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a b s t r a c t

In piecewise-smooth dynamical systems, the regions of existence of a periodic orbit are typically
parameter sub-spaces confined by border-collision bifurcations of this orbit. We demonstrate that
additionally to the usual border-collision bifurcations occurring at finite points in the state space there
exist also border-collision bifurcations occurring at infinity.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Piecewise-smooth dynamical systems are characterized by the
fact that their state space is divided into partitions by borders also
denoted as switching manifolds. Within each partition, the system
is smooth (that is Ck up to some k) but the rules which govern
the dynamic behavior (that is the right hand side of the system
function) change at the boundaries. These systems are interesting
because it was shown that they represent adequate mathematical
models for many processes both in nature and engineering. Appli-
cations of these systems range from earthquake dynamics [1,2] to
nano-actuators [3–6] and include electronic devices with relay or
switching components (for example, buck/boost converters [7,8]),
mechanical systems with stick–slip or impact phenomena [9,10]
and in general all switching systems occurring in various fields as
control theory [11], economics [12,13], biology [14] and so on. It is
also worth noticing that the phenomenon of deterministic chaos
represents a genuine source of such a switching behavior caused
by the complicated stretching and folding mechanisms sometimes
denoted as razor-blade or butterfly effect. This was demonstrated
for example in [15] where the famous time-continuous smooth
Lorenz flow [16]was investigated bymeans of a piecewise-smooth
scalar map.
It is natural to ask which bifurcations occur in piecewise-

smooth dynamical systems. Additionally, to all bifurcations
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occurring in smooth systems there is another class of bifurcations
caused by the collision of an invariant set with a switching
manifold. These bifurcations named by Nusse and Yorke [17] as
border-collision bifurcations lead an invariant set (for example a
fixed point or a periodic orbit) to be destroyed. However, it is
also well known that there is another way for an invariant set
to be destroyed, namely when some points of the set tend to
infinity by variation of a parameter. Hence, the question arises how
these bifurcations can be explained and whether they have some
common properties with the ‘‘usual’’ border-collision bifurcations.
The key point of our paper goes back to the ideas suggested

already by Poincaré [18] who has demonstrated that in order to
obtain the global phase portrait of a flow it is necessary to investi-
gate its behavior at infinity. Nowadays, the approach to include the
dynamic behavior at infinity is called Poincaré compactification.
When dealingwith piecewise-smooth systems and especially with
the bifurcations mentioned above, we will show that it is suitable
to consider infinity a special kind of boundary in the state space.
In doing so, the bifurcations occurring when some points of an in-
variant set tend to infinity turn out to be a kind of border-collision
bifurcation. This has several advantages: on onehand,we can apply
the knowledge already available for ‘‘usual’’ border-collision bifur-
cations and on the other hand it leads us to a unified description of
bifurcations in piecewise-smooth systems.
This paper is organized as follows. In Section 2, we introduce

the concept of Poincaré Equator (P.E.)-collision bifurcations and
show why in piecewise-smooth systems these bifurcations can be
seen as some kind of border-collision bifurcations. In Section 3, we
prove that in the case of piecewise-linearmaps an orbit undergoing
a P.E.-collision bifurcation changes its stability. Eventually, in
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Fig. 1. Schematic representation of a border-collision bifurcation (a) and a P.E.-
collision bifurcation (b) in a system defined on two partitions Γ1 and Γ2 . Real orbits
are shown as solid curves and virtual orbits as dashed curves.

Section 4, the results obtained so far will be applied to the well-
known 2D piecewise-linear normal form. We demonstrate that
the existence region of periodic orbits are bounded by the border-
collision bifurcation curves which are (up to few exceptions) of
the non-smooth fold type and by the P.E.-collision bifurcation
curves which are of the transcritical type. Further, we present
an explanation of the behavior at the codimension-2 bifurcation
points where these curves intersect. Finally, in Section 5, we
conclude with a summary.

2. Basic idea: how an orbit may become virtual?

For simplicity, let us consider a piecewise-smooth map T
defined on two partitions in RN . Without a significant loss of
generality, let us assume that the partitions are defined by the sign
of the first state variable (that means x < 0 and x > 0)

EXn+1 = T (EXn, α) =
{
TL(EXn, α) if xn < 0
TR(EXn, α) if xn > 0

(1)

with the state vector EX = (x, y, . . .)T ∈ RN and a parameter
α ∈ R. Let us further assume that the map has a fixed point
EX∗(α) = (x∗(α), y∗(α), . . .)T given by a solution of the equation
TR(EX, α) = EX . Obviously, EX∗(α) is a fixed point of the map (1)
only if it is located in the partition where the function TR is valid,
that means if x∗(α) > 0. Otherwise, it represents a so-called
virtual (non-existing) fixed point. Hence, the question how a real
fixed point may become a virtual fixed point (or, in other words,
may be destroyed) under variation of α reduces to the question
how the scalar function x∗(α) may change its sign. The simplest
possibility for that is a continuous transition across the boundary
between partitions, given in our example by x∗(α) = 0. This
situation represents a usual border-collision bifurcation, shown
schematically in Fig. 1(a). Several types of such bifurcations are
well investigated so far (we refer to [8,19] for overviews).
However, there is still one more possibility for the function

x∗(α) = 0 to change its sign, namely the function may have a
discontinuity, like for example a pole. In this case (see Fig. 1(b)),
the fixed point tends to +∞ as α approaches the critical value.
After the parameter crossing of the critical value, the fixed point
‘‘returns’’ from −∞. However, since the sign of x∗(α) is changed,
in this case EX∗(α) represents a virtual fixed point, that means, it
will be destroyed. Note that such kind of ‘‘infinity-crossing’’ may
occur in systems defined on one partition as well, but in this case
it does not cause the solution to be destroyed.1

1 As an example, the readermay consider the behavior of the unstable fixed point
x = 1− 1/α of the logistic map xn+1 = αxn(1− xn) at the parameter value α = 0.
An infinite sequence of such bifurcations where not only a fixed point but also the
n-periodic orbits with any n undergo such bifurcation can be observed in the map
xn+1 = α/(α − x2n).
Fig. 2. Projection of a point EX from the plane R2 onto the northern hemisphere of
the Poincaré sphere S2 .

