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Abstract

This paper reconsiders the Cournot oligopoly (noncooperative) game with iso-elastic demand and constant marginal costs, one of

the rare cases where the reaction functions can be derived in closed form. It focuses the case of three competitors, and so also extends

the critical line method for non-invertible maps to the study of critical surfaces in 3D. By this method the various bifurcations of the

attractors and their basins are studied. As a special case the restriction of the map to an invariant plane when two of the three ®rms are

identical is focused. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Oligopoly, though contextually an intermediate situation between monopoly and perfect competition, is
analytically a more complex case. The reason for this is that the oligopolist must consider not only the
behaviors of the consumers, but also those of the competitors and their reactions. It is well known that the
®rst formal theory of oligopoly goes back to A. Cournot, in 1838 [6], who treated the case with no re-
taliation at all, so that in every step each oligopolist assumes the last values taken by the competitors
without any estimation of their future reactions. The adjustment process was assumed to lead to a ®xed
point, called Cournot equilibrium, independently of its stability character. More recent works have shown
that the Cournot model may lead to cyclic behavior, and Rand proved in [28] that under suitable conditions
the outcome may be chaotic. However his work does not include any economic assumption leading to this
behavior. This was ®rst done in [24,26], where such substantial assumptions were supplied in terms of an
`iso-elastic' demand function (i.e. re¯ecting a situation where the consumers always spend a constant sum
on the commodity, regardless of price) and constant marginal costs. In the papers cited above only the
duopoly case is considered, while in [25] a third producer is introduced (see also [27]), starting the study of a
more complex situation, but also more interesting: a market with three oligopolists.

The recent interests among researches for the dynamics associated with repeated games is documented
by the wide production on this subject (see, among others, [2±4,12,19]). In particular, in [10,11] it is shown
how the analysis of the only attractors of a Cournot game may not be enough in order to understand the
dynamical behaviors, and the role played by the global basins of attraction (which may have complex
structure) is evidenced. We shall follow the same local±global approach.

The aim of our work is to study carefully the situation of a market with three oligopolists by an analysis
of the local and global properties of the map describing the adjustment process, assuming the oligopolists
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adjusting their strategy simultaneously. Besides the local bifurcations, we investigate the basins of attrac-
tion of coexisting attracting sets, in some particular situations, making use of `guided' numerical simula-
tions, not only suitable but necessary due to the complexity of the model.

The paper is organized as follows. In Section 2 we introduce the three-dimensional model, de®ning the
region of interest both for the mathematical system (admissible trajectories and region) and for the eco-
nomic application (feasible trajectories and region). The local stability analysis on the unique Cournot
equilibrium point is then recalled. In Section 3 we show some of the dynamics of interest, that is, how wide
the basin of attraction may be, for the equilibrium point, when it is the only attractor, showing that the
basin may become not simply connected, causing the appearance of non-admissible trajectories near the
Cournot point. Also the coexistence of the stable Cournot point with a wide `cycle' (really a closed invariant
curve of the space), which attracts most of the feasible trajectories, is evidenced, announcing a Neimark±
Hopf bifurcation of subcritical type. To understand the qualitative changes in the shape of the basin of
attraction the critical surfaces of the map are used. These are introduced in Section 4. In Section 5 we prove
some symmetry properties of the map, so that the three parameters of the model can actually be reduced to
two, giving the topological conjugacy for the generic case. In Section 6 we study the dynamics of the model
in the particular case in which two of the three marginal costs of the oligopolists are equal. In this case the
asymptotic states belong to an invariant plane, on which the restriction of the map is simpler to analyze. It
is shown that the three-dimensional basin undergoes a global bifurcation due to a contact between the
critical plane and the boundary of the admissible region, and that the ®rst contact is followed by other
similar contacts causing the appearance of more `holes' of non-admissible trajectories in the basin of at-
traction of the di�erent kind of attraction set. Section 7 shows the topological conjugacies of the other
possible cases with two equal marginal costs. The dynamic structure both of trajectories (enclosed inside an
absorbing area completely determined) and of their basin of attraction, explained in the particular case, are
then of help in understanding the generic cases with three di�erent marginal costs considered in Section 8.

2. The model

We consider a Cournot oligopoly with three players. As in [24,25] we assume a demand function such
that the price p is reciprocal to the total demand. Denoting by x; y and z the supplies of the competitors, the
pro®ts are, respectively, given by

U � x
x� y � z

ÿ ax; V � y
x� y � z

ÿ by; Z � z
x� y � z

ÿ cz; �1�

where a; b and c represent the constant marginal costs of the oligopolists, and thus are positive parameters.
In equilibrium, it is simple to obtain the reaction functions of the three oligopolists, given by

r1�y; z� �
����������
y � z

a

r
ÿ y ÿ z;

r2�x; z� �
����������
x� z

b

r
ÿ xÿ z; �2�

r3�x; y� �
�����������
x� y

c

r
ÿ xÿ y:

Assuming, with Cournot, that the players move simultaneously at each stage of the game, by using their
reaction function (2), we have the three-dimensional (3D henceforth) discrete model

T :

x0 �
����������
y � z

a

r
ÿ y ÿ z;

y0 �
����������
x� z

b

r
ÿ xÿ z;

z0 �
�����������
x� y

c

r
ÿ xÿ y;

8>>>>>>><>>>>>>>:
�3�
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where the symbol 0 denotes the unit time advancement operator (i.e. if �x; y; z� represents the vector of
choices at time t, then �x0; y0; z0� gives the choices at time �t � 1�). Our aim is to understand the dynamic
behaviors of the map (3) as a function of the positive parameters �a; b; c� of the model. It is immediate to see
that the map T is not de®ned in the whole three-dimensional space. The natural domain of de®nition of T is
the region, say D, given by the set of points �x; y; z� which satisfy

D � f�y � z�P 0; �x� z�P 0; �x� y�P 0g: �4�
But we have to consider a `repeated' game, and thus we are interested in a subset of this set, which we call

S, which consists in the points �x; y; z� for which we have T n�x; y; z� 2 D for any n P 0. We shall call ad-
missible such points and trajectories in S. However, not all the admissible trajectories are meaningful in our
case. In fact, for the economic interpretation of the trajectories a negative value of a state variable is not
acceptable, so that we have to restrict our interest to a lower set, which we shall call feasible points, denoted
by F, of positive trajectories, that is, the locus of admissible points for which we have T n�x; y; z� 2 S \R3

�
for any n P 0 (and we shall can infeasible the other points and trajectories in S). Obviously F � S � D.

S � f�x; y; z� 2 D : T n�x; y; z� 2 D for any n P 0g;
F � f�x; y; z� 2 S : T n�x; y; z� 2 S \R3

� for any n P 0g:

The existence (and structure) of such a trapping region F of feasible trajectories is not easy to ascertain.
We can be sure of its existence when the map T has an attracting (i.e. asymptotically stable) set belonging to
R3
� (®xed point or something else), and we shall see how it may be determined.
It is easy to verify that the Cournot equilibrium (Nash equilibrium of the game) is a ®xed point of T, say

E�, given by

E� � 2�ÿa� b� c�
�a� b� c�2 ;

2�aÿ b� c�
�a� b� c�2 ;

2�a� bÿ c�
�a� b� c�2

 !
: �5�

In order to analyze both when the ®xed point is positive and its local stability character, it is suitable to
consider the following ratios of the parameters:

h � b
a
; k � c

a
: �6�

Then, it follows immediately that E� 2 R3
� (and being a ®xed point we also have that E� 2 S \R3

�� i�

h� k > 1;

hÿ k < 1; �7�
hÿ k > ÿ1

these relations detect a strip in the `reduced' parameter plane �h; k� inside which h and k are let to vary in
order to have admissible and feasible trajectories in our game (see Fig. 1).

The ®xed points of T are the solutions of the algebraic system:

x �
����������
y � z

a

r
ÿ y ÿ z;

y �
����������
x� z

b

r
ÿ xÿ z;

z �
�����������
x� y

c

r
ÿ xÿ y;

and besides the point E� given above, also the origin satis®es these equations. However, the origin is not a
feasible point, moreover, it is easy to see that the function T is not di�erentiable in such a point and a simple
view of the Jacobian matrix of T ; J�x; y; z�, given by
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J�x; y; z� �

0
1

2
�����������������
a�y � z�p ÿ 1

1

2
�����������������
a�y � z�p ÿ 1

1

2
����������������
b�x� z�p ÿ 1 0

1

2
����������������
b�x� z�p ÿ 1

1

2
�����������������
c�x� y�p ÿ 1

1

2
�����������������
c�x� y�p ÿ 1 0

266666664

377777775 �8�

shows that the eigenvalues of J tend to in®nity as �x; y; z� tends to the origin. Thus we can consider the
origin an unstable ®xed point of the map. More di�cult is to determine the stability conditions for the
feasible ®xed point E�. The Jacobian matrix evaluated at E� becomes

J � �

0
b� cÿ 3a

4a
b� cÿ 3a

4a
c� aÿ 3b

4b
0

c� aÿ 3b
4b

a� bÿ 3c
4c

a� bÿ 3c
4c

0

26666664

37777775: �9�

It turns out to be suitable to rewrite it as follows:

J � �
0 A A
B 0 B
C C 0

24 35; �10�

where

A � h� k ÿ 3

4
;

B � k � 1ÿ 3h
4h

; �11�

C � 1� hÿ 3k
4k

;

Fig. 1. Stability region of the Cournot point E� in the `reduced' parameter plane �h; k�. In the dark gray strip, E� is stable with positive

coordinates. kbif ;1 and kbif ;2 are the bifurcation values for the 2D map obtained considering two producers with identical marginal costs

(i.e. h � 1).
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while h and k are the reduced parameters de®ned in (6). Then, being tr�J �� � 0, and setting D �
Det�J �� � 2ABC; P � �AB� AC � CB�, we get the characteristic polynomial

Det�J � ÿ kI� � p3�k� � ÿk3 � Pk� D: �12�
By applying the Samuelson stability conditions (cf. [15]) to the polynomial (12), we get the following

system of inequalities (which characterize the stability region of E�):

1ÿ P � D > 0;
1ÿ P ÿ D > 0;
1� P ÿ D2 > 0

�13�

a fourth condition being always satis®ed. However, it is better to rewrite the conditions given in (13)
substituting the expressions of P and D as a function of A�h; k�; B�h; k� and C�h; k� so that we can obtain a
region in the reduced parameter plane �h; k�. Avoiding such long explicit expressions, we give directly the
outcome in the �h; k�-plane. It turns out that the second condition in (13) is always satis®ed, while the last
inequality implies the ®rst one. Thus the stability region is obtained by use of the third condition only, and
it is shown in Fig. 1, as obtained by use of a computer.

