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Abstract An asset pricing model with chartists, fun-
damentalists and trend followers is considered. A mar-
ket maker adjusts the asset price in the direction of
the excess demand at the end of each trading session.
An exogenously given fundamental price discriminates
between a bull market and a bear market. The buying
and selling orders of traders change moving from a
bull market to a bear market. Their asymmetric propen-
sity to trade leads to a discontinuity in the model, with
its deterministic skeleton given by a two-dimensional
piecewise linear dynamical system in discrete time.
Multiple attractors, such as a stable fixed point and
one or more attracting cycles or cycles and chaotic
attractors, appear through border collision bifurcations.
The multi-stability regions are underlined by means of
two-dimensional bifurcation diagrams, where the bor-
der collision bifurcation curves are detected in analytic
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form at least for basic cycles with symbolic sequences
LRn and RLn . A statistical analysis of the simulated
time series of the asset returns, generated by perturb-
ing the deterministic dynamicswith a randomwalk pro-
cess, indicates that this is one of the simplest asset pric-
ing models which are able to replicate stylized empiri-
cal facts, such as excess volatility, fat tails and volatility
clustering.

Keywords Piecewise linear asset pricing model ·
Heterogeneous traders · Chaos and border collision
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1 Introduction

The financial literature is devoted to investigate the
mechanisms that determine prices and returns of finan-
cial assets. The mainstream modeling approach start-
ing from the hypothesis that traders are rational and
have perfect foresight (or rational expectations) leads
to the so-called efficient market hypothesis. Accord-
ing to such approach, the price of an asset follows a
random walk process and is the best prediction for its
‘fundamental value,’ given by the discounted stream
of dividends. An alternative approach is represented
by the financial market models with heterogeneous
traders, as well as their less tractable counter-part,
agent-based financial market models. These models
relax the hypotheses of full rationality and perfect fore-
sight in expectations and instead are constructed on the
basis of simple behavioral rules chosen from a jun-
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gle of possible alternatives. The success of these mod-
els of bounded rationality depends on their ability to
replicate ‘stylized facts’ of stock markets that are not
contemplated or replicable by the mainstream models.
Regarding asset returns, for example, a common set
of stylized empirical facts includes fat tails (i.e., the
empirical distribution of the returns has tails fatter than
the ones of the normal distribution), extreme fluctua-
tions (i.e., fluctuations that exceed those generated by a
random walk fundamental process), linear and nonlin-
ear dependence of returns in time, volatility clustering
(i.e., periods of high volatility that persist over time and
are alternated to periods of lowvolatility), see, e.g., Lux
and Mar [33], Cont [12], and Lux and Ausloos [32].

The agent-based approach offers wide degrees of
freedom regarding the modeling choices, and the het-
erogeneity may reflect both diverse intrinsic attitudes
of traders, such as speculative trading behaviors versus
prudent trading behaviors, and diverse expectations on
the future prices of assets and their riskiness. The parsi-
monious versions of these models have a deterministic
skeleton which is represented by a low-dimensional
dynamical system. One of the first baseline versions
of these models is the one proposed in [13], where
three types of traders coexist. Traders of the first type
(chartists) have the propensity to speculate: they place
buying orders in a bull market and selling orders in a
bear market. Traders of the second type (fundamental-
ists) are not inclined to speculate: they place buying
orders in a bear market and selling orders in a bull
market. Finally, a third type of trader (market maker)
has the power to adjust the market price of the asset
in the direction of the excess of total asset demand.
A founding assumption is the existence of a so-called
fundamental price, which represents the price of the
asset under the efficient market hypothesis, allowing
to distinguish between bull and bear markets. A gen-
eralization of this model that accounts for a propensity
to trade by chartists and fundamentalists that changes
according to the type of market, bull or bear, is pro-
posed in Tramontana et al. [47]. It is a simple one-
dimensional piecewise linear financial market model
with heterogeneous interacting traders, where the set
of traders includes two types of chartists, two types of
fundamentalists and a market maker.

In this paper, we extend the model in Tramontana
et al. [47] by introducing another type of trader, the
trend follower, which places buying/selling orders in
an upward/downward price trend. The magnitude of

the buying/selling order that follows a positive/negative
price trend may differ from a bull market to a bear
market. The introduction of this trader increases the
dimension of the deterministic skeleton of the model,
obtaining a two-dimensional piecewise linear map. A
peculiarity of this generalized version of the model is
the coexistence of several attractors, such as a stable
equilibrium that coexists with a stable cycle, or multi-
ple period cycles that are stable and may coexist with
chaotic attractors. This feature of multi stability with
cycles is essential for the stochastic version (where the
fundamental price follows a random walk process) to
be able to replicate stylized empirical facts such as
volatility clustering. Since coexisting stable attractors
cannot be obtained in the one-dimensional version of
the model, see Tramontana et al. [47], the current paper
adds to the financial literature by offering an asset pric-
ing model that is able to replicate the stylized facts of
asset returns.

The set of parsimonious asset pricing models with
heterogeneous agents able to replicate stylized facts of
the empirical distribution of the returns is not a sin-
gleton. The set includes the model proposed in He and
Li [26], which is based on the assumption that traders
are mean-variance maximizers (instead of consider-
ing simple trading behavioral attitudes) and use het-
erogeneous rules to forecast future prices and volatil-
ity. A similar micro-founded asset pricing model with
chartists and fundamentalists is proposed in Brock and
Hommes [10], see also the survey in Chiarella et al.
[11]. Instead of considering a market maker, in Brock
and Hommes [10] the asset price is determined by
equating demand and supply. Moreover, the popula-
tions of chartists and fundamentalists vary according
to an evolutionary mechanism, see Hofbauer and Sig-
mund [27], that prizes the trading strategies that per-
formed better in the past. The full-fledged stochastic
and generalized versions of this model are able to repli-
cate most of the stylized facts of the distribution of
the returns mentioned above, see, e.g., Gaunersdor-
fer et al. [23] and Blaurock et al. [7]. The generaliza-
tion to the multi-asset setup is also relevant, see, e.g.,
Dieci et al. [16]. The deterministic skeleton of these
asset pricing models cannot be reduced, however, to a
piecewise linear configuration. Therefore, our model-
ing setup has the advantage of being simpler to inves-
tigate and to employ.

Shifting the attention to the mathematical aspects,
the current contribution adds also to the literature on
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piecewise smooth (PWS) systems, which can be clas-
sified in continuous and discontinuous systems. Focus-
ing on the bifurcations that characterize such systems,
we recap that an invariant set of a smooth dynamical
systemmay undergo the so-called smooth bifurcations,
while in a PWS system the dynamics is usually affected
by the interplay of smooth bifurcations and border col-
lision bifurcations (BCBs). A border collision takes
place whenever an invariant set collides with the bor-
der at which the map changes definition, and this may
occur in a continuous or discontinuous way. Moreover,
when the colliding set is a periodic orbit, the effect of
the collision is clearly independent of the eigenvalues
of the Jacobian matrix. This marks a first relevant dif-
ference between smooth bifurcations and BCBs.

The possibility to have border collision bifurcations
impacts also the way a system converges to a chaotic
regime. It is well known that the dynamics of smooth
systems may go from a regular to a complex behavior
via a sequence of bifurcations, such asFeigenbaumcas-
cades of perioddoublingbifurcations,Neimark–Sacker
bifurcations followed by frequency locking, homoclinic
bifurcations. Aquite different behavior can be observed
in PWS systems, where BCBs may occur, leading to a
sharp transition of the dynamics from non-chaotic to
chaotic regimes, as first evidenced in Nusse and Yorke
[36] and Nusse and Yorke [37]. In particular, in piece-
wise linear (PWL) systems mainly BCBs and contact
bifurcations occur. These features make PWS systems
suitable to mimic the time series, specifically the sud-
den changes, of prices and returns in the financial mar-
kets.

In addition to economics and finance, PWS sys-
tems have a wide spectrum of applications in engi-
neering and other fields. This raised a great interest
among scholars, who have extensively studied PWS
systems in the last two decades, see, e.g., di Bernardo
et al. [15], Zhusubaliyev and Mosekilde [50]. Many
works are devoted to PWS, and in particular to the sub-
set of piecewise linear (PWL), one-dimensional maps
(see [2,4,18,22], and references therein), where the so-
called period adding and period incrementing bifurca-
tion structures, occurring in the parameter space, are
described. The bifurcations in two-dimensional con-
tinuous dynamical systems have also been investi-
gated, see, among others, Simpson [40], Simpson [41],
Sushko andGardini [45], Sushko andGardini [46]. Dif-
ferently, the description of the bifurcations occurring in
two-dimensional discontinuous systems is still not well

developed. A class of PWL two-dimensional maps has
been considered in Mira et al. [35], Rakshit et al. [38],
Kollär et al. [29], Dutta et al. [19], where some prelim-
inary considerations can be found. The investigation
of the PWL two-dimensional system considered in this
paper underlines a relevant feature of its bifurcation
structures. In fact, one peculiarity of one-dimensional
piecewise linear, discontinuous, maps is the occurrence
of period adding and period incrementing bifurcation
structures mentioned above. Some authors have evi-
denced that it is possible to observe similar structures
also in two-dimensional piecewise linear, discontin-
uous, maps, see Mira [34] and Simpson [43]. The
current investigation increases the knowledge on the
bifurcation structures of PWL two-dimensional sys-
tems by underlining a possible overlapping of periodic-
ity regions in the parameters space, as well as attracting
cycles coexisting with chaotic attractors, which cannot
occur in the one-dimensional version.

This work is related to the recent applications mod-
eling the dynamics of financial markets and repre-
sented by two-dimensional discontinuous systems that
appeared in different journals, for example Lu et al.
[30], Gu [24], Gu [25], Brianzoni and Campisi [9].
In comparison with these contributions, we propose a
model that is more parsimonious as it involves only one
discontinuity line. Moreover, in addition to the techni-
cal investigation of the deterministic dynamics, we pro-
vide a statistical description of the full-fledged stochas-
tic version of the model and we discuss its ability to
replicate the main stylized empirical facts.