Obviously, not only may a fixed point become virtual by such
kind of bifurcation but any attractor and especially any periodic
orbit. Furthermore, it is not significant that the map (1) is defined
on two partitions only, since the described mechanism is valid for
maps defined on an arbitrary number M > 1 of partitions in the
state space. What is significant here, is the fact that the function
representing the involved orbit in dependence on the parameter
(for example, x∗(α)) has a pole with an odd order, whereby the
existence condition of the orbit is fulfilled on one side of the
discontinuity and violated on the other side.
When dealing with orbits tending to infinity, the concept of

the Poincaré compactification introduced in 1881 by Poincaré
itself [18] is very useful. For an outline of this concept, we refer for
example to [20,21]. Following Poincaré, this concept was applied
by many authors to investigate the principal structure of phase
portraits of certain dynamical systems including the branches
tending to infinity (see for example [22–26]). According to this
concept, the state space Γ = RN is mapped by a central projection
onto the northern hemisphere of the unit sphere SN ⊂ RN .
Note that we use here the topological geometrical (and not the
geometrical) convention of the sphere. Hereby, the origin of the
space Γ corresponds to the north pole of the sphere SN and the
points at infinity in the space Γ are mapped onto the equator of
the sphere, denoted as P.E.. This projection is illustrated in Fig. 2
for the case N = 2. The figure shows a point EX located in the
plane R2 and its projection onto the northern hemisphere of the
Poincaré sphere S2. As one can easily see, for increasing ‖EX‖ the
projection of EX is tending to the P.E. and each straight line in the
plane ismapped onto a great circle of the sphere. Consequently, the
boundary between the partitions x < 0 and x > 0 in R2 is mapped
onto the great circle separating the two corresponding partitions
on the sphere.
Let us reconsider the definition of the map (1). As the partitions

(the domains of the partial maps TL and TR) are specified by x < 0
and x > 0, one could assume that there exists only one boundary
x = 0 between these partitions. However, the ‘‘infinity-crossings’’
discussed above lead us to the conclusion that±∞may represent
partition boundaries as well. From a formal point of view, the
partitions should be specified as

ΓL =

{
EX | x ∈ (−∞, 0)

}
and ΓR =

{
EX | x ∈ (0,+∞)

}
(2)

whereby one partition boundary is given by the (N − 1)-
dimensional sub-space{
EX | x = 0, ‖EX‖ <∞

}
(3)

located at a finite value of x, and the other one, given by{
EX | x = ±∞

}
(4)

is located at the P.E..
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The key point of our work is given by the fact that the
bifurcations occurring at both kinds of boundaries are similar. The
situation where a bounded orbit collides with a finite partition
boundary is in the meanwhile well known and represents a
border-collision bifurcation. We state additionally that the same
bifurcation occurs in the case when an orbit becomes unbounded
and collides with a partition boundary at the P.E.. Formally, both
bifurcations are border-collision bifurcations. However, for the
sake of clarity, we want in the following to distinguish between
them. Therefore, in the following,we keep the notation of a border-
collision bifurcation for a collision with a finite boundary and
denote a collision with an infinite boundary as a P.E.-collision. As
in the case of a border-collision bifurcation, after a P.E.-collision
bifurcation, the orbit becomes virtual. Similarly, several specific
sub-types of border-collision bifurcations may occur at the P.E. as
they may occur at finite partition boundaries.

3. Piecewise-linear case

In the discussion presented above, the partial maps TL and
TR are not restricted to be of any specific type. However, it
turns out that some additional results can be obtained for an
important special case, namely for piecewise-linear maps. This
class of models is known to be relevant for practical applications
and is investigated bymany authors (see references in [19]). Again,
for the sake of clarity let us assume that the map is defined on two
partitions in the state space as in the case of map (1):

EXn+1 =
{
AL
EXn + EBL if xn < 0

AR
EXn + EBR if xn > 0

(5)

where AL and AR are N × N matrices and EBL, EBR ∈ RN . Note that
all the results presented below are valid also for maps defined on
an arbitrary numberM > 1 of partitions.
Throughout this paper, we use the following notation. For the

orbits, we use one of the standard symbolic codings (see, for
example, [27]) and denote a point (x, y, . . .)T ∈ RN with x < 0 by
the symbol L and a point with x > 0 by the symbolR. A periodic
orbit is denoted as Oσ , whereby the sequence σ = σ0σ1 . . . σn−1
represents a cycle of period n (as described below). The regions
in the parameter space where the orbit Oσ exists are denoted by
P iσ , where i = 1, 2, . . . is a index needed to distinguish between
several regions. Each of these regions may consist of the parts P i,sσ
and P i,uσ where the orbit Oσ is stable and unstable, respectively.
Let us consider a periodic orbit Oσ of system (5). The symbolic

sequence σ of a cycle of period n is given by σ0σ1σ2 . . . σn−1, where
each specific letter σi is L or R depending on the partition of
the state space in which the corresponding point EXσi is located.
Consequently, for each of these points Eq. (5) implies EXσi+1 =
Aσi EX

σ
i +
EBσi and especially

EXσ1 = Aσ0 EX
σ
0 +
EBσ0 (6)

EXσ2 = Aσ1Aσ0 EX
σ
0 + Aσ1EBσ0 + EBσ1 (7)

EXσ3 = Aσ2Aσ1Aσ0 EX
σ
0 + Aσ2Aσ1EBσ0 + Aσ2EBσ1 + EBσ2 (8)

. . .

EXσn = Aσ EXσ0 + EB
σ withAσ

=

n∏
i=1

Aσn−i (9)

EBσ
=

n−1∑
j=1

(
n−j∏
i=1

Aσn−i

)
EBσj−1 + EBσn−1 . (10)

The periodicity condition EXσn = EX
σ
0 for an orbit with period n = |σ |

leads finally to the following equation

(Aσ
− I)EXσ0 = − EB

σ (11)
whereby I represents the N × N identity matrix. Recall that the
solution of Eq. (11) – if it exists – leads to a true orbit of system (5),
if all the points EXσi (i = 0, . . . , n− 1) are located according to the
symbolic sequence σ and to a virtual orbit otherwise. According
to the Fredholm alternative, the following holds: either the matrix
(Aσ
− I) is invertible and hence Eq. (11) has a unique solution

EXσ0 = −(A
σ
− I)−1 EBσ (12)

representing the starting point of the orbitOσ , or thematrix (Aσ
−

I) is not invertible and hence det(Aσ
− I) = 0, which means that

λ = 1 is an eigenvalue of thematrixAσ . According to Cramer’s rule
the unique solution (12) of Eq. (11) satisfies the following equation

det(Aσ
− I)EXσ0 = −EV (13)

whereby the i-th component of the vector EV is given by Vi =
det((Aσ

−I)i) and thematrices (Aσ
−I)i are formed by replacing

the i-th column of (Aσ
− I) with the vector EBσ . Consequently,

the denominator of each component of the solution vector EXσ0 is
given by det(Aσ

−I). This means that the condition of a vanishing
denominator implies that at least one eigenvalue of the matrixAσ

is λ = 1. Recall that due to the linearity of the system functions,
the matrix Aσ represents the Jacobian matrix of the n-th iterated
function at the point EXσ0 and hence is responsible for the stability of
the n-periodic orbit Oσ considered above. Therefore, we conclude
as a final result that in the case of piecewise-linear maps like (5) the
orbit Oσ undergoes a P.E.-collision bifurcation at the stability
boundary, whereby exactly one eigenvalue of the matrixAσ becomes
+1. Note that a hint towards this result was already mentioned
in [28]. However, in the cited work, it was stated for a particular
continuous piecewise-linear map. By contrast, the discussion
presented above demonstrates that this result is valid also in
general, both for continuous and discontinuousmaps. Note further
that we do not consider here the case of multiple eigenvalues.
Remarkably, the results obtained above for the general case of

piecewise-linear maps in Rn can be easily illustrated for 1D maps.
In Fig. 3(a) and (c), the situations before and after the bifurcation,
respectively, are shown schematically for the case discussed in Sec-
tion 2 with the additional condition that the partial system func-
tion fR is linear. As one can see in Fig. 3(a), before the bifurcation
the fixed point x∗ defined by the solution of the equation fR(x) = x
is valid. As the system parameter approaches the bifurcation point,
the fixed point tends to+∞ and the slope tends to+1. At the bifur-
cation point (Fig. 3(b)), the slope is+1 and the equation fR(x) = x
has no finite solutions. After the bifurcation the solution exists
again, but represents a virtual fixed point (Fig. 3(c)).
Let us now summarize the notation related to parameter sub-

spaces (especially, curves in 2D parameter spaces) corresponding
to specific bifurcations, which wewill discuss in the following. The
parameter sub-space, where an orbit Oσ undergoes a P.E. collision
bifurcation will be denoted by χσ . The parameter sub-space where
this orbit undergoes a border-collision bifurcation is denoted by
ξ d,iσ , whereby the index i ∈ [0, |σ |−1] refers to the fact that the i-th
point of the orbit collides with the boundary in the state space. The
superscript d ∈ {L,R} represents the direction of the collision,
that is whether the i-th point of the orbit Oσ collides with the
border x = 0 from the left (L) or from the right (R). The stability
boundaries of an orbit Oσ are denoted by θ+σ and θ

