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a Catholic University, Dipartimento di Scienze Economiche e Sociali, Via Emilia
Parmense 84, 29100 Piacenza, Italy

b Dept. Scienze Economiche, University of Urbino, Urbino 61029, Italy
c Dept. Economics, University of Ume˚a, Umeå 90187, Sweden
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Abstract

In this paper, we consider a two-dimensional map (a duopoly game) in which the fixed point is destabilized via
a subcritical Neimark–Hopf (N–H) bifurcation. Our aim is to investigate, via numerical examples, some global
bifurcations associated with the appearance of repelling closed invariant curves involved in the Neimark–Hopf
bifurcations. We shall see that the mechanism is not unique, and that it may be related to homoclinic connections
of a saddle cycle, that is to a closed invariant curve formed by the merging of a branch of the stable set of the saddle
with a branch of the unstable set of the same saddle. This will be shown by analyzing the bifurcations arising inside
a periodicity tongue, i.e., a region of the parameter space in which an attracting cycle exists.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Economics distinguishes between a number of market forms on the basis of the number of competing
firms. Ranging from one supplier, the monopolist, the path goes over two suppliers, duopoly, a few
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suppliers, oligopoly, many suppliers, polypoly, to perfect competition. In the last case, each supplier is so
small that it cannot in any way influence market price. In the opposite case, the monopolist deliberately
limits supply so as to be able to charge a high market price to the end of obtaining a maximum monopoly
profit. The cases of duopoly and oligopoly are the most complicated, because each competitor has to
take account not only of consumer demand, as reflected in the demand function, but also of the expected
retaliations of the competitors. Oligopoly theory is one of the oldest branches of mathematical economics,
created in 1838 by the mathematician Augustin Cournot[9].

In Cournot’s version, the competitors use their supply as the instrument for competition, and price
results from the joint action of the different suppliers. This was, later, harshly criticised by Bertrand[5]
in 1883, through a rather confused argument, later made precise by Egdeworth[10]. The argument was
that price rather than quantity should be taken as the strategic instrument of the competitors. From this,
the theory of product differentiation was born and got its final shape in Chamberlin’s famous work[8] of
1932. On the basis of this, economists distinguish between Cournot oligopoly and Bertrand oligopoly. In
the long run, however, Cournot’s version was not notably affected by the objections, and more has been
written about the Cournot version than about any alternative.

Also, very early, it was realized that the Cournot duopoly model might lead to complex dynamics. In
1978, Rand[20] suggested that, under convenient assumptions, duopoly theory would lead to complex
dynamic phenomena: orbits of any periodicity, as well as quasi-periodic and chaotic ones, along with
multistability, and in the same year Poston and Stewart elaborated this further[19]. In neither, however,
any substantial assumptions in terms of economic theory were given for how the shape of the so called
reaction functions, i.e., the functions showing how the supply of each dupopolist depended on that of
the competitor, might arise. In economics textbooks, these reaction functions were always displayed as
straight lines, but Rand suggested upside down parabola shapes, which might even intersect in several
points (so called Cournot equilibria).

Such shapes can be obtained in several ways, for instance, through production externalities. The present
paper is not a proper place to discuss such diversity and multiplicity. Among the numerous references
listed in [21,18], the reader can find many cases where Rand types of reaction functions arise. We just
cite the works by Bischi and Kopel[6,7], which emphasize the importance of global analysis in cases
with multiple Cournot equilibrium points (also called Nash equilibria in honour of a much later Nobel
Prize winning generaliziation of the concept to a game theoretic setting).

The perhaps simplest case, where these Rand type reaction functions arise, was suggested by one of
the present authors in 1991. See[16], where the assumption of an isoelastic demand function was just
combined with constant marginal costs, and actually resulted in complex dynamics of the types described
by Rand and Poston and Stewart.

In its original form, the model has a unique Cournot equilibrium point, and it displays a period doubling
cascade to chaos. The same behavior was observed in a modified version, studied in[4], where the regions
of positive trajectories of the model were focused, along with the global bifurcations in the attraction
basin of the fixed point.

A different dynamic behavior was observed in the “triopoly” case (i.e., assuming three producers instead
of two): in [2], it is shown that the Cournot equilibrium point loses stability via a subcritical Neimark–
Hopf (N–H) bifurcation, where the repelling invariant curveΓu seems to appear with an attracting one
(very close toΓu), hence resulting in multistability (i.e., the coexistence of two different attractors).