The road map of the paper is as follows: Sect. 2
introduces the asset pricing model. Section 3 investi-
gates the dynamics of the deterministic skeleton of the
model by focusing on the border collision bifurcations
that involve fixed points and limit cycles. Specifically,
the border collision bifurcation curves for basic cycles
of symbolic sequences LRn and RLn are detected. Sec-
tion 4 shows regimes with chaotic attractors in the
deterministic setting, which are also robust and may
coexist with attracting cycles. The role of the fixed
points (real or virtual) is evidenced, aswell as one of the
borders of the basins of attraction related to the discon-
tinuity line. Section 5 investigates howdifferent config-
urations of the deterministic structure of the dynamics
impact on the distribution of the returns obtained by
simulating the stochastic version of the model. Section
6 concludes.
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2 The setup of a discontinuous model of a financial
market

The setup of a simple financial market model is pre-
sented in this section. This model describes a mar-
ket in which traders can be classified in six types of
agents according to their trading propensity. In partic-
ular, the market is populated by two types of funda-
mental traders (fundamentalists) who believe in mean
reversion, by two types of technical traders (chartists)
who bet on the persistence of bull and bear markets and
by a trend followerwho believe in the persistence of the
trend of prices observed. Moreover, the market is reg-
ulated by a market maker who adjusts prices according
to excess demand. Technical traders and fundamental
traders are classified in two groups according to the
trading rules they used: some of them use standard
(conventional) linear trading rules while others prefer
to trade a constant amount of assets. Traders may also
have trading propensities that change when the market
changes from bull to bear and vice versa. In the fol-
lowing, the formal definition of the model is derived,
the deterministic skeleton of which is described by a
simple two-dimensional discontinuous map.

In the current setup, the log fundamental value of
the stock market, that is, Ft , follows a random walk:

Ft+1 = Ft + εt+1 (1)

where εt+1 is a random variable that represents the
logarithmic fundamental shocks that are normally dis-
tributedwith constant standard deviation σF . To be pre-
cise, {εt }t∈N is a Gaussian discrete white noise, and in
case the stock price follows the fundamental price, εt+1

represents the logarithmic return from period t to t+1.
As in Day and Huang [13] and Tramontana et al.

[47], we assume that a market maker adjusts prices in
the direction of excess demand by mediating out-of-
equilibrium transactions. Namely, the log of price P
for period t + 1 which is quoted by the market maker
is given by:

Pt+1 = Pt + a
(
DC,1
t + DC,2

t + DF,1
t + DF,2

t + DT
t

)

+εt+1 (2)

where a is a positive price adjustment parameter (mea-
suring market power of traders) and, being a scaling
parameter, in the following is set equal to one with-
out loss of generality. Moreover, at a generic time t ,
DC,1
t and DC,2

t denote the demands of asset by type
1 chartists and by type 2 chartists, respectively, while

DF,1
t and DF,2

t are the orders placed by type 1 funda-
mentalists and by type 2 fundamentalists, respectively,
and finally, the order placed by the trend following
trader is indicated by DT

t . In addition, the market price
is affected by the fundamental shocks. Hence, exclud-
ing fundamental shocks, prices increase when traders’
buying orders exceed traders’ selling orders, and vice
versa. This is a well-known price adjustment mecha-
nism which is commonly used in behavioral finance,
see, e.g., Beja and Goldman [6], Day and Huang [13]
and Farmer and Joshi [20].

As in Day and Huang [13] and Tramontana et al.
[47], chartists expect bull and bear markets to continue.
Specifically, the demand of assets by the first type of
chartists is given by

DC,1
t =

{
c1,a (Pt − Ft ) if Pt − Ft ≥ 0
c1,b (Pt − Ft ) if Pt − Ft < 0

(3)

where c1,a and c1,b are positive reaction parameters.
Therefore, type 1 chartists submit buying orders in a
bull market (the asset price is above the fundamen-
tal value) and selling orders in a bear market (the asset
price is below the fundamental value). The size of these
orders may depend on market conditions. For instance,
for c1,a > c1,b this type of traders trades more heav-
ily in a bull market than in a bear market. Empirical
findings supporting the existence of such an asymmet-
ric propensity to trade can be found, for example, in
Boswijk et al. [8].

Similarly, the demand of assets by type 2 chartists
is given by

DC,2
t =

⎧⎨
⎩
c2,a if Pt − Ft > 0
0 if Pt − Ft = 0
−c2,b if Pt − Ft < 0

(4)

which means that the buying order is given by c2,a > 0
in a bull market, while in a bear market chartists of type
2 sell instead of buying, and the selling order is given
by c2,b > 0. Thus, unlike the trading rules of chartists
of type 1, the magnitude of the deviation of the market
price from the fundamental value of the asset does not
impact on the size of the orders placed by chartists of
type 2. This is the only difference between chartists of
type 1 and chartists of type 2. In the (special) case of
prices equal to the fundamental value, type 2 chartists
do not submit orders.

An opposite trading strategy is adopted by funda-
mentalists, who believe that prices return to their funda-
mental value in the long run. Specifically, the demandof
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assets placed by type 1 fundamentalists (mean reverter
fundamentalists) is given by

DF,1
t =

{
f 1,a (Ft − Pt ) if Ft − Pt ≥ 0
f 1,b (Ft − Pt ) if Ft − Pt < 0

(5)

where f 1,a and f 1,b are positive reaction parameters.
Therefore, fundamentalists of type 1 sell (buy) assets
when the prices are above (below) the fundamental
value because the market is regarded as overvalued
(undervalued), see, e.g., Brock and Hommes [10] or
Lux [31]. The demand of assets of fundamentalists of
type 1 is proportional to the difference between mar-
ket price and fundamental price, and this type of trader
reacts asymmetrically to bear and bull markets when
f 1,a and f 1,b are unequal.
Similarly, the demand of assets placed by type 2

fundamentalists is given by

DF,2
t =

⎧⎨
⎩

f 2,a if Ft − Pt > 0
0 if Ft − Pt = 0
− f 2,b if Ft − Pt < 0

(6)

Therefore, when the market is undervalued, funda-
mentalists of type 2 buy f 2,a (> 0) assets. They sell
f 2,b (> 0) assets when the market is overvalued and
they do not trade in the particular case in which the
market price mirrors its fundamental value.

Finally, the orders placed by trend followers are
defined as

DT
t =

⎧
⎨
⎩
dR (Pt − Pt−1) if Pt − Ft > 0
0 if Pt − Ft = 0
dL (Pt − Pt−1) if Pt − Ft < 0

(7)

where dR, dL > 0. Hence, the trend follower sub-
mits buying (selling) orders in an upward (downward)
price trend. Note that the size of these orders may be
asymmetric with respect to a bull or bear market situa-

tion, therefore capturing a sentimental component. For
instance, for dR > dL this type of traders bets more
heavily in a bull market than in a bear market. In the
particular case in which the most recent price is equal
to the fundamental value, this type of traders does not
trade.1

The trading strategies in (3)–(7) represent simple
behavioral rules, and we show that such simple trading
strategies are sufficient to alter the distribution of the
returns generated by the fundamental process (repre-
sented by a classical random walk) and generate inter-
esting price dynamics that shows some of the stylized
facts observed in the financialmarket. Specifically, sub-
stituting trading strategies (3)–(7) in (2), we have that
the log price of the stock market follows the (random)
dynamical system:

Pt+1 = Pt + εt+1

+
⎧⎨
⎩
c1,a (Pt − Ft ) + f 1,b (Ft − Pt ) + c2,a − f 2,b + dRPt − dRPt−1 if Pt − Ft > 0
0 if Pt − Ft = 0
c1,b (Pt − Ft ) + f 1,a (Ft − Pt ) − c2,b + f 2,a + dLPt − dLPt−1 if Pt − Ft < 0

(8)

and the logarithmic returns of the stock market are
therefore given by

Pt+1 − Pt = εt+1 +
⎧⎨
⎩

(
c1,a − f 1,b + dR

)
Pt + (

f 1,b − c1,a
)
Ft − dRPt−1 + c2,a − f 2,b if Pt − Ft > 0

0 if Pt − Ft = 0(
c1,b − f 1,a + dL

)
Pt + (

f 1,a − c1,b
)
Ft + f 2,a − c2,b − dLPt−1 if Pt − Ft < 0

(9)

For simplicity of notation, let us define the aggregate
parameters as

sR = c1,a − f 1,b, sL = c1,b − f 1,a (10)

and the constant terms as

mR = c2,a − f 2,b, mL = f 2,a − c2,b (11)

Then, we obtain

Pt+1 − Pt = εt+1

1 An alternativemodeling choice is represented by assuming that
this type of trader adopts with probability one-half the trading
strategy employed in the bull market and with probability one-
half the trading strategy employed in the bear market every time
the market price coincides with the fundamental price, i.e., he
adopts the trend following strategy using an extrapolation rate
which is the average of the extrapolation rates used in the bear
and the bull markets. This alternative modeling choice would
impact the dynamics of the deterministic skeleton of the model
only in a zero-measure subset of the state space as discussed in
the next section.
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+
⎧
⎨
⎩

(dR + sR) Pt − sRFt − dRPt−1 + mR if Pt − Ft > 0
0 if Pt − Ft = 0
(dL + sL) Pt − sLFt − dLPt−1 + mL if Pt − Ft < 0

(12)

The aggregate parameter sR measures how chartists of
type 1 trade more aggressively than mean reverter fun-
damentalists (or fundamentalists of type 1) in the bull
market. Specifically, sR > 0 means that in a bull mar-
ket chartists of type 1 are more aggressive than funda-
mentalists of type 1 and the mean-fleeing component
prevails, sR = 0 means that in a bull market the trading
strategy of chartists of type 1 offsets one of the fun-
damentalists of type 1, finally, sR < 0 means that in a
bull market chartists of type 1 are less aggressive than
fundamentalists of type 1, and themean-reverting com-
ponent prevails. A similar but opposite effect is played
by the parameter sL but in a bearmarket. The parameter
mR measures how chartists of type 2 trademore aggres-
sively than fundamentalists of type 2. Specifically, in
a bull market the buying orders of chartists of type 2
prevail the selling orders of fundamentalists of type 2
when mR > 0, the trading strategy of chartists of type
2 is counterbalanced by the trading strategy of funda-
mentalists of type 2 so that the combined strategies do
not produce any price effect whenmR = 0, and finally,
the buying orders of chartists of type 2 are more than
compensated by the selling orders of fundamentalists
of type 2 whenmR < 0. A similar but opposite effect is
played by the parameter mL but in a bear market. The
parameters dR and dL measure how active are the trend
following traders in a bull market and in a bear market,
respectively.