−
σ , whereby the

superscripts depend on the fact whether the stability boundary is
caused by an eigenvalue equal to+1 or to−1, respectively.

4. Application example: 2D normal form

4.1. Definitions

To illustrate the ideas discussed above, let us consider the well-
known 2D normal form

EXn+1 = T (EXn) =
{
TL(EXn) = AL

EXn + EB if xn < 0
TR(EXn) = AR

EXn + EB if xn > 0
(14)
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Fig. 3. Schematic representation of the P.E.-collision bifurcation of the fixed point x∗: Situations before the bifurcation (a), at the bifurcation point (b) and after the bifurcation
(c). The partial system function fR is shown as solid line within its domain and as dashed line outside.
a b

Fig. 4. Fixed points OL (a) and OR (b). In the bifurcation diagrams (middle row), thick lines show stable fixed points, thin lines – unstable fixed points and dashed lines
– virtual fixed points. In the lower row, the corresponding eigenvalues are shown. Parameters: δL = δR = 0.15. Note that in (b) the parameter plane (τR, τL) and not
(τL, τR) is shown which is in contrast to all other figures throughout this paper.
with AL =

(
τL 1
−δL 0

)
AR =

(
τR 1
−δR 0

)
EB =

(
µ
0

)
EX =

(
x
y

)
proposed in the pioneering work by Nusse and Yorke [17], where
the term ‘‘border-collision bifurcation’’ was introduced. Later, this
map was investigated bymany authors in a large number of works
(see for example [29–33,8] and also the References in [19]). In
the recent publications [34,35], it is shown that in the vicinity of
specific bifurcation curves in the 2D parameter space of several
nonlinear systems the bifurcation structure can be mapped onto
the bifurcation structure of the normal form (14) using the normal
form reduction described in [36,37,33]. Note additionally, that for
δL = δR = 0 the map will be reduced to the 1D normal form:

xn+1 =
{
τLxn + µ if xn < 0
τRxn + µ if xn > 0

(15)

as mentioned already in [38]. It was shown in the cited work
that under variation of the parameter µ, this map demonstrates
transitions from a fixed point to several periodic orbits and to
one- and multi-band chaotic attractors. Remarkably, for µ 6= 0 by
rescaling the variables via the transformation x̃ = x/|µ|, ỹ = y/|µ|
the dimension of the parameter space of map (14) can be reduced
by one, and it is sufficient to consider only the three parameter
values µ ∈ {+1, 0,−1}. Additionally, it can easily be shown that
the cases µ = +1 and µ = −1 are identical up to an exchange
of τL with τR and δL with δR and of the signs of the variables.
Consequently, in the following, we consider the case µ = 1 only,
and drop the tilde in the notation for the variables.
4.2. Fixed points and period-2 orbits

Let us firstly recall some results concerning the map (14)
already mentioned for example in [38]. The map has two fixed
points OL and OR given by

OL/R =

(
µ

DL/R
,
−δL/Rµ

DL/R

)T
with DL/R

= 1− τL/R + δL/R (16)
where the notation ‘‘L/R’’ means ‘‘L or R’’. Each of the fixed
points exists iff it is located in the corresponding partition, that
means iff OL ∈ ΓL and OR ∈ ΓR . The stability of both fixed points
is determined by the eigenvalues

λ
L/R
1,2 =

1
2

(
τL/R ±

√
τ 2L/R − 4δL/R

)
(17)

of the matrices AL and AR . The regions of existence and stability
of the fixed points OL/R are shown in Fig. 4, whereby for a better
graphical representation in this and all further figures we use the
mapping
S(ν) : (−∞,∞) 7→ (−π/2, π/2) , with S(ν) = arctan(ν) (18)
which allows us to present the structure of the state and parameter
space in the complete range from −∞ to ∞. Since the tangent
function increases strictly monotonic, the scaling S preserves the
topological structure of the displayed space.
As one can see in Fig. 4, the fixed points OL/R do not undergo

border-collision bifurcations. This is obvious, since we assumed
µ 6= 0 and hence the numerator of the x-component in Eq. (16)
cannot become zero. Instead, for any δL/R the existence regions of
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Fig. 5. Schematic representation of the fixed points OP.E.R,1 and O
P.E.
R,2 which are located at the P.E. and induced by the eigenvectors Ee1,2 of the finite fixed point OR . The fixed

point is real in (a) and virtual in (b). The eigenvectors are shown as dark gray curves where they are real and as light gray curves where they are virtual.
the fixed points OL/R are bounded by the curves in the (τL, τR)
parameter plane

χL/R =
{
(τL, τR) | DL/R

= 0
}

(19)

where the fixed points become virtual via a P.E.-collision
bifurcation. Recall, that the values S(x) = ±π/2 shown in Fig. 4
correspond to x = ±∞. As one can see, both fixed points,
the stable (OR) and the unstable (OL) one undergo the P.E.-
collision bifurcation, whereby at the bifurcation point one of the
eigenvalues approaches the values +1, as expected according to
the results of Section 3.
It can be shown that the P.E.-collision leading the fixed

points to be destroyed represents a transcritical border-collision
bifurcation occurring at the P.E.. Note that using the equation
EX = T (EX) directly, it is possible to calculate only the finite fixed
points OR and OL, whereas the map (14) has four further fixed
points located at the P.E., two of them caused by OR and the
other two by OL as follows from the explanations presented in
the Appendix. The technique for their calculation, the so-called
Poincaré compactification, is briefly discussed in Appendix. As
shown there, fixed points on the P.E. of a linear map are the
limit points of the eigenvectors issuing from finite fixed points. In
Fig. 5(a), this is illustrated schematically for the fixed point OR .
The eigenvectors Ee1,2 issuing from OR connect this finite fixed
point with the fixed points OP.ER,1 and O

P.E
R,2 located on the P.E.. As

follows from Eq. (16), the fixed point OR always belongs to the
line y = −δRx and the slopes of the eigenvectors Ee1,2 issuing
from OR are (see the Appendix) m1,2 = −δR/λR

1,2, where the
eigenvalues λR

1,2 are given by Eq. (17). As long as |λ
R
1,2| < 1 holds,

both eigenvectors Ee1,2 represent stable eigenvectors for OR and
consequently unstable eigenvectors for OP.ER,1 and O