Moreover, the same bifurcation, leading to two closed invariant curves (one attracting and one repelling),
was observed in the duopoly models introduced in[16], provided the competitors react through an adaptive
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adjustment process, i.e., always move to a weighted average of their previous moves and their calculated
new best replies. This is shown, for instance in[15] (though assuming slightly different cost functions)
and in[3]. In both these papers, a constraint on the positivity of the quantities produced is explicitly stated.
In [3], the appearance of the two invariant curves was related to a particular kind of bifurcations, typical
of piecewise smooth maps, the family to which these cases belong. However, the mechanism described
there, as an explanation to how the invariant curves are born, is not observed in the entire parameter range.
The two invariant curves can also appear far from the constraint, in a way similar to the triopoly case. To
our knowledge, this last bifurcation mechanism has not yet been investigated in detail, and this will be
the subject of our paper.

Numerical simulations of the maps studied in the works cited above may suggest a saddle–node
bifurcation of closed invariant curves, given by the merging of two curves, one attracting and one repelling,
followed by their appearance/disappearance (depending on the changes in the parameters). However, as
remarked in[13], while this bifurcation is quite common in flows, it is an exceptional case when dealing
with two-dimensional maps: In discrete dynamical systems, many global bifurcations involving closed
invariant curves are still open problems.

The aim of this paper is to investigate the mechanism involved in the appearance of the two closed
invariant curves, in a simpler model than those cited above: Introducing the same economic assumptions
as the duopoly model in[16] and an adaptive adjustment process.

We shall see that the bifurcation mechanism may be associated with a pair of cycles, a saddle cycle and
an attracting one (node or focus), and the appearance/disappearance may be related to a saddle-connection,
calledhomoclinic connection. A homoclinic connection of a saddle is a closed invariant curve formed by
the merging of a branch of the stable set1 of a saddle cycle with a branch of the unstable set of the same
saddle, thus forming a closed connection among the periodic points of a saddle cycle. This structurally
unstable situation causes a bifurcation between two qualitatively different dynamic behaviors: On one
side of the transition closed invariant curves do not exist, while they exist on the other side, and may
be homeomorphic to a circle (saddle–node connection or quasiperiodic trajectories) or not (saddle-focus
connection). The study of this bifurcation mechanism involves the analysis of the stable and unstable
manifolds of the saddle. We check the bifurcation looking at the different dynamic behaviors of the
branches. As such a behavior cannot be predicted by a local analysis, the contact between branches strongly
depends on the nonlinearity of the map, that is, this bifurcation can be classified as aglobal bifurcation.

The plan of the work is as follows. In the next section, we deduce the duopoly model, its fixed points
and their local stability analysis, proving that the Cournot point, sayE∗, loses stability via a subcritical
N–H bifurcation. In Section3, we emphasize the bistability regime occurring below the N–H bifurcation
curve in the parameter plane, together with the appearance, in the phase plane, of two closed invariant
curves. A repelling one, which bounds the basin of attraction of the Cournot pointE∗ (and is involved
in its subcritical N–H bifurcation), and an attracting one, which may be a saddle–node connection or a
saddle–focus connection. A periodicity tongue is numerically investigated, and we show that the global
bifurcations leading to the closed invariant curves may be homoclinic connections of saddles. Section3.1
deals with a first homoclinic connection leading to a repelling closed curve and to an attracting saddle–

1 We recall that the stable and unstable sets of a saddlep∗ of a mapG are, respectively, defined as

WS(p∗) = {x : lim
n→+∞

Gn(x) = p∗}; WU(p∗) = {x : lim
n→+∞

G−n(x) = p∗}.
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focus connection. Section3.2shows a second homoclinic connection leading to another attracting closed
invariant curve and to the coexistence of three attractors. Section3.3 illustrates a conjecture, associated
with a generic bifurcation leading (always via a homoclinic connection) to the appearance of the two
closed invariant curves as saddle–node connections. Section4 concludes.

2. The model

The model we consider is the two-dimensional map

M :


x

′ = x+ λ
(√

y

k
− x− y

)
y′ = y + λ (√

x− x− y) (1)

where the symbol prime (′) denotes the unit time advancement operator, i.e., ifx is the value at time,
t − 1, x′ denotes the value at timet.

The mapM in (1)depends on two parameters (λ, k) and, as we shall see in the next subsection, economic
considerations lead us to considerλ ∈ (0,1) andk > 1. Hence, the region of interest in the parameter
plane is

Ω = (0,1) × (1,∞).