Denoting the logarithmic return of the asset at time
t + 1 by rt+1 = Pt+1 − Pt , we observe that the asset
pricing model in (12) implies that in a bull market the
returns of the asset follow an autoregressive process of
order one (AR(1) process) plus a behavioral component

rt+1 = dRrt + εt+1 + mR︸ ︷︷ ︸
AR(1)

+ sR (Pt − Ft )︸ ︷︷ ︸
B(Pt )

(13)

where the behavioral component in the dynamics of
the asset returns is given by B (Pt ). The same type of
process (with different parameters) takes place in a bear
market. Since an autoregressive process is not able to
replicate the empirical stylized facts that our model is
able to replicate, we can attribute these features to the
behavioral components and to the asymmetric trading
attitudes between bear and bull markets.

3 The deterministic skeleton of the model

Setting σF = 0, we obtain the deterministic skeleton
of the asset pricing model (8), which is a simple two-
dimensional discontinuous map. Moreover, operating
the change of variable xt = Pt − F , we obtain

xt+1 =
{

(1 + dR + sR) xt − dRxt−1 + mR if xt > 0
(1 + dL + sL) xt − dLxt−1 + mL if xt < 0

(14)

knowing that for xt = 0, we assume the fundamental
value and thus xt+1 = 0. In addition, by introducing
the lagged variable yt = xt−1, the system can be rep-
resented by the following map T

T :
(
xt+1
yt+1

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TR(xt , yt )=
(
tR −dR
1 0

) (
xt
yt

)
+

(
mR
0

)
if xt > 0

TL(xt , yt ) =
(
tL −dL
1 0

)(
xt
yt

)
+

(
mL
0

)
if xt < 0

(15)

where

tR = 1 + dR + sR, tL = 1 + dL + sL (16)

Notice that by a linear scaling of the state variable and
parameters, we can get rid of one parameter, allowing
for example to settlemR = 1 ormL = 1, but we prefer
to keep themap in its complete definition of parameters
for reasons that will be clarified in the following: the
symmetry (here intended as interchangeability of the
L/R symbols) of the two linear functions TL (xt , yt )
and TR (xt , yt ) will be used in determining the equa-
tions of the bifurcation sets.

By using the unit time advancement operator “ ′ ”we
can also write

(
x ′, y′) = T (x, y) and we can consider,

without loss of generality, map T as defined in the two
partitions, L and R, representing the half planes x < 0
and x > 0, respectively, without specifying any value
for the case x = 0. Thus, the asset pricingmodel can be
written as a two-dimensional piecewise linear and, in
general, discontinuous map T (x, y), where the param-
eters tR,mR, tL,mL ∈ R (as defined in (10), (11), (16))
and we assume dR, dL ≥ 0.

For an invariant set, in particular for a periodic point
of a k-cycle, the collision with x = 0 always corre-
sponds to a border collision, such a point is mapped
by both functions TL (x, y) and TR (x, y) into a point
of the line y = 0, and this occurrence must be dealt
separately.
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The switching manifold of map T (x, y) is the line
x = 0, on which we do not consider any definition,
as in fact it does not alter the analysis that we perform
in this work, where this line, being the border at which
map T changes definition, is the one involved in border
collision bifurcations of invariant sets of map T . In the
formulation of the model, as commented above, we are
interested in the trajectory of any point of the x-axis,
including in particular, the origin O = (0, 0) which
represents the fundamental stationary state, and it is a
fixed point never reached when the map is discontinu-
ous with mL �= 0 and mR �= 0.

As already remarked, a first consideration is that the
map T is in general discontinuous. In fact, considering
a generic linear map with trace t and determinant d in
the form

M (x, y) =
(
t −d
1 0

)(
x
y

)
+

(
m
0

)
(17)

wehave that the set x = 0 ismapped into the line y = 0,
that is, a point (0, y) is mapped into (−dy + m, 0) so
that, if we do not consider the origin, map T is continu-
ous iff dL = dR andmL = mR, in which case it is topo-
logically conjugate to the standard two-dimensional
normal form (see, e.g., [40] and [45]) and the origin
is a fixed point only for m = 0.

That is, fordL = dR = d andmL = mR = 0 themap
T is continuous and the fundamental stationary state,
O = (0, 0), is a fixed point. This particular case has
already been investigated in the literature. It has been
observed that also fixing the determinant d < 1 and
the two traces tR and tL such that the origin is attract-
ing for both linear maps TR and TL, the map T may
have almost all the trajectories divergent, as remarked
in several papers ([3,17,42]), where the so-called dan-
gerous bifurcations have been studied, or (depending
on the values of the parameters) the origin is globally
attracting.

Differently, the particular cases: dL = dR = d,
mL = mR = 0 and tR = tL = t lead to a continu-
ous linear map with fixed point O = (0, 0), so that its
dynamics are well known. Let us consider values of t
(the trace) and d (the determinant) such that the fixed
point is attracting. Due to the linearity, it is globally
attracting, but, as we shall see, the dynamics change
drasticallywhenwemove to a discontinuousmap (even
if the two definitions TL and TR are separately affine
maps with attracting fixed points).

So, let us consider the fixed point of the generic map
M , which is given by P∗ = (x∗, y∗) with
x∗ = y∗ = m

1 − t + d
(18)

The eigenvalues λ1,2 of the Jacobian matrix are λ1,2 =
1
2

(
t ± √

t2 − 4d
)
, andwhen they are real a couple r1,2

of related eigenvectors is given by

r1,2 =
(
1
1/λ1,2

)
(19)

The stability of the fixed point P∗ = (x∗, y∗) of map
M depends on the values of the parameters trace t and
determinant d. Necessary and sufficient conditions for
the asymptotic stability are d < 1, 1 − t + d > 0 and
1+ t + d > 0, which identify the well-known stability
triangle in the parameter plane (t, d), the boundaries
of which are given by the curves of equations d = 1,
1−t+d = 0 and 1+t+d = 0.Moreover, the Jacobian
has complex eigenvalues for t2 − 4d < 0.

In terms of the parameters (s, d) of our system,
where t = 1 + d + s, we obtain

x∗ = y∗ = m

−s
(20)

Therefore, map T has a real fixed point (bear mar-
ket equilibrium) P∗

L = (
x∗
L, x∗

L

)
iff x∗

L = mL
1−tL+dL

=
mL−sL

< 0, otherwise we say that P∗
L is a virtual fixed

point. Similarly, map T has a real fixed point (bull mar-
ket equilibrium) P∗

R = (
x∗
R, x∗

R

)
iff x∗

R = mR
1−tR+dR

=
mR−sR

> 0; otherwise, we say that P∗
R is virtual. A fixed

point undergoes a border collision when either x∗
R = 0

or x∗
L = 0.
The stability of a fixed point P∗ = (x∗, y∗) in terms

of the parameters (s, d) of our system, where s = −1+
t − d, can be rewritten as follows d < 1, s < 0, d >

−1− s
2 , and the stability triangle in the parameter plane

(s, d) is shown in Fig. 1, bounded by the curves of
equation d = 1, s = 0, d = −1 − s

2 , and the region
with complex eigenvalues becomes s2+2s(1+d)+(1−
d)2 < 0, bounded by the curves s = −(1− d) ± 2

√
d

for d > 0.
The inverse of the linear map M (x, y) is given by

M−1 (u, v) =
(

v,
−u + tv + m

d

)
(21)

so that, in particular, we have that M−1(0, v) is the
line of equation y = t x+m

d , and the preimage of the
switching line x = 0 for map T consists in two half-
lines:{

y = tRx+mR
dR

if x > 0
y = tLx+mL

dL
if x < 0

(22)
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Fig. 1 Stability region in the (s, d) parameter plane for the equi-

librium (x∗, y∗) =
(

m
−s ,

m
−s

)
of the map M in (17)

Moreover, since we assume that map T has both deter-
minants with positive signs, the resulting map is invert-
ible for y �= 0 and, as it is immediate to see, the left
(respectively, right) side is mapped by T into the half
plane below (respectively, above) y = 0,

T−1(u, v) =
{
T−1
R (u, v) = (v,

−u+tRv+mR
dR

) if v > 0

T−1
L (u, v) = (v,

−u+tLv+mL
dL

) if v < 0

(23)

as qualitatively shown in Fig. 2.
Clearly a point of y = 0 say (z, 0) can be obtained by

applying either the function TL or TR so that we can say
that such a point may have an inverse with T−1

L or with
T−1
R , but notice that such cases are considered always

as bifurcation situations, which are handled separately.
That is, when an invariant set, typically a cycle, has a
point which is colliding with x = 0, then the set also
collides with y = 0, and it is known if the cycle is
obtained by applying TL or TR.

As we have already remarked, when the parameters
are set such that both linear functions TL and TR have
a real attracting fixed point in the origin and map T is
continuous, then there are wide regions in the parame-
ter space (s, d) leading to a fundamental value which
is globally attracting. However, when map T is discon-
tinuous, several different dynamic behaviors may be
observed and explained. Let us consider first an exam-
ple in which we fix the values of the parameters of
the map so as to have two attracting fixed points with
complex eigenvalues, for example

dL = 0.5, sL = −0.4 (so that tL = 1.1) and dR = 0.4,

sR = −0.5 (so that tL = 0.9), (24)

and let us consider the two-dimensional parameter
plane (mR,mL). Clearly for mR > 0 and mL < 0 both

fixed points exist, as attracting foci, and the phase plane
has at least two coexisting attracting sets; an example is
shown in Fig. 3a at mR = 0.1 and mL = −0.1, which
also shows the two basins of attraction, which are sep-
arated by the preimages of segments of the critical line
LC (or discontinuity line) x = 0 (the first segments of
LC−1 are also evidenced in gray in the figure).

