using a logistic assumption of the error
terms difference, this implies that the probability of agent-i choice, given average
expected choice, is (see Leombruni et al., 2002)

Prob(wi(t) | w(t)e) ∝ exp{β((p̄(t) − p(t))wi(t) + J (t)wi(t)w(t)e)}. (5)

We can now compute the expected value for each agent’s choice:7

E(wi(t)) = (1)Prob(1) + (−1)Prob(−1)

= exp{β(p̄(t) − p(t) + J (t)w(t)e)} − exp{−β(p̄(t) − p(t) + J (t)w(t)e)}
exp{β(p̄(t) − p(t) + J (t)w(t)e)} + exp{−β(p̄(t) − p(t) + J (t)w(t)e)} .

(6)

The expected aggregate mean value of the market converges to the quantity (6),
that is,8

w(t) = tanh{β(p̄(t) − p(t) + J (t)w(t)e)}. (7)

This equation defines a relation between the actual aggregate excess demand and
the value expected by the agents. The expectation equilibria, then, are the points
w∗ satisfying the equation

w∗ = tanh{β(p̄(t) − p(t) + J (t)w∗)}.
These equilibria can be represented graphically in the (w(t)e, w(t))-plane, plot-

ting equation (7) against the 45◦ line, as in Figure 1. The number of equilibria will
depend on the steepness of the hyperbolic tangent in the flex point, and on the
value of its intercept with the w(t)-axis, tanh{β(p̄(t) − p(t))}. When the current
price is equal to the fundamental, the intercept is zero, and the number of equilibria
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FIGURE 1. Graphical representation, in the (w(t)e, w(t))-plane, of the equation that gives
the expectation equilibria.

will depend just on the steep of the hyperbolic tangent at the origin. In the figure,
we draw an equilibrium point w′ (the rightmost curve) corresponding to a positive
slack between the fundamental and the current price [p̄(t) − p(t) > 0]. Suppose
that the equilibrium is stable.9

This equilibrium in the expectations, however, cannot be a consistent equilib-
rium for the market. In fact, at w′ there is a positive excess demand; this will imply
a rise in the asset price, the difference p̄(t)−p(t) will decrease, the intercept will
decrease, and the hyperbolic tangent will shift to the right. Even assuming that
the equilibrium w′ will adjust smoothly to the shift in the hyperbolic tangent,
this movement will stop when the curve will eventually become tangent with the
45◦ line (point w′′). A further shift will imply no equilibrium points in the first
quadrant, and the system will move toward negative excess demands, say at a
point close to w′′′, where an opposite movement will start.

So far, we did not consider any dynamics of the priors about the expected price.
Actually, when an investor follows the herd because of the (assumed) presence
of information asymmetries, he or she should coherently revise his or her priors.
For instance, if he/she follows the herd during a bull market, we should expect
that he or she will contextually increase his or her prior on the fundamental.
More generally, we can model the priors revision by assuming that the agents
adjust their private expectations, comparing them with the public information that
is currently mirrored in the price level. That is, we can assume the following
adaptive adjustment mechanism for the priors on the expected price,10

p̄(t + 1) = p̄(t) − ρ(p̄(t) − p(t)), (8)

where ρ ∈ [0, 1] is a measure of the adaptive speed of adjustment.11 As usual,
the adaptive mechanism given in (8) can be described by saying that the new
expected price is a convex combination of the previous expected price and the
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previous realized price, ρ being the relative weight of the realized price, that is,
p̄(t + 1) = (1 − ρ) p̄(t) + ρp(t).

Putting together equations (1), (7), and (8), the time evolution of the dy-
namic variables w(t), p(t), and p̄(t) is described by a three-dimensional dis-
crete dynamical system given by the repeated application (iteration) of the map
T3 : (w(t), p(t), p̄(t)) → (w(t + 1), p(t + 1), p̄(t + 1)), defined as

T3 :




w(t + 1) = tanh [β(p̄(t) − p(t) + w(t)J (|p̄(t) − p(t)|))]
p(t + 1) = p(t) + f (w(t))

p̄(t + 1) = p̄(t) − ρ(p̄(t) − p(t)),

(9)

where ρ ∈ [0, 1], β > 0, f : R → R is a sign-preserving function, with f (0) = 0
and f ′(w) > 0, J : R → R+ is a decreasing function with 0 < J(0)< +∞.
Notice that we assumed static (or naive) expectations, that is, we(t + 1) = w(t)

[assumption vi]. Starting from a given initial condition,

(w(0), p(0), p̄(0)), (10)

the iteration of (9) uniquely determines the trajectory

τ(w(0), p(0), p̄(0))

= {
(w(t), p(t), p̄(t)) = T t

3 (w(0), p(0), p̄(0)), t = 0, 1, 2, . . .
}

(11)

that represents the time evolution of the system. We are interested in studying the
behavior of the system, how it is influenced by the parameters of the model, and the
role played by the initial conditions (10). Indeed, the nonlinear three-dimensional
discrete dynamical system (9) may exhibit quite different, and in some cases
complicated, dynamic scenarios, and qualitative changes, or bifurcations, of the
dynamic behavior can be observed as the parameters of the model are varied.
Moreover, as we shall see, both the evolution of the actual price p(t) and expected
p̄(t), crucially depend on the initial conditions; that is, the model (9) exhibits a
strong path dependence.

To obtain a mathematically more tractable form of the dynamical system (9),
we introduce the dynamic variable q(t), defined as

q(t) = p(t) − p̄(t), (12)

which represents, in each time period t , the difference between the current price
and the expected price. Introducing this change of variable into (9), we obtain a
dynamical system in the variables (w(t), q(t), p̄(t)) expressed by

T3 :




w(t + 1) = tanh[β(−q(t) + w(t)J (|q(t)|))]
q(t + 1) = (1 − ρ) q(t) + f (w(t))

p̄(t + 1) = p̄(t) + ρq(t).