The mapM is defined only in the positive quadrant of the planeR
+ (where we include the axes, that is,

x ≥ 0 andy ≥ 0), which is not a trapping set. Thus, a first problem arises in studyingM, related to the
determination of the set, sayF, in which the orbits of the dynamic model are well defined, i.e., the set

F = {(x, y) ∈ R
+ : Mn(x, y) ∈ R

+ ∀n ≥ 0}. (2)

We analyzed a similar problem in[3], where it was shown that the regionF is bounded by the preimages2

of the y-axis, obtained in a finite number of steps, or as a limit set of the preimages. In particular, the
rank-1 primage of the vertical axis is a curve issuing from the point (0,1/k) of the phase plane. Thus,
increasing the value of the parameterk, the regionF in which the map is a dynamical system decreases
in size. And at high values ofk, for the mapM in (1), the boundary of the setF plays an important role
in the appearance of a single repelling closed invariant curveΓu. In fact, when the number of preimages
giving F tends to infinity thenΓu appears: it is the boundary of the regionF and also the boundary of
the basin of the stable fixed point. However, in this paper, we are interested in lower values ofk, for
which the regionF is quite wide, and its shape is not relevant to our study. Our object is to investigate
the appearance (insideF ) of the repelling closed invariant curveΓu which, at low values ofk, is often
related to the appearance of also an attracting one,Γa, as shown inFig. 1a. Γu always bounds the basin
of attraction ofE∗. Fig. 1b and cwill be discussed in Section3.

As stated in the introduction, the aim of the present paper is to study some global bifurcations related
to the appearance of two such curves. Before this, let us give a short explanation of the economic context
in which the map(1) has its foundation, and perform the local stability analysis of its fixed points,
preliminary to our study.

2 Observe that the mapM is noninvertible. However, the bifurcations described in this paper do not involve this property of the
map. For this reason, we do not present here the related Riemann foliation of the phase plane, which can be found in[3].
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Fig. 1. (a)k = 7.40007;λ = 0.835. Appearance of the repelling closed invariant curveΓu related also to the appearance of
an attracting one,Γa. The enlargement corresponds to the square in (a). (b)k = 7.40715;λ = 0.835. The attracting curveΓa
consists in the saddle-node connection. (c)k = 7.419;λ = 0.835. The periodic pointS1, born together withN1, moves towards
N6.

2.1. The economic model

The mapM in (1) comes from an economic application, that we shall briefly illustrate (for a more
exhaustive introduction see[3,16,17]). It describes the strategic behavior of two competitors which
produce an homogeneous good. In this contest, Cournot’s duopoly theory suggests that each competitor
has to produce the quantity maximizing its profit, which depends on the expected production of the
opponent.

We assume that

• the demand function of the good is isoelastic, i.e.,Q = 1/p, whereQ is the total demand andp is the
price of the good;
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• the costs are linear,Ci (q) = ciq, where the marginal costsci are positive.

From these hypotheses, one immediatly obtains the profit function:

Ui(qi, qj) = qi

qi + qj − ciqi, (3)

wherei, j = 1,2, j �= i andqi ≥ 0 are the quantities of the two producers.
The optimal choice of competitori, given the expected production of its opponent,qe

j, is

Ri(q
e
j) =

√
qe
j

ci
− qe

j. (4)

This is usually called thebest reply function, or reaction function.
If the two firms have full information about the market and the competitor, they immediately choose

the intersection point of the two reaction functions, that is, the so calledCournot equilibrium point

E∗ = (q∗
1, q

∗
2) =

(
c1

(c1 + c2)2
,

c2

(c1 + c2)2

)
(5)

Here, we assume that the two firms at each stage expect production of the competitor to remain the same
as in the previous period, i.e.,

qe
i (t) = qi(t − 1). (6)

Moreover, at each step, knowing their lack of information about the move of the opponent, the competitors
do not immediately jump to the optimum predicted by the best reply function. So, they adaptively adjust
their previous decision in the direction of the new optimum:{

q1(t) = (1 − λ)q1(t − 1) + λR1(q2(t − 1))

q2(t) = (1 − µ)q2(t − 1) + µR2(q1(t − 1))
(7)

whereλ andµ are the two adjustment speeds (0< λ, µ < 1).
Substituting in(7) the best reply functions(4), and using the assumption in(6), we obtain the following

two-dimensional map

T :



x′ = (1 − λ)x+ λ

(√
y

c1
− y

)

y′ = (1 − λ)y + µ
(√

x

c2
− x

) (8)

where the variablesx andy denote the quantitiesq1 anq2, respectively.
Finally, the mapM we are looking for is topologically conjugated to the mapT in (8) with λ = µ. In

fact, it can be proved (see[3]) that the marginal costs (c1, c2) can be replaced (via a change of coordinates)
by (k,1) with k = c1/c2. Thus, assumingk > 1, as we do, we simply mean that the index 1 denotes the
producers with higher marginal cost.
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2.2. Fixed point and local stability

In this subsection, we study the local stability of the fixed points of the mapM in (1), as the parameters
(λ, k) vary in the region of interest, that isΩ = (0,1) × (1,∞).

It is simple to obtain the fixed points, which are

O∗ = (0,0)

E∗ =
(

1

(k + 1)2
,

k

(k + 1)2

)
.