Also we know that if we change the value mR from
positive to negative, then the fixed point P∗

R crosses
x = 0 becoming virtual; similarly if we change the
valuemL from negative to positive, then the fixed point
P∗
L crosses x = 0 becoming virtual. It is interesting

to see that when only one fixed point becomes virtual,
the other existing one may coexist with an attracting
cycle. For example, at mR = 0.05 and mL = 2, P∗

L is
virtual, and the attracting fixed point P∗

R coexists with
an attracting 5-cycle, having symbolic sequence LR4,
or at mR = −1 and mL = −0.05, P∗

R is virtual, and
the attracting fixed point P∗

L coexists with an attracting
6-cycle, having symbolic sequence RL5, whose basins
are separated by the preimages of segments of the dis-
continuity line x = 0, as shown in Fig. 3b. Indeed, since
changes in mR and mL do not involve trace and deter-
minant of the two linear matrices, the determinants are
always smaller than 1 in all the points of the plane, for
any composition of the two functions TL and TR so that
expanding cycles cannot exist, and if the eigenvalues
persist as complex ones, then it is plausible that the sys-
tem cannot have saddle cycles, that is, only attracting
cycles are allowed, which may coexist, and the related
basins of attraction are bounded only by preimages of
segments belonging to the discontinuity line x = 0.
Notice that the number of coexisting attracting cycles
in PWL maps can also be infinite, see Simpson [41]
and Simpson and Tuffley [44].

The coexistence of a stable fixed point and an attract-
ing cycle cannot be observed for dR = dL = 0, i.e.,
when the trend follower traders are out of the market
and the map T reduces to a one-dimensional map, see
Tramontana et al. [47]. This peculiarity of our two-
dimensional model is relevant as the literature on het-
erogeneous asset pricing models shows that forcing by
a random noise a nonlinear model characterized by the
coexistence of a stable fixed point and a cyclical attrac-
tor, it is possible to replicate an important stylized fact
such as the volatility clustering effect.

Given its theoretical and application relevance, let
us further underline this point. In the one-dimensional
case, when the eigenvalues (slopes of the two linear
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Fig. 2 Qualitative representation of the action of map T . The
red line is the preimage of the set x = 0 from the left; the blue
region is the preimage of the set x = 0 from the right; in the
case dR, dL, tR, tL positive,mR < 0 andmL > 0. The gray areas

show how the map transforms the left half plane in one iteration,
and the white regions show how the map transforms the right
half plane in one iteration

Fig. 3 Graphic representation of the subregion (−3, 3)×(−3, 3)
of the phase space of themap T . The yellow region represents the
basin of attraction of the bear market equilibrium

(
x∗
L, y∗

L

)
, the

orange region represents the basin of attraction of the bull mar-
ket equilibrium

(
x∗
R, y∗

R

)
, the red region represents the basin of

attraction of the 6-period cycle with symbolic sequence RL5, the

magenta region represents the basin of attraction of the 2-period
cycle with symbolic sequence RL and the azure region repre-
sents the basin of attraction of a 4-period cycle with symbolic
sequence R2L2. The parameters dL, sL, dR and sR are as in (24).
Panel (a) mL = −0.1 and mR = 0.1. Panel (b) mL = −0.05
and mR = −1. Panel (c), mL = 0.1 and mR = −0.1

functions) are positive and smaller than 1, then the
parameter range in which the two fixed points are both
virtual is filled with periodicity regions organized in
the period adding bifurcation structure. That is, only
attracting cycles can exist and the periods and rota-
tion numbers of the existing attracting cycles in the
bifurcation structure follow the Farey summation rule.
Moreover, the symbolic sequences of the cycles in the
bifurcation structure are obtained by concatenation of
sequences, starting from those of the so-called basic
cycles, given by LRn and RLn for n ≥ 1, and their

peculiarity is that the periodicity regions cannot over-
lap, so that coexistence of cycles is not possible in the
one-dimensional case. It was conjectured that similar
bifurcation structures also exist in two-dimensional dis-
continuous PWL maps (see, e.g., [34] and [43]). Thus,
we also were looking for a similar bifurcation struc-
ture. However, in our system (map T ), although peri-
odicity regions ΠLRn and ΠRLn associated with the
existence of attracting basic cycles, LRn and RLn for
some n, can be found, what is observed as a generic
behavior is the overlapping of periodicity regions, lead-
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Fig. 4 Two-dimensional bifurcation diagram of the map T
with respect to the parameter plane (mR,mL). The shaded area
{(mR,mL) : dL, dR < 0} indicates that the bull market equilib-
rium and the bear market equilibrium coexist stable. The yel-
low region indicates that the bear market equilibrium is the
unique attractor, while the bull market equilibrium is virtual.
The orange region indicates that the bull market equilibrium is
the unique attractor, while the bear market equilibrium is vir-

tual. The straight lines coming out of the origin are the border
collision bifurcation curves and mark the regions of existence
of the basic cycles with symbolic sequences RLn and LRn , with
n = 2, . . . , 6 as indicated in Panel (b). The two-dimensional
bifurcation diagram has been obtained with the parameters as in
(24), in red for parameters as in (39) and in black for parameters
as in (41)

ing to coexistence of several different attracting cycles.
Moreover, while in the one-dimensional case the peri-
odicity regions ΠLRn and ΠRLn are separated in the
parameter space (so that in the first family of cycles
(LRn with n ≥ 1), two consecutive symbols L are not
allowed, and similarly in the second family of cycles
(RLn with n ≥ 1) two consecutive symbols R cannot
exist), in the two-dimensional case this is no longer for-
bidden. In particular, when an attracting 2-cycle exists,
with symbolic sequence LR, then we may found also
a coexisting attracting 4-cycle with symbolic sequence
L2R2. An example is shown in Fig. 3c at mR = −0.1
andmL = 0.1: the two fixed points are both virtual and
an attracting 2-cycle coexists with an attracting 4-cycle
L2R2, whose basins are also shown in the figure.

A two-dimensional bifurcation diagram in the
(mR,mL) parameter plane, as shown in Fig. 4a, can
immediately show the existence and coexistence of
periodicity regions of attracting cycles, and we give
in the next section the equations of the BCB conditions
leading to the boundaries of the regions for the basic
cycles. Let us remark that detecting these regions of
the basic cycles is particularly relevant from the appli-
cation point of view. In fact, they allow to identify the
regions of the parameter space characterized by coex-
isting attractors and this helps to study the conditions

under which the stochastic version of the model is able
to replicate the empirical stylized facts characterizing
the financialmarkets. In the following, we identify only
the BCB curves, while the existence of these bifurca-
tions is verified numerically. Therefore, the conditions
that follow have to be interpreted as necessary condi-
tions for the existence of the BCBs and of the cycles
that these bifurcations originate.

3.1 BCB conditions

3.1.1 2-cycle

Let us first consider the conditions for the 2-cycle with
symbolic sequence LR and for the 4-cycle with sym-
bolic sequence L2R2. For the 2-cycle, we have to deter-
mine a fixed point of the second iterate of the map, say
TL ◦ TR (x, y) = (x, y) leading to a point (xR, yR)

with xR > 0 and as well TR ◦ TL (x, y) = (x, y) lead-
ing to a point (xL, yL) with xL < 0. The existence
region of such a 2-cycle is bounded by BCB curves,
the first one is obtained by the collision with the line
x = 0 from the periodic point on the right side, while
the second one is obtained by the collision with the line
x = 0 from the periodic point on the left side. There-
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fore, when TL ◦ TR (0, yR) = (0, yR) is satisfied, the
first BCB occurs; when TR ◦ TL (0, yL) = (0, yL) is
satisfied, the second BCB occurs. Considering

TL ◦ TR

(
x
y

)

=
(
x(tLtR − dL) − tLdRy + tLmR + mL

tRx − dRy + mR

)
(25)

the condition TL ◦ TR (x, y) = (x, y) leads to

xR = xRLR = tLmR + (1 + dR)mL

(1 + dR) (1 + dL) − tLtR
,

yR = yRLR = tRxR + mR

1 + dR
(26)

which requires that the numerator and denominator of
xRLR have the same sign and the denominator needs to
be different from zero to have xRLR that exists and it is
larger than zero. Then, xRLR = 0 occurs for

mL = − tL
1 + dR

mR (27)

To obtain the other periodic point of the possible 2-
cycle, we can clearly compute (xL, yL) = TR (xR, yR).
However, due to the symmetry between the two func-
tions TL and TR with respect to the symbols L/R, we
have that to get the conditions for TR ◦ TL (x, y) =
(x, y) it is enough to exchange L/R in the expressions
given above, so that for the other border collision con-
dition we get:

xL = xLRL = tRmL + (1 + dL)mR

(1 + dR) (1 + dL) − tLtR
,

yL = yLRL = tLxL + mL

1 + dL
(28)

which requires that the numerator and denominator of
xLRL have opposite sign and the denominator needs to
be different from zero to have xLRL that exists and it is
smaller than zero. Then, xLRL = 0 occurs for mR =
− tR

1+dL
mL, that is

mL = −1 + dL
tR

mR (29)

These two conditions in the (mR,mL) parameter plane
lead to two straight lines issuing from the origin and
with negative slopes (since we have both traces and
determinants with positive signs), leading to the exist-
ing region of the 2-cycle when both fixed points are
virtual. These BCB curves are plotted in Fig. 4b.