(13)

Of course, this model is equivalent to the model (9), in the sense that the two
models are topologically conjugate, but the model in the form (13) reveals a
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property that simplifies its mathematical analysis: the first and second dynamic
equations in (13) only involve the dynamic variables w and q; that is, they represent
an autonomous two-dimensional dynamical system by the iteration of a two-
dimensional map, say T2 : (w(t), q(t)) → (w(t + 1), q(t + 1)). This means that
the dynamics of w(t) and q(t) are not influenced by p̄(t), whereas the time
evolution of p̄ (t) is influenced by the dynamics of the two-dimensional system
governed by T2(w, q) due to the presence of q(t) in the third dynamic equation.
Following the terminology adopted in the physical and engineering literature, we
can say that the expected price p̄(t) is “driven by” the two-dimensional dynamic
system T2: (w(t), q(t)) → (w(t + 1), q(t + 1)), which, accordingly, is called the
“driving system.” In other words, the study of the dynamic behavior of the three-
dimensional model (13) is essentially reduced to the study of the two-dimensional
map T2, and then the dynamics of p̄(t) are deduced from it. A dynamical system
characterized by this property is also denoted as unidirectionally coupled or skew-
product (see, e.g., Stark, 1997).

In our case, in each time period t , the expected price p̄ (t) can easily be obtained
from the time series {q(τ), τ = 0, . . . , t − 1} by the closed form

p̄(t) = p̄ (0) + ρ

t−1∑
τ=0

q(τ). (14)

That is, starting from an initial12 expected price p̄ (0), the expected price at time
t is determined by adding the algebraic sum of q = p − p̄ observed in the past,
modulated by the parameter ρ (a higher value of ρ determines a stronger influence
of the past history on p̄(t), whereas ρ → 0 implies no changes of the expected
price, that is, p̄(t) = p̄(0) ∀t ≥ 0). However, even if one knows the kind of
behavior of q(t), the analysis of the corresponding behavior of p̄(t), given by (14),
is not straightforward. First of all, a necessary condition for the convergence of p̄(t)

to a finite stationary asymptotic value is that q(t) goes to 0 as t increases; that is, the
discrepancy between the expected and the realized price vanishes. However, even
if p̄(t) converges, its limiting value p̄L(t) is strongly influenced by the transient
part of the sequence {q(t)}, determined by the driving system, before it enters
a neighborhood of 0. This implies that p̄L(t) is highly path-dependent, because
any change of the initial condition (w(0), q(0)) of the driving system causes a
change of the asymptotic value p̄L(t) of the expected price (and consequently of
the current price, because q(t) = p(t) − p̄(t) convergent to zero). This means
that any exogenous shocks or other historical accidents are “remembered” by
the system; that is, their effects are not canceled by the endogenous dynamics,
resulting in a long-memory property for the financial time series.

Of course, if the dynamic behavior of the driving system is such that q(t)

converges to a positive steady state (or any attractor characterized by positive
values of q), then p̄(t) will grow indefinitely (this may be termed invest cas-
cade13). Analogously, if q(t) converges to a negative steady state (or any attrac-
tor characterized by negative values of q), then p̄(t) will decrease indefinitely
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(reject cascade). Instead, if the dynamics governed by the driving system exhibits
bounded oscillatory behavior that involves both positive and negative asymptotic
values of q(t), then more complicated and uncertain behavior will characterize the
dynamics of p̄(t): when positive and negative values of q(t) balance one may get
oscillatory convergence or bounded persistent oscillations of p̄(t), whereas invest
(reject) cascades may be obtained if positive (negative) values of q(t) prevail in
the oscillatory dynamics of the driving system.

However, in any case, the evolution of p̄(t), that is, the equilibrium value of
p̄(t) in the case of convergence, or of disequilibrium dynamics or of complex
bounded dynamics, is strongly influenced by the initial condition (w(0), p(0)) of
the driving system.

3. DYNAMIC PROPERTIES OF THE UNIDIRECTIONALLY
COUPLED SYSTEM

In this section we study the dynamic properties of the driving two-dimensional
system

T2 :

{
w(t + 1) = tanh [β(−q(t) + w(t)J (|q(t)|))]
q(t + 1) = (1 − ρ) q(t) + f (w(t))

(15)

that governs the time evolution of the dynamic variables w(t) and q(t) = p(t) −
p̄(t), and how the time evolution of the expected price p̄(t) is forced by the driving
system, according to (14).

The steady states (or equilibria) of the two-dimensional driving system (15) are
given by the fixed points of the map (15), solutions of the system T2 (w, q) =
(w, q), that is,

w = tanh[β(−q + wJ(|q|))], with q = 1

ρ
f (w). (16)

The w coordinates of the equilibria are given by the intersections between the
line y = w and the sigmoid curve of the equation y = tanh[β(−f (w)/ρ +
wJ(|f (w)/ρ|)]. One realizes immediately that E0 = (0, 0) is always a solution
of (16), and two further solutions of (16) exist, say E+ and E−, with w > 0 (hence
q > 0) and w < 0 (hence q < 0), respectively, provided that the slope at w = 0
of the sigmoid curve is greater than 1; that is,

β

[
J (0) − 1

ρ
f ′(0)

]
> 1. (17)

The set of parameters f ′(0), J (0), β, and ρ such that the equilibrium E0 = (0, 0)

is locally asymptotically stable under the driving system (15) can be represented
as a stability region in the plane of the parameters f ′(0), J (0), shown in Figure 2,
bounded by the coordinate axes, the straight line with equation

P(1) = βf ′(0) − ρβJ (0) + ρ = 0, (18)
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FIGURE 2. Stability domain of the equilibrium E0 = (0, 0) of the two-dimensional driving
system (15).

and the straight line with equation

Det − 1 = βf ′(0) + β (1 − ρ) J (0) − 1 = 0. (19)

This is stated in the following proposition, proved in the Appendix, which defines
the range of parameters such that E0 is a locally asymptotically stable equilibrium
of (15), and characterizes the local bifurcations through which it loses stability.