P.E
R,2. However, if

the parameters are varied across the curveχR , then the eigenvalue
λR
1 reaches the value +1, the fixed point OR is merging with the
fixed point OP.ER,1 on the P.E. and a ‘‘change of stability’’ takes place:
OR becomes unstable, whereas OP.ER,1 becomes stable. Additionally,
since the map is piecewise linear, after the bifurcation the fixed
point OR becomes not only unstable but virtual. Anyhow, the two
eigenvectors issuing from this virtual fixed point exist in the region
ΓR and the related limit points are fixed points on the P.E., as
shown in Fig. 5(b). In particular, the fixed point OP.ER,1 representing
the limit point of the unstable eigenvector Ee1 of the unstable virtual
fixed point OR after the bifurcation is an attractor on the P.E..
So far, we have shown that the bifurcation occurring at the

curve

θ+R = {(τL, τR) | λ
R
1 = +1} ≡ χR (20)

is a transcritical bifurcation on the P.E. (the fixed points OR and
OP.ER,1 merge and interchange the stability) with an additional
feature that one of the involved fixed points becomes virtual after
the bifurcation. In order to explain what happens at the other
stability boundary

θ−R =
{
(τL, τR) | λ

R
2 = −1

}
(21)

wehave to consider not only the fixed pointOR but also the period-
2 orbit ORL. Using Eq. (12), we get for the points of the ORL orbit:

xRL
i =

NRL
i

DRL
, yRL

i =
MRL
i

DRL
, i = 0, 1 (22a)

with
NRL
0 = µ(1+ δL + τL), MRL

0 = −δLN
RL
1 (22b)

NRL
1 = µ(1+ δR + τR), MRL

1 = −δRN
RL
0 (22c)

DRL
= 1+ δL + δR + δLδR − τLτR. (22d)

Note that the points given by Eqs. (22a) represent a real orbit
ORL only if the corresponding condition of existence is fulfilled,
which is given by

xRL
0 > 0, xRL

1 < 0. (23)

Otherwise, these points represent a virtual orbit. The stability of
the orbit ORL is determined by the eigenvalues

λRL
1,2 =

1
2

(
τLτR − δL − δR

±

√
(τLτR − (δL + δR))2 − 4δLδR

)
(24)

of the Jacobian matrixARL
= ALAR . The regions of existence and

stability of the orbit ORL are shown in Fig. 6. Note that the region
of existence of the orbit ORL consists of two parts. The first region
P 1RL itself includes the two sub-regions P 1,sRL and P 1,uRL, separated
by the stability boundary

θ−RL =
{
(τL, τR) | λ

RL
2 = −1

}
. (25)

In the second region P 2RL ≡ P 2,uRL the orbit ORL is unstable and
coexists with the stable fixed point OsR . As one can see, the outer
boundaries of the regions P 1RL and P 2RL are given by bifurcation
curves of both types, namely by the usual border-collision curve

ξ
L,1
RL =

{
(τL, τR) | NRL

1 = 0
}

(26)

where the point xRL
1 collides with the finite boundary x = 0 and

by the P.E.-collision bifurcation curve

χRL =
{
(τL, τR) | DRL

= 0
}
. (27)

Our next task is to determine the types of bifurcations occur-
ring at the curves ξL,1

RL and χRL. From Eqs. (17), (22c) and (26)
we obtain that the condition NRL

1 = 0 implies λR
2 = −1.
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Fig. 6. Period-2 orbits ORL for δL = δR = 0 (a) and δL = δR = 0.55 (b). The
vertical segments marked in (b) with letters (a), (b) and (c) correspond to the three
bifurcation diagrams shown in Fig. 7.

Consequently, the curves ξL,1
RL and θ

−

R coincide and represent a de-
generate flip bifurcation,2 as shown in Fig. 7. Remarkably, the first
two cases shown in Fig. 7(a) and (b) resemble sub- and supercritical
flip bifurcations, whereas the third case (Fig. 7(c)) is different and
corresponds in this case to the transition from a stable fixed point
to a chaotic attractor. Note additionally that exactly at the bifurca-
tion point, we observe a continuum of coexisting neutral period-2
orbits located on the eigenvector of the fixed pointOR correspond-
ing to the eigenvalue λ = −1 (see [40]). These orbits form the ver-
tical segments at the bifurcation points shown in Fig. 7.
To understand the situation with the P.E.-collision curve χRL

note that for the two-cycle we can reason as for a fixed point.
In fact, the two points of the orbit ORL are fixed for the second
iterated of the map T , that is the point of the two-cycle located
in ΓR (respectively, in ΓL) is a fixed point of the map TL ◦ TR

(respectively, of the map TR ◦ TL). The eigenvectors issuing from
these fixed points have limit values, which give two-cycles on
the P.E.. It is easy to see that for example the point of the two-
cycle located in the region ΓL belongs to the line of slope s =
−(δRτL)/(1 + δR), which is also the slope of the eigenvector
associated with the eigenvalue λ = 1 on the bifurcation value.
Thus, the two-cycle ORL is merging with the two-cycle on the P.E.
which is attracting after the bifurcation, when the real two-cycle
ORL changes the stability (that means, λRL

1 = +1 as follows from
the results of Section 3) and becomes virtual. Consequently, the
P.E.-collision bifurcation χRL represents a transcritical bifurcation
at the P.E..
It is worth noting that the whole region P 2,uRL is a region,

where a variation of µ from a positive value to zero leads to
dangerous border-collision bifurcations [41,28,42,43]. Recall that

2 As shown in [39] (Theorem 3.5.1), when an eigenvalue crosses the value−1 in
a locally smooth map with negative (respectively, positive) Schwarzian derivative,
then the bifurcation is called supercritical (respectively, subcritical), while in the
case of zero Schwarzian derivative (as for linear and linear-fractional maps) the
bifurcation is called degenerate. It is worth noticing that this case is associated with
a continuum of coexisting cycles with doubled period at the bifurcation point [40].
these bifurcation occur if there are some bounded attractors3
which coexist with divergent trajectories (so that there is at least
one attractor also on the P.E.) and for parameters tending to the
bifurcation value the basins of attraction of these attractors shrink
to zero. As a consequence of that, at the point of a dangerous
bifurcation the behavior for all typical initial values is divergent,
while the attractor at the P.E. is almost global. In the region
P 2,uRL, the basin of the attractor on the P.E. is separated from
the basin of the stable fixed point OsR by the stable manifold of
the unstable cycle OuRL. Consequently, as µ tends to zero the
area of the basin of OsR tends to zero as well. Note that regions
of dangerous bifurcation are typically bounded by P.E.-collision
bifurcation curves of unstable orbits. For example, in the region
1 − δR < τR < −1 − δR , τL > 1 − δL which is bounded from
the left by the P.E.-collision bifurcation curve χL, the basin of the
stable fixed point OsR is separated from the basin of the attractor
on the P.E by the stable manifold of the unstable fixed point OuL.
Hence, varying µ to zero we observe a dangerous border-collision
bifurcation also in this region.
Increasing δL/R from zero to a positive value, we observe that

the situation with the fixed points and with the period-2 orbit
ORL does not change significantly. Comparing Fig. 6(a) and (b), we
conclude that the shapes of the regionsP 1,2RL change but the overall
bifurcation structure remains the same. As we will see in the next
section, for other periodic orbits this is not the case.

