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Abstract

In this paper a nonlinear discrete-time business cycle model of Kaldor-type is considered, to illustrate
particular global bifurcations which determine the appearance or disappearance of attracting and repelling
closed invariant curves. Such bifurcations sequences, which involve homoclinic tangencies and transversal
intersection of the stable and unstable manifolds of saddle cycles, may increase the complexity of the basins
of attraction of multiple, coexisting attractors. Particularly, for the business cycle model examined here, such
dynamic phenomena explain the co-existence of two stable steady states and an attracting closed curve, with
an intricate basin structure, for wide ranges of the parameters.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The economic literature on complex dynamics has mainly focused on chaotic behavior in
dynamic systems with a single attractor. The notion of complexity in this case refers to the nature
of the asymptotic dynamics (i.e. the dynamical properties of the motion on a strange attractor),
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Appendix
In this Appendix we derive the region of invertibility of the map T in the

space of parameters (i.e. we determine the combinations of parameters under
which the �backward iteration�of (5) is uniquely de�ned), so that each point
of the phase-space has a unique preimage of rank-1. Moreover, for those ranges
of parameters where the map is noninvertible, we discuss the question of the
number and the location of the preimages of a point of the phase space.
The rank-1 preimages of a point (u; v) are the solutions of the system�

u = (1�  � �)x+ arctan y
v = ��x+ (1� ��) y + � arctan y

where the unknown variables are x and y. Rearranging the two equations we
obtain (

x = (1���)y�v+�u
�(1��)

� (1� � � ) 1���
�(1��)y +

(1���)v+�u
�(1��) = arctan y

.

Then the y-coordinate of the rank-1 preimages of the points (u; v) must
satisfy the equation

q (u; v) +my = arctan y (12)

where q (u; v) = (1���)v+�u
�(1��) and m = ( + � � 1) 1���

�(1��) .
Simple geometrical considerations allow us to check that if m < 0 or m � 1,

equation (12) has a unique solution for any given (u; v). Therefore if

( + � � 1) (1� ��) < 0 or ( + � � 1) 1� ��
� (1� �) � 1

the map T is invertible (i.e. it has a unique inverse). If m = 0, then a unique
solution of (12) exists if ��=2 < q (u; v) < �=2; otherwise no solution exists.
In the case 0 < m < 1, one, two or three solutions of the equation (12)

may exist depending on the value of q = q (u; v). In particular, for a given m,
0 < m < 1, two solutions exist if the straight line at the left side of (12) is
tangent to the S-shaped curve f (y) = arctan y; that is if

m =
1

1 + y2

so that y = �
q

1
m � 1, and

q (u; v) = q1 = m

r
1

m
� 1� arctan

r
1

m
� 1

q (u; v) = q2 = �m
r
1

m
� 1 + arctan

r
1

m
� 1

with q1 < q2.
Moreover, if q (u; v) < q1 or q (u; v) > q2 the equation (12) has a unique

solution (and the point (u; v) has a unique preimage) while if q1 < q (u; v) < q2
three solutions exist (and therefore three di¤erent preimages of the point (u; v)).
This means that if �

(1� � � ) (1� ��) < 0
(1� � � ) 1���

�(1��) > �1
, (13)

the map T is noninvertible and, following the notation used in Mira et al., it
is a so-called Z1 � Z3 � Z1 map. With such a notation we indicate that the
phase plane is divided in di¤erent regions Z1 and Z3, whose points have one
and three di¤erent rank-1 preimages, respectively. Such regions, or zones, are
separated by the critical line LC (i.e. the locus of points having two merging
rank-1 preimages).



It follows from the above considerations that the critical line LC is the locus
of the points (x; y) of the phase-plane which satis�es

q(x; y) = q1 or q(x; y) = q2,

and therefore LC is made up by two distinct branches; that is LC = La [ Lb
with

La : x =
(� +  � 1)

�
y +

(1� �)


q1 and (14)

Lb : x =
(� +  � 1)

�
y +

(1� �)


q2 .

The locus of the merging preimages of the points belonging to the set LC is the
rank-0 critical line LC�1 and it is given by La�1 [ Lb�1, where

La�1 : y = �
r
1

m
� 1 (15)

Lb�1 : y =

r
1

m
� 1

(i.e. the points which satisfy the tangency condition).
From the noninvertibility conditions (13) we obtain that, for � +  < 1, the

noninvertibility region is an unbounded subset of the (�; �)-plane de�ned by

� >
1

�

given that the second condition of (13) is always ful�lled for 0 < � < 1; for
� +  > 1, the noninvertibility region is de�ned by

1

�
� 1� �
 + � � 1 < � <

1

�
.

1

We recall that the critical line of the map T in (5) may also be obtained by LC =
T (LC�1), where LC�1 is the locus of points at which the determinant of the Jacobian matrix
vanishes, given in the following equation (15).

1
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and in particular to the unpredictability of the time path of the system in the long-run due to the
sensitivity to initial condition. Our knowledge of chaotic behavior of economic systems has largely
increased since the introduction of homoclinic bifurcation theory into economics: in particular,
among other examples, computer assisted proofs of the existence of homoclinic orbits and of
the associated complicated dynamic phenomena have been provided by de Vilder (1996) in a
two-dimensional OLG model with a Leontief production technology, by Pintus et al. (2000) in a
model of a OLG economy with a CES production technology; by Brock and Hommes (1997) in a
cobweb model with rational versus naive expectations and nonlinear demand and supply (see also
Foroni and Gardini, 2003), and by Droste et al. (2002) in an evolutionary game theoretic model
with Cournot competition. These papers have stressed the importance of homoclinic tangencies
and homoclinic tangles of saddles as a source of increasing complexity of the attractors, which
determines the transition from local regular to global irregular fluctuations.

A different source of complicated dynamics, which has received relatively little attention in
the economic literature, is associated with the coexistence of attractors. Indeed, when several
competing attractors coexist in the phase-space, the structure of their basins of attraction, and the
dependence of the basin boundaries to the parameters of the model, plays a fundamental role in
the long-run behavior. Such situations of coexistence of attractors have been reported for a wide
range of nonlinear dynamic economic models in discrete time (see, among others, Brock and
Hommes, 1997; Lorenz, 1992; Agliari et al., 2005b; Bischi and Kopel, 2001; Bischi et al., 2003;
Puu and Sushko, 2002), and we know that in the case of nonlinear systems the basin boundaries
may be quite complex, even in the presence of attractors characterized by a simple structure
(e.g., McDonald et al., 1985). A question which arises quite naturally in the case of dynamical
systems with multiple attractors is about the nature of the phase-space transitions which lead to
the appearance of new attractors or to the disappearance of existing ones (or the related question
of the appearance/disappearance of invariant repelling sets) and about the resulting qualitative
changes of the structure of the basins. In general these mechanisms consist in sequences of
global1 bifurcations. Among them, the bifurcations involved in the appearance, or disappearance,
of attracting or repelling invariant curves are particularly important, given the attention paid by
the economic literature to those mechanisms which lead to the onset of endogenous, long-run
fluctuations in economic systems. As we shall see, the typical mechanisms which determine the
transition between different situations of coexisting attractors (as well as the qualitative changes
of the basins of attraction) are associated once more with homoclinic bifurcations.