PROPOSITION 1. If the parameters satisfy the two conditions

P(1) = βf ′(0)+ρ(1−βJ (0)) > 0; Det−1 = β(1−ρ)J (0)+βf ′(0)−1 < 0,

(20)

then the fixed point E0 = (0, 0) of the driving system (15) is locally asymptotically
stable. Moreover, inside the parabola with equation

f ′(0) = fosc = β

4

(
1 − ρ

β
− J (0)

)2

(21)
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(the light grey region in Figure 2), the convergence occurs through damped oscil-
lations; outside the parabola (the darker portion of the stability domain shown in
Figure 2), the convergence of the driving system to E0 is nonoscillatory.

If the parameters exit the stability region of E0 through the bifurcation condition
P(1) = 0 with Det < 1, then the fixed point E0 of the driving system (15)
undergoes a pitchfork bifurcation at which two stable equilibria E− and E+ are
created, with negative and positive coordinates respectively, each with its own
basin of attraction.

If the parameters exit the stability region of E0 through the bifurcation condition
Det = 1 with P(1) > 0, then the fixed point E0 of the driving system is trans-
formed from a stable focus into an unstable focus and stable oscillations around
it characterize the dynamics of (w(t), q(t)) .

From this proposition (see also Figure 2) it is easy to deduce that increasing
values of β, f ′(0), and J (0) may cause a loss of stability of E0 under the dynamics
of the driving system (15). In particular, if J (0), which represents the interaction
among agents when the expected price prevails, is too high, namely J (0) ≥
(1 + ρ) /β, then E0 cannot be stable. The same conclusion holds if the reactivity of
the current price to nonvanishing excess demand is too high, namely f ′(0) > 1/β.
Finally, we want to stress the role of the β parameter. In the social interaction
literature it measures, in a sense, agents’ rationality—in other words, how quickly
agents switch to better strategies (i.e., with higher values of the benefit function).
Results of the stability analysis seem to be counterintuitive. The more agents
are rational, in the sense above, the more unlikely the stability conditions are.
But they are in line with a recent publication showing that long-term investment
decisions in buying a share, vis-à-vis short-term speculative decisions, are able to
stabilize the market and, furthermore, give better profits (see Liera and Beltratti,
2000).

To sum up, the analysis of the stability and local bifurcations described above
reveals some different kinds of dynamics of the variables w(t) and q(t), governed
by the driving system (15):

(a) convergence to the steady state E0 = (0, 0), which convergence may be oscillatory
or monotonic;

(b) a situation of bistability, with stable equilibria characterized by positive and negative
coordinates, respectively, whose basins of attraction are separated by the stable set
of the saddle point E0;

(c) periodic or quasi-periodic oscillations along closed invariant curves located around
the unstable focus E0.

As we shall see, other kinds of dynamic scenarios can be observed, especially
in the region of the parameter space characterized by βJ (0) > 1 + ρ, that is,
when we consider high levels of interaction among agents. However, we are now
interested in studying the different time evolutions of the expected price p̄(t) that
are induced (or driven) by the different dynamic scenarios of the driving system
described above.



HERD BEHAVIOR IN FINANCIAL MARKETS 515

Let us consider, first, situation (a). In this case, starting from an initial condition
(10) with w(0), q(0) = p(0)− p̄(0) belonging to the two-dimensional basin of at-
traction of the stable equilibrium point E0, the three-dimensional system described
by (13) will converge to a steady state of coordinates (w = 0, q = 0, p̄ = p̄L(t)),
with p̄L(t) = p̄ (0) + ρS, where S is the finite sum of the convergent series
(14). In fact, after the initial steps, such trajectories will enter a neighborhood
of E0 = (0, 0), and, because E0 is a hyperbolic asymptotically stable equi-
librium, both the dynamic variables w(t) and q(t) will converge to zero at an
exponential rate. This means that the asymptotic portion of the series (14) be-
haves as a convergent geometric series. Of course, the stationary limiting value
p̄L(t) at which the fundamental price settles [which is also the value to which
the current price p(t) converges, because q(t) = p(t) − p̄(t) tends to zero] is
quite difficult to forecast, because it depends both on p̄(0) and on the algebraic
sum of the values of q(t) along the whole trajectory governed by the driving
system (also the transient portion). In other words, p̄L(t) is quite strongly in-
fluenced by the initial conditions, not only by p̄(0), as explicitly expressed by
(14), but also on the initial condition (w(0), q(0)) of the driving system (15).
This path dependence is typical of systems with herding; see, e.g., Bikhchandani
and Sharma (2000). Examples of such path dependence will be given in the next
section.

Case (b) shows the typical magnetization behavior characterizing social inter-
action phenomena.14 The time evolution of the fundamental price p̄(t) is quite
peculiar: if the initial condition (w(0), q(0)) of the driving system (15) belongs
to the basin B (E−) of the stable equilibrium with negative coordinates, then q(t)

converges to a negative value. That is, the expected price is persistently lower
than the realized one, and consequently a reject cascade occurs. Instead, if the
initial condition of the driving system belongs to the basin B (E+) of the stable
equilibrium with positive coordinates, then q(t) converges to a positive value. That
is, the expected price is higher than the realized one, and consequently an invest
cascade occurs.