As usual, we study the local stability of a fixed point by using the eigenvalues of the Jacobian matrix of
M, which is given by

J (x, y) =




1 − λ λ

(
1

2
√
ky

− 1

)

λ

(
1

2
√
x

− 1

)
1 − λ


 . (9)

From(9), we deduce that inO∗, the map is not differentiable, but as (x, y) tends to (0,0) one eigenvalue
of J(x, y) tends to infinity, andO∗ results in an unstable fixed point.

For the other fixed pointE∗, we can state the following:

Proposition 2.1. The fixed pointE∗ is a stable focus in the subset ofΩ defined by

Ωstab= {(k, λ) : 0< λ < f (k)} (10)

where

f (k) =



1 if 1 < k ≤ 3 + 2
√

2,
8k

(1 + k)2
if k > 3 + 2

√
2.

.

Proof. The Jacobian matrix at the fixed pointE∗ is

J∗ =


 1 − λ λ

1 − k
2k

λ
k − 1

2
1 − λ


 (11)

and its characteristic polynomial can be written as

p(S) = [S − 1 + λ]2 + λ2(1 − k)2

4k
.

Given the positivity of the parameterk, it is immediate to observe thatp(S) has always the complex roots

S = 1 − λ+ iλ(k − 1)

2
√
k

(12)
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and its conjugatēS, i.e., the fixed pointE∗ is a focus. Moreover, the eigenvalues are inside the unit circle
(andE∗ is stable), if and only if

|S|2 = (1 − λ)2 + λ2(1 − k)2

4k
< 1. (13)

Solving (13) with respect toλ and recalling that such a parameter must be less than 1, we obtain as
solution set exactlyΩstabdescribed in(10).

The stability region of the fixed point is shown inFig. 2. The portion of the curveλ = 8k/(1 + k)2

belonging to the frontier of the setΩstab defines aN–H bifurcation curve, i.e., the locus of parameter
values at which a N–H bifurcation takes place.

Proposition 2.2. If k > 3 + 2
√

2, at the bifurcation values

λ = 8k

(k + 1)2
(14)

a subcritical Neimark–Hopf bifurcation takes place.

Proof. From Proposition 2.1, we have that the complex eigenvalues ofJ(E∗) in (11) have modulus
one when(14) holds. Moreover, it is simple to verify that ifλ < 1 andk > 3 + 2

√
2, then|S|j �= 1,

j = 2,3,4. This proves that crossing the curve in(14)a N–H bifurcation takes place. Finally, computing
the coefficientsd anda of Theorem 3.5.2 in[11] (p.162), forλ < 1 andk > 3 + 2

√
2 we obtaind = 1

anda < 0. This proves that the N–H bifurcation is of subcritical type.�
Now, our aim is to investigate the subcritical N–H bifurcation. FromProposition 2.2, we know that

crossing (from below) the bifurcation curve in(14), an invariant repelling closed curve, coexisting with

Fig. 2. The stability region of the fixed pointE∗. The light gray square denotes the area shown inFig. 3.
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the stable focusE∗ and bounding its basin of attraction, must collapse inE∗, which becomes unstable after
the bifurcation. The next section is devoted to this invariant repelling closed curve: we shall investigate
the global bifurcation leading to its appearance.

3. Appearance of invariant closed curves

As we have proved in the previous section, we are faced with a subcritical N–H bifurcation of the
fixed pointE∗, so that we cannot expect to find in the (λ, k) parameter plane, above the bifurcation curve,
Arnold tongues like those occurring in the supercritical case. However, as the invariant curves appear
before the N–H bifurcation, the search of attracting cycles may be a helpful starting point also in our
analysis. Looking at the bifurcation diagram for the mapM in (1), we can observe some narrow regions
in which an attracting cycle exists. They are very few, very thin and with a tongue-like shape. We shall
call them periodicity tongues. An example is shown inFig. 3, in which an enlargement ofFig. 2shows
a periodicity tongue related to a cycle of period 9 (with rotation number 2/9): Such a tongue originates
below the Neimark–Hopf bifurcation curve and persists also after the bifurcation.

It is worth to note that the periodicity tongues appear only when the parameterλ is quite large (greater
than 0.7). This may be related to the fact that at small values ofλ the N–H bifurcation occurs at large
values of the parameterk, and whenk is large the definition setF in (2) is very small. This case (say
λ < 0.7 and high values ofk) is similar to the one considered in[3], and the bifurcation mechanisms
leads only to a repelling closed invariant curve. Such a curve results as the limit set of the preimages of
they-axis, and whenΓu appears it is tangent to they-axis: It is the frontier of the definition setF and also
the boundary of the basin of attraction of the fixed point (merging with it at the bifurcation value). Thus,
the appearance ofΓu is strictly related with the definition set of the mapM, and it is impossible to have
also an attracting closed curve or a cycle external toΓu (as it should belong to the region in which the
map is not defined).