New results in this direction can be found in Agliari et al. (2005a, 2005b), where particular
bifurcation sequences are described which involve attracting and repelling closed invariant curves,
characterized by the creation of heteroclinic and homoclinic connections or homoclinic tangles: as
shown by means of qualitative phase diagrams, the bifurcation sequences analyzed in such papers
are likely to be quite general ones, given that similar sequences must necessarily occur every
time a two-dimensional map has a fixed point which may lose stability via a subcritical Neimark-
Sacker bifurcation (in Agliari et al., 2005b) or via a supercritical Neimark-Sacker bifurcation and a
supercritical pitchfork or flip bifurcation (in Agliari et al., 2005a). Economic examples of the latter
kind of maps can be found, for instance, among Kaldorian discrete-time models (see, e.g., Bischi
et al., 2001; Agliari and Dieci, 2005). This is the reason why a particular Kaldor-type business
cycle model, already proposed and studied in Bischi et al. (2001), will be used in this paper as

1 These are bifurcations that are not associated with the behavior of the linearization of the dynamical system around
its steady states or cycles.
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a vehicle to demonstrate the mechanisms underlying the sudden appearance/disappearance of
closed invariant curves and the resulting situations of multistability and complexity of the basins.
The detection and detailed analysis of such phenomena within a simple and well-known business
cycle model may be much more appealing and convincing, for the applied dynamicist, than a
more theoretical exposition, such as the one provided in Agliari et al. (2005a). As expected, also
in this economic example such dynamic phenomena are related to homoclinic tangles of a saddle
point or a saddle cycle, as conjectured in Agliari et al. (2005a).

Though the Kaldor business-cycle model is rather dated and has been criticized on a number
of grounds, the simple two-dimensional discrete-time version considered in the present paper
will give us the opportunity to highlight further the role played by heteroclinic and homoclinic
connections and homoclinic tangles in the creation of multiple attractors and transition to complex
basin structures. The numerical and graphical analysis which we will carry out on the discrete-
time Kaldor model should be considered as a “worked-out example” to guide the mathematical
economists to cope with endogenous oscillations, multiple attractors and complex basins, created
via global bifurcations in a generic discrete-time model. In other words, we would like to address
the question of multi-stability and complexity of the basins via homoclinic tangles in discrete-time
economic models, in the same way that the already mentioned literature focuses on the transition
to complex asymptotic dynamics (complexity of the attractors) via homoclinic bifurcations. This
strengthens, in our opinion, the importance of homoclinic bifurcations as a tool of global dynamic
analysis of discrete-time economic models.

The paper is organized as follow. In Section 2 we introduce the particular Kaldor-like model
studied in Bischi et al. (2001) and discuss the local stability conditions of its equilibria, as well as
some properties of the associated map. In Section 3, starting from the situation in which two fixed
points exist, we will study the emergence of endogenous fluctuations. We will see that an attracting
closed curve appears when the two fixed points are still stable, so that for particular parameter
ranges three different kinds of long run behavior exist, depending on the initial condition. We
will provide an explanation of the bifurcation sequences which lead to this situation of multi-
stability, and to the qualitative changes of the basins of attraction of the coexisting attractors. In
particular, Section 4 is devoted to exploring a parameter regime where endogenous fluctuations
on an attracting closed curve arise via a bifurcation sequence associated with a cycle of period
18 and to explaining the appearance of a repelling set which bounds the set of initial conditions
converging to the two fixed points as well as the splitting up of this repelling set into two new
repelling closed curves. Section 5 concludes.

2. The model

The model proposed by Kaldor2 (1940) is one of the earliest and simplest nonlinear models
of business cycles. This model was criticized because of its lack of microfoundation, and today
it appears very simple and rather dated if compared with the modern approaches to the business
cycle. However, since the reformulation of the Kaldor model as a continuous time dynamical
system proposed by Chang and Smyth (1971), this model has been generating a considerable
amount of economic, pedagogical and methodological interest, both in its continuous-time and
discrete-time versions (see, e.g., Varian, 1979; Dana and Malgrange, 1984; Herrmann, 1985;
Gabisch and Lorenz, 1989; Lorenz, 1987, 1992, 1993; Grasman and Wentzel, 1994; Dohtani et
al., 1996; Bischi et al., 2001).

2 He himself never studied it as a formal dynamical system.
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As it is well known, in the Kaldor business cycle model it is assumed that the global supply Y
by firms has as its immediate counterpart an equal amount of income and generates a consumption
demand C and an investment demand I, which both depend only on the output Y and the capital
stock K. It is also assumed that firms adjust supply Y to demand C + I through a variation of
production proportional to excess demand. These assumptions may be formalized through the
following well-known discrete-time scheme

Yt+1 = Yt + μ(Ct + It − Yt) = Yt + μ(It − St); Kt+1 = (1 − δ)Kt + It (1)

where S = Y − C represents the savings function, μ > 0 is the parameter for the speed of adjustment
of supply to demand, δ (0 < δ < 1) is the rate of depreciation of the capital. Kaldor (1940, 1971)
assumed that, for a given K, the total marginal propensity to spend (∂C/∂Y + ∂I/∂Y) is greater than
one for “normal” levels of production and less than one for high or low levels of production. A
possible way to incorporate this idea into the general model (1) is to use, for instance, a savings
function S = Y − C proportional to income (S = σY, where σ = 1 − ∂C/∂Y is the constant propensity
to save) and to assume that investment demand is an S-shaped function of income for any given
level of capital. Moreover, in Kaldor’s original idea the investment and savings schedules are
short period functions and are assumed to shift as capital stock shifts: in particular, a rise (fall)
in capital stock will shift the investment function down (up). The latter feature can be formalized
by assuming that the investment demand is a decreasing function of K, for any given Y. A simple
mathematical formulation which satisfies the above requirements is the one proposed in Rodano
(1997) and Bischi et al. (2001), in which the saving and investment schedules are specified,
respectively, as

St = σYt (2)

It = σα + γ
(σα

δ
− Kt

)
+ arctan(Yt − α) (3)

where the coefficient σ ≡ 1 − ∂C/∂Y, 0 < σ < 1, represents the (constant) propensity to save, α

represents the “normal” level of income (exogenously assumed in firms’ expectations), while
σα/δ is the “normal” level of capital stock. In particular, in the investment demand It two short
run components are considered: the first one is proportional to the difference between normal
capital stock and current stock, according to a coefficient γ (γ > 0), which captures the presence
of adjustment costs; the second one is an increasing S-shaped function of the difference between
current income and its “normal” level.

By substituting the expressions of It and St into the dynamic model (1), we obtain the following
two-dimensional nonlinear discrete-time dynamic system:

M :

⎧⎪⎨
⎪⎩

Yt+1 = Yt + μ[σα + γ
(σα

δ
− Kt

)
+ arctan (Yt − α) − σYt]

Kt+1 = (1 − δ)Kt + σα + γ
(σα

δ
− Kt

)
+ arctan (Yt − α)

. (4)

As it will be stated in the next sections, the dynamical system (4) admits the “exogenous”
or “normal” steady state (α, σα/δ), but it may have further steady states for particular ranges of
parameters. A dynamic analysis of the model (4), including local stability analysis of the exoge-
nous steady state and some numerical exploration of the global dynamics, has been performed in
Bischi et al. (2001). In that paper, a particular dynamic scenario of multi-stability was discovered
for low values of the propensity to save σ and sufficiently high values of the speed of adjustment
μ, where two stable steady states coexist with an attracting invariant closed curve, and an intuitive
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explanation of this phenomenon and of the related basins’ bifurcations was provided. The present
paper is based upon the same model considered in Bischi et al. (2001), and the focus is again
on dynamic scenarios of multi-stability. Nevertheless, the present paper is completely different
from Bischi et al. (2001) both in terms of methodological approach, which is largely based on
numerical analysis of homoclinic and heteroclinic connections and homoclinic tangles of sad-
dles, and with respect to our level of understanding of the bifurcation mechanisms associated with
multistability, which were not explained in detail in Bischi et al. (2001). The interplay between
numerical analysis, phase diagrams and results from homoclinic bifurcation theory allows us to
understand how such a scenario of multi-stability is created and which bifurcation mechanisms
cause the transition to qualitatively different scenarios. Moreover, the thorough numerical analysis
of the so-called homoclinic tangles (which often take place in very narrow ranges of parameters)
allows us to explain the intricate basins’ structures which often characterize the transition between
different regimes.