From an economic point of view this increase in p̄(t) depends on the increase
in the expected market excess demand. In other terms, there is some kind of
self-fulfilling prophecy at work here. Obviously, in real markets this kind of ever-
increasing (-decreasing) dynamics cannot continue forever because of circuit-
breaker-like mechanisms that, for the sake of simplicity, we have not included in
our model.

In case (c), the motion of the driving system is characterized by self-sustained
oscillations around E0, which involve both positive and negative values of w(t)

and q(t). In particular, the sequence {q(t)}, which constitutes the set of terms of
the series (14), is an oscillating sequence involving positive and negative values.
This implies that it is very difficult, in this case, to forecast the behavior of the
expected price p̄(t). It may exhibit bounded oscillations or oscillatory divergence.
Indeed, as we shall see in the next section, both cases may occur, and the transition
from the former to the latter situation, or vice versa, may occur as a consequence
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of small variations of the parameters or of the initial conditions (i.e., an exogenous
shock). So we can say that for the sets of parameters that, in the driving system,
give rise to stable oscillations around E0, we get more uncertain price behavior,
in the sense that the kind of dynamic evolution of the price is very sensitive to
parameter variations as well as to exogenous shocks that cause small changes of
w and/or q.

The arguments given above can be summarized in the following proposition:

PROPOSITION 2.
(a) If the fixed point E0 = (0, 0) of the driving system (15) is stable, any trajectory

of (9) starting from an initial condition with (w(0), p(0), p̄(0)) such that the point
(w(0), q(0) = p(0) − p̄(0)) belongs to the basin of attraction of E0 converges to a
steady state with w = 0, p = p̄ = p̄L(t), where p̄L(t) is the finite sum of the series
(14). The convergence is nonoscillatory if f ′(0) < fosc, whereas it occurs through
damped oscillations if f ′(0) > fosc.

(b) If two stable equilibria E− and E+ of the driving system (15) exist, with negative and
positive coordinates respectively, then the trajectories of (9) starting from an initial
condition with (w(0), p(0), p̄(0)) are characterized by increasing values of p(t) and
p̄(t) (i.e., an invest cascade) if the initial condition (w(0), q(0)) of the driving system
belongs to the basin of E+, but by decreasing values of p(t) and p̄(t) (i.e., a reject
cascade) if (w(0), q(0)) belongs to the basin of E−.

(c) If the dynamics of (w(t), q(t)) governed by the driving system (15) are characterized
by persistent oscillations around E0, then the corresponding time paths of the forced
variable p̄(t) may show an oscillatory convergence to a bounded value, or bounded
persistent oscillations, or oscillations with an increasing or a decreasing trend.
The average values of the oscillating sequence {p̄(t)}, as well as the increasing or
decreasing trend, are strongly influenced by the initial conditions (w(0), q(0)) of the
driving system (15).

We end this section by considering the case βJ (0) ≥ 1 + ρ, that is, high
interaction among agents. In this case, the stability conditions (20) cannot be
satisfied; hence the equilibrium point E0 is unstable.

If βJ (0) = 1 + ρ then fp = fosc = fh = ρ2/β. In this case, a simple analysis
of the characteristic equation P(λ) = λ2 − 2λ + βf ′(0) + 1 − ρ2 = 0 reveals that

If f ′(0) < ρ2/β then the eigenvalues are both real, with 0 < λ1 < 1 < λ2, so E0 is a
saddle point and two further equilibria exist;

If f ′(0) = ρ2/β then λ1 = λ2 = 1;
If f ′(0) > ρ2/β then the eigenvalues are complex conjugate and outside the unit circle;

that is, E0 is an unstable focus.

If βJ (0) > 1+ρ then fh < fp < fosc. In this case fp and fh no longer represent
bifurcation values at which the stability property of E0 changes, because E0 is
always unstable. However, as f ′(0) moves along these values, interesting changes
in the dynamic behavior, both of the driving system (15) and of the forced variable
p̄(t), can be observed. We shall illustrate these cases in the next section, through
some numerical explorations.
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4. NUMERICAL SIMULATIONS

In this section we provide some numerical simulations, in order to confirm the
analytical results of Section 3 and to demonstrate the strong path dependence that
characterizes the dynamic behavior of our model. In the mathematical analysis
on the existence, stability, and local bifurcations of the equilibria, in the previous
section, we were able to work with general functions f and J satisfying the
general properties described in Section 2. Now, in order to perform the numerical
simulations of the dynamical system (9), we shall use the following expressions:15

f (w) = kw, J (|p̄ − p|) = A exp(−B|p̄ − p|). (22)

The first expression is a commonly used linear function of price adjustment with
respect to the excess demand. This specification is compatible with the standard
tâtonnement idea, because it assumes a proportionality between price changes
(or return) and excess demand (see Cont and Bouchaud, 2000). The k parameter
measures the sensitivity of asset price to fluctuations in excess demand. The
expression of the function J proposed in (22) is just a very simple choice possessing
the properties of the function J (t) described above. The parameter A is the value
of the interaction at 0, J (0), whereas B measures the velocity at which the strength
of the interaction decreases when the asset price move away from the expected
price.