Fig. 3. A periodicity tongue related to a cycle of period 9 (with rotation number 2/9). The pointsA, B1, B2 correspond to the
parameter values ofFig. 1. Sequences of parameter values close to the point O have been considered in Sections3 and 4.
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A different situation arises forλ > 0.7 when the parameterk is small, and the setF is larger: at its
first appearance the curveΓu is insideF, quite far from the coordinate axes, and also associated with
an attracting one (Γa). This is the case illustrated inFig. 1a. The values of the parameters inFig. 1a
correspond to those of the point A inFig. 3.

Let us explain first the different regions evidenced in this figure. When the parameters (λ, k) belong to
the lower gray region ofFig. 3, or to the white strip below the N–H curve, the fixed pointE∗ is stable. For
(λ, k) belonging to the white strip between the gray region and the N–H curve, besides the fixed point,
at least one other attractor exists. Inside the 2/9 periodicity tongue, one of the attractors is a cycle of
period 9. The boundary of the gray region denotes the existence of a global bifurcation leading to the
appearance of a repelling invariant curveΓu. The boundary of the 2/9 periodicity tongue is generally a
saddle-attracting node bifurcation. An example is given inFig. 1b and c, increasing the value ofk from
the pointA , following the arrow shown inFig. 3. When the parameters (λ, k) are in the pointB1 of Fig.
3, we enter the 2/9 periodicity tongue: a saddle–node occurs on the attracting closed invariant curveΓa,
in Fig. 1bthe periodic points of the saddle are very close to those of the attracting node. This bifurcation
is the analogue of ap/q frequency-locking in a standard Arnold tongue (cf.[22–24]). Inside a tongue a
periodic orbit of periodq exists such that the iteration visit all theq periodic points afterp turns around
the fixed point, and so the tongue is associated with the rotation numberp/q (2/9 inFig. 3). As it is shown
in Fig. 1b, soon after the bifurcation, the attracting curveΓa consists in the saddle–node connection: the
unstable branches of the saddle reach the node, constitutingΓa (while the stable branches of the saddle
are transverse toΓa). As k increases further, the points of the saddle move: the periodic pointS1 (seeFig.
1b), born together withN1, moves towardsN6 (seeFig. 1c) and merges withN6 (in a second saddle–node
bifurcation) when the parameters (λ, k) reachB2, the other boundary point of the 2/9 periodicity tongue.
Increasingk further, outside the 2/9 periodicity tongue, we still have an attracting invariant closed curve
Γa, and the numerical simulations show a trajectory onΓa which seems quasiperiodic. However, it is worth
to note that this may be due to numerical truncation errors, and the true orbit may also be associated with
a pair of cycles of high period.
Γu always bounds the basin of attraction of the fixed pointE∗, and it shrinks toE∗ as the parameters

approach the N–H bifurcation curve.
As we have seen above, inside ap/q periodicity tongue, generally the invariant attracting curve is given

by asaddle–node connection. However, the attracting invariant curve may also be given by asaddle–focus
connection(i.e., the unstable set of the saddle connects the periodic points of the focus). The difference
between the two situations is that in the first case the closed curve is homeomorphic to a circle while in
the second one, this does not occur, due to the spiraling of the unstable manifold of the saddle around the
focus. Indeed a saddle–focus connection has been observed when the parameters (λ, k) are taken close
to the origin of the periodicity tongue. We increasek moving the point along the arrow nearO in Fig. 3,
and the corresponding dynamic behavior is described in the next subsections.

3.1. First homoclinic connection and saddle–focus connection

To explain the mechanism which leads to the two closed invariant curves, let us first investigate a
particular situation of the 2/9 periodicity tongue inFig. 3, choosing the parameters near the origin (point
O in Fig. 3), in order to cross from the gray region directly into the periodicity tongue, avoiding the white
strip (which exists above the pointA in Fig. 3).
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Fig. 4. (a)k = 7.4278;λ = 0.8324. An attracting focus cycleCF of period 9 exists together with a saddle cycleCS of the same
period. The fixed pointE∗ is stable. The stable set of the saddleCS separates the basins of attraction ofCF andE∗, gray and
light gray points, respectively. (b)k = 7.4285;λ = 0.8324. The basin of attraction ofCF (always bounded by the the stable
set of the saddle) is larger. The two branches of the stable set (WS

1 (CS) = ∪ω1,i andWS
2 (CS) = ∪ω2,i), and of the unstable one

(WU
1 (CS) = ∪α1,i andWU

2 (CS) = ∪α2,i), of the saddle are also represented.