Its boundary is given by a curve crossing which we have a couple of complex eigenvalues whose modulus
crosses the unitary value. This means that the loss of stability of E� can only occur via a so-called Neimark±
Hopf bifurcation, i.e. a couple of complex eigenvalues cross the unit circle in the complex plane, while the
third real eigenvalue persists inside the unit circle. We shall investigate by the use of numerical simulations,
by varying the marginal costs, the type of bifurcation that occurs, i.e. whether it is supercritical or sub-
critical. We recall that a Neimark±Hopf bifurcation is supercritical if crossing the bifurcation value the ®xed
point becomes unstable and a stable (i.e. attracting) closed invariant curve is created `around' the unstable
®xed point. It is subcritical if a repelling closed invariant curve exists around the stable ®xed point, de-
creasing in size and merging with the ®xed point at the bifurcation value `transforming' it into an unstable
one. The rigorous proof that the bifurcation is supercritical or subcritical requires a center manifold re-
duction (see e.g. [16]), which is not so simple in a 3D map, so that we shall detect the closed curves, either
before or after the crossing of the stability region, by means of numerical evidence. We shall see that in the
two arcs of interest for our applications, belonging to the strip of positivity of E� (see the two arcs in Fig. 1,
one on the lower left and one on the upper right of the strip), the bifurcation is always of subcritical type.
Thus a repelling invariant closed curve appears around the stable ®xed point, causing a sudden reduction of
its basin of attraction. Crossing the bifurcation curve in other points it is possible to have a bifurcation of
supercritical type, however we have never found it, that is, we have never seen the appearance of a stable
curve around the unstable ®xed point, also in the region of phase-space in which the trajectories, although
admissible, are unfeasible.

3. Examples

Let us examine some of the dynamical phenomena of interest. Consider ®rst the map T with parameters
�a; b; c� � �1; 3:8; 3� and increase c. For c � 3 we have the Cournot point E� is the only attractor and its
basin of attraction B�E�� is a connected volume of R3 which also corresponds to the set of admissible
trajectories S. We recall that the basin of an attractor is the set of points whose trajectories tend towards the
attractor. A section of the basin on the plane through the ®xed E� and the z-axis, say P�:

P� : y � m�x; m� � y�

x�
� aÿ b� c
ÿa� b� c

� 1ÿ h� k
ÿ1� h� k

;

is shown in Fig. 2(a). The white points denote the set S � B�E��, the gray points in D are the non-
admissible points. A global bifurcation occurs as c increases, at which the basin from simply connected
becomes connected with `holes'. An example is shown in Fig. 2(b). The ®xed point E� is still the only
attractor and a projection of its basin on the plane P� clearly shows a hole of non-admissible points, the
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gray points inside the basin B�E�� which is still made up of the white points (and constitute the set of
admissible trajectories S). In Fig. 2(c) the holes are bigger, and the attractor is a closed invariant curve Cs

(see also Fig. 2(d)) whose origin, as we shall see, is not due to the crossing of the Neimark±Hopf bifurcation
curve. A strange attractor is obtained at higher c values, an example is shown in Figs. 2(e) and 2(f). The
projections are always of basins on the plane P�.

Fig. 2. (a) A section of the basin of the stable ®xed point E� on the plane through E� and the z-axis (y � m�x). The white points denote

the set of admissible points, S � B�E��, the gray points in D are the non-admissible points. (b) The section of the basin of E� on the

plane y � m�x shows a hole of non-admissible points, the gray points inside B�E��. (c) The hole is bigger, and the attractor is now a

closed invariant curve Cs whose basin is given by the dark gray region. (d) Three-dimensional representation of the closed invariant

curve Cs. (e) A strange attractor obtained at a higher c value. On the plane y � m�x, the section of its basin is given by the dark gray

points. (f) Three-dimensional representation of the strange attractor.
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A similar sequence is observed decreasing c and crossing the bifurcation curve in the lower branch of
Fig. 1. Consider the parameters �a; b; c� � �1; 0:9; 0:35� and decrease c. For c � 0:35 we have a stable ®xed
point E� and the set of admissible trajectories S is given by the white points in Fig. 3(a) (on the plane P�),
which also gives the basin B�E��, while the gray points in D represent non-admissible trajectories. In the
phase-space R3 S is a simply connected volume, but as c decreases, again holes of non-admissible points
appear inside S and increase in size (see Fig. 3(b) at c � 0:25). The set S coincides with the basin B�E�� as
long as the ®xed point is the only attractor. In Fig. 3(c) we see that at c � 0:24925 two di�erent attractors
coexist, besides the stable focus E�, also a closed invariant curve Cs is attracting, and it attracts most of the
points in S (which is now the reunion of the two basins, B�E�� and B�Cs�). In the chosen plane P� the
frontier of the basin B�E�� is a closed curve, intersection of P� with a 3D closed surface, which seems
homeomorphic to a sphere. In the 3D space this surface, or frontier, is the stable manifold of a repelling
invariant closed curve. The presence of such a curve is due to a global bifurcation which gives simultaneous
origin to two invariant closed curves, one attracting and the other repelling. Such a bifurcation (known as
`saddle-node for cycles') is quite common in ¯ows, i.e. continuous time dynamical systems, but it does not
happen so often in 3D discrete systems.

Comparing the basins of the ®xed point E� in Fig. 3(b) and (c) it is clear how such a global bifurcation
corresponds also to a strong change in the basins of attraction of the ®xed point, and from now, on de-
creasing the parameter c, we shall see a progressive reduction of the size of that basin. In fact, decreasing c
the repelling closed curve reduces gradually in size, until it merges with the ®xed point at the bifurcation
value, turning it into repelling. It can be observed that setting the parameters near such a regime, the
Cournot equilibrium is locally stable, but the feasible strategies converging to it are only those in a very
small neighborhood of the equilibrium point, and the wider basin is that of the initial conditions leading to
permanent cyclic strategies.

After the bifurcation value the attracting closed curve still exists, and turns into a chaotic attractor as c
decreases. The study of these dynamics in the 3D space is not immediately intuitive, even if we know the
critical surfaces (or manifolds) which bound a trapping region. In Fig. 3(d) the attractor is a chaotic set with
a 3D structure, and we shall see that it can be enclosed inside an `absorbing volume' in the phase-space, to
which the chaotic set is tangent. Fig. 3(e) will be explained later, after the introduction of the critical
surfaces and the inverses of the map.

In order to better understand the dynamics of the model, in Section 6 we shall consider the particular
case obtained assuming that two producers have the same marginal costs �a � b�. In such a situation, the
plane x � y is invariant under the map (3). For the points belonging to that plane the dynamics can be
studied by use of the restriction of T to the plane, which is a two-dimensional (2D henceforth) map, easier
to analyze. Regarding the dynamics in the 3D space it can be shown that the invariant plane attracts many
feasible trajectories, being the transverse eigenvalues less than 1 in modulus. This example is noticeable
because it permits to better understand the global bifurcations which change the structure both of the
attractors and of the basins. Then it is easy to extend the results to the generic case.

Another important result, obtained by using the restriction of the map to the invariant plane, is related
to the region of admissible trajectories. We study the global bifurcations of such a region by means of the
critical curves and their contacts with the frontier of the region. Again these results may be extended to the
general case, for example, the bifurcations in the basins seen in the examples of this section will be explained
by using the critical surfaces of T.

4. The critical surfaces and the inverses of T

Some of the global bifurcations which cause changes in the basins of attraction can be explained making
use of the critical planes and critical surfaces of the map. It is easy to see that our model is a noninvertible
one, i.e. even if one point �x; y; z� 2 S is uniquely mapped into a point �x0; y0; z0� � T �x; y; z�, the rank-1
preimage of a point �x0; y0; z0� belonging to S may not exist or may be a set of ®nite number of distinct
points. Following [17,21], we recall that the critical points of rank-0 are points in which the Jacobian matrix
of T vanishes and the map is not locally invertible. The set of such points are called Critical Surfaces (CS),
of rank-0, and denoted by CSÿ1 (or critical manifolds, our map being a 3D one, while they are called critical
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Fig. 3. (a) For a di�erent choices of the parameters (given in ®gure) E� is still a stable ®xed point. The set of admissible trajectories S

on the plane y � m�x is given by the white points, which also gives the basin B�E��. The gray points D represent non-admissible

trajectories. (b) On decreasing c, holes of non-admissible points appear inside S. (c) Two di�erent attractors coexist: the stable focus E�

and an attractive closed invariant curve Cs born via a `saddle-node for cycles' bifurcation. Now S, still projected on the plane y � m�x,

is the reunion of the two basins, B�E��, white points, and B�Cs�, dark gray points. The frontier of B�E�� is a repelling closed curve.