4.1. Asymptotic Stability

We start our numerical explorations by considering a set of parameters such that
the equilibrium E0 of the driving system is asymptotically stable, that is, the case
(a) described in Section 3, by using the set of parameters β = 1.2, J (0) = 1,
ρ = 0.6, and f ′(0) = 0.2. To show the property of path dependence, that is,
the sensitivity with respect to the initial condition of the driving system, of the
asymptotic stationary value p̄L(t) of the expected price, we consider two different
initial conditions of the driving system (15), namely w(0) = 1, q(0) = 0.5 and
w(0) = 1, q(0) = −0.5, which generate two different trajectories of the driving
system both converging to E0, represented in Figure 3a by gray squares and white
circles, respectively. In Figure 3b the corresponding numerical computations of
two time paths of p̄(t) are shown, both starting from the same initial expected price
p̄(0) = 2, but with the two different initial conditions w(0) and q(0) considered
in Figure 3a. It is evident that even if both the time paths of p̄(t) start from
the same initial value p̄(0) = 2 and both the time paths of the sequence {q(t)}
converge to zero, the different transients of the trajectory {w(t), q(t)} governed by
the driving system (15) lead to different equilibrium values of the expected price.
Notice that in both trajectories, the equilibrium value p̄L(t) is reached through
damped oscillations; since f ′(0) > fosc, the trajectories of the driving system
tend to E0 through damped oscillations that involve positive and negative values
of q(t). Another aspect that is worth noticing is that our numerical explorations
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FIGURE 3. With the set of parameters β = 1.2, J (0) = 1, ρ = 0.6, and f ′(0) = 0.2 the
equilibrium E0 of the driving system is stable. (a) Two trajectories of the driving system gen-
erated starting from initial conditions w(0) = 1 , q(0) = 0.5 and w(0) = 1, q(0) = −0.5,
represented by gray squares and white circles, respectively. (b) The corresponding numer-
ical computations of two time paths of p̄(t), both starting from the same initial expected
price p̄(0) = 2, but with the two different initial conditions w(0) and q(0).

of the driving system (15) show that whenever the parameters are such that the
equilibrium E0 is stable, it appears to be globally asymptotically stable; that is,
any initial condition generates a trajectory converging to E0. So we are led to
conjecture that the statement of Proposition 1 holds for any initial condition (10).

4.2. Bistability Case

We now consider a set of parameters such that the situation of bistability described
in case (b) of Section 2 holds. For example, in Figure 4a, obtained with parameters
β = 1.2, J (0) = 1, ρ = 0.6, and f ′(0) = 0.02 < fp = 0.1, the two basins
B (E−) and B (E+) are represented in white and gray, respectively, separated by
the stable set of the central point E0 (a saddle point). In Figure 4b two time paths
of p̄(t) are generated starting from the same initial expected price p̄(0) = 2, but
with different initial conditions of the driving system (15), namely w(0) = 1,
q(0) = −0.5 belonging to B (E+) and w(0) = 1, q(0) = 0.5 belonging to
B (E−). As expected on the basis of Proposition 1, the former initial condition
generates an invest cascade, that is, an increasing sequence {p̄(t)}, and the latter
initial condition generates a reject cascade, that is, a decreasing sequence {p̄(t)}.
Of course, because p(t) = p̄(t) + q(t) and q(t) tends to a finite value, the same
kind of time evolution of p̄(t) also holds for the realized price p(t). In other
words, the agents’ ability to forecast the expected price seems to be offset by
movements of the realized price at the same velocity, thus causing bubbles. Also,
in this case, from the numerical results we try to make some inferences about the
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FIGURE 4. With parameters β = 1.2, J (0) = 1, ρ = 0.6, and f ′(0) = 0.02 two stable
equilibria of the driving system, denoted by E− and E+, coexist. (a) The basins B(E−) and
B(E+) are represented by white and gray areas respectively. (b) Two time paths of p̄(t)

are generated starting from the same initial expected price p̄(0) = 2, but with different
initial conditions of the driving system (15), given by w(0) = 1, q(0) = −0.5, belonging
to B(E+), and w(0) = 1, q(0) = 0.5, belonging to B(E−).

global structure of the basins of attraction, because such information cannot be
deduced from the local analysis of the previous section. Looking at the simple
structure of the basins B (E−) and B (E+) of Figure 4a, one may guess that when
the parameters are such that a situation of bistability is present, sufficiently negative
values of q(0) imply an invest cascade, and sufficiently positive initial values q(0)

imply a reject cascade. However, numerical explorations of the driving system
prove that the situation may be significantly different, in the sense that other sets
of parameters may give more complicated structures of the basins, in particular
in the presence of high levels of interaction among agents, that is, high values of
J (0) (an example is shown below; see Figure 9a).

4.3. Neimark–Hopf Bifurcations

We now move to the numerical exploration of the more interesting case (c).
Figure 5 is obtained with parameters β = 1.2, J (0) = 1, ρ = 0.6, and f ′(0) =
0.44 > fh = 0.43̄, just after the occurrence of the Neimark–Hopf bifurcation. In
Figure 5a the phase space (w, q) of the driving system is represented, with the
stable closed curve around the unstable focus E0, on which the driving system
exhibits a quasi-periodic motion. Also, in this case, in Figure 5b two time paths
{p̄(t)} are shown, starting from the same initial expected price p̄(0) = 2, but
with different initial conditions (w(0), q(0)) of the driving system. Even if, for
any initial condition (w(0), q(0)), all the trajectories of the driving system exhibit
the same long-run motion along the attracting closed invariant curve shown in
Figure 5a, the behavior of the sequence {p̄(t)} is influenced by (w(0), q(0)), as
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FIGURE 5. With parameters β = 1.2, J (0) = 1, ρ = 0.6, and f ′(0) = 0.44. (a) The
attractor located along a closed invariant orbit around E0 is represented in the phase
space (w, q) of the driving system (b) Two time paths {p̄(t)} are shown, starting from
the same initial expected price p̄(0) = 2, but with different initial conditions (w(0), q(0))

of the driving system.

clearly shown by the two sequences represented in Figure 5b. All the different
sequences {p̄(t)} that we have numerically generated with this set of parameters
and different initial conditions (w(0), q(0)) exhibit bounded oscillations.