In the following analysis, we fixλ = 0.8324 and increasek, moving the point in the parameter plane
along a vertical path inside the 2/9 periodicity tongue, close toO. The starting value isk = 7.4278 (see
Fig. 4a), and in the phase space an attracting focus cycleCF of period 9 exists, as well as a saddle cycle
CS of the same period, and the fixed pointE∗ is still stable. The stable set of the saddleCS separates the
basins of attraction ofCF andE∗, B(CF) andB(E∗), respectively (gray and light gray points inFig. 4a).
The small shape of the basin ofCF suggests that we are quite close to the bifurcation which has given
rise to such an attracting cycle.

As the parameterk is increased, the basin of attraction ofCF (always bounded by the stable set of
the saddle) becomes larger, as we can see inFig. 4b, in which also the two branches of the stable set
(WS

1 (CS) = ∪ω1,i andWS
2 (CS) = ∪ω2,i), and of the unstable one (WU

1 (CS) = ∪α1,i andWU
2 (CS) = ∪α2,i),

of the saddle are indicated. We observe that the boundary of the basinB(CF) is given byWS
1 ∪WS

2 whereas
the unstable branchWU

1 converges toE∗ andWU
2 tends to the cycleCF. Observe also that each portion

ω1,i of the stable branch, turning around a periodic point of the focus approaches another periodic point
of the saddle. This is more evident inFig. 5 and its enlargement. In this figure, we can see thatB(E∗)
has a “spider” shape with nine thin strips as “legs”: this means that the two branches,WS

1 andWS
2 , of

the stable set of the saddle are close to each other and, as we can appreciate in the enlargement ofFig.
5, the branchWS

1 is very close to the branchWU
1 . More precisely, we have that the unstable branchα1,i

of the saddle periodic pointCS
i is very close to the stable branchω1,i+5 of CS

i+5. This denotes that we
are close to a global bifurcation. In fact, if we slightly increase the parameterk, as inFig. 6, an invariant
closed curveΓu bounds the basin of attraction of the fixed point and an attracting closed invariant curve
Γa exists, given by the saddle–focus connection.

Note that after the bifurcation the unstable branchα1,i has a different asymptotic behavior: it no longer
converges toE∗ but to the periodic pointCF

i+5, whereas the dynamic behavior ofα2,i is not changed, it
still goes toCF

i . The stable set of the saddle cycle separates the basin of the nine stable fixed pointsCF
i

of the mapM9, andΓu is the limit set of the branchWS
1 . This proves that the bifurcation giving rise to
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Fig. 5. k = 7.4288;λ = 0.8324. The basin of attraction ofE∗ has a “spider” shape with nine thin strips as “legs” : this means
that the two branches,WS

1 andWS
2 , of the stable set of the saddle are close to each other. In the enlargement of the rectangular

portion the unstable branchα1,1 of the saddle periodic pointCS
1 is very close to the stable branchω1,6 of CS

6.

Γu must involve the two branches of the stable and unstable set of the saddle, which have changed their
behavior, and we can explain such a change assuming anhomoclinic connectionat the bifurcation value.
The homoclinic connection is given by the merging of a branch of the stable set of a periodic point of a
saddle cycle, with the unstable branch of another periodic point of the same saddle, forming an invariant
closed curve connecting the periodic points of the saddle (for example, in our case, at the bifurcation
ω1,i+5 merges withα1,i, and so on cyclically). This structurally unstable situation causes the bifurcation

Fig. 6. k = 7.4289;λ = 0.8324. At a slight increased value ofk (with respect to the one used inFig. 5) an invariant closed curve
Γu bounds the basin of attraction of the fixed point and an attracting closed invariant curveΓa exists, given by the saddle–focus
connection. Note the different asymptotic behaviors of the unstable branchWU

1 and of the stable oneWS
1 .
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Fig. 7. Qualitative representation of an homoclinic connection which may cause the appearance of a repelling closed invariant
curve and a saddle–focus connection.

between the two qualitatively different dynamical behavior we detected (no closed curves on one side,
two closed curves on the other side).

We summarize inFig. 7, a qualitative sketch of this bifurcation (referring to hypothetical cycles of
period 5 with rotation number 1/5). Before the bifurcation,Fig. 7a, an attracting focus cycle coexists
with the stable fixed point; the basins of attraction of the two attractors are separated by the stable
manifold of the saddle cycle. The unstable branchWU

1 = ∪α1,i tends to the fixed point andWU
2 = ∪α2,i

to the focus cycle. As the bifurcation value is approached, the stable branchω1,i of the saddle periodic
point Si approaches the unstable branchα1,j of Sj, so preparing the homoclinic connection. At the
bifurcation (Fig. 7b) we have that the two branchesω1,i andα1,j merge giving rise to a connection
between the periodic points of the saddle cycle: the attracting cycle is external to such a connection and
the branchWU

2 still converges to it. The stable fixed point is internal to the saddle connection which
bounds its basin of attraction. Immediately after the bifurcation, an invariant repelling close curve is
created (from which the branchWS

1 comes out, rolling up). The unstable branchWU
1 converges to the focus

cycle, creating withWU
2 another closed invariant curve, attracting, given by the saddle–focus connection

(seeFig. 7c).