(d) For smaller values of c;E� becomes unstable via a subcritical Neymark±Hopf bifurcation and Cs turns into a chaotic attractor. Here

the gray points are the projection on the plane y � m�x of an absorbing volume, bounded by portions of critical surfaces. (e) The three-

dimensional representation of the chaotic set with the absorbing volume.
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curves and critical points in maps of dimension two and one, respectively). From the Jacobian matrix given
above (8) we have

Det�J�x; y; z�� � 2
1

2
�����������������
a�y � z�p 

ÿ 1

!
1

2
����������������
b�x� z�p 

ÿ 1

!
1

2
�����������������
c�x� y�p 

ÿ 1

!
so that the locus Det�J�x; y; z�� � 0 is made up of three planes, portions of which constitute our critical set
CSÿ1 of rank-0, which is made up of the intersections of the domain of T with the planes of equation:
y � z � 1=4a; x� z � 1=4b; x� y � 1=4c. In order to distinguish the di�erent components of the critical
sets we shall call CS

�a�
ÿ1 the portion of the domain of T on the plane of equation y � z � 1=4a;CS

�b�
ÿ1 that on

the plane x� z � 1=4b and CS
�c�
ÿ1 the one on x� y � 1=4c, so that we have CSÿ1 � CS

�a�
ÿ1 [ CS

�b�
ÿ1 [ CS

�c�
ÿ1,

CS
�a�
ÿ1 � D \ y

�
� z � 1

4a

�
;

CS
�b�
ÿ1 � D \ x

�
� z � 1

4b

�
;

CS
�c�
ÿ1 � D \ x

�
� y � 1

4c

�
:

The images by T of such portions of planes are critical surfaces of rank-1, say CS � T �CSÿ1� where we shall
distinguish the three surfaces CS�l� � T �CS

�l�
ÿ1� for l � a; b and c. It is easy to see that the three surfaces CS�l�

are portions of planes:

CS�a� belongs to the plane x � 1

4a
;

CS�b� belongs to the plane y � 1

4b
;

CS�c� belongs to the plane z � 1

4c
:

We recall that the CS generally separate regions (or zones) of the phase-space, the points of which have a
di�erent number of distinct rank-1 preimages, and that crossing through a critical surface the number of
rank-1 preimages changes by 2 or a multiple of 2. In order to understand which are the preimages, and how
many, we have to solve the system in (3) assuming given an admissible point �x0; y0; z0� and searching for the
possible solution vectors �x; y; z�. To do this let us de®ne a � �����������

x� y
p

; b � ����������
x� z
p

; c � ����������
y � z
p

, then we
have

a� � 1� ����������������
1ÿ 4cz0
p

2
���
c
p if 06 z0 <

1

4c
;

a � 1� ����������������
1ÿ 4cz0
p

2
���
c
p if z0 < 0;

b� �
1� �����������������

1ÿ 4by0
p

2
���
b
p if 06 y 0 <

1

4b
;

b � 1� �����������������
1ÿ 4by0
p

2
���
b
p if y0 < 0;

c� �
1� �����������������

1ÿ 4ax0
p

2
���
a
p if 06 x0 <

1

4a
;

c � 1� �����������������
1ÿ 4ax0
p

2
���
a
p if x0 < 0;
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so that, given any tern �a; b; c� from the relations above we have one of the inverses of T which reads
as

Tÿ1�x0; y0; z0� � a2 � b2 ÿ c2

2
;

a2 ÿ b2 � c2

2
;
ÿa2 � b2 � c2

2

� �
: �14�

Noticing that an admissible point �x0; y 0; z0� can have at most one negative component (because from (4)
it follows that the sum of any two components must be positive), we obtain several zones in the admissible
region of the phase-space, as stated in the following proposition, where the notation Zk is used to denote a
region whose points have k distinct rank-1 preimages.

Proposition 1. Let �x; y; z� be an admissible point, then
(i) Z0 is the region of space for which z > 1=4c or y > 1=4b or x > 1=4a;
(ii) Z8 is the region of space bounded by the critical planes of equation z � 1=4c; y � 1=4b; x � 1=4a, and
the coordinate planes;
(iii) Z4 are the intersections of the admissible region with the three ortants of the space whose points have one
and only one negative component.

From the above proposition it follows that the planes of equation z � 1=4c; y � 1=4b; x � 1=4a or,
more rigorously, their proposition not belonging to Z0 constituting CS�CS � CS�a� [ CS�b� [ CS�c�� are
critical surfaces of rank-1 in the usual sense. That is, any point �x0; y0; z0� belonging to such a critical surface
CS�l� has at least two merging rank-1 preimages belonging to the critical surface CS

�l�
ÿ1 which, in its turn, is

made up of points in which the Jacobian determinant of T vanishes. Such points of CS separate the region
Z0 with zero rank-1 preimages from a region having either 8 or 4 distinct rank-1 preimages, i.e. Z0 ÿ Z8 or
Z0 ÿ Z4. For example, consider a point p0 � �x0; y0; 1=4c� belonging to the critical surface CS�c��z � 1=4c�,
then its rank-1 preimages Tÿ1�x0; y0; 1=4c� include (being aÿ � a�) couples of two merging preimages which
are obtained by considered the tern of values (aÿ;b�; c�� � �a�; b�; c�� giving either four or two points
(depending on p0 2 oZ8 or p0 2 oZ4�, and from (14), all the merging preimages belong to the critical plane

CS
�c�
ÿ1�x� y � 1=4c�.
The coordinate planes, although playing a role of `separation' between zones with di�erent preimages

(the portions not in Z0 separate Z8 ÿ Z4) are not critical surfaces. This is due to the fact that the domain of
de®nition of our map T is not the whole space, because of the square roots in its de®nition which imply the
constraints given in (4). In the same way, also the explicit formulation of the inverses (which can be ob-
tained from the relations given above) all have a square root in their de®nitions, and it happens that eight
inverses are de®ned in Z8 while only four of them exist in Z4. The points belonging to a coordinate plane have
not merging rank-1 preimages belonging to a critical surface. Such points still belong to the region with eight
distinct rank-1 preimages. An example for all: the origin O � �0; 0; 0� belongs to Z8 and its eight distinct (i.e.
disjoint) rank-1 preimages are:

Oÿ1;1 � �0; 0; 0�

Oÿ1;2 �
�
ÿ 1

2a
;

1

2a
;

1

2a

�
Oÿ1;3 � 1

2b
;

�
ÿ 1

2b
;

1

2b

�
Oÿ1;4 � 1

2c
;

1

2c
;

�
ÿ 1

2c

�
Oÿ1;5 � 1

2b

�
ÿ 1

2a
;ÿ 1

2b
� 1

2a
;

1

2b
� 1

2a

�
Oÿ1;6 � 1

2c

�
ÿ 1

2a
;

1

2c
� 1

2a
;ÿ 1

2c
� 1

2a

�
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Oÿ1;7 � 1

2c

�
� 1

2b
;

1

2c
ÿ 1

2b
;ÿ 1

2c
� 1

2b

�
Oÿ1;8 � 1

2c

�
� 1

2b
ÿ 1

2a
;

1

2c
ÿ 1

2b
� 1

2a
;ÿ 1

2c
� 1

2b
� 1

2a

�
:

Note that such eight rank-1 preimages of the origin continue to be distinct even if some of the parameters
have the same value, also when a � b � c.

Finally we remark that even if the points in the regions Z4 may be admissible, they are certainly not
feasible (such points having one negative component). It is suitable at ®rst, to consider the whole dynamics
of the map T, and then we will turn to consider the positivity condition on the state variables.

Besides the critical planes CS � T �CSÿ1�, also the images of higher rank of the critical set CSÿ1 are called
critical. As usual, we shall call critical set of rank-�k � 1� for k P 0, the image of rank-�k � 1� of CSÿ1, or,
equivalently, the image of rank-k of CS, denoting it as CSk, that is, CSk � T K�CS� � T k�1�CSÿ1� �CS0 being
equal to CS). It is clear that in our example the critical set of given rank is always made up of three
components, namely:

CS
�l�
k � T k�CS�l�� � T k�1�CS

�l�
ÿ1� for l � a; b; c:

The role played by the critical points in non-invertible maps is well documented for the 2D case (we refer
to [21] and references therein for a survey of several results, many of which dates back to [17]) and also in
one-dimensional maps, not only unimodal (see the kneading theory in [14,18]).

One of the more fascinating (as well as useful) applications of the critical curves in 2D maps is that by a
®nite number of segments of critical curves we can obtain exactly the boundary of absorbing areas. An
absorbing area A is trapping (i.e. mapped into itself by application of the map), and absorbing (i.e. a basin
B�A� exists, which includes a neighbourhood of A, made up of points whose trajectory tends to A).
Generally (i.e. except for particular bifurcation cases in the set of parameters de®ning the map) all the
trajectories enter A in a ®nite number of applications of the map (and then can never escape). Often the
absorbing area is invariant, which means mapped exactly into itself by an application of the map
�T �A� � A�. An example of such a 2D absorbing area will be shown in Section 6.

It is obvious how such properties read in the case of a 3D non-invertible map, as it is our case. Fig. 3(d)
and (e) represent an `absorbing volume', bounded by a ®nite number of portions of `critical surfaces'
CS
�l�
i i P 0, and the chaotic attractor inside it, which has a 3D structure. Following (and extending) the

procedure outlined in [21, ch. 4], we have selected a portion of critical surfaces CS
�l�
ÿ1 which is crossed by the

attractor. Then by a ®nite number of images, we completely cover the external boundary of a closed
trapping volume V (so that T �V � � V �, which is absorbing, because all the initial conditions in a neigh-
borhood of V have trajectories which enter V in a ®nite number of iterations. Moreover, in the example
shown in that ®gure the absorbing volume is invariant, i.e. T �V � � V , and the external boundary is ob-
tained by taking seven images of a portion of CS

�a�
ÿ1. Moreover, we could also construct a trapping `annular

volume' Va (a geometric structure which reminds a torus, even if it may be, or not, homeomorphic to a
torus). Such a volume has an empty space inside it, or `spherical-hole', made up of points which, except for
at most a set of zero measure, have the trajectories which enter the annular volume and never escape. Also
the boundary of the annular volume is made up of a ®nite number of images of a portion of a critical
surface. It is the 3D analog of a 2D annular absorbing area (as we shall see in Section 6).

It is worth noticing the advantage coming from the knowledge of such an absorbing volume in the
applied context, specially when the attracting set is chaotic. In fact, in such cases it is not possible to predict
(i.e. forecast) the value of the state variables (although the model is deterministic). But the knowledge of an
absorbing volume gives an element of certainty: the width of the interval of variation is known, as well as,
often, also the qualitative structure of the trajectories (for example, it is often possible to forecast if there
will be an increase or decrease in the state variables).