However, we cannot assert that the dynamics of the driving system that are
characterized by bounded oscillations of (w(t), q(t)) always force bounded os-
cillations of the corresponding {p̄(t)}. In order to stress this point, let us consider
the sequence of numerical simulations shown in Figures 6, 7, and 8. In Figure 6
we show that, with the same set of parameters β, J (0), and ρ as in Figure 5,
and f ′(0) = 0.547, the behavior of the generic trajectory of the driving system
is again characterized by bounded oscillations involving positive and negative
values of the variable q(t), but the corresponding time evolutions of the expected
price {p̄(t)} exhibit oscillatory behavior with an increasing trend. Moreover, as
shown in Figure 6b, even starting from the same initial fundamental price, again
p̄(0) = 2, the trend may be increasing (thus leading to an invest cascade) or
decreasing (thus leading to a reject cascade) according to the initial condition
(w(0), q(0)) of the driving system. For example, in Figure 6b increasing prices
are obtained with (w(0), q(0)) = (−1, 1) and decreasing prices are obtained with
(w(0), q(0)) = (1,−1).

Starting from the dynamic scenario illustrated by Figure 6, situations charac-
terized by bounded behavior of {p̄(t)} can be obtained by slight modifications of
the parameters. For example, the situation shown in Figure 7 is obtained with the
same parameters and initial conditions as in Figure 6, the only difference being
a slightly smaller value of the parameter f ′(0), decreased from 0.547 to 0.54.
Analogously, the situation of bounded oscillation shown in Figure 8 is obtained
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FIGURE 6. With the same set of parameters β, J (0), and ρ as in Figure 5, and f ′(0) = 0.547.
(a) Attractor in the phase plane (w, q) of the driving system. (b) Two time evolutions of
{p̄(t)} obtained starting from the same initial fundamental price, again p̄(0) = 2, and two
different initial conditions, (w(0), q(0)) = (−1, 1) and (w(0), q(0)) = (1, −1).

after a slight increase of f ′(0), namely f ′(0) = 0.55. We stress that in all the
situations shown in Figures 6, 7, and 8 the asymptotic dynamics of the driving
system are practically identical, and nevertheless quite different time evolutions
of the fundamental prices are obtained. This confirms what we stressed at the end
of Section 2 about the difficulty of forecasting the kind of long-run dynamics of
prices when persistent oscillations around E0 are present in the driving system.

Such “windows” characterized by bubbles due to slight variations of one or
more parameters can be numerically observed in many different parameter con-
stellations.

FIGURE 7. The same as Figure 6 with f ′(0) = 0.54.
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FIGURE 8. The same as Figure 6 with f ′(0) = 0.55.

4.4. Different Dynamic Scenarios

To end this section on numerical experiments, we consider some different dynamic
situations that cannot be detected by the local analysis performed in Section 3. As
anticipated above, some interesting dynamic scenarios can be observed when high
values of J (0) are considered, that is, high levels of interaction among agents. For
example, Figure 9a is obtained with the set of parameters β = 1, J (0) = 1.7,
ρ = 0.5, and f ′(0) = 0.18, so that βJ (0) > 1 + ρ. With this set of parameters

FIGURE 9. (a) With parameters β = 1, J (0) = 1.7, ρ = 0.5, and f ′(0) = 0.18, so that
βJ (0) > 1 + ρ, a situation of bistability is obtained for the driving system, the two non-
vanishing equilibria E− and E+ being stable foci. (b) With f ′(0) = 0.3 the three equilibria
are all unstable (E0 is a saddle point, E− and E+ are unstable foci) and an attracting closed
invariant curve exists that surrounds the three equilibria.
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we have fh = 0.15 < fp = 0.35 and fosc = 0.36. Hence, f ′(0) = 0.18 is such
that fh < f ′(0) < fp. This means that the driving system has three equilibria, and
the central one, E0, is unstable. For this set of parameters the two nonvanishing
equilibria E− and E+ are stable foci. So the situation of bistability described at
point (b) of Section 3 is obtained, and invest or reject cascades will be observed
according to the choice of initial condition (w(0), q(0)) in the basin of attraction
of E+ or E−, respectively. A remarkable feature that can be noticed in Figure 9a,
is that in this situation the boundary that separates the basins of attraction E−
and E+, represented by the white and the gray regions respectively, is more
complicated than in the situations previously analyzed (see Figure 4).

Other interesting dynamic scenarios can also be observed for greater values of
f ′(0), when three equilibria exist, but all are unstable. For example, in Figure 9b,
obtained with the same parameters as Figure 9a except f ′(0) = 0.3, three equi-
libria exist, but they are all unstable (E0 is a saddle point, E− and E+ are unstable
foci), and an attracting closed invariant curve exists that surrounds the three equi-
libria. Also, in this case, bounded oscillatory dynamics are observed for both the
expected and the current price. We do not enter into the details of the local and
global bifurcations that mark the transition from the dynamic scenario of Figure 9a
to the one shown in Figure 9b. The interested reader may find descriptions of
similar dynamic situations, even if in relation to different models, in some recent
papers by Bischi et al. (2001) and Dieci et al. (2001).