3.1.2 4-cycle L2R2

We can reason similarly to obtain the existence condi-
tions for the 4-cycle L2R2. Here we have to consider
first the functions of the second iterate: T 2

R (x, y) =
TR ◦TR (x, y) and T 2

L (x, y) = TL ◦TL (x, y). Straight-
forward computations lead to

T 2
R

(
x
y

)
=

(
x(t2R − dR) − tRdRy + tRmR + mR

tRx − dRy + mR

)

(30)

and for T 2
L (x, y) it is enough to change the symbol R

into L . Then, the composition T 2
L ◦ T 2

R (x, y) = (x, y)
leads to a point

(
x1R, y1R

)
which may belong to a 4-

cycle, which undergoes a BCB when x1R = 0 occurs.
This gives the condition

mL = −mR
d2L(tR + dR) + tL(1 + tR) + dL

t2L (tL + dL) + 1 − dLdR − tLdR − tRdL
(31)

and similarly from T 2
R ◦ T 2

L (x, y) = (x, y) a periodic
point on the L side is obtained which may belong to a
4-cycle undergoing a BCB when it holds

mL = −mR
t2R(tR + dR) + 1 − dLdR − tRdL − tLdR

d2R(tL + dL) + tR(1 + tL) + dR
(32)

These curves are plotted in Fig. 4b.

3.1.3 Basic cycles

From Fig. 4, we can see that when the fixed point P∗
L

is virtual and P∗
R is an attracting focus, decreasing mR

toward 0 an attracting 5-cycle appears, coexisting with
P∗
R, see Fig. 5a at mR = 0.12 and mL = 2. The col-

liding periodic point as a fixed point of T 4
R ◦ TL (x, y)

collides with x = 0, or, equivalently as a fixed point of
TL◦T 4

R (x, y) collideswith y = 0. Thus, to get theBCB
we can solve for T 4

R ◦ TL (x, y) = (x, y) and then con-
sider x = 0, or we can solve for TL◦T 4

R (x, y) = (x, y)
and then consider y = 0.

DecreasingmR also the fixed point P∗
R becomes vir-

tual and the attraction 5-cycle with symbolic sequence
LR4 is attracting, undergoing a border collision when
the periodic point on the right side closest to x = 0 col-
lides with x = 0 and the unique point of the left side
collides with y = 0. In Fig. 5b at mR = −0.02 and
mL = 2, the 5-cycle is close to the bifurcation lead-
ing to its disappearance, and an attracting 4-cycle with
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Fig. 5 Graphic representation of the subregion (−3, 3)×(−3, 3)
of the phase space of the map T . The orange region represents
the basin of attraction of the bull market equilibrium

(
x∗
R, y∗

R

)
,

the green region represents the basin of attraction of the 5-period
cycle with symbolic sequence LR4, and the azure region repre-

sents the basin of attraction of a 4-period cycle with symbolic
sequence LR3. The parameters dL, sL, dR and sR are as in (24).
Panel (a), mL = 2 and mR = 0.12. Panel (b), mL = 2 and
mR = −0.02. Compare with Fig. 3

symbolic sequence LR3 just appeared. So, the second
border collision of the 5-cycle can be determined by
solving for T 4

R ◦ TL (x, y) = (x, y) and then consider-
ing y = 0.

Similarly, we can reason for any cyclewith symbolic
sequence LRn , for n ≥ 2. So one BCB is obtained solv-
ing for TL ◦ T n

R (x, y) = (x, y) and then considering
y = 0, and the other from T n

R ◦ TL (x, y) = (x, y) and
then considering y = 0.

It follows that in order to obtain a period point and
the BCB conditions for cycles with symbolic sequence
LRn , we have to consider a fixed point of the com-
posite function TL ◦ T n

R (x, y) or T n
R ◦ TL (x, y) which

requires, in particular, the function T n
R (x, y) which is

not easy to get for an affine function as we have in map
T . Clearly, it is much easier with a linear function such

as T̃R (x, y) = AR

(
x
y

)
where AR =

[
tR −dR
1 0

]
. In

fact, in such a linear case the composition T̃ n
R (x, y) =

An
R

(
x
y

)
can be obtained iteratively (thus in a easier

way). It is well known (see, e.g., [45] and [21]) that we
have

An
R =

[
an −dRan−1

an−1 −dRan−2

]
, for n ≥ 2 (33)

where the constants are obtained iteratively from

an = tRan−1 − dRan−2 (34)

with initial conditions a0 = 1 and a1 = tR. Thus, in
order to take advantage of this formulation, since our
maps are affine and not linear, we have first to apply a
change of variable putting the origin in the point P∗

R =(
x∗
R, x∗

R

)
, that is, by applying the change of variable

(u, v) = (
x − x∗

R, y − x∗
R

)
to the two components of

map T . The new map T̃ (u, v) is defined as follows:

T̃

(
u
v

)

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T̃R(u, vt ) =
(
tR −dR
1 0

)(
u
v

)
if u > −x∗

R

T̃L(u, v) =
(
tL −dL
1 0

) (
u
v

)
+

⎛
⎝ mL(1 − x∗R

x∗L
)

0

⎞
⎠ if u < −x∗

R

(35)
or equivalently as

T̃

(
u
v

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T̃R(u, vt ) = AR

(
u
v

)
if u > −x∗

R

T̃L(u, v) = AL

(
u
v

)
+

⎛
⎝ mL(1− x∗R

x∗L
)

0

⎞
⎠ if u < −x∗

R

(36)

where we underline that

mL(1 − x∗
R

x∗
L

)=x∗
R(

mL

mR
(1−tR+dR)−(1−tL + dL))

= x∗
R

(
−mL

mR
sR + sL

)
(37)
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From our reasoning above, we have that for a
(n + 1)-cycle with symbolic sequence LRn , n ≥ 2, one
BCB condition can be obtained looking for a periodic
point (u, v) such that T̃L ◦ T̃ n

R (u, v) = (u, v) leading
to the system

⎛
⎝ tL(anu−dRan−1v)−dL(an−1u−dRan−2v)+mL(1− x∗R

x∗L
)

anu − dRan−1v

⎞
⎠ =

(
u
v

)

(38)

and then a collision occurs when y = 0 correspond-
ing to v = −x∗

R, from which we obtain the following
condition on the parameters:

mL

mR
(1 − tR + dR) − (1 − tL + dL)

= − (1 + dRan−1)(1 − tLan + dLan−1)

an
−tLdRan−1 + dLdRan−2 (39)

The second BCB involving this cycle is identified by
another BCB condition which is obtained looking for a
periodic point (u, v) such that T̃ n

R ◦ T̃L (u, v) = (u, v)

leading to the system

⎛
⎜⎜⎝

an (tLu − dRv + mL(1 − x∗R
x∗L

)) − dRan−1u

an−1(tLu − dRv + mL(1 − x∗R
x∗L

)) − dRan−2v

⎞
⎟⎟⎠ =

(
u
v

)

(40)

and then a collision occurs when y = 0 correspond-
ing to v = −x∗

R, from which we obtain the following
condition on the parameters:

mL
mR

(1−tR+dR)−(1 − tL+dL)

= − (1 + dLan−1)(1 − tLan + dRan−1) + dLan (an−1tL − dRan−2)

an (an−1tL − dRan−2) + an−1(1 − an tL + dRan−1)

(41)

A few existing regions ΠLRn of the cycles LRn , n =
2, 3, 4 are shown in Fig. 4 at the parameters given in
(24), in red those given in (39) and in black those given
in (41). We can see that the regions ΠLR2 and ΠLR3

are overlapping, as also the regions ΠLR3 and ΠLR4

are overlapping. The overlapped regions indicate the
coexistence of multiple attractors.

It is plain that we can reason similarly to obtain the
existence conditions for the basic (n + 1)-cycles with
symbolic sequence RLn , n ≥ 2. However, due to the
symmetry between the two functions TL and TR with
respect to the symbols L/R, to get the conditions for
the other family of basic cycles it is enough to exchange

L/R in the expressions given above, that is, by using,
for n ≥ 2

an = tLan−1 − dLan−2 (42)

with initial conditions a0 = 1 and a1 = tL, we have
mR

mL
(1 − tL + dL) − (1 − tR + dR)

= − (1 + dLan−1)(1 − tRan + dRan−1)

an
−tRdLan−1 + dLdRan−2 (43)

and
mR
mL

(1 − tL + dL) − (1 − tR + dR)

= − (1 + dRan−1)(1 − tRan + dLan−1) + dRan (an−1tR − dLan−2)

an (an−1tR − dLan−2) + an−1(1 − an tR + dLan−1)

(44)

A few existing regions of the cycles RLn , n = 2, . . . , 5
are shown in Fig. 4, in red those given in (43) and in
black those given in (44). We can see that the regions
ΠLRn and ΠLRn+1 for n = 2, 3, 4 are overlapping.

Besides the existence of some regions of the basic
cycles of the two families LRn and RLn , we can evi-
dence that between two consecutive existing regions
of cycles LRn and LRn+1 it may exist a region asso-
ciated with a cycle with symbolic sequence obtained
by concatenation, LRnLRn+1. However, while in the
discontinuous one-dimensional case such regions can-
not overlap ( [4,22] and references therein) and are
all disjoint, in our map we have seen (in the exam-
ple above) that regions of the basic cycles of the two
families LRn and RLn may overlap, and when these
are disjoint, it is quite common that when a cycle
with symbolic sequence obtained by concatenation, say
LRnLRn+1, exists, then this region is overlapped with
the regions of the two basic cycles. As an example, in
Fig. 4a, between the regions associated with the cycles
LR and RL2 a region related to a 5-cycle with symbolic
sequence LRLR2 exists, and it is overlapped with both
the regions of the cycles LR and LR2. Similarly for
the other family: between the regions associated with
the cycles RL and RL2 a region related to a 5-cycle
with symbolic sequence RLRL2 exists, and it is over-
lapped with both the regions of the cycles RL and RL2.
It is worth mentioning that between non-overlapping
regions of basic cycles with symbolic sequences LRn

and LRn+1 the region related to the cycle with the ‘con-
catenated’ symbolic sequence LRnLRn+1 exists, and
in general it is not overlapped with the regions of the
basic cycles. Indeed, many regions of cycles with the
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Fig. 6 Two-dimensional
bifurcation diagram of the
map T with respect to the
parameter plane (mR,mL).
The straight lines coming
out of the origin are the
border collision bifurcation
curves and mark the regions
of cycles, with symbolic
sequence LR, LR2 and RL2.
Parameters: dL = 0.8,
sL = −2, dR = 0.9 and
sR = −2. The meaning of
the colors is shown in Fig. 4

Fig. 7 Graphic representation of the subregion (−3, 3)×(−3, 3)
of the phase space of the map T . The brown region represents the
basin of attraction of the 2-period cycle with symbolic sequence
LR, the cyan region represents the basin of attraction of a 3-period
cycle with symbolic sequence RL2, the red region represents the
basin of attraction of a 3-period cycle with symbolic sequence
LR2, the yellow region represents the basin of attraction of the
bear market equilibrium

(
x∗
L, y∗

L

)
, the corn region represents the

basin of attraction of the bull market equilibrium
(
x∗
R, y∗

R

)
, the

blue region represents the basin of attraction of a 6-period cycle
with symbolic sequence R3L3, and the green region represents
the basin of attraction of a 5-period cyclewith symbolic sequence
L2R3. Panel (a)mR = −0.2 andmL = 0.2. Panel (b)mR = 0.5
and mL = −0.3. The parameters dL, sL, dR and sR are shown in
Fig. 6, i.e., dL = 0.8, sL = −2, dR = 0.9 and sR = −2

symbolic sequence (LRn)mLRn+1 and LRn(LRn+1)

for m > 1, of the second complexity level may also
exist disjoint, between the regions of the basic cycles,
as well as regions corresponding to cycles of higher
complexity level. Similarly for the other family with
symbolic sequences RLn and RLn+1. For the sake of
space, we do not show numerically such possible situ-
ations.