3.2. Second homoclinic connection and three attractors

In the previous subsection, we have seen a mechanism leading to the appearance of the invariant
repelling closed curveΓu (which will be involved in the subcritical N–H bifurcation), and an attracting
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one, made up by a saddle–focus connection. Thus, the parameters used inFig. 6 belong to the 2/9
periodicity tongue, and the stable cycle is a focus. Increasingk we shall see the disappearance of the cycle
of period 9, but this will occur after a second homoclinic connection.

An invariant attractive closed curveΓa will be created by a mechanism similar to the one previ-
ously described, but now involving the stable branchWS

2 and the unstable oneWU
2 of the saddle

cycle. Let us start from the situation shown inFig. 6: here the unstable branchWU
2 converges to

the attracting focus and the stable manifoldWS
2 comes from the boundary of the setF (defined in

(2)) and separates the basins of attraction of the 9 periodic points ofCF. As the parameterk in-
creases, each of the componentsα2,i+5 of WU

2 comes closer and closer toω2,i, belonging to the sta-
ble setWS

2 (seeFig. 8 and its enlargement). A contact between these two branches is then expected.
In fact, further increasing the parameterk (i.e., soon after the bifurcation),we observe that the two
branches change their dynamical behavior (Fig. 9a). The limit set ofWU

2 is now an attracting invari-
ant closed curveΓa, created by thehomoclinic connectionoccurring at the bifurcation value.WS

2 always
separates the basins of the periodic points ofCF for the mapM9, which are drastically reduced in
size.

As a consequence, the dynamical system has three coexisting attractors: the fixed pointE∗ (whose
basin of attraction is bounded by the repelling curveΓu), the attracting curveΓa and the focus-cycleCF of
period 9. Thus, we are still inside the 2/9 periodicity tongue. However, the two cycles of period 9 are no
longer connected, as they do not belong to a closed invariant curve. In fact, the basin of attraction ofCF

andΓa are separated by the stable set of the saddle cycleCS, which rolls up fromΓu. The coexistence of
the three attractors persists until the “death” of the two cycles, which occurs via a saddle–node bifurcation
(i.e., the focus cycle turns into node before merging with the saddle), as usually occurs at the exit of a
periodic tongue. This can be observed inFig. 9b, in which the basin of attraction ofCF is very small,
being the parameters close to the saddle–node bifurcation.

A qualitative sketch of the second homoclinic connection is given inFig. 10, involving cycles of period
5: the starting situation (Fig. 10a) assumes the existence of a heteroclinic connection between a focus-

Fig. 8. k = 7.4292;λ = 0.8324. As the parameterk increases, each of the componentsα2,i+5 ofWU
2 comes closer and closer to

ω2,i, belonging to the stable setWS
2 (α2,6 andω2,1 in the enlargement).
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Fig. 9. (a)k = 7.4293;λ = 0.8324. Coexistence of three attractors. The limit set ofWU
2 is an attracting invariant closed curve

Γa, created by the homoclinic connection. The basin of attraction ofCF andΓa are separated by the stable set of the saddle cycle
CS, which rolls up fromΓu (b) k = 7.4295;λ = 0.8324. The basin of attraction ofCF is very small, being the parameters close
to the saddle–node bifurcation.

cycle and a saddle cycle (the unstable manifold of the saddle reaches the periodic points of the focus), a
repelling closed curveΓu exists, boundary of the basinB (E∗), limit set of the branchWS

1 of the stable
set of the saddle. At the bifurcation value (Fig. 10b) the homoclinic connection of the periodic points of
the saddle takes place, due to the merging of the unstable branchWU

2 with the stable oneWS
2 . Its effect

Fig. 10. Qualitative representation of an homoclinic connection which may cause the appearance of an attracting closed invariant
curve around a stable focus cycle.
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is the creation of an attracting closed curve which encloses the cycle and the repelling curve. After the
bifurcation,Fig. 10c, we obtain three different attractors. The homoclinic connection vanishes, leaving
the attracting closed curveΓa, to which the unstable branchWU

2 tends. The focus cycle is still attracting,
but reached only by the unstable branchWU

1 . The two stable branches of the saddle separate the basins
of attraction of the focus cycle and the attracting curve, and have the repelling curveΓu as common limit
set.