4.3. Pairs of complementary orbits ORLn and OR2Ln−1

As for many other dynamical systems, for system (14) the
period-2 orbit ORL considered in the previous section represents
a special case. In order to demonstrate a more generic case, let us
consider other periodic orbits of system (14). Let us first recall the
situation for δL/R = 0 which corresponds – as already mentioned
– to the 1Dmap (15). Here, only one family of stable periodic orbits
exists, namely the family ORLn with n ≥ 1, typically denoted as
maximal [44,45] or basic [46] orbits.4 By contrast, for δL/R > 0
system (14) shows further families of stable periodic orbits, for
example ORnL2 and OR2L(RL)n . However, for the aims of this paper
it is sufficient to consider the basic orbits, whereas an investigation
of other families remains for future work. For the basic orbits, Eq.
(12) can be written in the compact form

EXRLn

0 = −
(
AnLAR − I

)−1 ( n∑
i=0

AiL

)
EB (28)

and the remaining n points XRLn

i with i = 1, . . . , n can be
calculated by forward iteration of this point.
First, let us consider the most simple case of orbits from the

ORLn-family, namely the 3-periodic orbitORL2 = {(x
RL2

i , yRL2

i )T |
i = 0, 1, 2}. Using Eq. (28), we obtain the points of this orbit:

xRL2

i =
NRL2

i

DRL2
, yRL2

i =
MRL2

i

DRL2
, i = 0, 1, 2 (29a)

with
NRL2

0 = µ(1− δL + τL + δ2L + τ
2
L + τLδL),

MRL2

0 = − δLNRL2

2 (29b)

3 In the original publications [41,28], dangerous border-collision bifurcations are
discussed for fixed points. However, there is no reason to restrict the consideration
to fixed points only. Thus, we will speak about dangerous bifurcations of any
bounded attractors in the same sense as it is done in [43].
4 Recall that we consider here the case µ > 0. Of course, the existence of the
orbits ORLn for µ > 0 implies the existence of the orbits OLRn for µ < 0.
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a b c

Fig. 7. Fixed point OR and period-2 orbit ORL involved into degenerate flip bifurcations. Stable orbits are shown as solid curves and unstable as dashed curves. Dotted
vertical lines show a continuum of neutral period-2 orbits coexisting at the bifurcation point. Parameter values: δL = δR = 0.55. τL = −4 (a), τL = −0.5 (b), τL = 0.5 (c).
NRL2

1 = µ(τLτR + τLδR + τR + δLδR − δL + 1),

MRL2

1 = − δRNRL2

0 (29c)

NRL2

2 = µ(τLτR + τL + τRδL + δLδR − δR + 1),

MRL2

2 = − δLNRL2

1 (29d)

DRL2
= 1+ δLτL + δLτR + δRτL + δ2LδR − τ

2
LτR. (29e)

As usual, the points given by Eq. (29a) represent a real orbit iff the
corresponding condition of existence

xRL2

0 > 0, xRL2

1 < 0, xRL2

2 < 0 (30)

is fulfilled and a virtual orbit otherwise. The stability of the orbit
ORL2 is determined by the eigenvalues of the Jacobian matrix
ARL2

= A2LAR , which are given by

λRL2

1,2 =
1
2

(
τ 2LτR − τLδL − τLδR − τRδL ±

√
HRL2

)
(31a)

HRL2
= τ 4Lτ

2
R − 2τ

3
LτRδL − 2τ

3
LτRδR − 2τ

2
Lτ
2
RδL

+ 2τ 2LδLδR + τ
2
Lδ
2
L + τ

2
Lδ
2
R + 2τLτRδ

2
L

+ 2τLτRδLδR + τ 2Rδ
2
L − 4δ

2
LδR. (31b)

So far, a complete description of the orbit ORL2 is obtained. The
resulting shape of the region P 1

RL2
in the case δL = δR = 0

is shown in Fig. 8(a). The boundary of this region is given by the
border-collision curve ξL,2

RL2
, where the point xRL2

2 collideswith the
boundary x = 0

ξ
L,2
RL2
=

{
(τL, τR) | NRL2

2 = 0
}

(32)

which follows from Eq. (29d) with the additional condition (30),
which guarantees that the orbit ORL2 is real. The region P 1

RL2

consists of the parts P 1,s
RL2

and P 1,u
RL2

where the orbit is stable and
unstable, respectively. These parts are separated by the stability
boundary θ−

RL2
given by

θ−
RL2
=

{
(τL, τR) | λ

RL2

2 = −1
}
. (33)

It is not difficult to demonstrate that the border-collision
bifurcation ξL,2

RL2
represents a non-smooth fold bifurcation, also

known as non-smooth saddle–node bifurcation5 or annihilation
of the orbits on the boundary [33]. To this end, it is sufficient to
calculate the existence and stability regions of the periodic orbit

5 We remark that both the terms non-smooth fold and even more non-smooth
saddle–node are quite misleading. In the theory of smooth bifurcations where this
term originates from, a saddle–node bifurcation is known to occur at the parameter
a

b

Fig. 8. Regions of existence of the period-3 orbits ORL2 (a) and OR2L (b) in the
(τL, τR) parameter sub-space for δL = δR = 0.

complementary to ORL2 . For the concept of complementary orbits,
we refer to [28]. According to this work, two orbits are called
complementary to each other if their symbolic sequences differ by
one letter, whereby this letter corresponds to those points of the
orbits which collide with the boundary.
Especially for the family of basic orbits ORLn , the family of

complementary orbits is given6 by OR2Ln−1 . Hence, the orbit

values where an eigenvalue of the involved orbits is +1 and the stability of the
orbits emerging at the bifurcation point is different (in the 2D case wemay have an
attracting node and a saddle, or a saddle and a repelling node). By contrast, in the
non-smooth case the bifurcation is not associated with an eigenvalue +1 and the
stability of the emerging orbits is not necessarily different, so for example in the 2D
case itmay cause two saddle orbits to emerge [19]. Remarkable, this definition is not
commonly accepted – in some publications the term non-smooth fold is restricted
to the bifurcationswhere the stability of the involved orbits is as in the smooth case.
However, we use the term non-smooth fold in the sense of [19].
6 Note that the family of orbits complementary to the ORLn can be written also
as ORLn−1R . In this case, for each specific n both orbits undergo a border-collision
bifurcation whereby they collide with the boundary x = 0 with their last points.
However, for convenience we will use in the following the more usual symbolic
sequences R2Ln−1 , which are shift-invariant to RLn−1R. Consequently, at the
bifurcation the orbit ORLn collides with the boundary by its last point, whereas the
orbit OR2Ln−1 collides with the boundary with its first point.
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complementary to ORL2 is OR2L. Straight forward calculations
show that its points are given by

xR
2L
i =

NR2L
i

DR2L
, yR

2L
i =

MR2L
i

DR2L
, i = 0, 1, 2 (34a)

with
NR2L
0 = µ(δLτR + τL + 1+ τLτR + δRδL − δR),

MR2L
0 = −δLNR2L

2 (34b)

NR2L
1 = µ(τLτR + τR + δRδL − δL + 1+ τLδR),

MR2L
1 = −δRNR2L

0 (34c)