A peculiarity of our two-dimensional discontinu-
ous PWL map is also that when the two fixed points

coexist and are attracting, then these may coexist with
other attracting cycles. An example is shown in Fig. 6,
where a two-dimensional bifurcation diagram of the
map T with respect to the parameter plane (mR,mL)

is obtained by setting dL = 0.8, sL = −2 (so that
tL = −0.2) and dR = 0.9, sR = −2 (so that
tL = −0.1). Here, cycles with symbolic sequences RL,
LR2 and RL2 are overlapped when the two fixed points
are virtual (an example in the phase space is shown in
Fig. 7a at mR = −0.2 and mL = 0.2), but attracting
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Fig. 8 Two-dimensional
bifurcation diagram of the
map T with respect to the
parameter plane (mR,mL).
The straight lines coming
out of the origin are the
border collision bifurcation
curves and mark the regions
of cycles, with symbolic
sequence LR, LR2 and RL2.
Parameters: dL = 0.03,
sL = −1.8, dR = 0.18 and
sR = −0.5. The meaning of
the colors is shown in Fig. 4

cycles of period 5 and 6 may also exist when both fixed
points are real and attracting (an example in the phase
space is shown inFig. 7b atmR = 0.5 andmL = −0.3).

As a further remark, we may also expect that the
bifurcation structure in the (mR,mL) parameter plane
changeswhen the two fixed points have different eigen-
values. An example is given at dL = 0.03, sL = −1.8
(so that tL = −0.77) and the fixed point in the left
region is an attracting node with two negative eigenval-
ues, while dR = 0.18, sR = −0.5 (so that tL = 0.68)
and the fixed point on the right side is an attracting
focus, see Fig. 8. We can observe that now only cycles
of the family LRn are attracting when the two fixed
points are virtual; moreover, the real attracting fixed
point P∗

R may coexist with an attracting 5-cycle while
the real attracting fixed point P∗

L may coexist with an
attracting 2-cycle.

4 Chaotic dynamics in the deterministic setting

As it is well known, it is not surprising to have a
two-dimensional invertible map with chaotic behav-
iors. This is clearly possible in continuous maps as
well as in discontinuous ones, as we are considering
in this work. Up to now, we have mentioned mainly
regimes with coexisting attracting cycles of different
periods, but such attracting cyclesmay also coexistwith
chaotic attractors. This is also another important differ-
ence between the one-dimensional discontinuous map
and the two-dimensional one. In fact, considering for
example the one-dimensional map

xt+1 =
⎧
⎨
⎩

τRxt + mR if xt > 0

τLxt + mL if xt < 0
(45)

in the increasing–increasing case given by positive
slopes (τR, τL) and mR < 0, mL > 0, it is well known
that as long as τRmL + mR < τLmR + mL, which is
the so-called gap map, then chaotic dynamics cannot
occur, as well as for the circle map occurring when
τRmL + mR = τLmR + mL, see Avrutin et al. [4] and
references therein. Clearly chaos can exist when the
map is overlapping, that is, it becomes not uniquely
invertible. Differently, in the two-dimensional case we
may have chaotic regimes also when the map is invert-
ible, as in the cases here considered (with dR > 0 and
dL > 0) and also when both determinants dR and dL
are smaller than 1, so that the map cannot have expand-
ing cycles (as repelling nodes or foci), but only saddle
cycles which may be homoclinic, leading to chaotic
dynamics. To provide an immediate visualization of
the dynamics which may emerge, in Fig. 9 we show
a two-dimensional bifurcation diagram in the (sR, sL)

parameter plane at fixed 0 < dR < 1, 0 < dL < 1,
mR < 0 and mL > 0 (similar figures are obtained at
different parameter values). In Fig. 9a, different colors
represent periodicity regions associated with attract-
ing cycles of different periods. Several regions ΠLRn

and ΠRLn bounded by BCB curves whose equations
are given in Sect. 3 are clearly visible, and it is also
clearly visible that many of such regions are overlap-
ping. The white points denote the existence of chaotic
dynamics, while the gray points denote the existence of
divergent trajectories. A relevant feature in this kind of
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systems, piecewise linear, which usually cannot occur
in smooth ones, is that when chaotic attractors exist
(and mainly appearing/disappearing via BCBs), they
are stable under parameter perturbations, that is, they
are robust, following the definition given in Banerjee
et al. [5].

One-dimensional bifurcation diagrams along the
three paths denoted by p1, p2 and p3 in Fig. 9a are
shown in Fig. 9b, Fig. 9c and Fig. 9d, respectively.
The diagrams have been drawn with three different ini-
tial conditions and the x-values are reported in differ-
ent colors (black, red and azure), so as to emphasize
parameter value constellations associated with coex-
isting attracting sets.

The path p1 is taken along the line sR = sL,
and regular periodicity regions are crossed as long as
sR = sL < 0 (when the two fixed points are both vir-
tual and mainly attracting), while for sR = sL > 0 the
two fixed points, crossing the bifurcation occurring at
sR = 0 and sL = 0, become real and of saddle type,
with one positive eigenvalue larger than 1, and chaotic
dynamics occur. An example in the phase plane of the
chaotic attracting set for sR > 0 and sL > 0, cor-
responding to point A1 in Fig. 9a, is shown in Fig.
10a. The two stable sets of the saddle fixed points
belong to the basin boundary of the chaotic attracting
set, together with segments of the discontinuity line
x = 0 (and related preimages). The basin boundary
separates points with bounded trajectories from those
having divergent trajectories.

Differently, when the parameters sR and sL have dif-
ferent signs, then one fixed point is real and one is
virtual. When the virtual one is attracting then, even
if the real fixed point with positive parameter s is
a saddle with one eigenvalue larger than 1, bounded
chaotic dynamics are observed. An example is shown
in Fig. 10b, corresponding to point A2 in Fig. 9a, where
P∗
L = (1, 1) is a virtual attracting focus, while P∗

R is
a real saddle, whose stable set belongs to the basin
boundary of the chaotic attracting set (together with
segments of the discontinuity line x = 0 and related
preimages).

Also when both fixed points are virtual and attract-
ing, besides periodicity regions associated with attract-
ing cycles, we may have chaotic attractors, as unique
attracting sets or coexisting with attracting cycles.
An example is shown in Fig. 10c, corresponding to
point A3 in Fig. 9a, where P∗

L = (1, 1) and P∗
R =

(−0.4,−0.4) are both virtual attracting foci, and the

chaotic attractor (with basin colored in red) coexists
with an attracting 11-cycle, three periodic points of
which are visible in Fig. 10c. The two basins are here
separated only by segments of the discontinuity line
x = 0 and related preimages.

5 Stochastic dynamics of the asset pricing model

In the previous two sections, a description of the
dynamics of the deterministic setting of the model
is proposed. In this section, we exploit these results
to replicate the statistical properties of the returns of
the financial markets with the stochastic version of
our model. To this aim, let us start underlining the
main properties of the time series of the returns of
market indexes. Focusing on the daily observations of
the value of the S&P 500 index over the last twenty
years, see Fig. 11a, we observe that the related returns
show periods of high volatility alternated by periods
of low volatility, see Fig. 11c. Specifically, during the
2007 financial crisis we observe a persistent period of
high volatility that is followed by a long period of low
volatility. Periods of high volatility followed by peri-
ods of low volatility are a stylized fact known in the
financial literature as volatility clustering. The statis-
tical confirmation of the volatility clustering effect is
given by the sample autocorrelation functions that show
a statistically significant long correlation in the squared
returns and absolute returns, while the almost zero cor-
relation in the returns supporting the classical hypothe-
ses of the random walk models, see Fig. 11d–f. The
volatility clustering effect reflects in an empirical dis-
tribution of the returns that is not normal, see Fig. 11c.
Indeed, the empirical distribution of the returns is usu-
ally skewed to the left, see the negative skewness in
Table 1, with extreme returns that are more often than
in a normal distribution as indicated by the presence
of the so-called heavy tails or fat tails. The tailedness
of the empirical distribution of the returns is measured
by the sample kurtosis, which is around 11, therefore
much higher than the value 3 which characterizes a
normal distribution. This indicates that the distribution
of the returns is leptokurtic, i.e., it has heavy tails. See
Table 1.