2.1. The map and its properties

In order to make as simple as possible the analysis of the model (4), we introduce new coordi-
nates, so that the normal level of income and capital (α, σα/δ) is represented by the origin (0, 0)
of the plane; that is, we consider

Φ :

⎧⎨
⎩xt = Kt − σα

δ

yt = Yt − α
.

Thus, the model we focus on is

T :

{
x′ = (1 − γ − δ)x + arctan y

y′ = −μγx + (1 − μσ)y + μ arctan y
, (5)

where the symbol ′ denotes the unit time advancement operator. Obviously the map T is topologi-
cally conjugate to the map M describing the model, and the dynamics of the latter can be obtained
from that of (5) by applying the inverse transformation of Φ.

The map T depends on four parameters: the adjustment coefficient γ between normal and
current capital stock, the capital stock depreciation rate δ, the speed of adjustment μ and the
propensity to save σ; in our analysis we shall consider as parameter space

Ω = {(μ, σ) : μ > 0 and 0 < σ < 1}
fixing the parameters γ (� > 0) and δ (0 < δ < 1).

Note that the map T is independent on α; then such a parameter does not affect the asymptotic
behavior of the model. It is only a “location” parameter, in the sense that it only indicates the
region of the phase plane where the long-run dynamics takes place.

It is simple to observe that the map T is symmetric with respect to the equilibrium point (0,
0), that is, T(−x, −y) = −T(x, y). This means that the generic trajectory generated by the iteration
of (5) is either symmetric with respect to the origin or, if not, there exists a symmetric trajectory.
This property is important from an economic point of view, since it may give rise to coexistence of
attractors; for example, if there exists a cycle of odd period, then the symmetry property implies
that there must exist a symmetric cycle of the same period and with the same stability property.
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The next sections summarize the main analytical properties (derivation of the steady states,
local stability analysis, non-invertibility conditions) of the dynamical system (4), which have
already been discussed in Bischi et al. (2001). We repeat here the main analytical results not only
for the convenience of the reader (in order to keep the paper self-contained), but also because
the discussion is carried out in terms of the map T, which is topologically conjugate to the one
studied in Bischi et al. (2001) (and the conditions are here given in terms of the new formulation
of the model).

2.2. Local stability analysis

The equilibrium points of the model (5) are the fixed points of T, solutions of the system⎧⎪⎨
⎪⎩

x = σ

δ
y

(γ + δ)σ

δ
y = arctan y

(6)

obtained by a trivial manipulation of (5) with x′ = x and y′ = y.
Besides the solution E* = (0, 0), we can observe that further fixed points exist if the equation

(γ + δ)σ

δ
y = arctan y (7)

admits non-zero solutions, that is if the straight line of equation z = ((γ + δ)σ/δ)y and the sigmoid-
shaped graph of the function z = arctan (y) intersect in some points other than the origin. Since
this occurs if and only if the slope of the straight line is lower than the slope of the function
f(y) = arctan y (at the origin), we can easily state the following.

Proposition 1. If σ ≥ (δ/(γ + δ)) then E* = (0, 0) is the unique fixed point of the map T defined
by (5). If σ < (δ/(γ + δ)) then two further fixed points, P* and Q*, exist, symmetric with respect to
the fixed point E*.

We consider now the conditions of local asymptotic stability of the fixed point E* = (0, 0),
in terms of the parameters of the model. As usual, the stability conditions are derived via the
localization, in the complex plane, of the eigenvalues of the Jacobian matrix evaluated at the
fixed point (let us denote it by J*). A well known necessary and sufficient condition for the two
eigenvalues of J* to be smaller than one in modulus (which implies a locally asymptotically stable
steady state) is given by the following set of inequalities (see, e.g., Gumowski and Mira, 1980
or Medio and Lines, 2001): 1 − Tr(J*) + Det(J*) > 0; 1 + Tr(J*) + Det(J*) > 0; Det(J*) < 1, where
Tr(J*) and Det(J*) denote the trace and the determinant of J*, respectively. Standard computations
(see also Bischi et al., 2001) lead to the following proposition, where obviously we restrict our
analysis to 0 < δ < 1, 0 < σ < 1, α > 0, and we assume in addition γ < 2 − δ.3

Proposition 2. The fixed point E* = (0, 0) is locally asymptotically stable if the parameters μ

and σ belong to the region ABCD of the plane (μ,σ), with vertices A = (0, (δ/(δ + γ)), B = (0, 1),
C = (((δ + γ)/γ), 1), D = (((δ + γ)2/γ), (δ/(δ + γ))) where AB belongs to the line μ = 0, BC to the

3 The assumed interval of the parameter γ largely includes the range of its economically plausible values.
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Fig. 1. The stability region of the fixed point E* and the noninvertibility region of the map T in the case γ < 1 − δ.

line σ = 1 and the side AD to the line

σ = σp = δ

δ + γ
(8)

while the arc connecting C and D belongs to the hyperbola of equation

σ = σh(μ) = (1 − δ)μ − δ − γ

(1 − δ − γ)μ
. (9)

Moreover, the arc CD of the stability region represents a Neimark-Sacker bifurcation curve,
at which E* is transformed from stable to unstable focus, while the segment AD represents a
(supercritical) pitchfork bifurcation boundary, at which E* becomes a saddle and two new stable
fixed points appear close to E*.

A qualitative draft of the stability region is shown in Fig. 1 in the case γ < 1 − δ, which is the
one assumed in our numerical simulation.4

From Propositions 1 and 2 we deduce that two further equilibria P* and Q* emerge when the
saving rate is lower than a certain threshold σp = δ/(γ + δ), which is directly related to the depreci-
ation rate δ and inversely related to the adjustment coefficient γ . The same quantity also represents
the pitchfork bifurcation value of the “normal” stable equilibrium E*, at which it is transformed
into a saddle. The equilibria P* and Q* are located in symmetric position with respect to E*, and
the location of the fixed points is independent on the parameter μ. Note that in the limiting case

4 If 1 − δ < γ < 2 − δ the stability region has the same vertices, but in this case the arc CD is negatively sloped. When
γ = 1 − δ the side CD belongs to the vertical line μ = 1/γ .
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γ → 0, under which the investment (3) turns out to be independent on the capital stock and no
“shifting” of the investment curve exists, σp → 1 and therefore the model admits three steady
states for any σ, 0 < σ < 1. In this case no Neimark-Sacker boundary exists and no endogenous
fluctuations along a stable closed curve can occur.5 When a gradual adjustment towards the “nor-
mal” level of capital (governed by the parameter γ > 0) is introduced into the investment function,
multiple equilibria are possible provided that the propensity to save is small enough, below the
threshold σp. When σ < σp, bi-stability (without oscillations) will be the prevailing dynamic
scenario. On the other hand, self-sustaining oscillations emerge for σ > σp when the speed of
adjustment μ becomes sufficiently high. Nevertheless, in Section 3 we shall see that also under
small values of σ, in the presence of three steady states, long-run oscillatory behavior is possible,
provided that μ is high enough. This determines situations of multi-stability. The study of such
situations, and of the mechanisms associate with their appearance, is the main topic of this paper.