NR2L
2 = µ(τ 2R − δR + δ

2
R + 1+ δRτR + τR),

MR2L
2 = −δLNR2L

1 (34d)

DR2L
= 1+ δRτR + δLτR − τLτ 2R + τLδR + δLδ

2
R (34e)

and its stability is determined by the eigenvalues

λR2L
1,2 =

1
2

(
τLτ

2
R − δRτR − δLτR − τLδR ±

√
HR2L

)
(35a)

HR2L
= τ 2Lτ

4
R − 2τLτ

3
RδR − 2τLτ

3
RδL − 2τ

2
Lτ
2
RδR

+ δ2Rτ
2
R + 2δRτ

2
RδL + 2δ

2
RτRτL + δ

2
Lτ
2
R

+ 2τLδRδLτR + τ 2Lδ
2
R − 4δLδ

2
R (35b)

of the matrix A2RAL. In the case δL/R = 0, the orbit OR2L is
unstable in the complete region of existence PR2L and the only
bifurcation involving this orbit is the border-collision bifurcation
ξ

R,0
R2L
. Straight forward calculations show that this curve coincides

with the border-collision bifurcation curve ξL,2
RL2
, which represents

consequently a non-smooth fold bifurcation as expected.
Note that in the case δL/R = 0, the shapes of the regions of

existence for each pair of complementary orbits ORLn and OR2Ln−1

with n > 2 are similar to the shapes of the regionsP 1
RL2
andP 1

R2L
shown in Fig. 8. Each pair of orbits ORLn and OR2Ln−1 emerges at
the non-smooth fold bifurcation curve ξL,n

RLn ≡ ξ
R,0
R2Ln−1

, whereby
the orbit ORLn may be either a stable node or a saddle, while the
orbitOR2Ln−1 is unstable in its complete region of existence. Hence,
the bifurcation curve ξL,n

RLn ≡ ξ
R,0
R2Ln−1

represents in fact a non-
smooth saddle–node bifurcation on the left side of its intersection
point with the stability boundary θ−RLn and could be denoted as a
non-smooth saddle–saddle bifurcation on the right side. However,
we use in both cases the notation non-smooth fold bifurcation.
Remarkably, this explains also the differences between the orbit
ORL and all other orbits from the ORLn family. Namely, the orbit
ORL does not have a complementary orbit and hence cannot be
involved into a non-smooth fold bifurcation. Instead,ORL emerges
at a degenerate flip bifurcation as described above.
So far, we have shown that in the case δL/R = 0 system (14)

does not demonstrate P.E.-collision bifurcations involving basic
orbits. It can be easily shown that the points of these orbits tend to
the P.E. only for parameter values tending to the point (τL, τR) =
(0,−∞). Since in the case δL/R = 0, the only periodic orbits
which may be stable are basic orbits, there are no P.E.-collision
bifurcations involving stable periodic orbits for finite parameter
values. By contrast, increasing δL/R from zero to a positive value
we observe that this situation changes significantly. As one can see
in Fig. 9(a), in this case each of the orbits ORL2 and OR2L exist
in two regions. Similar to the case δL/R = 0, the region P 1

RL2
is

separated into a stable and an unstable part by the curve θ−
RL2
,

whereas the orbit OR2L is unstable in the complete region P 1
R2L
.

However, for δL/R > 0 the boundaries of the region P 1
RL2

are
given by two bifurcation curves. Additionally, to the non-smooth
fold bifurcation curve ξL,2
RL2
≡ ξ

R,0
R2L

we observe the P.E.-collision
bifurcation curve

χRL2 =

{
(τL, τR) | DRL2

= 0
}
. (36)

Not only the stable orbit ORL2 but also the unstable orbit OR2L
undergoes a P.E.-collision bifurcation occurring at the curve

χR2L =

{
(τL, τR) | DR2L

= 0
}
. (37)

Remarkably, the border-collision bifurcation curve ξL,2
RL2
≡ ξ

R,0
R2L

intersects both P.E.-collision bifurcation curves χRL2 and χR2L at
the same point, which is marked in Fig. 9 by (τ̂ 1L, τ̂

1
R). The behavior

at this codimension-2 bifurcation point is described in Section 4.4.
It is worth noting that the equations of the bifurcation curves
χRL and χR2L were already given in [28], although without any
connection with the bifurcation on the P.E., while the equation of
χRL2 was already given in [42] noticing that it is associated with a
transcritical bifurcation on the P.E..
As one can see in Fig. 9, there exists a region P 1

R2L
\ P 1

RL2

between the P.E.-collision bifurcation curves, where the orbit
ORL2 is already destroyed but the orbit OR2L still exists. As a
consequence, in this region a variation of the parameter µ may
cause dangerous border-collision bifurcations to occur. This is
related with the existence of divergent orbits started at typical
initial conditions, that means the existence of an attractor on the
P.E..7
The second pair of regions, namelyP 2

RL2
andP 2

R2L
, which does

not exist for δL/R = 0, shows a similar structure. Both regions are
bounded by the non-smooth fold bifurcation curve ξL,1

RL2
≡ ξ

R,1
R2L

defined by

ξ
L,1
RL2
=

{
(τL, τR) | NRL2

1 = 0
}

≡

{
(τL, τR) | NR2L

1 = 0
}
= ξ

R,1
R2L

. (38)

As in the previous case, both orbits undergo P.E.-collision bifurca-
tions at the curves χRL2 and χR2L, respectively, and in the region
between these curves dangerous border-collision bifurcationsmay
occur.
Similar results can be obtained for further orbits from the

ORLn family, whereby a pure analytical calculation is possible
up to quite large values of n. As an example, Fig. 10 shows the
regions of existence of the orbit ORL3 and its complementary orbit
OR2L2 . As one can see, both orbits emerge at the non-smooth
fold bifurcation curve ξ 3,L

RL3
≡ ξ

0,R
R2L2

. Hereby, the orbit ORL3

may be stable or unstable (regions P 1,s
RL3

and P 1,u
RL3
, respectively),

whereas the orbit OR2L2 is unstable in the complete regionP 1
R2L2

.
As the orbits ORL2 and OR2L, also the orbits ORL3 and OR2L2

undergo P.E.-collision bifurcations (see the curves χRL3 and χR2L2

marked in Fig. 10). Again, the bifurcations curves ξ 3,L
RL3
≡ ξ

0,R
R2L2

,
χRL3 and χR2L2 intersect at the same codimension-2 bifurcation
point. As a consequence, we observe a region in the parameter
space where the stable orbit ORL3 is already destroyed by a P.E.-
collision bifurcation, whereas the unstable orbit OR2L2 is not.
Under variation ofµ, this regionmay give rise to dangerous border-
collision bifurcations associated with the periodic attractor Os

RL2

and with a chaotic attractor.
The only difference between the situations with the orbits

ORL2 , OR2L and the orbits ORL3 , OR2L2 is that the orbit ORL3 has

7 This subject depends also on the definition that one adopts for dangerous
bifurcations because this definition may be associated with different dynamic
behavior. For details, we refer to [43].
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a

b

Fig. 9. Regions of existence of the period-3 orbits ORL2 (a) and OR2L (b) in the
(τL, τR) parameter sub-space for δL = δR = 0.55. To indicate the region between
the P.E.-collision curves where dangerous border-collision bifurcation may occur,
the curves χRL2 and χR2L are repeated in both figures.