Another useful application of the critical curves in 2D non-invertible maps is related to the bifurcations
which cause qualitative changes in the structure of basins of attractions. As a germinal paper on this subject
we refer to [22], and in extended form to [1,21], while several detailed examples have been recently published
[5,7±9,13,20]. It is obvious that also in 3D non-invertible maps we can see this very important type of
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applications. Indeed, these kinds of bifurcations are those which cause non-connected basins and com-
plexity in the basin-structure (i.e. not only on the boundary). The basins shown in Figs. 2 and 3 of
Section 3 are a clear demonstration of the occurrence of such bifurcations. Our aim is to explain such
phenomena, showing the contact bifurcations which cause changes in the basins structure. In order to
better explain these phenomena we shall consider some particular cases of our 3D map, which are ob-
tained when two of the oligopolists are similar: they reason in the same way. This case occurs when two
of the oligopolists are similar: they reason in the same way. This case occurs when two of the three
parameters are equal. Let us ®rst examine, in Section 5, some basic properties of T as a function of the
parameters.

5. Topological conjugacy and symmetry properties

That the three parameters of the map are not all independent from a dynamical point of view comes
from the following proposition:

Proposition 2. The dynamics of the map T with terns of parameters (a, b, c) and �sa; sb; sc� with s > 0 are
topologically conjugate, via the homeomorphism /�x; y; z� � �sx; sy; sz�.

In fact, it is easy to see that if we change the three parameters �a; b; c� into �sa; sb; sc� with s > 0, then we
obtain a 3D map, say ~T which is topologically conjugate with the map T by use of the homeomorphism
/�x; y; z� � �sx; sy; sz�, being ~T � /ÿ1 � T � / (or equivalently T � / � ~T � /ÿ1). This means that the tra-
jectories of the map ~T are obtained from those of the map T by applying the transformation
/ÿ1�x; y; z� � �x=s; y=s; z=s� to all the points of any trajectory, or equivalently, the trajectories of the map
T are obtained from those of the map ~T by applying the transformation /�x; y; z� � �sx; sy; sz�.

Note that the homeomorphism used in the above proposition transforms admissible trajectories (whose
points are always in the domain of de®nition of the map) into admissible trajectories, and feasible tra-
jectories (whose points are all in the positive orthant) into feasible trajectories. Clearly this is a simple
consequence of the conjugacy, if S (resp. F) is the considered set of ~T then /�S� (resp. /�F �� is the cor-
responding set of T.

From this proposition it follows that the reduced parameters of the map, h and k de®ned in (6), are the
two essential independent parameters which we vary in order to investigate the dynamic behaviors of the
map, as the dynamics in the phase-space associated with the tern �a; b; c� are the same as (i.e. are topo-
logically conjugate to) those of the map obtained with the parameters �1; h; k�.

Another symmetry is immediately evident also in the reduced parameter plane, that is, the bifurcation
curves in the plane �h; k� must be symmetric with respect to the bisectrix �h � k� (as it was evident also from
Fig. 1). This comes from the following proposition:

Proposition 3. The dynamics of the map T with terns of parameters �1; h; k� and �1; k; h� are topologically
conjugate, via the homeomorphism w1�x; y; z� � �x; z; y�.

In fact, it is easy to see that if we change three parameters �1; h; k� into �1; k; h�, then we obtain a
3D map, say T which is topologically conjugate to the map T by use of the homeomorphism
w1�x; y; z�; being T � w � T � w1 or equivalent T � w1 � T � w1, as wÿ1

1 � w1. This means that the trajecto-
ries of the map T and those of T are transformed one into the other by the transformation
w1�x; y; z� � �x; z; y�.

From the property given above we have another immediate consequence, a symmetry property which
holds in the case of identical reduced parameters h � k. In this case we have that a trajectory in the phase-
space is such that either it is symmetric with respect to the plane y � z or a symmetric trajectory exists. That
is, let s�x0; y0; z0� � fT n�x0; y0; z0�; n P 0g be the trajectory associated with the initial condition �x0; y0; z0�,
then either set s�x0; y0; z0� is symmetric with respect to the plane y � z (in which case
s�x0; y0; z0� � s�x0; z0; y0�), or the trajectory s�x0; z0; y0� is symmetric to s�x0; y0; z0� with respect to the same
plane y � z.
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In particular, the plane of equation y � z is invariant, or better, mapped into itself. Note that in terms of
the three parameters �a; b; c� of the map T this case corresponds to identical characteristic parameters for
the last two oligopolists, that is, b � c. And it is soon clear that this is not the only case in which we have an
invariant plane for the map. In fact, we have a similar property also when a � b, that is, in terms of the
reduced parameters, when we consider �1; k�. It follows that when the parameters are of type �a; a; c� then
the plane of equation x � y is invariant and the trajectories of the map T in the phase-space are either
symmetric with respect to that plane, or symmetric trajectories exist. Similarly, if we consider the case in
which a � c, that is, in terms of the reduced parameters �h; 1�, then the plane of equation x � z is invariant
and the trajectories of the map T in the phase-space are either symmetric with respect to that plane, or
symmetric trajectories exist.

Note that this last result can also be obtained from the previous ones. In fact, we have seen that the map
with parameters �1; 1; k� (for which x � y is an invariant plane) is topologically conjugated (via the ho-
meomorphism w�x; y; z� � �x; z; y�) to the map having parameters �1; k; 1�, and thus a simple change of the
parameter's name gives the desired property (and it follows from the conjugacy that x � z is an invariant
plane).

In particular, the restriction of T to an invariant plane can be identi®ed with a 2D map. As we shall see in
the following, the restrictions of T to the three invariant planes, in the three cases discussed above, are all
topologically conjugated. And also the dynamics of the 3D map T in such cases turn to be conjugated.

The properties evidenced above can also be formulated, perhaps with a clearer applied interpretation, for
the map T in terms of terns of the original parameters as follows:

Proposition 4.

(1) The dynamics of the map T with terns of parameters �a; b; c� and �a; c; b� are topologically conjugate, via
the homeomorphism w1�x; y; z� � �x; z; y�, and in the case c � b the plane y � z is invariant with trajectories
which are symmetric with respect to that plane or symmetric trajectories exist.
(2) The dynamics of the map T with terns of parameters �a; b; c� and �c; b; a� are topologically conjugate, via
the homeomorphism w2�x; y; z� � �z; y; x�, and in the case a � c the plane x � z is invariant with trajectories
which are symmetric with respect to that plane or symmetric trajectories exist.
(3) The dynamics of the map T with terns of parameters �a; b; c� and �b; a; c� are topologically conjugate, via
the homeomorphism w3�x; y; z� � �y; x; z�, and in the case a � b the plane x � y is invariant with trajectories
which are symmetric with respect to that plane or symmetric trajectories exist.

Finally we recall the similar properties coming from the rotations of the parameters' values, which imply
topological conjugacy in the phase-spaces by using rotations around the axis of equation x � y � z:

Proposition 5.

(4) The dynamics of the map T with terns of parameters �a; b; c� and �c; a; b� are topologically conjugate, via
the homeomorphism w�x; y; z� � �z; x; y�.
(5) The dynamics of the map T with terns of parameters �a; b; c� and �b; c; a� are topologically conjugate, via
the homeomorphism w2�x; y; z� � �y; z; x�:

These properties can also be deduced by composition of two of the conjugacies given in Proposition 4, that
is, w1 � w2�a; b; c� � w2 � w3�a; b; c� � w3 � w1�a; b; c� � �c; a; b�, and the homeomorphism w � w1 � w2 �
w2 � w3 � w3 � w1 is a rotation of 2p=3 on the right of the oriented vector (1, 1, 1).

While w2 � w1�a; b; c� � w3 � w�a; b; c� � �b; c; a�, and the hemeomorphism w2 � w2 � w1 � w3 � w2 �
w1 � w3 is a rotation 4p=3 on the right (or equivalently of ÿ2p=3 on the left) of the oriented vector �1; 1; 1�.

6. The dynamics of T in the case a � b

In this section we consider the particular case in which two of the parameters are equal. As we shall see,
any choice of couples of parameters is equivalent from a dynamical point of view, so that let us assume
a � b. This means that if the initial states of the productions x and y, say x0 and y0, are equal, then the two
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players will `move' in the same way forever: xt � yt for any t P 0. That is, their response to the market
(modi®ed also by the third oligopolist) is always the same. Certainly if their initial states are not equal, then
their stories will be di�erent, at least in a transient part, which may also be very short, and it is possible (or
highly probable, depending on the structure of the basins) that ultimately they will behave in the same way,
or better, that their asymptotic behavior is similar.

Mathematically this comes from the fact that assuming a � b, from the ®rst two equations of the map T
it is immediately evident that the plane P� of equation y � x is trapping, i.e. mapped into itself. Consider a
point p � �u; u; z� 2 P�, then T �p� 2 P�. The plane is called P� because it is really the vertical plane through
the ®xed point E� and the z-axis, of equation y � x (being m� � y�=x� � 1 in this case). Thus all the points
belonging to P� have the trajectories trapped on that plane, which we shall call invariant for short (although
it is strictly mapped into itself). It follows that the dynamics of points belonging to P� can be studied by use
of a simpler map: the restriction of T to that invariant plane, which can be identi®ed with a 2D map. Let us
denote by u the common value x � y (as we have already written above in p), then the dynamics of T on P�

can be reduced to that of the 2D map, say Tu, given by:

Tu :

u0 �
�����������
u� z

a

r
ÿ uÿ z;

z0 �
�����
2u
c

r
ÿ 2u;

8>>><>>>: �15�

where a point �u; z� 2 P� identi®es the point �u; u; z� 2 R3. The domain Du of de®nition of this 2D map is
the intersection of the domain of de®nition of the 3D map T with the plane P� (here and in the following,
with the index u we denote the restriction of the sets to the invariant plane P�), and can also be immediately
deduced from its de®nition in (15):

u P 0;

u� z P 0:

This region is shown in Fig. 4, where also the critical curves of Tu are represented, as described below.
Let us ®rst consider the ®xed point E�. It belongs to P� and its components in the invariant plane be-

come:

E� � �u�; z�� � 2c

�2a� c�2 ;
2�2aÿ c�
�2a� c�2

 !
:

Clearly, the 2D map Tu also has another ®xed point (unstable) in the origin of the plane. Regarding the
®xed point of interest, E�, we can recall the analysis performed in Section 2, obtaining the E� belongs to the
positive quadrant of the plane P� provided that the parameters a and c satisfy the conditions given in (7),
which now simplify, noticing that one of the reduced parameters is ®xed, being h � 1. It follows that we are

Fig. 4. The domain of de®nition Du of the map Tu and its critical curves. The di�erent gray colours represent the regions Z0 (the

lightest), Z2 (the darkest) and Z4. P� is the invariant plane y � x for the map T, in which we consider the map Tu.
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interested in the dynamics of the 2D map Tu as a function of the reduced parameter k � c=a, that is, by
considering the couple of reduced parameters' value �1; k�, and the positivity of the ®xed point is ensured by
the only condition

0 < k < 2:

It is also clear that for the stability analysis of the ®xed point for the 2D map, we shall get the same
results already seen in Section 2 for the 3D map. Thus we can immediately say, by looking at the segment
�1; k� for k < 2 in the stability region shown in Fig. 1, that the ®xed point is attracting for kbif < k < 2,
where kbif is the value at which a couple of complex eigenvalues cross the unitary circle. However, the plane
P� being invariant we have that the couple of eigenvalues associated with the 2D map Tu are necessarily the
complex ones. It follows that in this particular case two of the eigenvalues of the Jacobian matrix evaluated
at the ®xed point can be explicitly determined, as well as bifurcation value kbif . Moreover, as we shall see,
this case enables us to recover also the third eigenvalue of T. This is important because our primary interest
is that to understand the 3D dynamics of T, also in this particular case in which there is an invariant plane,
that is, we are also interested in the fate of trajectories whose initial points are not on P�.

Let us consider the Jacobian matrix of Tu, which is suitable also for the critical curves of the 2D map. We
have

JTu�u; z� �
1

2
�����������������
a�u� z�p ÿ 1

1

2
�����������������
a�u� z�p ÿ 1

1�������
2cu
p ÿ 2 0

2664
3775 �16�

and its evaluation in the ®xed point E� � �u�; z�� gives

JTu�u�; z�� �
k
4
ÿ 1

2

k
4
ÿ 1

2

1

k
ÿ 3

2
0

2664
3775

so that the characteristic polynomial becomes

p2�k� � k2 ÿ k
4

�
ÿ 1

2

�
k� 3k2 ÿ 8k � 4

8k
:

The su�cient conditions for the local stability of the ®xed point (for this 2D map) are:
(1) p2�1� � 1

2
� k

8
� 1

2k > 0 which is always satis®ed for k > 0,

(2) p2�ÿ1� � ÿ1
2
� 5k

8
� 1

2k > 0 which is always satis®ed for k > 0,

(3) det JTu�u�; z�� � ��3k2 ÿ 8k � 4�=8k� < 1 which is satis®ed only for an interval of values of k, say
kbif ;1 < k < kbif ;2. By computing det JTu�u�; z�� � 1 we obtain the two bifurcation values kbif ;1 �
8ÿ �����

52
p

=3 � 0:262966 . . . and kbif;2 � 8� �����
52
p

=3 � 5:070367 . . . In this interval of stability of the ®xed
point we have in the middle an interval of values at which there correspond a stable node (i.e. the solutions
of p2�k� � 0 are real), while near the extrema of the internal of stability, the solutions of p2�k� � 0 are
complex conjugate (so that the ®xed point is a stable focus) and approach the modulus 1, that is, both the
bifurcation values are Neimark±Hopf bifurcations of E�.

As in this case we are interested in values of k lower than 2 (in order to have E� in the positive orthant of
the space), we have that only one bifurcation is of interest. The ®xed point is locally attracting for
kbif ;1 < k < 2 and we shall see that at kbif ;1 � 0:262966 . . . a bifurcation of subcritical type shall occur. But let
us ®rst complete the local stability analysis of the ®xed point for T in the 3D phase-space by computing the
third eigenvalue of the 3D Jacobian matrix (clearly we already know that the ®xed point is stable also for
T). The cubic polynomial de®ned in (12) can be factorized as follows:

p3�k� � p2�k��kÿ k3�; k3 � 1

2
ÿ k

4

so that we can say that as k decreases from the value 2, the third eigenvalue of T is always associated with a
direction attracting towards the invariant plane, at least locally (near the ®xed point), and being k3 > 0 the
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trajectories are locally on one side of that plane, i.e. they are not oscillating from one side to the other as it
happens with a negative eigenvalue, which implies that the trajectories of points outside the invariant plane
and near the ®xed point cannot be symmetric with respect to the invariant plane.

The basin of the attracting ®xed point E� on the invariant plane y � x is shown in Fig. 5(a). The white
points in that ®gure represent the set of admissible trajectories in that plane, and all the admissible tra-
jectories are convergent to the ®xed point, the gray points in D represent the non-admissible trajectories (i.e.
the map is not de®ned after m > 0 iterations, while in the equation region of non-de®nition, which are the
gray points not belonging to D on the left of the line of u � 0 and below the line u� z � 0, this occurs at
m � 0). We recall that the reduced parameters of interest are �1; k� with k < 2, and for any other value of k
between 2 and 0.4 (used in the case of Fig. 5(a)), the basins and the dynamics are qualitatively the same. The
boundary of the basin shown in Fig. 5(a) is completely known, we shall see that it is given by the preimages
of the z-axis, u � 0. Moreover we can see that the critical curves of the map, drawn in Fig. 5(a), are very
close to the boundary of the basin. This means that as the parameter k is further decreased, a global bi-
furcation will occur, which shall cause a drastic change in the structure of the basin. To see this we need the
equations of the critical curves and the inverses of the 2D map. Clearly these can be recovered also from the
formulas already given in Section 4 for the 3D map T, and considering that the geometrical surfaces in-
tersect the invariant plane in straight lines and curves. However we prefer to deduce these formulas directly
from the 2D map.

From the determinant of the Jacobian matrix in (16) we have that the locus det JTu�u; z� � 0, which, as
we know, gives the critical curves LCÿ1 of the 2D map, includes two straight lines (we recall that the
notation LC for the critical curves of a 2D map comes from the French term Ligne Critique):

LC
�c�
ÿ1 : Du \ u

�
� 1

8c

�
;

LC
�a�
ÿ1 : Du \ u

�
� z � 1

4a

�
:

These lines correspond to the intersection of the critical surfaces CSÿ1 with the invariant plane P�. In fact, it
is easy to see that

LC
�c�
ÿ1 � CS

�c�
ÿ1 \P�;

LC
�a�
ÿ1 � CS

�a�
ÿ1 \P� � CS

�b�
ÿ1 \P�:

Fig. 5. (a) The basin of the attracting ®xed point E� on the plane P�. The white points represent the set of admissible trajectories in

that plane (all convergent to the ®xed point), the gray points in D represent the non-admissible trajectories. The boundary of the basin

is given by the segment x on the z-axis and its preimages of rank-1, xÿ1;k ; k � 1; 2; 3; 4, and rank-2, xÿ2. (b) The light-gray points

denote the subset of unfeasible points of the previous basin.
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The images of these lines are critical curves of higher rank, in particular we have that the critical curve
LC is made up of two half lines, which correspond to the intersection of the critical surfaces CS with the
invariant plane P�:

LC�c� � CS�c� \P� : z � 1

4c
u
�
6 1

4a

�
LC�a� � CS�a� \P� � CS�b� \P� : u � 1

4a
z
�
6 1

4c

�
of which only the portions in Du are of interest, that is, the segments:

LC�c� : z � 1

4c
0

�
6 u6 1

4a

�
LC�a� : u � 1

4a

�
ÿ 1

4a
6 z6 1

4c

�
:

These curves separate regions with a di�erent number of rank-1 preimages also in the invariant plane.
How many of the inverses of T are also inverses of Tu? i.e. taking a point �u; u; z� 2 P� how many of the
eight inverses of T belongs to P�? To see this we explicitly write the inverses of Tu. Given a point
�u0; z0� 2 P� in the domain of the map, its rank-1 preimages are none if it is `outside' the critical lines, i.e.
u0 > 1=4a or z0 > 1=4c (see Fig. 4), otherwise four preimages exist when �u0; z0� belongs to the positive
quadrant, and two preimages when z0 < 0, these preimages are given by:

�u1; z1;�� if �u0; z0� 2 Zu;2 � Z4 \P� 0

�
6 u0 <

1

4a
and z0 < 0

�
�u1; z1;�� and �u2; z2;�� if �u0; z0� 2 Zu;4 � Z8 \P� 0

�
6 u0 <

1

4a
and 06 z0 <

1

4c

�
;

where

u1 � 1

4c
ÿ z0

2
�

����������������
1ÿ 4cz0
p

4c
; z1;� � ÿu1 � 1

2a
ÿ u0 �

�����������������
1ÿ 4au0
p

2a
;

u2 � 1

4c
ÿ z0

2
ÿ

����������������
1ÿ 4cz0
p

4c
; z2;� � ÿu2 � 1

2a
ÿ u0 �

�����������������
1ÿ 4au0
p

2a
:

We are now ready to describe the boundary of the basin of attraction of the stable ®xed point as long as
its basin is a simply connected volume of the 3D space, and thus a simply connected area in the invariant
plane. Looking at the basin shown in Fig. 5(a) we consider the boundary of the domain of de®nition of the
map and take its rank-1 primage. This locus completely covers the boundary of the basin. In fact,
the vertical axis u � 0 belongs to Z0 except for a small segment in Zu;4, for 06 z6 1=4c (we include also the
critical point z � 1=4c belonging to LC�c�). Let us denote by x this segment (with extrema on 0 and on
LC�c�). Then it has four distinct rank-1 preimages which meet on the critical curve LC