2.3. Invertibility of the map

For particular constellations of the parameters, the map T defined in (5) is a noninvertible map
of the plane. This means that while starting from an initial condition (x0, y0) the forward iteration of
(5) uniquely defines the trajectory (xt, yt) = Tt(x0, y0), t = 1, 2, . . ., while the backward iteration of
(5) may not be unique. Recent economic literature dealing with cases of multiple attractors in two-
dimensional discrete-time dynamical systems represented by noninvertible maps (see, e.g., Bischi
and Kopel, 2001, 2003; Foroni et al., 2003; Dieci et al., 2001; Chiarella et al., 2002; Agliari et al.,
2000, 2006) has highlighted how noninvertibility can become a source of bifurcations and complex
structures of the basins of attraction. However, we must stress that the global phenomena and the
complex structures of the basins shown in the present paper are not due to the noninvertibility
of the map. Indeed the map is at least locally invertible under the parameter ranges assumed in
our numerical simulations. The goal of the present section is therefore to determine the regions
of the space of parameters where the map is invertible (and noninvertible), in order to prove that
the particular parameter constellation used in our numerical simulation is one where the map is
invertible in a sufficiently large region including the attractors. We consider again the (μ, σ)-plane
(for fixed values of the remaining parameters) so that the ranges of invertibility or noninvertibility
of the map T can be compared with the local bifurcation curves, and we state the following
proposition (which is proved in Appendix in Supplementary Material):

Proposition 3. The (μ, σ)-plane of parameters, μ > 0, 0 < σ < 1, includes a region of nonin-
vertibility of the map (5). In particular, in the case (δ + γ) < 1, the noninvertibility region is an
unbounded set defined by

σ >
1

μ
,

while in the case δ + γ > 1, the noninvertibility region is defined by⎧⎪⎪⎨
⎪⎪⎩

σ <
1

μ

σ >
1

μ
− 1 − δ

γ + δ − 1

.

Moreover, in the noninvertibility region the map T is a Z1 − Z3 − Z1 map.

5 This particular case has been considered in detail in Bischi et al. (2001).
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The latter statement of Proposition 3, which follows the notation used in Mira et al. (1996),
means that the phase plane is divided into different regions Z1 and Z3, whose points have one
and three different rank-1 preimages, respectively. Such regions, or zones, are separated by the
critical curve LC (i.e. the locus of points having two merging rank-1 preimages) which in this
case is made up of two parallel straight lines in the phase plane, say La and Lb, whose equations
are provided in Appendix in Supplementary Material. The region Z3 is the strip of the phase-plane
between La and Lb.

Here we are interested in the intersection of the noninvertibility region with the region of
local stability of E*. We restrict our analysis to the case (δ + γ) < 1, which corresponds to more
realistic ranges of the parameters. In this case, we immediately deduce from Proposition 2 that
the noninvertibility region does intersect the stability region of E*, since the vertex C belongs
to both of them, as shown in Fig. 1. However, when one considers parameter ranges within the
noninvertibility region but close to the hyperbola σ = 1/μ (as is the case of our simulations), two
further preimages of a given point in Z3 do exist but they are located very far away from the
always existing one, so that in a neighborhood of the line σ = 1/μ the map can be considered an
invertible one, at least locally.

3. Phase space transitions with three coexisting equilibria

As we have seen in Proposition 2, the fixed point E* can be destabilized either via a pitchfork
bifurcation, which leads to the coexistence of three equilibria, or via a Neimark-Sacker bifurcation.
Numerical simulations have shown that for a wide range of parameters such a Neimark-Sacker
bifurcation is of supercritical type: this means that close to the Neimark-Sacker bifurcation curve,
the hyperbola σ = σh(μ) in (9), an attracting closed curve exists to which the generic trajectory
converges. Then, in this case the long-run behavior of the map is periodic (generally of very large
period) or quasi-periodic (i.e. endogenous fluctuations are generated).

The results of Proposition 2 come from a linear approximation of the map T, and then they
have only a local validity, holding in a neighborhood of the fixed point E*. A more complete
knowledge about the long-run behavior of the map T can be achieved with a global study of
the dynamical model. In particular the global analysis allows us to discover further situations of
multistability besides the coexistence of two stable steady states and to understand, in particular,
whether endogenous fluctuations may emerge also far from the Neimark-Sacker bifurcation curve.

Before proceeding in this study, let us recall some important notions useful to perform the global
analysis of the model. Given our two-dimensional example (5), we restrict our presentation to the
case of invertible maps defined in R2, since under our parameter selection the map T is invertible,
at least locally. Our references on these topics are Guckenheimer and Holmes (1983), Kuznetsov
(2003), Palis and Takens (1994), and Mira et al. to which we address the reader for more details
and information.

A set S is an invariant set for a map G if and only if G(S) = S. The simplest examples of invariant
sets are the fixed points and the cycles of the map. More generally, the attracting (repelling) sets
and the attractors (repellors) of a map are invariant sets. Strictly speaking, an attracting set A is a
closed invariant set such that there exists a neighborhood U of A strictly mapped in itself and whose
trajectories (i.e. the trajectories starting from all the points of U) converge to A while an attractor
is an attracting set containing a dense orbit. An invariant set not attracting is a repelling set.

As the definition suggests, there exist points which converge to an attracting set (or to an
attractor) A: the invariant set made up by these points is the basin of attraction of A and it can be
obtained by considering the union of the preimages of any rank of the neighborhood U.
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Other important invariant sets in the study of the global property of an invertible map G are
the stable and unstable sets of an hyperbolic6 fixed point p*, which are defined as

W s(p∗) =
{

x : lim
n→+∞Gn(x) = p∗

}
(10)

Wu(p∗) =
{

x : lim
n→+∞G−n(x) = p∗

}
, (11)

respectively.
If p* is a stable fixed point, the stable set coincides with its basin of attraction. If p* is a saddle,

Ws(p*) (Wu(p*)) is a one-dimensional smooth curve passing through p* and tangent at p* to the
stable (unstable) eigenspace. In the following, we will consider the stable (unstable) set as given
by the union of two branches merging in p* denoted by ω1 (�1) and ω2 (�2). The same definitions
can be given for a cycle of period r, by simply considering the union of the stable (unstable) sets
of the points of the cycle obtained from (10) ((11)) with the map Gr instead of G, thus the stable
set of the cycle C = {p1, p2, . . . , pr} is

Ws(C) =
r⋃

i=1

Ws(pi)

where

Ws(pi) =
{

x : lim
n→+∞Grn(x) = pi

}

and analogously for the unstable set.
The importance of the stable and unstable sets is related to the fact that they are global concepts,

that is, they are not defined only in a neighborhood of the fixed point (or cycle). And, if the map
is nonlinear, the stable and unstable sets may intersect, so that there may exist a point q such that

q ∈ W s(p∗) ∩ Wu(p∗).

This point q is an homoclinic point and it can be proved that if an homoclinic point exists, then
infinitely many homoclinic points must exist, accumulating in a neighborhood of p*. Intuitively,
this can be understood by observing that the backward and forward orbits of q converge to p*.
The union of the backward and forward orbits of an homoclinic point q is called homoclinic orbit.
The existence of homoclinic orbits causes a very complex configuration of Ws and Wu, called
homoclinic tangle, due to their winding in proximity of p*. Usually the existence of a homoclinic
tangle is related to a sequence of bifurcations occurring in a certain parameter range: first, a
homoclinic tangency between a branch of the stable set of the saddle and a branch of the unstable
one, followed by a transverse crossing between the stable and unstable set of the saddle cycle,
that gives rise to a homoclinic connection, and by a second homoclinic tangency, which closes
the sequence. It is worth recalling that in the parameter range in which the manifolds intersect
transversely, a chaotic repellor exists, made up of infinitely many (countable) repelling cycles and
uncountable aperiodic trajectories, as stated in the Smale-Birkhoff theorem. This chaotic repellor
exists after the first homoclinic tangency and disappears after the second one.

6 A fixed point p* is said to be hyperbolic if the eigenvalues of the jacobian matrix evaluated at p* do not belong to the
unit circle.
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At the end of the homoclinic tangle (i.e. after the second homoclinic tangency), the dynamic
behavior of the two branches involved in the bifurcation is modified, and therefore we can detect
the sequence of bifurcations looking at the behavior of Ws and Wu.