Bifurcations similar to those described inFigs. 7 and 10are known to occur for flows in some resonant
cases of the supercritical Neimark–Hopf bifurcation (see[13]), and also in maps (see e.g.,[14]). Recently,
in [1] similar bifurcations have been observed in families of maps which have a fixed point loosing stability
both via a supercritical N–H bifurcation and a supercritical pitchfork (or flip) bifurcation. In this latter
paper, the analysis has been performed along a bifurcation path belonging to the instability region and
connecting the two bifurcation curves, and it is also shown that homoclinic connections are substituted
by homoclinic tangles (with chaotic dynamics), which is the situation most frequently observed in maps.
In our model, we have not detected such kind of phenomena, even if the numerical investigations have
been performed using up to nine decimal numbers to approximate the bifurcation values. Obviously, this
does not exclude the existence of homoclinic tangles; it simply proves that, if they occur, they involve a
very narrow range of the parameters.

Fig. 11. Qualitative representation of an homoclinic connection which may cause the appearance of a repelling closed invariant
curves and a saddle–node connection.
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3.3. Generic homoclinic connection and saddle–node connection

In the previous subsections, we have seen, by numerical investigation, how the closed invariant curves
Γu andΓa (existing when the parameters belong to the white strip inFig. 3, below the N–H bifurcation
curve) may appear by global bifurcations involving a saddle cycle (and the example has been taken
considering the parameters close to the origin of the 2/9 periodicity tongue).

Clearly, some global bifurcation must occur in the transition from the gray region to the white strip
in Fig. 3, and it is very difficult to investigate (as we cannot be helped from some local approximation
of our map). A typical numerical observation is the one already shown inFig. 1a, when the parame-
ters are in the pointA in Fig. 3. That is, we often observe the instantaneous appearance of two closed
curves, very close to each other, as inFig. 1a. Let us formulate a possible mechanism: We conjecture
that they appear via a bifurcation similar to the one represented inFig. 7, involving cycles of very
high period and an attracting node (instead of a focus). Due to the high period, the attracting saddle–
node connection seems to have quasiperiodic trajectories, and the node explains why the repelling and
the attracting invariant curves are so close to each other (the manifolds are not spiraling around a fo-
cus).

Our conjecture is summarized in the qualitative sketch of the homoclinic connection given inFig. 11
(involving a node cycle of period 5).

To conclude this section, we remark that the periodicity tongue considered in this section is not the
unique one. For example, a 3/13 periodicity tongue has been observed and close to its origin an attracting
period 13 focus-cycle exists (for example, atλ = 0.882321 andk = 6.903406). Another example is a
3/14 periodicity tongue, and close to its origin an attracting period 14 focus-cycle exists (for example,
atλ = 0.7875 andk = 7.938515). That is, also in these periodicity tongues we have observed the same
mechanisms of bifurcation as those described for the 2/9 periodicity tongue.

4. Conclusion

In a discrete dynamical system, i.e., an iterated map, the global bifurcations involving closed invariant
curves have been less investigated, and several open problem are still present, as remarked in[13]. In
particular, the saddle–node bifurcations of closed invariant curves (given by the merging of two closed
invariant curves, one attracting and one repelling, followed by their appearance/disappearance), quite
common in continuous flows, are instead exceptions when we deal with two-dimensional maps.

This paper focus on the open problem related to the mechanism giving rise to the appear-
ance/disappearance of two invariant closed curves, one attracting and one repelling, in two-dimensional
maps.

Considering a duopoly model in which the Cournot equilibrium point coexists with an attracting closed
curve and it is destabilized through a subcritical N–H bifurcation, we have shown that such a mechanism
may be associated with a saddle-connection. This saddle-connection, also calledhomoclinic connection,
is defined as a closed invariant curve formed by the merging of a branch of the stable set of a periodic
point of a saddle cycle with the unstable branch of another periodic point of the same saddle, thus forming
a closed connection among the periodic points of the saddle. It is a structurally unstable situation, which
causes a bifurcation between two qualitatively different dynamic behaviors. As this kind of bifurcation
cannot be predicted by a local investigation, it can be classified as aglobal bifurcation.
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In the model, here considered, homoclinic connections causing the appearance disappearance of closed
invariant curves are associated to a subcritical N–H bifurcation and occur when the fixed point is still
stable. Approaching the N–H bifurcation the unstable invariant closed curve becomes smaller and smaller
and merges with the fixed point at the bifurcation, leaving the stable invariant closed curve as unique
attractor. In discrete models, this sequence of bifurcations, also calledcrater bifurcationin the economic
literature (see[12]), seems to be a typical situation in which to observe the scenario we have described. But
this scenario may arise in different situations, not necessarily involving a subcritical N–H bifurcation. For
example, it has been observed also in[1], along a bifurcation path which connects a pitchfork bifurcation
curve to a supercritical Neimark–Hopf one.

Given the attention paid in the economic literature to the onset of endogenous, long-run fluctuations
in economic systems, the bifurcation scenario we have detected may find important applications. Indeed,
it implies multistability situations and may deserve to explain phenomena like hysteresis loops and
catastrophic transitions.
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