5. CONCLUSIONS

We have considered the dynamic effects of herding in the buy–sell decisions
of heterogeneous investors and in the consequent adjustment in individual priors
about the fundamental. The incompleteness of the agents’ information set is shown
to be a sufficient condition for the presence of nonfundamentalist analysis in the
agents’ decision process modeled, in this work, on a binary choice setting with
interaction.

The three-dimensional nonlinear discrete dynamical system derived from the
model exhibits quite different, and in some cases complicated, dynamic behaviors.
The analytical study and numerical explorations of the system allowed us to state
the following results: the system may show convergence to steady state with excess
demand equal to zero and asset price equal to the fundamental solution, and such
convergence may be oscillatory or monotonic. Increasing the sensitivity of the
risky asset price to the relative excess demand may determine a loss of stability
through two possible bifurcation paths. First is a supercritical Neimark–Hopf
bifurcation, at which the equilibrium of the driving system is transformed from a
stable focus to an unstable one, and a stable closed invariant circle is created around
it, on which the dynamics of the driving system are characterized by periodic or
quasi-periodic motion. This shows the possibility of asset price movements that are
not determined by changes in the asset price fundamental solution, but by agents’
herd behavior. Second, the loss of stability of the equilibrium point is associated
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with the creation of two new equilibria via a supercritical pitchfork bifurcation: the
steady state becomes unstable (a saddle point) and two stable equilibria are created,
characterized by positive and negative coordinates respectively, whose basins of
attraction are separated by the stable set of the saddle point, characterized by
excess demand equal to zero and asset price equal to the fundamental solution.
This magnetization phenomenon, typical of social interaction models, can explain
real situations in which the price goes up or down so quickly that the market has
to activate the circuit-breaker mechanism.

Other kinds of dynamic scenarios can be observed with sufficiently high levels
of interaction among agents. However, the most striking feature of the model is
that the evolution both of the price and of the expected price crucially depend on
the initial conditions; that is, the model exhibits strong path dependence. This is
observed in many different dynamic situations: the expected price converges to
the realized price, both when the behavior is characterized by bounded oscillations
(periodic and quasi-periodic trajectories), and even when the price trends up or
down, depending on the initial condition, because of invest or reject cascades.
This kind of path dependence seems to be strongly conditioned by the velocity at
which agents forecast the expected price compared to the rapidity of asset price
movements.

NOTES

1. Examples of this approach are the GARCH family of models used to account for the het-
eroskedasticity of asset returns (see, e.g., Engle, 2001) and the studies put forth within econophysics
to fit financial time series with stable distributions emerging in open systems (Mantegna and Stanley,
2000).

2. The private information set will be modeled stochastically in a way that will be clear later. See
equation (3).

3. Essentially, the reason for a disequilibrium model comes from a previous analysis in which we
implemented the rules of the Milan stock market in a simulative stock market. Simulations, using the
swarm libraries developed by Pietro Terna, were able to reproduce many stylized facts in financial
markets (particularly in intraday trading, even though in our analytical model there is nothing that
limits the analysis to high frequencies) and we decided to get a deep understanding of the model by
reimplementing it in analytical terms. Equation 1 approximates disequilibrium price movements in
real stock markets, generated by the evolution of the order book.

4. This hypothesis captures the idea that, in continuous trading, agents’ expectation of the excess
demand in every second is what they observed, in the computer terminal, a few seconds ago.

5. Because it is intuitive, assuming an increasing amount of herding may easily produce asset price
dynamics not related to the fundamental solution because the weight of fundamental strategies, with
an asset price sufficiently far from p̄(t), eventually will becomes negligible.

6. Alternatively, one may assume that the two random components are independent and extreme-
value distributed.

7. Equation (5) shows an important interpretation of β used in the binary choice with interaction
literature. The parameter measures how quickly agents react, stochastically, to differences between the
benefit functions of the two strategies. If β is 0 agents play the strategies at random. An increase of
the parameter means that the agents in the market take care of the benefit function in their decision
problem. In a sense they are more rational. Letting the parameter go to infinity will reproduce the
deterministic decision process; that is, even a small positive difference in the benefit function of the
strategy wi , compared to the other strategy −wi , will cause the agent to choose wi with probability 1.
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8. By definition, tanh(x) = [exp(x) − exp(−x)]/exp(x) + exp(−x).

9. An analytical discussion of stability is in Section 3.
10. An adaptive rule is used for expectation formation for the sake of simplicity. This kind of rule

is consistent with the assumptions in the model because changes in price are determined by changes
in expected demand that, in their turn, are determined by previous expected and actual price and so on
recursively. The parameter ρ captures the agent’s signal extraction process.

11. The parameter ρ captures also the agent’s signal extraction process—in other words, how much
of price variation is due to fundamental variation.

12. Concerning the meaning of choosing an initial condition for the expected price, one can
assume that a random perturbance occurres at t = 0, so that an arbitrary initial condition can be taken.
Then the dynamics are generated by iterations of equations (9), starting at those initial conditions,
so that we can study the influence of such initial perturbation on the subsequent evolution of the
system.

13. Following Bikhchandani and Sharma, we say that an “invest (reject) cascade” occurs when
individuals, acting rationally, will invest on an asset (will reject it) regardless of what their private
signals tell them about the future value of the investment, because of the “domino effect” (informational
cascades) typical of herd behavior (Bikhchandani and Sharma, 2000).

14. The term magnetization comes from the fact that the first model, using the statistical physics
framework, studied the magnetization of materials.

15. With this particular choice, the parameters used in the bifurcation analysis given above are
f ′(0) = k and J (0) = A. Because the parameter B does not appear in the local bifurcation results,
without loss of generality we shall use a fixed value for it, namely B = 2.