�c�
ÿ1, see the four

segments xÿ1;j for j � 1; 2; 3; 4 in Fig. 5(a). Two of them (xÿ1;1 and xÿ1;3 in Fig. 5(a)) belong to the
boundary of the domain of de®nition, on the line of equation u� z � 0, while the other two (xÿ1;2 and xÿ1;4

in Fig. 5(a)) belong to the line of equation u� z � 1=a. Note that all the points of this rank-1 preimage of
the segment x belong to Z0 except for the segment of xÿ1;1 belonging to the boundary of the region Zu;2, and
that the corners of these segments include the four preimages of the origin on this invariant plane. Taking
the two distinct rank-1 preimages of the only segment in Zu;2 (with extrema on 0 and LC�a�, belonging to
xÿ1;1) we obtain two segments, xÿ2;1 and xÿ2;2, constituting the rank-2 preimages of x (i.e.
Tÿ2

u �x� � xÿ2;1 [ xÿ2;2), and merging on a critical point of LC
�a�
ÿ1 (see Fig. 5(a)). Being these last arcs

completely included in Z0, we have ended the boundary (no other preimages of x exist). Reassuming, taking
into account that the segments of interest are the intersections of the boundary of the domain of de®nition
with the Zones, let us call it l; l � oDu n Z0; l � x [ xÿ1;1, we can deduce that it also belongs to the
boundary of the region of admissible trajectories Su, and we have obtained that B�E��u � Su and the
boundary of the basin is given by oB�E��u � oSu � l [ Tÿ1

u �l�.
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We ought also to know which of these admissible points gives rise to feasible trajectories. We have
numerically computed this: the light-gray points in Fig. 5(b) denote the subset of infeasible points of the
previous basin. It turns out that the portion of feasible trajectories, that is Fu, is bounded by the preimages
of the coordinate axes. In fact, the rank-1 preimage of the u-axis is made up of points belonging to the line
u � 0 (z-axis) and u � 1=2c (which is completely in Z0). Thus oFu (the boundary of the white points in
Fig. 5(b)) can also be viewed as given by the preimages of rank-1 of the coordinate axes not belonging to Z0

(which are on the boundary of the feasible trajectories). De®ning g � oR2
� n Z0 we have oF � g [ Tÿ1

u �g�.
We have seen above the local transverse attractivity (near the ®xed point) of the invariant plane, with

positive transverse eigenvalue in E�. But we can say also more about the `attractivity' of the invariant plane,
because we can explicitly write the transverse eigenvalue for any point �u; u; z� 2 P�, in fact from the
Jacobian matrix of T de®ned in (8) we have (for a � b and x � y � u)

k3�u; u; z� � 1ÿ 1

2
�����������������
a�u� z�p :

It is immediate to see that above the critical curve LC
�a�
ÿ1 the transverse eigenvalue is positive while it is

negative below it

k3�u; u; z� > 0 () �u� z� > 1

4a

thus trajectories outside the invariant plane, far from the ®xed point, may also `cross' the plane, while they
cannot do this in the region completely above LC

�a�
ÿ1. Moreover, k3�u; u; z� < 1 is always satis®ed, while we

have

ÿ1 < k3�u; u; z� () 1

16a
< �u� z�

Thus transverse attractivity exists for a wide portion of P�, and as we shall see from our numerical
experiments, the attractors of T seem to belong to the region in which we have attractivity for the tra-
jectories starting outside the invariant plane.

Now considering the basin B�E�� of the ®xed point in the 3D space R3, we have that it is a simply
connected volume, symmetric with respect to the plane x � y (as a consequence of the symmetry property in
Proposition 4), whose boundary we conjecture is determined by the rank-1 preimages of the portion of
planes de®ning the boundary of the domain of de®nition of the map, and not belonging to the region Z0.
That is, the rank-1 preimages of the portions on the planes y � z � 0; x� z � 0; x� y � 0

oB�E�� � oS � l [ Tÿ1�l�; l � oD n Z0:

Moreover, inside this basin, the set of points having feasible trajectories, i.e. with all the points in the
positive orthant, is a simply connected volume in R3

�, symmetric with respect to the plane x � y and
bounded by the rank-1 preimages of the coordinate planes

oF � g [ Tÿ1�g�; g � oR3
� n Z0:

Numerically computed examples are shown in Fig. 6(a)±(c), where we represent the sections on the
planes of equation y � 0:5x (which also corresponds to the section on y � 2x), y � 0 (which also corre-
sponds to the plane x � 0), and z � 0. As before, white points are feasible (i.e. belong to F), light-gray
points are admissible but infeasible (i.e. belong to S n F ), while the gray points of D are non-admissible.

We note that from Fig. 5(b) it turns out that the region Zu;4 is trapping: any other feasible point outside it
is mapped in Zu;4 in one iteration, and there the trajectory will stay forever, converging to the ®xed point.
Similarly in the 3D space: any feasible point outside the region Z8 is mapped inside it in a ®nite number of
iterations and then it converges to the ®xed point.

The characteristics of the basin B�E�� persist as long as the region Z8 has no contact with the boundary
of the basin. From Fig. 5(a) we can deduce that the point of Z8 having less distance from the boundary
oB�E�� is the vertex, that is the point q � �1=4a; 1=4a; 1=4c� (which belongs to P�). The contact will occur
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at k � 1=3, parameter value at which the critical point q on P�, q � LC�c� \ LC�a�, also belongs to the line
u� z � 1=a de®ning the boundary of the basin (see Fig. 7(a)). At this bifurcation value the point q has all its

four rank-1 preimages on the invariant plane which are merging in the point qÿ1 � LC
�c�
ÿ1 \ LC

�a�
ÿ1.

In the 3D space, the point q is the intersection point of the three critical planes, q � CS�c� \ CS�a� \ CS�b�,
and at the bifurcation value it has all its eight rank-1 preimages merging in the point qÿ1 �
CS
�c�
ÿ1 \ CS

�a�
ÿ1 \ CS

�b�
ÿ1.

For k < 1=3 the region of non-admissible points enter inside Z4 in the restriction to P� (inside Z8 in the
3D space), see Fig. 7(b), where this portion is labeled by Hu. That is, Hu is bounded by segments of critical
curves LC�c� and LC�a� near q, and a segment of the basin boundary on the line u� z � 1=a. Thus also all
the preimages of this area Hu are non-admissible points. For k not far from the bifurcation value the four
rank-1 preimages on P� are all near the point qÿ1, constituting, all together, a unique `hole' Hu;ÿ1 (i.e.,
Hu;ÿ1 � [4

j�1Hu;ÿ1;j�, which belongs to Z0, and thus it has no other preimage.
This means, in the 3D space, that for k < 1=3 the portion of non-admissible points entering inside Z8 is a

volume, say H (whose intersection with P� is the area Hu in Fig. 7(b), i.e. Hu � H \P�), bounded by
portions of critical planes CS�c�;CS�a� and CS�b� near q, and segments of the basin boundary. Thus also all
the preimages of this volume H are non-admissible points. For k not far from the bifurcation value the eight
rank-1 preimages of H are all near the points qÿ1, constituting, all together, a unique `hole' Hÿ1 (i.e.,
Hÿ1 � [8

j�1Hÿ1;j, and its intersection with P� is the area Hu;ÿ1 in Fig. 7(b)) which belongs to Z0, and thus it
has no other preimage.

At k ' 0:32 another global bifurcation occurs, which shall cause the appearance of other holes of non-
admissible points inside the basin B�E�� of the ®xed point, which continue to be connected but not simply.

Fig. 6. Three di�erent section of the basin of E�. The white points denote the feasible region, the light gray points the infeasible one.

The gray points in D are non-admissible. (a) Plane section with the plane y � 0:5x. (b) Plane section with the plane y � 0. (c) Plane

section with the plane z � 0:
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At k ' 0:32 in fact, we can see from Fig. 8(a) that the hole Hÿ1 has a contact with the regions Zu;2 and Zu;4,
crossing these regions for lower values of k. Sections of B�E�� (we remember that it is symmetric with
respect the plane x � y) with other planes in the three-dimensional space are shown in Fig. 8(b) and (c),
evidencing how the hole Hÿ1 is a sort of `ball' around qÿ1. In Fig. 8(b) is projected the basin taken on the

Fig. 8. (a) The hole Hu;ÿ1 on P� has a contact with the regions Zu;2 and Zu;4, crossing these regions for lower values of k. (b) Plane

section of the basin E� with the plane y � 2x=3. (c) Plane section of the basin of E� with plane y � x=3.

Fig. 7. (a) The critical point q on P�; q � LC�c� \ LC�a�, also belongs to the line u� z � 1=a. At this bifurcation value the point q has

all its four rank-1 preimages which are merging in the point qÿ1 � LC
�c�
ÿ1 \ LC

�a�
ÿ1. (b) A region Hu of non-admissible points enter inside

Z4. The preimages of this area Hu are non-admissible points and constitute a unique hole Hu;ÿ1 near the point qÿ1.
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plane of equation y � 2x=3 (which also corresponds to the section on y � 3x=2), and on y � x=3 (which also
corresponds to the section on y � 3x).

While Fig. 9(a) refers to a lower value of k, after the new contact bifurcation, and some of the holes now
existing (preimages of Hÿ1 \ Zu;k� are emphasized. Really in that ®gure the preimages of H are to be taken
only up to the fourth order, because Tÿ4�H� is completely inside the region Z0. We have one hole with Tÿ1,
two more holes with Tÿ2 (one of which is in Zu;4 and one in Z0), four more holes with Tÿ3 (one of which is in
Zu;2 and three in Z0), ®nally two more holes with Tÿ4 (both in Z0). Only a few of them are visible in Fig. 9(a)
(as before, white points are feasible (i.e. belong to F), light-gray points are admissible but infeasible (i.e.
belong to S n F ), while the gray points of D are non-admissible).

In the 3D space the preimages of the volume H are volumes (inside the old basin B�E��) whose di-
mensions decrease at each preimage. In Figs. 9(b) and (c) we show the projections of the basins on the
planes of equation y � 2x=3 and y � x=3.