The asset pricing models with heterogeneous agents
aim to replicate these features of the distribution of the
returns. In particular, they aim to explain the nonlinear
dependence in the returns, which indicates the pres-
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Fig. 9 In Panel (a),
two-dimensional bifurcation
diagram in the (sR, sL)

parameter plane at
dR = 0.6, dL = 0.9,
mR = −0.1 and mL = 0.1
(similar figures are obtained
at different parameter
values). In Panel (b),
one-dimensional bifurcation
diagram along the path
denoted by p1 in Panel (a),
and sR = sL. In Panel (c),
one-dimensional bifurcation
diagram along the path
denoted by p2 in Panel (a),
and sL = −3.5. In Panel
(d), one-dimensional
bifurcation diagram along
the path denoted by p3 in
Panel (a), and sR = −3

Fig. 10 Chaotic attracting sets and related basins of attraction
(in red) at dR = 0.6, dL = 0.9, mR = −0.1, mL = 0.1.
Gray points denote initial conditions leading to divergent tra-
jectories. In Panel (a) (sR, sL) = (0.25, 0.1), point A1 in Fig. 9a,
so that tR = 1.85, tL = 2, the two fixed points are real sad-
dles (P∗

L = (−1,−1), with λ1 = 1.316 and λ2 = 0.684,
P∗
R = (0.4, 0.4) with λ1 = 1.43 and λ2 = 0.42) with the

stable sets belonging to the basin boundary, and the immedi-

ate stable set of each fixed point, the eigenvector given in (19),
is also evidenced. In Panel (b) (sR, sL) = (0.2,−0.1), point
A2 in Fig. 9a, so that tR = tL = 1.8, P∗

L = (1, 1) is a virtual
attracting focus, P∗

R = (0.5, 0.5) a real saddle with λ1 = 1.358
and λ2 = 0.44, the immediate stable set is also evidenced. In
Panel (c) (sR, sL) = (−2.5,−0.1), point A3 in Fig. 9a, so that
tR = −0.9, tL = 1.8, P∗

L = (1, 1) and P∗
R = (−0.04,−0.04)

are virtual foci
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Fig. 11 Panel (a) dynamics of logarithmic value of the day by
day S&P 500 index over the period 1/1/1999–1/10/2019. Panel
(b) time series of the logarithmic daily returns of the S&P 500
index for the period 1/1/1999–1/10/2019. Panel (c) the solid line
represents the empirical distribution of the logarithmic returns
of the S&P 500 index, while the dashed line represents the cali-
brated normal distribution, where the calibration is obtained by

using the daily returns of the S&P 500 index. Panel (d) autocor-
relation function of the logarithmic daily returns of the S&P 500
index. Panel (e) behavior of the correlation function of the square
of the logarithmic daily returns of the S&P 500 index. Panel (f)
behavior of the correlation function of the absolute value of the
logarithmic daily returns of the S&P 500 index. The data source
is Thomson Reuters Eikon

Table 1 Statistics related to the S&P 500 index returns, see also Fig. 11

Statistics Average Min Max Volatility Skewness Kurtosis

S&P 500 index returns 0.0002 −0.0947 0.1096 0.0119 −0.2127 11.2181

ence of the volatility clustering effect, by a quantitative
point of view, see He and Li [26] and Blaurock et al.
[7]. Parsimonious asset pricing models as the one here
considered have the further advantage to provide also
a qualitative explanation for the stylized facts of the
empirical distributions of the returns of stocks, com-
modities and market indexes. Considering the deter-
ministic skeleton of a model as indicated in Gauners-
dorfer et al. [23], the coexistence of a stable equilibrium
surrounded by a stable cycle represents a qualitative
and endogenous explanation for the volatility cluster-
ing effect. In fact, forcing the dynamics of the model
by a stochastic noise, prices jump from the basin of
attraction of the equilibrium where returns are charac-
terized by low volatility, to the basin of attraction of the
cycle, where returns are characterized by high volatil-
ity. The deterministic investigation of the model in the
previous section indicates that a similar configuration

of the dynamics is present in the asset pricing model
here considered. Specifically, a stable equilibrium can
coexist with a stable cycle. According to the parameter
value configuration, it could be the bear market equi-
librium that coexists with a cycle or it could be the bull
market equilibrium that coexists with a cycle. More-
over, a chaotic attractor can coexist with a cycle. It is
worth remarking that the coexistence of several attrac-
tors is related to the presence of the trend followers.
In fact, excluding the trend followers from our asset
pricing model, we are back in the setup introduced in
Tramontana et al. [47] where a stable equilibrium can-
not coexist with a stable periodic, aperiodic or chaotic
attractor. Therefore, the introduction of the trend fol-
lowers gives to the current generalization of the asset
pricing model in Tramontana et al. [47] the advantage
of offering a qualitative configuration of the dynamics
that is associated with the volatility clustering effect.
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Fig. 12 Results are obtained by simulating the asset pricing
model (8) under constellation of parameter values as shown in
(24) with mL = −0.05, mR = −1 and σF = 0.05. Panel (a)
in red is represented the dynamics of the fundamental process
defined in (1) while in black the price of the asset generated
by model (8). Panel (b) logarithmic returns related to the price
dynamics (in black) of Panel (a). Panel (c) simulated distribution
of the returns (solid line), normal distribution calibrated to the

simulated returns (dashed line) and normal distribution used to
generate the fundamental price (gray line). Panel (d) autocorre-
lation function for the logarithmic returns in Panel (b). Panel (e)
autocorrelation function for the square of the logarithmic returns
in Panel (b). Panel (f) autocorrelation function for the absolute
value of the logarithmic returns in Panel (b). Statistics related to
the simulated distribution of the logarithmic returns are shown
in Table 2

Table 2 Statistics related to the returns obtained by simulating the asset pricing model (8) (and the random walk fundamental process)
under constellation of parameter values as shown in (24) with mL = −0.05, mR = −1 and σF = 0.05, see also Fig. 12

Statistics Average Min Max Volatility Skewness Kurtosis

Asset pricing model −0.0006 −1.1173 0.5425 0.2070 −2.6697 15.7476

Fundamental process −0.0006 −0.1967 0.1695 0.0499 −0.0040 2.9976

To analyze the characteristics of the time series of the
returns generated by the full-fledged stochastic version
of our model, we assume the set of parameter values as
shown in (24) with mL = −0.05, mR = −1 and σF =
0.05. This parameter value configuration is associated
with a deterministic dynamics characterized by a stable
bear market equilibrium P∗

L coexisting with a stable 6-
period cycle, see Fig. 3b. Introducing some noise, see
Fig. 12, we observe that the time series of the returns
show periods of high volatility alternated by periods
of low volatility. Moreover, comparing Table 1 with
Table 2, we observe that the simulated distribution of
the returns is not normal and has a level of kurtosis
similar to the one of the empirical distribution, while
the skewness indicates that the simulated distribution is
muchmore left-skewed than the empirical one and both

of these two values of the skewness are different from
one of the normal distributions. In addition, we observe
that the returns generated by our asset pricingmodel are
much more volatile than the returns generated by the
fundamental random walk process, see Table 2. This
stylized fact is known as excess volatility.

Despite some analogies between the empirical and
simulated distributions of the returns, the presence of a
stable 6-period cycle introduces a deterministic struc-
ture in the dynamics of the returns, which mirrors in a
dependence in the returns that is not observable in the
empirical data, see Fig. 11d. This is indicated by the
autocorrelation function of the returns that underlines
a statistically significant correlation, see Fig. 12d. A
qualitative configuration of the dynamicswhere an ape-
riodic or chaotic attractor coexists with a stable equi-
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Fig. 13 Results are obtained by simulating the asset pricing
model (8) under constellation of parameter values as in Fig. 7a,
but σF = 0.025. The meaning of the graphs is shown in Fig. 12.

Statistics related to the simulated distribution of the logarithmic
returns are shown in Table 3

librium would probably reduce the level of correlation
in the returns, therefore obtaining a dynamics of the
returns more similar to the empirical one.

The simulated time series of the returns show also
that the periods of high volatility have a frequency of
occurrence higher than that one suggested by the empir-
ical observations. This may depend on the configura-
tion of the basins of attraction, that for the determinis-
tic version of the model result to be disconnected and
intermingled, see Fig. 3b, thus facilitating a frequent
and sudden transition from one (characterized by low
volatility) to the other attractor (characterized by high
volatility) when some random noise is added to the
system. Another relevant difference between the sim-
ulated dynamics of the returns and the empirical one
is the magnitude of the returns itself that in the sim-
ulated model are much higher than the observed one.
To overcome this problem, it is enough to focus on a
constellation of the values of the parameters such that
the deterministic skeleton of the model shows long-
run dynamics characterized by lower amplitude fluctu-
ations. An example is given in Fig. 3c. However, in the
dynamic configuration depicted in Fig. 3c only cycli-
cal attractors exist, specifically a 2-period cycle and a
4-period cycle while a stable equilibrium misses, and
this reflects in a simulated distribution of the returns

that is bimodal, therefore different from the empirical
one.

In a configuration in which it is the bull market
equilibrium, instead of the bear market equilibrium,
that coexists with a cycle, see for example the case of
Fig. 5a, a similar dynamics of the returns is obtained
from the stochastic version of the model. Therefore,
the simulated distribution of the returns differs from
the empirical one for the reasons already discussed.

A further peculiarity of the asset pricing model here
proposed is the coexistence of several attractors of
different periodicities, see for example Fig. 7, which
cannot occur in the one-dimensional version of the
model proposed in Tramontana et al. [47]. To study
the impact of this dynamic scenario on the distribution
of the returns, consider the same set of values of the
parameters as shown in Fig. 7a and σF = 0.025. The
results of the simulation shown in Fig. 13 (in particu-
lar the dynamics of the logarithmic returns of the asset
in Fig. 13b) underline the volatility clustering effect
that is confirmed by the autocorrelation functions of the
absolute and squared returns, see Fig. 13e, f. Moreover,
compared with a normal distribution, the empirical dis-
tribution of the returns shows a greater concentration of
observations around the average value and tails much
fatter, see Fig. 13c. Skewness and kurtosis, see Table 3,
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Table 3 Statistics related to the returns obtained by simulating the asset pricing model (8) (and the random walk fundamental process)
under constellation of parameter values as in Fig. 7a, but σF = 0.025, see also Fig. 13

Statistics Average Min Max Volatility Skewness Kurtosis

Asset pricing model −0.0003 −0.3694 0.3764 0.0902 −2.6697 4.9230

Fundamental process −0.0003 −0.0984 0.0848 0.0249 −0.0040 2.9976
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Fig. 14 Results are obtained by simulating the asset pricing
model (8) under constellation of parameter values as in Fig. 7b,
but σF = 0.04. The meaning of the graphs is shown in Fig. 12.