16. A rigorous proof of the supercritical nature of a pitchfork bifurcation requires a center manifold
reduction and the evaluation of higher order derivatives, up to the third order (see, e.g., Guckenheimer
and Holmes, 1983). This is rather tedious in a two-dimensional map, and we prefer to rely on numerical
evidence as two stable nodes close to E0 are numerically detected for (f ′(0), J (0)) just above the line
(18) .

17. The rigorous proof of the supercrical nature of a Neimark–Hopf bifurcation requires the
evaluation of some long expressions involving derivatives of the map up to order three (see, e.g.,
Lorenz, 1993, p. 115; Guckenheimer and Holmes, 1983, p. 162). So, again, we rely on numerical
evidence, based on the fact that we can numerically see see the presence of a stable closed invariant
curve around the unstable focus E0 for (f ′(0), J (0)) just above the line (19).
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Orléan, A. (1995) Bayesian interactions and collective dynamics of opinion. Journal of Economic

Behavior and Organisation 28, 257–274.
Routledge, B.R. (1999) Adaptive learning in financial markets. Review of Financial Studies 12(5),

1165–1202.
Stark, J. (1997) Invariant graphs for forced systems. Physica D 109, 163–179.
Terna, P. (2000) Mind no-mind dilemma in agents for social science simulations. In G. Ballot and

G. Weisbuch (eds.), Applications of Simulation to Social Sciences, pp. 257–271. Oxford: Hermes
Science Publishing.

Welch, I. (1992) Sequential sales, learning and cascades. Journal of Finance 47, 695–732.

APPENDIX

PROOF OF PROPOSITION 1

The study of the local stability of the fixed point E0 = (0, 0), under the driving dynamical
system, is based on localization, on the complex plane, of the eigenvalues of the Jacobian
matrix of the map (15)

DT2(w, q) =




βJ (|q|)
cosh2[β(−q + wJ(|q|))]

β (wJ ′ (|q|) − 1)

cosh2[β(−q + wJ(|q|))]
f ′(w) 1 − ρ


 (23)

computed at E0 = (0, 0); that is,

DT2(0, 0) =
[

βJ (0) −β

f ′(0) 1 − ρ

]
. (24)

The eigenvalues are the solutions of the characteristic equation P(λ) = λ2−Trλ + Det = 0,
where Tr = 1 − ρ + βJ (0) and Det = β[f ′(0) + (1 − ρ)J (0)] are, respectively, the trace
and the determinant of the Jacobian matrix computed at the fixed point E0. A sufficient
condition for the stability of E0 is expressed by the system of inequalities

P(1) = 1 − Tr + Det > 0; P(−1) = 1 + Tr + Det > 0; Det − 1 < 0, (25)

which give necessary and sufficient conditions for the two eigenvalues to be inside the
unit circle of the complex plane (see, e.g., Gumowski and Mira, 1980, p. 159, or Medio
and Lines, 2001, p. 52, or any standard book on discrete dynamical systems). Because
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P(−1) = βf ′(0) + (2 − ρ) (1 + βJ (0)) > 0 for all the values of the parameters, the
stability conditions reduce to (20). The locus of points such that Tr2−4Det = 0, represented
by the parabola with equation (21), separates the stability region into two regions such that
inside this parabola, where Tr2 − 4Det < 0, the eigenvalues are complex conjugate, and
outside the parabola, where Tr2 − 4Det < 0, they are real. Moreover, as 0 ≤ ρ < 1, β > 0,
and J (0) > 0 imply that Tr > 0 and Det > 0, whenever the eigenvalues are real they are
nonnegative. This implies that in the region outside the parabola the convergence of the
driving system to E0 is nonoscillatory, whereas inside the parabola the convergence occurs
through damped oscillations.

If, starting from a set of parameters inside the stability domain of E0, some parameters
are varied so that the point (f ′(0), J (0)) exits the stability region through the line with
equation P(1) = 0, then an eigenvalue exits the unit circle of the complex plane through the
value λ = 1 and, according to (17), the loss of stability of E0 is associated with the creation
of two new equilibria, E− and E+. This is a typical supercritical16 pitchfork bifurcation:
E0 becomes unstable (a saddle point) and the two stable equilibria E− and E+ are created,
with negative and positive coordinates, respectively, whose basins, say B(E−) and B(E+),
respectively, are separated by the stable set of E0. This may happen, for example, if we
have 1/β < J(0) < (1 + ρ)/β, and the parameter f ′(0) decreases through the bifurcation
value fp, with fp = ρ(βJ (0) − 1)/β, or, given a fixed f ′(0) < ρ2/β, the parameter J (0)

is increased through the bifurcation value Jp, with Jp = (βf ′(0) + ρ)/ρβ.
We now consider what happens if, starting from a set of parameters inside the stability

domain of E0, some parameters are varied so that the point (f ′(0), J (0)) exits the stability
region through the line (19). In this case, the two complex conjugate eigenvalues exit
the unit circle of the complex plane with non vanishing imaginary parts. This causes the
occurrence of a supercritical17 Neimark–Hopf bifurcation, at which the equilibrium E0

of the driving system (15) is transformed from a stable focus to an unstable one, and
a stable closed invariant circle is created around it, on which the asymptotic dynamics
of the driving system are characterized by a periodic or a quasi-periodic motion. For
example, this may happen if ρ2 < βf ′(0) < 1 and the interaction among agents, J (0),
is increased through the bifurcation value Jh = [1 − βf ′(0)]/[β(1 − ρ)], or if, for a
fixed J (0) such that J (0) < (1 + ρ)/β, f ′(0) increases through the bifurcation value
fh = (1 − βJ (0) (1 − ρ))/β.