These contact bifurcations may increase as the parameter k decreases. Whenever one of the existing holes
has a contact with a critical curve LC (boundary of a region Zk), then the number of preimages (and thus of
holes) increases. We note that in any case all the existing holes are obtained by taking the preimages of any
rank (as long as these exist) of H, or equivalently of Hÿ1 (and for this reason it is also called the `main' hole,
see [1,21]). For example, the hole belonging to T ÿ3�H� located above the region Zu;4 which is the upper-
leftmost hole, at the beginning is outside the critical line LC�c�, so that it is in Z0, but then (as k decreases) it
becomes wider and a contact with LC�c� occurs, followed by a crossing, thus creating another main hole, say

Fig. 9. (a) As the parameter c decreases we have new holes inside the old basin, given by the preimages of any rank of H : only a few of

them are visible in ®gure. As before, white points are feasible, light-gray points are admissible but unfeasible, while the gray points of D

are non-admissible. (b) Plane section of the basin of E� with the plane y � 2x=3. (c) Plane section of the basin of E� with the plane

y � x=3.
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Kÿ1 around the critical line LC
�c�
ÿ1, at ®rst in Z0. The increase of Hÿ1 and of Kÿ1 (as the parameter k

decreases) gives rise to a basin of the shape shown in Fig. 10(a).
It is clear that now, when `holes' appear, the boundaries of S and F are determined by taking all the

existing preimages of the sets l and g:

oS � [j P 0Tÿj�l�; l � oD n Z0;

oF � [j P 0Tÿj�g�; g � oR3
� n Z0:

It is worth noticing that another global bifurcation may occur, causing the transition of the basin B�E��
from connected (but not simply, i.e. with holes) to disconnected. This may be due to the reunion of Hÿ1 and
of Kÿ1 and their contact with the lines of equation u� z � 0 and u� z � 1=a. However the critical curve
LC�c� intersects the z-axis in the point �0; 1=4c� which is above the line u� z � 1=a only for k < 1=4, and we
shall see that the dynamics of interest shall end before (i.e. at a higher value of k). Thus, although the ®gures
seem to show a disconnected basin (due to the roughness of the pixel), it is really a connected one.

One may think that the basin B�E�� persists in this shape as k decreases towards its bifurcation value.
Indeed this is what occurs when the Neimark±Hopf bifurcation is supercritical, but it is not the case here. It
is di�cult to say the exact bifurcation value, say kf ; kbif;1 < kf < 0:264, at which a global bifurcation occurs

Fig. 10. (a) The holes become wider as c decreases. Although the ®gures seem to show a disconnected basin (due to the roughness of

the pixel), it is really a connected one (but not simply). (b) A global bifurcation occurred giving rise to the birth of two closed invariant

curves, one attracting, Cs, and one repelling, Cu. The ®xed point is still attractive. The white points belong to the basin B�E�� on the

invariant plane, while the dark-gray points belong to the basin B�Cs� of Cs. The closed repelling curve Cu constitute the boundary of

the immediate basin d0 of the ®xed point. The total basin of E� is made up of this immediate basin and its preimages of any rank.

(c) Plane section of the basins with the plane y � 2x=3. (d) Plane section of the basins with the plane y � x=3.
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giving rise to the birth of two closed invariant curves, one attracting, Cs, and one repelling, Cu. That this is
the case is a numerical evidence, which shows two coexisting attractors, namely the ®xed point and a closed
invariant curve (see Fig. 10(b)). The white points in that ®gure belong to the basin B�E�� on the invariant
plane, while the dark-gray points belong to the basin B�Cs� of a closed invariant curve Cs also visible in the
same ®gure. Due to the invariance of the plane P� the two invariant curves Cs and Cu must belong to it. It is
clear that now the closed repelling curve Cu constitute the boundary of the immediate basin of the ®xed
point, say d0 this area bounded by Cu. The total basin being made up of this immediate basin and its
preimages of any rank, which in our example are only two: Tÿ1�d0� consists of four sets, one of which is in
Zu;2 and the others in Z0, then Tÿ2�d0� consists of two more sets, both in Z0, thus no other points can be
obtained (i.e. Tÿ3�d0� � Tÿ2�d0�) (see Fig. 10(b)).

Regarding the behavior of the points in the 3D space we can see from the sections on other planes
(Fig. 10(c) and (d)) that the basin B�E�� is made up of only six disconnected volumes, bounded by the
stable set of Cu;W s�Cu�. All the other points, previously (i.e. for k > kf ) in the basin of the ®xed point now
converge to a di�erent attractor. The gray points always denote the non-admissible trajectories.

In order to see which are the feasible points in this new situation we denote by di�erent colors such
points (see Fig. 11). The basin B�E�� \R3

� is made up of feasible trajectories, and is colored in white in
Fig. 11, while its infeasible trajectories are in red. The feasible trajectories converging to Cs are colored in
green while those infeasible in light blue.

The set B�E�� \R3
� is very small and, on decreasing k, it will disappear completely because the invariant

curve Cu decreases in size and shrinks to the ®xed point at the Neimark±Hopf bifurcation value of sub-
critical type k � kbif;1 � 0:262966. After the bifurcation, for k < kbif;1, the ®xed point becomes unstable and
the only surviving attractor is Cs on the invariant plane. Fig. 11 shows that the distance of Cs from the
repelling focus E� increases as k decreases, and we can also observe the occurrence of a non-linear phe-
nomena on the shape of the curve Cs caused by the non-invertibility of the map. In fact, it is well known
that the crossing of Cs through the critical curve LCÿ1 causes the appearance of `oscillations' in the geo-
metrical shape of the curve (see e.g. [21,23]), due to the `foldings' of the curve which must occur on LC. This
occurs, in our example, when Cs crosses LC

�a�
ÿ1, which implies the tangency of Cs in two points of LC�a�, and

smooth oscillations appear on its shape (see Fig. 12). Clearly these tangential points of Cs with LC�a� also
persist in the forward images, so that Cs is tangent also to the critical curves LC

�a�
j ; j P 0.

Moreover, following the procedure described in [21], we can ®nd an absorbing area in the invariant plane
P�, bounded by a ®nite number of critical arcs. Let us show this at a lower value of k. As it is expected,
when the parameter c decreases the attractors on the closed invariant curve Cs modify. At ®rst we have, on
Cs, either an attracting cycle (and the set Cs is a heteroclinic connection, or saddle-node connection), or
quasi-periodic motions occur (all the trajectories are dense on the curve Cs) (see also [23]). But far from the
bifurcation value other non-linear phenomena appear, which cause the destruction (or disappearance) of

Fig. 11. The same case as Fig. 10(b), but here the feasible points in B�E�� are coloured in white, while its unfeasible trajectories are in

red. The feasible trajectories converging to Cs are colored in green while those unfeasible in blue.
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the closed invariant curve, leading to a di�erent attracting set. In our example, as often occurs, we have the
appearance of a cycle which undergoes a ¯ip bifurcation, on its turn followed by a sequence of ¯ip bi-
furcations, leading to chaotic dynamics. The attracting set shown in Fig. 13(b) is already in this chaotic
regime, and it belongs to an absorbing area Vu. A small segment of LC

�a�
ÿ1, crossed by the attractor, and given

exactly by c � Vu \ LC
�a�
ÿ1, is taken as `germ' to obtain the boundary, being oVu � [7

j�1T j�c�, and oVu is made
up of seven critical arcs belonging to LC

�a�
ÿ1�j; j � 1; . . . ; 7. In Fig. 13(a) only the absorbing area is shown,

while in Fig. 13(b) also the attractor inside it is drawn. By increasing the number of images it is also possible
to de®ne an annular area, say Va;u, containing the attracting set. Inside the annular area there is the repelling
focus E�, and the trajectories of the points in the internal part Vu n Va;u;, except for E� shall enter the annular
area in a ®nite number of iterations, and then they cannot escape from it (being T �Va;u� � Va;u�.

It is clear that we can repeat the above construction also for the 3D map, obtaining an absorbing volume
V and an annular volume Va. Selecting a portion of plane on CS

�a�
ÿ1 which is crossed by the attractor (and

exactly taking c � V [ CS
�a�
ÿ1�, we can obtaining the boundary of an absorbing volume which is made up of

portions of critical surfaces belonging to CS
�a�
ÿ1�j, j � 1; . . . ; 7 (being oV � [7

j�1T j�c��. Moreover, by in-
creasing the number of images, we can obtain an annular volume (often homeomorphic to a torus), always
bounded by portions of critical surfaces.

Fig. 13. Chaotic set in the invariance plane P� obtained by decreasing the parameter c. (a) The absorbing area whose boundary is

made up of seven critical arcs belonging to LC
�a�
ÿ1�j; j � 1; . . . ; 7. (b) The attractor inside the absorbing area.

Fig. 12. After the subcritical Neimark±Hopf bifurcation, the ®xed point becomes unstable and the only surviving attractor is Cs on the

invariant plane. In our example, Cs crosses LC�c�ÿa, this implies the tangency of Cs in two points of LC�a�, and smooth oscillations appear

on its shape.
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As k decreases the attracting set cross the coordinate plane z � 0 thus becoming admissible but un-
feasible. This crossing also marks the approximation of the attracting set to the boundary of its basin of
attraction (which is also the boundary of the admissible points). A contact of the attracting set with oS shall
cause the disappearance of the attractor leaving a strange repellor and almost all (i.e. except for a set of
Lebesque zero measure) non-admissible points.

Before closing this section, we shall also make some remarks on the behavior of the dynamics of T for
values of k higher than 2. Although this is not interesting in the applied context, it may be interesting, from
a dynamical point of view, the analysis of the type of Neimark±Hopf bifurcation occurring on other
branches of the bifurcation curve (see for h � 1 the other intersection on the curve of Fig. 1, which occurs at
k � kbif ;2 � 5:070367 . . . In this di�erent regime �k > 2� other bifurcations of the basin of attraction B�E��
occurs, of the same type as those described in this section, due to contacts and crossing of the critical curves
which separate the zones Zk. These bifurcations cause the decreasing in size of the set of admissible tra-
jectories, which is equal to the basin of E� as long as it is the only attractor. In fact, other bifurcations cause
the appearance of stable attracting sets of T, coexisting with E� stable. We have detected a 6-pieces cyclical
chaotic set which (on increasing k) undergoes reverse bifurcations which end in a cycle of period 6. In
Fig. 14(a) we can see a stable 6-cycle together with the stable ®xed point E�. Although the gray points in
that ®gure are already many (due to the increasing in size of holes of non-admissible trajectories), also in
this regime a global bifurcation causes the reduction of the basin of the ®xed point, due to `competition'
with another attractor, occurring before the Neimark±Hopf bifurcation. Now the boundary separating the
basin of E� from the basin of the 6-cycle may also have a fractal structure, however, enlarging the region
near the ®xed point we see Fig. 14(b) that the basin boundary (of the white points) has a smooth shape, thus
suggesting the existence of a repelling closed invariant curve Cu on the invariant plane de®ning this
boundary. As k approaches the bifurcation value kbif ;2, this area shrinks, merging with the ®xed point at
k � kbif ;2, Thus also in this case the Neimark±Hopf bifurcation seems to be of subcritical type. After the
bifurcation, for k > kbif ;2, trajectories starting near the repelling focus are unfeasible. In this situation, most
parts of the points in the domain D of the map are unfeasible.