Observe that if the saddle is a cycle C, we may have intersection points between the stable and
unstable sets of the same periodic point, still called homoclinic points, but also points belonging
to the intersection of the stable and unstable sets of different periodic points: in such a case we
will call them heteroclinic points and heteroclinic tangle the corresponding configuration of Ws

and Wu.
Apart from the connection to chaotic dynamics, the homoclinic (heteroclinic) tangles play a

fundamental role in the bifurcations involving invariant closed curves, as shown in Agliari et al.
(2005a). In fact, in that paper the mechanism causing the appearance/disappearance of closed
invariant curves is associated with heteroclinic tangles of some saddle cycle.

Since we are interested in the global properties of the map T in (5), we shall study its invariant
sets through a continuous dialogue between analytic, geometric and numerical methods and focus
our attention on the basins of attraction of the coexisting attractors and on the stable and unstable
sets of some saddle points or cycles.

Let us now return to the study of the dynamics of the map T in (5), looking in particular at
the coexistence of attractors and to the appearance of self-sustaining oscillations. We start with
a numerical investigation of the long-run behaviors of T, following a bifurcation path, shown in
Fig. 1, which connects the pitchfork bifurcation curve (the straight line (8)), and the Neimark-
Sacker bifurcation curve (the hyperbola (9)). In doing so, we note that a quite generic (i.e. occurring
in a large set of parameter constellations) sequence of bifurcations occurs.

We show such a sequence by fixing δ = 0.2, γ = 0.6, but the same phenomena could be observed
for different parameter sets as well. We know that crossing the line σ = σp, the fixed point E*

becomes a saddle point, and two distinct stable fixed points (nodes), P* and Q*, appear. Let us
call A the attracting set given by the union of the two fixed points, that is, A = {P∗, Q∗} These
points are symmetric with respect to E*, as well as their basins of attraction which are separated
by the stable manifold of E* (see Fig. 2a).7

As the adjustment speed μ is increased, the two nodes turn into stable foci, their basins of
attraction still being separated by the stable set of E*, which shows some convolutions around the
equilibria (Fig. 2b).

Such convolutions accumulate more and more as the parameters move towards the hyperbola
σ = σh(μ) in (9), revealing that a global bifurcation is occurring. Indeed, as shown in Fig. 2c
obtained by increasing the propensity to save σ, an attracting closed curve Γ s appears, coexisting
with the two stable foci and enclosing them. The global effect from the point of view of the basins
of attraction is dramatic: now we have the coexistence of three different attractors, the two fixed
points and the attracting closed curve Γ s; the latter now attracts all the trajectories starting from
outside. This proves that long-run self-sustaining oscillatory behaviors do exist even at small
values of the propensity to save (σ < σp), although coexisting with no oscillatory ones. The basin
of attraction of Γ s is separated by that of the attracting set A by a repelling closed curve Γ u (see
the enlargement of Fig. 2c), which seems to appear at the same time of Γ s. Note however that
at this first stage, where the two curves have just appeared, no changes have occurred yet in the
basins of attraction locally (i.e. in a neighborhood of E*). From the point of view of the economic
interpretation, this implies that a small exogenous shock which moves the economy away from

7 More details can be seen on the website, where color figures are available.



A. Agliari et al. / J. of Economic Behavior & Org. 62 (2007) 324–347 335

Fig. 2. Coexistence of attractors: (a) two coexisting stable nodes, P* and Q*. The basins of attraction of P* and Q* (gray
and red points, respectively) are separated by the stable set Ws(E*) of E*. The unstable set Wu(E*) (in light blue) converges
to the fixed points. (b) The two equilibria have turned into foci and the stable set of E*, still separating their basins, exhibits
same convolutions. (c) The attracting closed curve Γ s coexists with the two stable foci. Its basin of attraction (white points)
is separated from that of the attracting set {P*, Q*} by a repelling closed curve Γ u. (d) Γ u splits in two repelling closed
curves which constitute the boundaries of the basins of attraction of P* and Q*, respectively. (For interpretation of the
references in colour in the figure legends, the reader is referred to the web version of this article.)

the (unstable) normal equilibrium E* gives rise to a trajectory that eventually settles down in either
P* or Q*, with the stable set of E* acting as a “watershed”, exactly as it was before the appearance
of the curves. Put differently, though a new attracting curve Γ s now exists, long-run fluctuations
are possible only if the economy starts sufficiently far away from the normal steady state E*.

This dynamic scenario will be analyzed more in details in the next section, with particular
attention to the global mechanism causing the appearance of the two invariant curves.

Proceeding further along the bifurcation path, we observe that the repelling closed curve splits
in two distinct closed curves, each one bounding the basin of attraction of one of the stable foci,
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which gradually reduces in size, as in Fig. 2d. Differently from the previous one, this new global
bifurcation does not affect the existing attractors; rather, it produces a qualitative change of the
basins of attraction in a neighborhood of E*, in that a small displacement of the system from E*

now results in oscillatory behavior along the attracting curve Γ s in the long-run. Notice that this
local effect on the basins of attraction could not be detected by looking at the linearized system
around the steady states because E* is still a saddle while P* and Q* are still attracting foci.
Thus, once more the mechanism underlying the appearance of these two repelling closed curves
is related to some global bifurcation and therefore needs a deeper analysis, which will be carried
out in Section 4.2.

Approaching again the curve σ = σp in (8) (now from below), the two repelling closed curves
shrink on P* and Q*, respectively, merging with them at a Neimark-Sacker bifurcation of subcrit-
ical type, which leaves two repelling foci and the closed curve Γ s as unique attractor.

Then the repelling foci turn into repelling nodes and merge with E* when the bifurcation
path crosses again the line (8), but outside the stability region. As a result of such a pitchfork
bifurcation, the saddle E* becomes a repelling node, which turns into a repelling focus encircled
by Γ s. We are approaching the supercritical Neimark-Sacker bifurcation, the hyperbola in (9),
after which E* becomes an attracting focus and the curve Γ s disappears, merging with E* itself.

4. Global bifurcations associated with closed invariant curves

In this section we analyze the bifurcation associated with the appearance of the closed invariant
curves, anticipated in the previous section. In order to describe the global bifurcations causing
the appearance of invariant curves, we follow a vertical bifurcation path, fixing the parameter
μ = 10. Indeed, at this value of the speed of adjustment the phenomena previously described are
observable in a sufficiently wide range of σ, and thus it will be simpler to follow the mechanisms
which cause the appearance of the invariant closed curves. In particular, in this example the
attracting closed curve appears as a saddle-focus connection; that is, there exists a periodic orbit,
a stable focus cycle of period 18, coexisting with a period 18 saddle cycle, and the unstable
manifold of the saddle cycle connects the periodic points of the stable cycle. Then we will be able
to study the behaviors of the stable and unstable sets of the saddle cycle and to discover whether
any homoclinic or heteroclinic tangle are associated with the appearance of the attracting closed
curve.

We recall that (see Section 2.3) at μ = 10 the map is noninvertible if σ > 0.1, but we will allow
the parameter σ to vary in a small neighborhood of 0.1, so that the map is locally invertible in the
region of the phase space where the dynamics take place. We start our analysis by increasing σ

from σ = 0.09.