a

b

Fig. 10. Regions of existence of the period-4 orbits ORL3 and OR2L2 in the (τL, τR)
parameter sub-space for δL = δR = 0.55. To indicate the region between the
P.E.-collision curves where dangerous border-collision bifurcation may occur, the
curves χR2L2 , χRL3 and χLR3 are repeated in both figures.

only one region of existence P 1
RL3
, whereas the orbit ORL2 exists

in two regions P 1
RL2

and P 2
RL2
. This difference can be explained

taking into account that the orbitORL2 represents amember of two
families, namely ORLn (for n = 2) and ORnL2 (for n = 1). In fact,
the regionP 1

RL2
has the shape typical for theORLn family, whereas

the shape of the region P 2
RL2

is typical for the ORnL2 family.
a

b

Fig. 11. Existence regions of the orbit OR2L2 in the (τL, τR) parameter sub-space
for δL = δR = 0.92 (a) and δL = 0.4, δR = 1.32 (b).

However, a detailed discussion of the ORnL2 family is beyond the
scope of this paper. Already known is that for increasing values
of δL/R and n the number of regions of existence of these orbits
increases. The curves bounding these regions are border-collision
and P.E.-collision bifurcations. As an example, Fig. 11(a) shows
three disjoint regions of the orbit OR2L2 . Under variation of δL/R
these disjoint regions may also come to merging as shown in
Fig. 11(b).

4.4. Codimension-2 bifurcation points

The results presented so far show that the boundaries of the
existence regions of periodic orbits are given by two types of
bifurcation curves, namely the border-collision bifurcation curves,
where a point of the orbit collides with the boundary x = 0
and the P.E.-collision bifurcation curves, where the points tend to
infinity. Therefore, the question that arises is how the investigated
system behaves at the codimension-2 points where these two
curves intersect. Considering the equations for specific orbits, we
state that at the border-collision bifurcation curves the numerator
of some periodic point becomes zero, whereas at the P.E.-collision
bifurcation curves the denominators of all points becomes zero.
Hence, at the codimension-2 bifurcation points we have an
indeterminacy of type 0/0, and the question iswhat is themeaning
of this indeterminacy for the systemdynamics? It is worth noticing
that the behavior at the codimension-2 bifurcation point depends
on the type of the involved border-collision bifurcation which is a
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Fig. 12. Structure of the state space at the codimension-2 bifurcation point
(τ̂L, τ̂R). The continuum of coexisting period-2 orbits located on the eigenvector
of the fixed point OR associated with the eigenvalue λR

2 = −1 is shown as a dashed
line. The continuum of coexisting period-2 orbits ORL located on the eigenvectors
corresponding to the fixed points of the linear maps TL ◦TR and TR ◦TL associated
with the eigenvalue λ = +1 is shown as solid line. It is also shown how the second
iterated map is defined in several partitions of the state space. The boundaries
between these partitions are given as thin lines x = 0 and y = 0. Parameter values
are δL = 0.15, δR = 0.55.

degenerate flip bifurcation in the case of the two-cycle or a non-
smooth fold bifurcation for all k-cycles with k ≥ 3.
Let us consider first the intersection point of the degenerate

flip bifurcation curve ξ 1,LRL ≡ θ
−

R and the P.E.-collision bifurcation
curve χRL. From Eq. (22a) follows that this point is given by
(τ̂L, τ̂R) = (−δL−1,−δR−1) (see Fig. 6). Due to the degenerate
flip bifurcation we have that the map TR , and thus the fixed point
OR has an eigenvalue λR

2 = −1. As stated in Section 4.2, this leads
to a segment of two-cycles, located on the eigenvector associated
with that eigenvalue λR

2 = −1. This segment is bounded by the
point P1 where it contacts with the border of the phase plane x = 0
and by the point P2 = TR(P1) located at the line y = 0, as shown
in Fig. 12. As all other points of this segment, the points P1 and P2
represent a two-cycle.
Recall that at the codimension-2 point (τ̂L, τ̂R) we have also

the curve χRL, where the two-cycle ORL undergoes a transcritical
bifurcation on the P.E., associated with the eigenvalue λRL

1 = +1,
as described in Section 4.2. Therefore, at this particular point the
linear maps TL ◦ TR and TR ◦ TL associated with the points of
the two-cycle ORL have an eigenvalue λ = +1, with fixed points
on the P.E. at the limit points of the corresponding eigenvectors
of these linear maps. Consequently, the linear map TR ◦ TL

(respectively, TL ◦ TR) has one fixed point in P1 (respectively, P2)
and one on the P.E., and due to λ = +1 this is possible only if
each point on the whole segment is a fixed point. Thus, we have
that the points on the eigenvectors associated with the eigenvalue
λ = +1 of the two linear maps TR ◦ TL and TL ◦ TR are fixed
points for these maps, all corresponding to the two-cycles of the
map T . Summarizing, the three straight lines in Fig. 12 are given
by the eigenvectors associated with the eigenvalue λ = +1 of the
three linear maps TR ◦ TR , TL ◦ TR (the segment ra) and TR ◦ TL

(the segment rb) and are loci of two-cycles of the map T at this
codimension-2 point. It can be easily verified that TR(ra) = rb and
TL(rb) = ra.
Regarding the other codimension-2 points related with the k-

cycles for k ≥ 3 the bifurcation is completely different. The
codimension-2 point represents in this case the intersection point
of a non-smooth fold bifurcation curve and two P.E.-collision
bifurcation curves. Let us describe in some detail the case k = 3
and the point (τ̂ 1L, τ̂

1
R) = (−δLδR,−1/δL) shown in Fig. 9.

At the non-smooth fold bifurcation curve ξL,2
RL2
≡ ξ

R,0
R2L
atwhich

a pair of 3-cycles appear, one periodic point is located on the line
x = 0, then its image belongs to the line y = 0 and the third
point to a line with the slopem = −δR/τR . Inserting Eq. (32) into
Eqs. (29a) and (34a), we obtain the explicit coordinates of this 3-
cycles:

xi =
Ni
D
, yi =

Mi
D
, i = 0, 1, 2 (39a)
with
N0 = µ(1− δL), N1 = µ(1+ τR),
N2 = 0, D = 1+ δLτR,

(39b)

M0 = 0, M1 = −δRN0, M2 = −δLN1. (39c)

It is worth noticing that for all parameter values on the non-
smooth fold bifurcation curve, except the codimension-2 point,
the values given by Eq. (39a) are finite. However, moving the
parameters along the non-smooth fold bifurcation curve towards
the codimension-2 point we observe that the point located on the
boundary x = 0 (and hence its images) is moving towards the
P.E. and at the codimension-2 point the 3-cycle belongs to the
P.E. (the denominator D is vanishing in Eq. (39a)). Furthermore, at
this codimension-2 point, besides the non-smooth fold bifurcation
we have the intersection of the two other bifurcation curves (see
Fig. 9) which represent the transcritical P.E.-collision bifurcations
of both 3-cycles, as shown in Section 4.3. Consequently, at the
codimension-2 bifurcation the single 3-cycle located at the P.E.
has one eigenvalue +1. The same behavior occurs at the other
codimension-2 point (τ̂ 2L, τ̂

2
R) = (−1/δR,−δLδR) of the 3-cycles,

and at the codimension-2 points caused by non-smooth fold and
transcritical P.E.-collision bifurcations of other k-cycleswith k > 3.