Statistics related to the simulated distribution of the logarithmic
returns are shown in Table 4

confirm these two facts and indicate that the simulated
distribution of the returns is very similar to the empiri-
cal one. Again, the only feature of the simulated returns
that does not match with the empirical observations is
given by the correlation of the returns that in the simu-
lated version is statistically significant while according
to the real data it should not be so. As already indi-
cated above, this is most probably due to the fact that
we consider a constellation of the parameter values for
which the deterministic skeleton of the asset pricing
model exhibits periodic dynamics instead of chaotic
dynamics.

A distribution of the returns similar to the empirical
one can also be obtained by considering the value of
the parameters as shown in Fig. 7b, but σF = 0.04.
This is a particularly interesting configuration as the
deterministic skeleton of the model offers three dif-
ferent volatility return regimes. Specifically, the stable
bear market equilibrium is a configuration representing

a level of return volatility equal to the one generated
by the fundamental process, a stable 7-period cycle is
responsible for a medium level of return volatility, and
a stable 5-period cycle generates a high return volatil-
ity. The stochastic noise that affects the fundamental
process allows to jump from one basin of attraction to
another one causing periods of high volatility followed
by periods of medium volatility, followed in turn by
periods of low volatility. This dynamics generates an
evident volatility clustering effect, see Fig. 14.Relevant
is also the shape of the immediate basins of attraction,
which being wide reduces the number of times that the
noise causes a jump from one basin to another. There-
fore, it increases the persistence of a volatility return
regime. These features emphasize the volatility clus-
tering effect. The simulated distribution of the returns
has the usual properties already discussed, see Fig. 14c
and Table 4.
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Table 4 Statistics related to the returns obtained by simulating the asset pricing model (8) (and the random walk fundamental process)
under constellation of parameter values as in Fig. 7b, but σF = 0.04, see also Fig. 14

Statistics Average Min Max Volatility Skewness Kurtosis

Asset pricing model −0.0005 −0.8463 0.9552 0.1589 0.0979 7.3132

Fundamental process −0.0005 −0.1574 0.1356 0.0399 −0.0040 2.9976
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Fig. 15 Results are obtained by simulating the asset pricing
model (8) under constellation of parameter values as follows,
dR = 0.05, dL = 0.08, sR = −0.9, sL = −0.05, mR = 0.2,

mL = −0.02, σF = 0.1. The meaning of the graph is shown
in Fig. 12. Statistics related to the simulated distribution of the
logarithmic returns are shown in Table 5

Table 5 Statistics related to the returns obtained by simulating
the asset pricing model (8) (and the random walk fundamen-
tal process) under constellation of parameter values as follows,

dR = 0.05, dL = 0.08, sR = −0.9, sL = −0.05, mR = 0.2,
mL = −0.02, σF = 0.1, see also Fig. 15

Statistics Average Min Max Volatility Skewness Kurtosis

Asset pricing model −0.0001 −0.3389 0.3107 0.0854 −0.2036 3.6961

Fundamental process −0.0001 −0.3597 0.3421 0.0987 −0.0473 2.9338

The investigation so far conducted underlines that
the distribution of the simulated returns is very sen-
sitive to the configuration of the parameters and to
the level of noise. A qualitative analysis of the deter-
ministic skeleton of the model is therefore essential to
identify the sets of parameter values such that multi-
ple attractors exist and the volatility clustering effect
can arise. Moreover, an ad hoc calibration of the level
of noise is required to obtain a simulated distribution
of the returns that resemble the empirical one. This

underlines that it is also important to understand which
ones are the dynamic configurations of the determin-
istic skeleton of an asset pricing model that allow to
replicate stylized facts. Focusing again on the volatil-
ity clustering effect, we have already mentioned that
the financial literature on models with heterogeneous
expectations links this phenomenon to the coexistence
of a stable limit cycle and a stable equilibrium (usually
the fundamental equilibrium), as shown for example
in Gaunersdorfer et al. [23], where the coexistence of a
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stable steady state and a stable limit cycle occurs due to
a so-calledChenciner bifurcation.Here,wehave shown
that the coexistence of a stable equilibrium and a cycle
is also capable of generating the volatility clustering
effect; however, the coexistence of multiple attractors
occurs through border collision bifurcations instead of
smooth bifurcations. It is also worth noting that since
we have periodic orbits instead of limit cycles, we
observe some autocorrelation in the returns, which is
not observed in the empirical data. To overcome this
drawback, we try to take a step forward by underlining
a different configuration of the deterministic dynamics
of the model that is associated with the volatility clus-
tering phenomenon. Going back to the empirical data,
see Fig. 11, we observe that the high volatility periods
follow, or are sparked by, sharp drops in the price of an
asset or in the value of a market index. See, for exam-
ple, Fig. 11a, b. Moreover, being negative, the sample
skewness indicates that the empirical distribution of the
returns is left-tailed, i.e., extreme negative returns are
more frequent than positive returns. Qualitative-wise,
this phenomenon depends on the fact that asset prices
(or index values) tend to rise slowly and to have drastic
falls, causing extreme negative returns. This dynamics
can be represented by a qualitative configuration of our
model in which two equilibria coexist, a bear market
equilibrium and a bull market equilibrium. The equilib-
rium that represents the bull market is stable (P∗

R) and
has complex eigenvalues with real part that is close
to zero, while the equilibrium that represents the bear
market (P∗

L ) is stable, but it has eigenvalues with real
part almost equal to minus one. Therefore, the conver-
gence to the bull market equilibrium is slow. At a qual-
itative level, we can imagine a situation in which the
market slowly grows and converges to a stable bullmar-
ket configuration. However, it may suffer some random
fundamental shocks that force the price in a neighbor-
hood of the equilibrium of the bear market. The switch
between the bull market and the bear market occurs
through a negative jump in the value of the asset which
reflects in an extreme negative return. In the bear mar-
ket, the negative eigenvalue of the bear market equilib-
rium indicates overshooting dynamics, with the price
of the asset that jumps from above to below the bear
market equilibrium. Therefore, positive and negative
returns of large amplitude are recorded and a period
of high volatile returns persists till the trajectory of
prices goes back, forced by some random shock, to the
bull market. In a bull market, low volatility is recorded.

This configuration of the dynamics explains a possible
mechanism through which the phenomenon of volatil-
ity clustering is generated. Moreover, this qualitative
configuration of the dynamics is also able to replicate
the so-called rebound, which means that a sudden and
negative jump in the value of an asset is followed by
another almost equally strong positive rebound. The
stochastic dynamics of themodel, see Fig. 15 and Table
5, confirms that such a deterministic configuration of
the dynamics interplays with the fundamental random
process to generate simulated data that replicate the
empirical stylized facts, such as volatility clustering
and fat tails. In addition, the autocorrelation function
shows for the first time that the simulated returns are
not statistically correlated.

The investigation conducted underlines how differ-
ent configurations of the deterministic dynamics impact
the simulated distribution of the returns. Moreover, the
analysis is devoted to identify the deterministic dynam-
ics that more often are associated with a specific styl-
ized fact as it is the volatility clustering effect. In this
respect, this contribution differs from the ones where a
set of parameter values is identified via a trial-and-error
calibration, or via a more sophisticated calibration pro-
cedure, to show a good match between the statistical
properties of empirical and simulated data, see, e.g.,
Tramontana et al. [48].

6 Conclusions

The availability of always larger datasets of high-
frequency price series and the application of computer-
intensive methods for analyzing their properties have
opened new horizons to researchers in finance and have
emphasized the need to develop alternative modeling
paradigms. The statistical analyses of price variations
in financial markets, such as the stock market, reveal
important statistical properties of the asset returns such
as distributional properties, tail properties and extreme
fluctuations, pathwise regularity, linear and nonlinear
dependence of returns in time and across stocks. These
statistical properties invalidatemany of themainstream
asset pricing models and open the way to behavioral
finance, specifically to asset pricing models with het-
erogeneous and interacting traders. These models try
to provide a behavioral explanation for this set of prop-
erties that are common across many financial instru-
ments, markets and time periods and are classified as
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stylized facts. These financial models have a determin-
istic skeleton represented by nonlinear (often piecewise
smooth, or piecewise continuous) dynamical systems
that deserve a mathematical investigation.

The current contribution goes in this direction and
our goal in this work has been twofold. First, we have
developed a new model, which generalizes previous
studies performed with one-dimensional discontinu-
ous systems, showing that a two-dimensional exten-
sion leads to dynamics which are better related to real
markets. Second, new analytical results are derived that
explicitly give the border collision bifurcations condi-
tions related to basic cycles, which are the starting tools
in the period adding bifurcation structure. These ana-
lytical results are employed to insight on the economic
mechanisms behind time series of asset returns that are
consistent with empirical data.

The current work belongs to the realm of economic
and financial applications of piecewise linear maps and
can be extended in different directions. Regarding the
deterministic dynamics, we have only partially ana-
lyzed some regimes in terms of the possible values of
the parameters. Several different cases are also inter-
esting in the applied context, both with regular and
chaotic dynamics, which are left for future studies, and
clearly the related perturbed system may also be rel-
evant in the application here considered. Concerning,
instead, the modeling and normative aspects, to arouse
recently particular interest are the applications devoted
to study the effects of regulations or policy interven-
tions aimed to stabilize the financial markets. The pol-
icy interventions are based on taxes or trading limita-
tion mechanisms that impact on the smoothness of the
asset pricing models, see, e.g., Anufriev and Tuinstra
[1], in ’t Veld [49] andDercole andRadi [14]. An exten-
sion of our setup to study possible form of regulations
represents an interesting contribution. The relatively
simple deterministic structure of our setup justifies an
attempt to provide an empirical validation of the pro-
posed model. In this direction, we mention Boswijk et
al. [8], Hommes and in ’t Veld [28] and Schmitt [39].
The use of experiments to validate our setup is another
relevant and possible future work to put in the research
agenda.
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