4.1. On the appearance of the attracting closed curve

At σ = 0.09, P* and Q* are attracting foci, with basins of attraction separated by the stable
set of the saddle E*, Ws(E*), which is a smooth curve coming from the boundary of the basin of
attraction of the attracting set A = {P∗, Q∗}: the phase space is similar to the case illustrated in
Fig. 2b. As the value of σ is increased, Ws(E*), the curve separating the basins of attraction of the
two stable fixed points, presents more and more oscillations in a region quite far from the saddle
E*, as shown in Fig. 3a. This causes an increasing complexity of the boundary separating the
basins of attraction of the two stable foci and makes it difficult to forecast the fate of a trajectory
starting from the area interested by the winding of Ws(E*).
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Fig. 3. Appearance of the cycles of period 19. (a) Ws(E*), separating the basins of attraction of the two stable fixed points,
presents more and more convolutions. (b) Two attracting cycles of period 19 exists as well as two saddle cycles of the same
period. The basins of attraction of the two stable cycles (green and yellow points) are very narrow and clearly visible in
the enlargement. A(1)

19 is a periodic point of the cycle A19 of coordinates (1.1547517, 0.9365419). S(1)
19 denotes a periodic

point of the saddle S19 and αi
19(ωi

19), i = 1, 2, the branches of the unstable (stable) set of S19. (c) Transversal crossing of
the stable and unstable sets of the saddle S19, denoting the occurrence of a homoclinic tangle which involves the branches
α1

19 and w1
19. (d) The existence of a chaotic repellor due to the homoclinic tangle implies the complex structure of the

basins of attraction of the different attractors.

As in the previous section, the particular structure of the stable set of E* suggests that some
bifurcation is incoming. Indeed at σ ∼0.1009378 two stable cycles of period 19 appear via saddle-
node bifurcation together with two saddle cycles. We illustrate the new situation in Fig. 3b obtained
at a slightly higher value of σ, at which the stable node cycles have already turned into foci. At this
parameter constellation, after the saddle-node bifurcation, there exist four coexisting attractors:
the two fixed points and the two cycles of period 19. The size of the basins of attraction of the
two cycles of period 19 is so small that it can only be appreciated in the enlargement of Fig. 3b.
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The existence of two pairs of cycles of odd period 19 is due to the symmetry of the map, and
in the following we will only refer to one of them, since they have analogous dynamic properties.
In the following we will denote the stable focus cycle with A19 and the associated saddle cycle
with S19.

The basin of attraction of the cycle A19 is bounded by the stable manifold of the saddle S19,
W s(S19) = ω1

19 ∪ ω2
19 which is a smooth curve surrounding the points of the stable cycle and

coming from the boundary of the set of bounded trajectories. The unstable manifold Wu(S19)
has a branch (the external one, α1

19) which reaches the points of the stable cycle, turned into a
focus, and another branch (the internal one, α2

19) which reaches the two fixed points, crossing the
stable set of the saddle E*. As we can observe from the enlargement of Fig. 3b the branch α1

19
shows some oscillations converging to A19 and the branch ω1

19 approaches α1
19 turning around the

periodic points of A19. As the parameter σ is slightly increased, a transversal crossing between
the external branch of the unstable set of the saddle S19 and the branch ω1

19 of the stable one
can be detected (see Fig. 3c). This means that we are inside a homoclinic tangle (because the
two branches α1

19 and ω1
19 are related to the same periodic point of the saddle S19). Thus, at a

certain value of the parameter a tangential contact between the two branches of the stable and
unstable sets has occurred, followed by a transverse intersection in a suitable parameter range. As
a consequence, a chaotic repellor has been created, it exists after the first tangential contact and
persists during the transverse crossing, and it will disappear after the second tangential contact.
This chaotic repellor is responsible of the complex structure of the basins of attraction of the
four coexisting attractors: in the enlargement of the phase space shown in Fig. 3d we can see that
the basins of attraction of A19 and of the attracting set A = {P∗, Q∗} have a complex structure.
Note that some bifurcation similar to the one just described, eventually involving cycles of higher
period (attracting or repelling), may also have occurred at smaller values of σ, causing the complex
structure of the basins of P* and Q* in Fig. 3a.

By increasing the parameter σ, the stable focus A19 turns into a node and it is subject to a
sequence of period doubling bifurcations leading to a chaotic attractor: we have followed this
route up to a four pieces chaotic attractor of the map T19 (that is a 76-piece chaotic attractor
of T) which seems to disappear via a final bifurcation, due to a contact with its basin boundary.
When this occurs, the stable and unstable sets of S19 always present transverse intersection, which
involves also the unstable branch α2

19.
Meanwhile, a new pair of cycles appears via saddle-node: an attracting node of period 18, A18,

and the associate saddle, S18. As shown in Fig. 4a, the basin of attraction of the cycle A18, which
has turned into a focus, is bounded by the stable set of S18, W s(S18) = ω1

18 ∪ ω2
18, which comes

from the boundary of the set of bounded trajectories. The external branch α1
18 of the unstable set

converges to A18 and the internal one, α2
18, to the two fixed points, crossing the stable set of the

saddle E*.
Once more, increasing the parameter σ, the internal branch α2

18 approaches the branch ω2
18, as

shown in Fig. 4b where the basin boundary ofA18 is given by the stable set ofS18. This means that
a heteroclinic tangency has occurred, involving the stable and unstable sets of different periodic
points of the saddle cycle S18. The heteroclinic transversal intersection is more evident in Fig. 4c
and d, where the tangle develops and the basins of the cycle A18 and of the attracting set A are
intermingled.

Moreover, we recall that the cycles of period 18 coexist with other saddle cycles, the two
that appeared via saddle-node bifurcation, S19 and its symmetric one, and those due to the flip
bifurcation sequences of the two cycles of period 19, A19 and its symmetric one. Then, different
sources of chaotic dynamics are possible in the parameter range we are analyzing. We choose, for
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the sake of simplicity, to limit ourself to the study of the saddle cycle S19 and we show in Fig. 4e
an enlargement of its unstable set which converges to the focus cycle A18 and to the two fixed
points P* and Q*. In the same figure is also shown the branch ω1

19 of the stable set of S19: we can
observe that the transversal crossing with both the branches of the unstable set still persist, but
the end of the tangle is coming.

Fig. 4. Appearance of the cycles of period 18. (a) An attracting cycle A18 of period 18 (focus) exists as well as a saddle
cycle S18 of the same period. The basin of attraction of A18 is quite large, bounded by the stable set of S18. The branch
α1

18 of the unstable set of the saddle cycle reaches the periodic points of A18, α2
18 reaches the two stable foci P* and

Q*. (b) An enlargement of the basins of attraction shows the existence of a transversal crossing between the branch α2
18

(in green) of the unstable set of the periodic point S(2)
18 of S18 and the branch ω1

18 of S(1)
18 . (c) In the homoclinic tangle

parameter range, the basins of attraction of A18 and of {P*, Q*} are intermingled. (d) Transversal crossing between the
stable (in violet) and unstable (in green) sets of the saddle S18. (e) Transversal crossing between the stable (in blue) and
unstable (in yellow) sets of the saddle S19.
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Fig. 4. (Continued ).

Indeed, at σ = 0.10097, the two branches α1
19 and α2

19 have no more contacts with ω1
19, as shown

in Fig. 5a. At the same parameter values, a repellor, say F, which seems a weekly chaotic ring has
appeared. The branch ω1

19 of the stable set of the saddle S19 issues from F as well as the stable
manifold of the saddle E*. This repellor may include the connection of the two saddle cycles (or
some other of the existing saddles) with some repelling cycle (cycles) that survived in the tangle.
As shown in Fig. 5b, the repellor F is the boundary of the basin of attraction of the attracting set
A, which now is a bounded set. A coexists with the stable focus cycle A18, that now has a wider
basin of attraction, to which the unstable set of S19 converges.

The chaotic regime does not end together with the closure of this homoclinic tangle, since the
branch α2

18 of the unstable set of S18 is still involved in the homoclinic tangle with the branch
ω2

18 of the stable one, as shown in Fig. 5c. This situation cannot be detected simply looking at the
basin of attraction of A18 since this heteroclinic tangle only affects the behavior of the map T18.
But if we look at the trajectories starting from the area interested by the transverse crossing we
observe a quite long transient part before the convergence to the focus cycle, which signals the
presence of a chaotic repellor.