5. Summary and outlook

When dealing with piecewise-smooth systems, it will be typi-
cally stated that periodic orbits of these systems may undergo two
types of bifurcations. The first type of bifurcations occur in smooth
systems as well (for example saddle–node, flip, and so on) and
are, therefore, not specific for piecewise-smooth systems. By con-
trast, the second type represents bifurcations which occur at the
boundary between several partitions in the state space (border-
and corner-collisions, sliding, and so on) and are, therefore, spe-
cific for piecewise-smooth systems. Although this is correct, it will
be often overseen how the partitions in the state space are defined.
For example, in the case that a system is defined in two partitions
x < 0 and x > 0, then a more correct way to specify the partitions
is to say that they are given by the open intervals (−∞, 0) and
(0,+∞). Thus, it becomes clear that not only the point x = 0 but
also the point±∞ represents a boundary between the partitions.
As in the case of a collision with a finite boundary, an orbit un-
dergoing a collision with the boundary at infinity becomes virtual.
These bifurcations, denoted as P.E. collision bifurcations, show all
properties typical for border-collision bifurcations except that the
involved boundary in the state space is located at infinity. Themain
advantage of this concept is that it leads to a unified representation
of bifurcations occurring at both, the finite boundaries in the state
space and at infinity.
Furthermore, we extended a result already mentioned in [28]

and demonstrated that in the case of piecewise-linear maps the
P.E.-collision bifurcations occur at the stability boundary, where
one of the eigenvalues of the corresponding Jacobian matrix
becomes +1. Originally stated for the basic orbits of the 2D
continuous normal form, this result is proven for any orbits of any
piecewise-linear maps, independent of the state space dimension,
number of partitions and whether the map is continuous or not.
As an application example, we demonstrated the relevance of

the P.E.-collision bifurcations for understanding the bifurcation
structures in the continuous 1D and 2D piecewise-linear normal
form. In the case of the 1D normal form, only the fixed points and
the period-2 orbit undergo P.E.-collision bifurcations, whereas the
regions of existence of other periodic orbits are bounded by usual
border-collision bifurcation curves. In contrast to this, in the case
of the 2D normal form the regions of existence of other periodic
orbits are bounded by bifurcation curves of both types, that means
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border- as well as P.E.-collision bifurcations. It was already known
that the border-collision bifurcations for k-cycles with k ≥ 3 are
of the non-smooth fold type. The case k = 2 is a special case
where the border-collision bifurcation represents a degenerate flip
bifurcation. We demonstrated additionally that the points on the
P.E. where the eigenvectors of a finite fixed point are tending to,
represent fixed points also, and that the same argument can be
applied for orbits with any periods. At the P.E.-collision bifurcation
a finite orbit and an orbit on the P.E. merge and interchange
their stability, so we conclude that this bifurcation represents
a transcritical bifurcation occurring on the P.E.. This bifurcation
has an additional feature, namely that one of the involved orbits
becomes virtual after the bifurcation.
Since the existence region of a periodic orbit is typically

bounded by more than one bifurcation curve, at the intersection
points of these curves we observe codimension-2 bifurcations.
They may be caused by the intersection of two usual border-
collision bifurcation curves and represent in this case a usual
codimension-2 border-collision bifurcation, where two points of
the involved orbit collidewith the boundary x = 0 simultaneously,
or by the intersection of a border-collision and a P.E.-collision
bifurcation curve. In the last case, we have demonstrated that for
k-cycles with k ≥ 3 this codimension-2 bifurcation represent a
non-smooth fold bifurcation occurring at the P.E.. In the case of
the two-cycle, the situation is different and at the codimension-2
bifurcation point we observe a continuum of orbits.

Appendix. Fixed points on the P.E.

Let us consider the linear map Xn+1 = L(Xn) = AXn, where
A =

(
τ

−δ

1
0

)
, i.e.

xn+1 = τxn + yn
yn+1 = −δxn

(40)

(then we can apply the results to TL and/or TR). The points on
the P.E. of the linear map L are obtained considering the change
of variables (see [20,21])

x =
1
z
, y =

s
z
. (41)

Thus, we get the map:

zn+1 =
zn

τ + sn

sn+1 = −
δ

τ + sn

(42)

whose fixed points are obtained by solving the equations zn+1 =
zn and sn+1 = sn, and those on the P.E. are obtained for z = 0. As it
is s = y

x we have for map (40) that the values of s give the slopes of
the eigenvectors of the fixed point at the origin which tend to the
points on the P.E.. For z = 0, we get

s = s± = −
τ ±
√
τ 2 − 4δ
2

(43)

and the fixed points on the P.E. may be represented as points on
the circle, or referring to the phase plane: they are the limit points
of the lines having the slopes s.
With the transformation used above, we cannot analyze the

points at infinity on the y-axis. In this case, we have to use the
following transformation

x =
ξ

η
, y =

1
η

(44)

obtaining the map:
ηn+1 = −
ηn

ξnδ

ξn+1 = −
ξnτ + 1
ξnδ

(45)

and the points on the P.E. are obtained for η = 0. The values of
ξ = x

y give now the inverse of the slopes of the eigenvectors of the
fixed point at the origin which tend to the points on the P.E.. For
η = 0, we obtain

ξ = ξ± = −
τ ±
√
τ 2 − 4δ
2δ

(46)

so that the fixed points on the P.E. may be represented as points on
the circle, corresponding to the lines with the slopes

s± =
1
ξ±
= −

2δ

τ ±
√
τ 2 − 4δ

. (47)

All this comes from the theory. Now, we prove the following

Proposition. The fixed points on the P.E. of a linear or affinemapwith
real eigenvalues are the limit points of the eigenvectors of the fixed
point at the origin.
Proof. Consider the linear map Xn+1 = L(Xn) = AXn for which
the fixed point is in the origin and its stability is studied via the
eigenvalues, solution of the equation

λ2 − τλ+ δ = 0 (48)

that is:

λ± =
τ ±
√
τ 2 − 4δ
2

(49)

then the related eigenvectors are given by

r± =
(

1
λ± − τ

)
=

 1

−
δ

λ±

 . (50)

As the eigenvectors are fixed lines, to prove the proposition it is
enough to prove that the slopes of the eigenvectors are the same
as obtained above. From (50), we havem± =

y
x = λ± − τ = −

δ
λ±

and from the expression of the eigenvalues in (49) we obtain

m± = λ± − τ = −
τ ±
√
τ 2 − 4δ
2

= s± (51)

and also

m± =
y
x
= −

δ

λ±
= −

2δ

τ ±
√
τ 2 − 4δ

= s±. (52)

In the affine case, when the map has a constant term, then the
position of the fixed point in the phase plane is no longer in the
origin, but this does not change the analysis performed above, as
via a translationwe obtain the previous case andwe have the same
formulas as above. Thus, considering the eigenvectors issuing from
the related fixed point, their limit points give the fixed points on
the P.E., which completes the proof. �
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