7. The dynamics of T in the cases a � c or b � c

The dynamics of T when two other parameters are equal, are conjugated to the one described in Section 6.
For applied purposes we shall explicitly write here the relations.

Let us ®rst consider the case a � c. Now the invariant plane, say P, is x � z, and the restriction of T to
that plane reads:

Fig. 14. A di�erent regime: c > 2. (a) A stable 6-cycle together with the stable ®xed point E�. The gray points denoted the non-

admissible trajectories, the green points the basin of the 6-cycle and the white ones the basin E�. (b) Enlargement of the immediate

basin of E�: the smooth shape of the basin boundary suggests the existence of a repelling closed invariant curve Cu on P�.
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Tv :
v0 �

������
v�y

a

q
ÿ vÿ y;

z0 �
���
2v
b

q
ÿ 2v;

8<:
where a point �v; y� 2 P identi®es the point �v; y; v� 2 R3. It is evident that changing �u; z� with �v; y� and the
parameter c with b, the 2D map Tu in Section 6 becomes the map Tv. In terms of the reduced parameters
now we are interested in the values of the couple �h; 1� (being c=a � 1 constant), and identifying the pa-
rameter h with the parameter k of Section 6, all the bifurcation values are the same as those occurring for k.
That is,

E� � �v�; y�� � 2b

�2a� b�2 ;
2�2aÿ b�
�2a� b�2

 !

is positive i�

0 < h < 2

and attracting for

hbif ;1 < h < hbif ;2;

where hbif;1 � 8ÿ �����
52
p

=3 � 0:262966 . . . and hbif ;2 � 8� �����
52
p

=3 � 5:070367 . . . The third eigenvalue of T is

k3�v; y; v� � 1ÿ 1

2
�����������������
a�v� y�p ;

k3�E�� � 1

2
ÿ h

4
;

and the same considerations of Section 6 hold.
Reassuming, the dynamics of T in the case of parameters �a; b; a� are topologically conjugated to those

of the map with parameters �1; b=a; 1� � �1; h; 1� (via the homeomorphism / in Proposition 3, with
s � 1=a), and this last one is, in its turn, topologically conjugated to the map with parameters �1; 1; h� (via
the homeomorphism w1 in Proposition 4). Thus the dynamics of the map T with parameters (a; b; c are
topologically conjugated (via the hemeomorphism w1 � /) to the dynamics already described in Section 6
(changing the name of the reduced parameter k into h).

Similarly, let us consider now the case of the map T with parameters �a; b; b�. It is clear that its dynamics
are topologically conjugated (via the homeomorphism / in Proposition 3, with s � 1=b), to the one with
parameters �a=b; 1; 1� � �1=h; 1; 1� which, in its turn, is topologically conjugated to the map with param-
eters �1; 1; 1=h� (via the homeomorphism w2 in Proposition 4). It follows that by identifying k with 1=h (or,
equivalently h with 1=k), the dynamics of the map already described in Section 6 hold also for this case (i.e.
T with parameters �a; b; b�, via the conjugacy w2 � /). The invariant plane P is now y � z, and the 2D map
on that plane reads:

Tw :
x0 �

����
2w
a

q
ÿ 2w;

w0 � ������
x�w

b

p ÿ xÿ w;

(

where a point �x;w� 2 P identi®es the point �x;w;w� 2 R3. It is evident that reading x;w; a; and b of this
map as z; u; c; and a, respectively, we obtain the map already studied in Section 6. So that we can consider
the 3D map T, as well as the 2D map Tw on the invariant plane, as a function of the reduced parameters
�h; h�, where h � b=a. Now the ®xed point is

E� � �x�;w�� � 2�2bÿ a�
�a� 2b�2 ;

2a

�a� 2b�2
 !
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it is positive i�

0 <
1

h
< 2

that is i�

1

2
< h < �1

and it is stable for

kbif;1 � 0:262966 <
1

h
< kbif ;2 � 5:070367 . . .

that is for

1

5:070367
� 0:19722 . . . < h <

1

0:262966
� 3:80277 . . .

As we are interested in values of h greater than 0.5 (to have a positive ®xed point), the bifurcation
occurring at lower values is not interesting (it corresponds to the supercritical bifurcation already described
at the end of Section 6), while as h increases above 0.5 we have the same dynamics described for the map Tu

in Section 6 (on decreasing k from 2). The third eigenvalue of T is given by

k3�x;w;w� � 1ÿ 1

2
������������������
b�x� w�p ;

k3�E�� � 1

2
ÿ 1

4h
;

and the dynamics are attracted to the invariant plane y � z.

8. Again the 3D model without invariant plane

Now let us turn to the 3D map T in the generic case in which the three parameters �a; b; c� are all distinct,
and we refer to the bifurcation curves in Fig. 1 in terms of the reduced parameters �h; k� � �b=a; c=a�. We
have investigated the crossing of the bifurcation curves in several points, both in the lower arc as well as in
the upper one, and we have always detected a Neimark±Hopf bifurcation of subcritical type.

The dynamics of T as the reduced parameters �h; k� exist from the stability region shown in Fig. 1 are
qualitatively the same as that we have described in the particular case of Section 6 with a � b. Clearly, out
of the symmetric case an invariant plane no longer exist, but the dynamics in the phase-space and their
bifurcations can be explained in the same way (i.e. by use of the same techniques). For example, the simply
connected basin of the ®xed point shown in Fig. 15(a) for �a; b; c� � �1; 0:9; 0:35� strictly includes the region
Z8 and the vertex q of that region is below the boundary. We conjecture that the basin of the region S is
again determined by taking the preimages of the boundary of D (the domain of de®nition), as it was
in Section 6, that is, the rank-1 preimages of the portions of planes y � z � 0; x� z � 0; x� y � 0, not
belonging to Z0

oB�E�� � oS � l [ Tÿ1�l�; l � oD n Z0:

Moreover, in Fig. 15(a) the feasible points are drawn in white, and again the boundary of F (which is
here simply a connected volume in R3

�) is given by the preimages of the coordinate planes

oF � g [ Tÿ1�g�; g � oR3
� n Z0:
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It is clear that the sets described above shall undergo a global bifurcation when the vertex of q of the
region Z8 will have a contact with the boundary of those region, followed by a crossing. Obviously the ®rst
contact will be between q and oF , modifying the region of feasible points, as shown in Fig. 15(b), where we
project the basin computed on the plane P� (through the ®xed point, and not invariant). A second bi-
furcation shall occur when (on decreasing c) the point q inside the region F � S (see Fig. 15(c)). Thus the set
of admissible trajectories undergoes the same qualitative bifurcation as in the symmetric case, with the holes
that modify, increasing in number and size, as the parameters are changed. As stated in Section 6, after the
appearing of holes, for the boundaries we have:

oS � [j P 0Tÿj�l�; l � oD n Z0;

oF � [j P 0Tÿj�g�; g � oR3
� n Z0:

The main di�erence is in the set of feasible trajectories. For example, in the case shown in Fig. 3(b) the
set F of feasible trajectories is the white set reported in Fig. 15(d) (the light-gray points are the infeasible
ones).

The asymmetry implies the nearness of the attractors to the boundaries of the coordinate-planes, and
then a crossing as the parameters are changed. An example was shown in Fig. 3(d) where a chaotic attractor
crosses the plane x � 0, so that we have all unfeasible trajectories.

Fig. 15. The generic case, without the invariant plane. (a) The simply connected basin of the ®xed point projected on the plane P�

through the ®xed point, and not invariant. The feasible points are drawn in white and the infeasible ones in light-gray. (b) The contact

between the critical point q and the boundary of F modi®ed the region of feasible points. (c) A hole of non-admissible points (the gray

ones) inside the region F � S due to a contact between the point q and the boundary of S. (d) On decreasing the parameter c, the set of

admissible trajectories undergoes the same qualitative bifurcation as in the case with invariant plane: the main di�erence is in the set of

feasible trajectories (the light-gray points are the unfeasible ones).
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Similarly, the holes of the basins shown in Fig. 2 are due to contacts of oS with the critical surfaces and
boundaries of zones. In Fig. 2(a) we see a small portion of non-admissible trajectories which has crossed the
frontier of Z4 entering Z8 through the coordinate plane z � 0. Such a crossing creates other portions of non-
admissible trajectories, but not inside the region Z8, all the rank-1 preimages of that portion (which are now
8 and all distinct) are located outside the region Z8. The crossing of that boundary (oZ4 in common with oZ8

through a coordinate plane) gives rise to an increase of 4 rank-1 preimages, but not located near critical
planes CSÿ1, while all these are distinct and near the boundary of D in the regions Z4 (all having at least one
negative component). While the usual contact bifurcation creates the hole inside Z8 shown in Fig. 2(b), that
is, this is due to the contact of oZ8 (in the point q) with oS, with the same mechanism described in Section 6.

Also the absorbing volumes can be obtained, although it is di�cult for us to draw the pictures. Taking a
portion of critical plane CSÿ1, specially when it is crossed by the attracting set, and taking a ®nite number
of images by T, the portions of critical surfaces de®ne a closed absorbing volume V which is mapped into
itself by T. An example was shown in Fig. 3(e) where by seven images of a portion of CS

�a�
ÿ1, a volume V can

be obtained, and also an annular volume Va (with more critical surfaces on the boundary).
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