Moreover, the invariant stable and unstable sets of the saddle S19 have many intersections
with those of the saddle S18, and the unstable branch α2

19 has an heteroclinic tangle with ω2
19;

these tangles develop until the saddle cycle of period 19 disappears via a saddle-node bifurcation,
merging with a stable node of period 19, resulting from a sequence of period halving bifurcations.
As a starting attractor, giving rise to such a sequence, we have detected a 76-piece chaotic attractor.

Finally, also the heteroclinic tangle of the saddle S18 arrives at the second tangential contact,
after which the chaotic repellor associated to it disappears. In Fig. 5d an enlargement of the stable
and unstable sets of S18 is shown. We may observe that the internal branch of Ws (S18) issues from
the set F, and the unstable set Wu (S18) gives rise to a closed connection between the periodic
points of the stable focus A18, an attracting closed curve now exists, as shown in Fig. 5e.
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Summarizing, we have shown that in our example the repelling and attracting closed curves
do not appear at the same time. First the repelling set F (which substitutes the repelling closed
curve Γ s of Fig. 2c) appears at the closure of the homoclinic tangle of the saddle S19, then the
attracting closed curve appears at the closure of the heteroclinic tangle of the saddle S18.

Though the phase space representation in Fig. 2c, where the attracting closed curve Γ s
and the repelling closed curve Γ u look as though they have appeared simultaneously, may

Fig. 5. Closure of the tangles and appearance of closed invariant curves. (a) After the closure of the tangle involving the
saddle of period 19, the stable branch ω1

19 comes from a strange repellor F and the unstable branch α1
19 converges to the

focus cycle A18. The stable set Ws(E*) issues from F as well. (b) The repellor F, which seems a weekly chaotic ring,
separates the basin of attraction of the cycle A18 and that of {P*, Q*}. (c) Transversal crossing between the stable (in
violet) and unstable (in green) sets of the saddle S18. (d) After the closure of the tangle involving the saddle of period 18,
the stable branch ω1

18 comes from the repellor F and the unstable branch α2
18 converges to the focus cycle A18, giving

rise to a saddle-focus connection. (e) An attracting closed curve exists in the phase-space, given by the saddle-focus
connection.
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Fig. 5. (Continued ).

lead us to conjecture a saddle-node bifurcation of closed invariant curves, we can certainly
exclude this mechanism in the foregoing numerical example. Indeed the saddle-node bifur-
cation of a closed invariant curve is a known mechanism arising in continuous models, but
very rare and non-generic in discrete maps. Global bifurcations similar to the ones illus-
trated in this section are responsible for the appearance of an attracting curve also in different
regimes of the parameters, and similar mechanisms are likely to be at work also for low val-
ues of μ (as in the example presented in Fig. 2c), though in this case the parameter range in
which the bifurcations take place may be very narrow. Note also that the global bifurcation
sequence that we have described in this section is a mechanism similar to the one described
in Agliari et al. (2005b), where the emergence of closed invariant curves is related to saddle
connections. In our example, the mechanism is more complex with respect to the case ana-
lyzed in Agliari et al. (2005b), in that it involves at least two cycles and different homoclinic
tangles.

4.2. On the appearance of two repelling closed curves

We proceed along the bifurcation path in order to study the mechanism which gives rise to the
splitting of the repelling set F. As the parameter σ is further increased an attracting closed curve
Γ s appears, substituting for the saddle-focus connection previously established. We have checked
that the appearance of Γ s is due to a global bifurcation, similar to that described in Agliari et al.
(2005b) and still involving a heteroclinic tangle of the saddle S18, which destroys the saddle-focus
connection. At its appearance Γ s coexists with the cycles A18 and S18, surrounding them. Then
the cycle A18 turns into a node, and a saddle-node bifurcation causes the disappearance of the
two cycles. After the saddle-node bifurcation, Γ s coexists with the two stable foci P* and Q*, as
shown in Fig. 6a. The repellor F separates the basin of attractions of Γ s and A, the attracting set
given by the union of the two stable foci. The basins of attraction of P* and Q* are separated by
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Fig. 6. Homoclinic bifurcation of E*. (a) An attracting closed curve coexists with the two equilibria P* and Q*. A closed
curve F bounds the set of self-sustaining trajectories. The trajectories converging either to P* or Q* are separated by the
stable set Ws(E*). (b) At an intermediate value of σ, a tangency occurs between the stable and unstable sets of E*, clearly
observable in the enlargement. (c) At a larger value of σ, two repelling closed curves exist, each one bounding the basin
of attraction of a fixed point. This is the first step of the homoclinic tangle which causes the disappearance of F and the
appearance of the two repelling closed curves.

the stable set of the saddle E*, which comes from F. A branch �1 of the unstable set of E* reaches
P*, whereas the other one, �2, reaches Q*.

Continuing to increase the parameter σ, the set F shrinks to near the origin, showing more
and more oscillations: this means that a homoclinic bifurcation of the saddle E* is going to occur.
In the enlargement of Fig. 6b the first homoclinic tangency between Ws (E*) and Wu (E*) is
illustrated, after which the homoclinic tangle develops. After the second homoclinic tangency, as
shown in Fig. 6c, the set F is split into two repelling closed curves (or some more complex chaotic
repellors) Γ 1 and Γ 2, from which the branches ω1 and ω2, respectively, of the stable set of E*

issue. Also the unstable set of E* has changed its behavior, converging to the attracting curve Γ s.
The complete development of the homoclinic bifurcation of E* is represented in Fig. 7, where

the whole stable and unstable sets of E* are drawn. The first homoclinic tangency is illustrated in
Fig. 7a, obtained at the same parameters value as in Fig. 6b; the branch α1 of Wu (E*) converges
to P*, and it is completely contained in its basin of attraction; the same is true for α2 with respect
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Fig. 7. The homoclinic tangle develops. (a) The first homoclinic tangency of Ws(E*) and Wu(E*), which opens the tangle.
(b) The transversal crossing. (c) The second homoclinic tangency, at opposite side with respect to the previous one, which
closes the homoclinic tangle.

to the fixed point Q*. The stable branches have a complex structure; the repelling set F is replaced
by a strange repellor, generated by the tangency and separating the basins of P*, Q* and Γ s. The
transversal crossing of Ws (E*) and Wu (E*) is shown in Fig. 7b. More and more homoclinic points
of E* are created; the separator of the three basins of attraction is a chaotic repellor, associated with
the infinitely many periodic points existing close to the homoclinic trajectories. Moreover, we can
observe that the unstable set Wu (E*) enters the basin of attraction of the attracting closed curve
Γ s as well as that of the attracting set A. As σ is further increased, more and more points of Wu

(E*) converge to Γ s, and when the second homoclinic tangency occurs, no points of the unstable
set converge to the two stable foci, as shown in Fig. 7c. This closes the tangle; the homoclinic
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points of E* disappear as well as the chaotic repellor, leaving the two disjoint curves Γ 1 and Γ 2 as
boundaries of the basins of attraction of P* and Q*. After the homoclinic tangle both the branches
of Wu (E*) converge to the attracting closed curve Γ s, and those of the stable set Ws (E*) come
from the repelling closed curves Γ 1 and Γ 2.

In the numerical example that has been chosen to explain the bifurcation sequences presented
in the last two sections, we have assumed a high value of μ (adjustment parameter), because this
allows us to “magnify” the mechanisms of transition between different scenarios. Indeed, based on
numerical observations, we conjecture that similar mechanisms drive these bifurcation sequences
in the generic case, in particular in cases of lower and more realistic values of μ. For instance the
qualitative changes illustrated in Fig. 2 must involve some homoclinic (or heteroclinic) tangles,
perhaps associated with saddle cycles of very high period. However, the parameter ranges in
which these tangles develop may be very narrow ones, and it may be quite hard to detect them
numerically and to illustrate the bifurcation sequence in detail.

The foregoing global analysis has explained some mechanisms which determine the transition
between qualitatively different dynamic scenarios characterized by coexistence of attractors. The
proposed example has shown that homoclinic bifurcations play an important role in such phase-
space transitions. Moreover, transitions are of necessity associated with intermediate regimes,
where homoclinic tangles are at work, in which chaotic repellors exist and the structure of the
basins of the coexisting attractors may be quite complex. The economic relevance of these obser-
vations consists in the possibility of characterizing the typical bifurcation mechanisms that are
associated with situations of coexisting attractors and, conversely, understanding which global
changes (of attractors and basins of attraction) are likely to be observed when a specific bifurcation
sequence is started. This could provide a guideline on the global dynamic analysis of economic
models.

5. Conclusions

In this paper we have considered a particular version of the Kaldor business cycle model in
discrete-time, which has been proposed in Bischi et al. (2001). The focus of the paper has been
on the global bifurcations of attracting and repelling invariant curves which are associated with
phenomena of coexistence of attractors and intricated structures of the basins of attraction, and this
has been illustrated within the well known nonlinear framework of the Kaldor model. Our choice
of the Kaldor model is due to the necessity of referring to a well understood nonlinear dynamic
set-up, endowed with a rich (local) bifurcation structure which is able to generate qualitatively
different dynamic scenarios (coexistence of two stable equilibria or long run fluctuations) in
different regions of the space of parameters. This raises the important question (which has been
considered in Bischi et al., 2001 at a rather intuitive level) of understanding the bifurcation
mechanisms which produce the transition between different dynamic scenarios. We have shown
that these bifurcation sequences involve homoclinic (or heteroclinic) tangles, associated with
saddle points or saddle cycles of different period, and that the “intermediate” scenarios are of
necessity accompanied by complex structures of the basins of attraction. This strengthens the role
of homoclinic bifurcation theory (which has been recently introduced in economics in order to
explain the routes of complex attractors which are often observed in numerical experiments) as a
tool of analysis of global dynamic phenomena.

A final remark is about the economic implication of the global bifurcations illustrated in this
paper. The question of equilibrium selection arises naturally within economic models charac-
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terized by multiple equilibria. More generally (as is the case of the present model) under time
evolution the system will select among multiple long-run dynamic outcomes which may include
steady states and other types of attractors. In such cases, the graphical representation of the basins
of attraction appears to be the only way to predict which attractor will be selected by the econ-
omy. However, numerical and graphical analysis may not be sufficient when a high degree of
uncertainty in the selection of the final outcome is induced by the possibility that the basins of
attraction are very intermingled, which may occur during the phase of a homoclinic tangle. For
instance, in the case of Fig. 4a, even in the presence of attractors with a relatively simple structure,
the final outcome of the system may be totally uncertain when the initial condition is selected in
particular regions of the phase-plane, where the basin boundaries are very complicated sets with a
fractal structure. This particular notion of complexity, which has received relatively little attention
in the economic literature, refers to the “final state” unpredictability (see McDonald et al., 1985;
Brock and Hommes, 1997) rather than to the erratic nature of the motion on a strange attractor.
Nevertheless, the numerical and graphical approach that we have adopted, based on a thorough
study of the qualitative changes of stable and unstable manifolds of saddles, might prove to be
useful to discover those particular ranges of the parameters where transversal intersections and
homoclinic tangles are developing, and where therefore one could expect dynamic phenomena
similar to the ones studied in this paper.
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Appendix
In this Appendix we derive the region of invertibility of the map T in the

space of parameters (i.e. we determine the combinations of parameters under
which the �backward iteration�of (5) is uniquely de�ned), so that each point
of the phase-space has a unique preimage of rank-1. Moreover, for those ranges
of parameters where the map is noninvertible, we discuss the question of the
number and the location of the preimages of a point of the phase space.
The rank-1 preimages of a point (u; v) are the solutions of the system�

u = (1�  � �)x+ arctan y
v = ��x+ (1� ��) y + � arctan y

where the unknown variables are x and y. Rearranging the two equations we
obtain (

x = (1���)y�v+�u
�(1��)

� (1� � � ) 1���
�(1��)y +

(1���)v+�u
�(1��) = arctan y

.

Then the y-coordinate of the rank-1 preimages of the points (u; v) must
satisfy the equation

q (u; v) +my = arctan y (12)

where q (u; v) = (1���)v+�u
�(1��) and m = ( + � � 1) 1���

�(1��) .
Simple geometrical considerations allow us to check that if m < 0 or m � 1,

equation (12) has a unique solution for any given (u; v). Therefore if

( + � � 1) (1� ��) < 0 or ( + � � 1) 1� ��
� (1� �) � 1

the map T is invertible (i.e. it has a unique inverse). If m = 0, then a unique
solution of (12) exists if ��=2 < q (u; v) < �=2; otherwise no solution exists.
In the case 0 < m < 1, one, two or three solutions of the equation (12)

may exist depending on the value of q = q (u; v). In particular, for a given m,
0 < m < 1, two solutions exist if the straight line at the left side of (12) is
tangent to the S-shaped curve f (y) = arctan y; that is if

m =
1

1 + y2

so that y = �
q

1
m � 1, and

q (u; v) = q1 = m

r
1

m
� 1� arctan

r
1

m
� 1

q (u; v) = q2 = �m
r
1

m
� 1 + arctan

r
1

m
� 1

with q1 < q2.
Moreover, if q (u; v) < q1 or q (u; v) > q2 the equation (12) has a unique

solution (and the point (u; v) has a unique preimage) while if q1 < q (u; v) < q2
three solutions exist (and therefore three di¤erent preimages of the point (u; v)).
This means that if �

(1� � � ) (1� ��) < 0
(1� � � ) 1���

�(1��) > �1
, (13)

the map T is noninvertible and, following the notation used in Mira et al., it
is a so-called Z1 � Z3 � Z1 map. With such a notation we indicate that the
phase plane is divided in di¤erent regions Z1 and Z3, whose points have one
and three di¤erent rank-1 preimages, respectively. Such regions, or zones, are
separated by the critical line LC (i.e. the locus of points having two merging
rank-1 preimages).



It follows from the above considerations that the critical line LC is the locus
of the points (x; y) of the phase-plane which satis�es

q(x; y) = q1 or q(x; y) = q2,

and therefore LC is made up by two distinct branches; that is LC = La [ Lb
with

La : x =
(� +  � 1)

�
y +

(1� �)


q1 and (14)

Lb : x =
(� +  � 1)

�
y +

(1� �)


q2 .

The locus of the merging preimages of the points belonging to the set LC is the
rank-0 critical line LC�1 and it is given by La�1 [ Lb�1, where

La�1 : y = �
r
1

m
� 1 (15)

Lb�1 : y =

r
1

m
� 1

(i.e. the points which satisfy the tangency condition).
From the noninvertibility conditions (13) we obtain that, for � +  < 1, the

noninvertibility region is an unbounded subset of the (�; �)-plane de�ned by

� >
1

�

given that the second condition of (13) is always ful�lled for 0 < � < 1; for
� +  > 1, the noninvertibility region is de�ned by

1

�
� 1� �
 + � � 1 < � <

1

�
.

1

We recall that the critical line of the map T in (5) may also be obtained by LC =
T (LC�1), where LC�1 is the locus of points at which the determinant of the Jacobian matrix
vanishes, given in the following equation (15).
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