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Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual

transition from the domain of stable periodic dynamics (corresponding to the desired mode of

operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D

stroboscopic map derived from a non-autonomous ordinary differential equation with discontinu-

ous right-hand side. By construction, this stroboscopic map has a high number of border points. It

is shown that the onset of chaos occurs stepwise, via irregular cascades of different border colli-

sions, some of which lead to bifurcations while others do not. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4918299]

Power electronic inverters (DC/AC converters) provide

AC power from a DC source. Converters of this type play

an important role in modern power engineering. They

are used, for instance, as so-called grid-tie inverters to

convert low voltage DC power from a solar panel into AC

power. Other applications include their use as uninter-

ruptible power supplies (UPS), active filters, flexible AC

transmission systems (FACTS), voltage compensators,

etc. The dynamics of such a system involves two external

signals: a low frequency reference signal that defines the

waveform of the desired output and a high frequency,

pulse-modulated switching signal that, during each

switching period, connects the load to the available DC

supply voltage for a fraction of time that is controlled by

the reference signal. From the view of nonlinear dynam-

ics, power electronic converters are piecewise smooth dy-

namical systems and typically exhibit border-collision

bifurcations. It is well-known that such bifurcations may

lead to a direct transition from an attracting fixed point

or cycle to chaos. The desired mode of operation for the

inverter is an attracting cycle following the periodic ref-

erence cycle. However, as parameters are varied, small

amplitude high frequency chaotic oscillations modulated

by the low-frequency reference signal may appear.

Remarkably, the boundaries in parameter space between

domains of regular and chaotic dynamics form an unusu-

ally complex structure that appears not previously to

have been described. We first illustrate how the regular

and chaotic forms of dynamics arise in an experimental

inverter system. Next, we transform the non-autonomous

ordinary differential equation with discontinuous right

hand side that describes the inverter into an autonomous,

piecewise smooth 1D stroboscopic map for which the

desired mode of operation of the inverter is an attracting

fixed point. By construction, this stroboscopic map dis-

plays a high number of border points, and under varia-

tion of the parameters, the dynamics of the map is

essentially influenced by collisions with these border

points. Some of the collisions lead to bifurcations that

change the topological structure of state space. However,

there are also collisions that do not affect the topological

structure of state space. A stable fixed point, for instance,

may cross a switching manifold and still remain stable.

The high number of border points causes the collisions to

occur in cascades such that a stable fixed point may

undergo a number of border collisions without change of

stability, or may be destabilized in a border collision

bifurcation, to then be re-stabilized again in a border col-

lision bifurcation at a slightly different parameter value.

The irregular manner in which the border-collision

bifurcations occur explains the unusual structure of the

boundary between regular and chaotic domains.

I. INTRODUCTION

Electronic inverter systems play an important role in

modern power engineering. Due to their ability to provide

AC power from a DC source with high efficiency and by vir-

tue of their relatively small size and low costs, converter sys-

tems of this type have found a broad range of applications in

the private households as well as in the industry and trans-

port sectors. At remote locations, where access to the power

line is impossible, DC/AC converters can be used to power

refrigerators, TV-sets, and other household appliances from

the battery of a car.1 Other applications include the use as

so-called grid-tied inverters to convert low voltage DC

power from solar panels into AC power at the line frequency

and voltage.2 Moreover, by providing an approach to connect

high-voltage AC transmission lines without requiring precise

frequency and phase synchronization, it is expected that
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inverter systems will make a significant contribution to the

stabilization of the high-voltage power distribution system.3

The main ideas underlying the operation of power elec-

tronic inverters are (i) application of switching dynamics

alternatingly connects the load to a positive and a negative

version of the available DC supply voltage, (ii) the use of

pulse-width modulation allows the fraction of time spent in

each of the two configurations to be adjusted in accordance

with the externally specified wave form, (iii) feedback regula-

tion provides a simple approach to correct deviations from the

desired mode, and (iv) operation at a relatively high switching

frequency allows the ripple on the output voltage to be kept at

acceptable levels with the use of relatively small filter compo-

nents. At the same time, the feedback regulation introduces an

additional source of interaction between the low-frequency

power mode, the high-frequency switching cycle, and the en-

dogenous dynamics of the filter circuit. This interaction gives

birth to a variety of unusual nonlinear dynamic phenomena,

including the newly reported phenomenon of phase synchron-

ized quasiperiodicity4–6 and the irregular transition to deter-

ministic chaos through a cascade of different border-collision

bifurcations, reported in the present work.

Similar to other systems with switching control, power

electronic converter systems can generally be modeled as

piecewise smooth dynamical systems.7–9 Such systems are

characterized by the fact that their phase space is divided into

regions with different dynamics, separated from each other

by so-called switching sets. In addition to the bifurcations

occurring in smooth systems, piecewise smooth systems also

show a variety of border-collision related phenomena which

occur when an invariant set such as, for example, a cycle, col-

lides with a switching set. When such a collision causes a

change of the topological structure of the phase space of the

system, it is called a border-collision bifurcation. An over-

view of border collision related phenomena may be found in

the book by di Bernardo et al.;9 see also the recent publica-

tions by di Bernardo et al.,10 by Makarenko and Lamb,11 and

by Zhusubaliyev et al.12

In this paper, we consider a single-phase H-bridge in-

verter with a pulse-width modulated control. The behavior of

such a DC/AC converter is represented by a non-

autonomous ordinary differential equation with a discontinu-

ous right-hand side. This equation leads us first to formulate

a 1D non-autonomous piecewise-smooth map with two peri-

odically modulated borders and, thereafter, to establish a 1D

autonomous piecewise-smooth stroboscopic map. By its con-

struction, this second map displays a high number of border

points, and as one would expect, this structure leads to un-

usual sequences of bifurcations. The normal operational re-

gime for the considered DC/AC converter is the regime of

stable period-1 dynamics, corresponding to stable fixed

points of the 1D autonomous stroboscopic map. As parame-

ters are varied, this period-1 mode becomes unstable and the

system shows oscillations in the form of a small-amplitude

chaotic ripple that is modulated by the low-frequency exter-

nal reference signal.

To illustrate these phenomena, Fig. 1 presents the experi-

mentally observed wave forms for the output voltage of the

single-phase H-bridge inverter. The system we consider in

the present paper is a variant of the inverter discussed by

Zhusubaliyev et al.4 The difference between the two inverters

regards the scheme of the output filter only. The single-phase

pulse-width modulated H-bridge inverter considered in our

previous work has an LC output filter, whereas the inverter

considered in the present paper has a resistive-inductive

load.1 As a consequence, this inverter can be modeled by a

1D map discussed below, while a similarly obtained model of

the inverter with LC filter considered in the cited work is 2D.

Fig. 1(a) shows the experimentally observed wave form

of the output voltage for the regular period-1 dynamics under

normal operational conditions. As one can see from the mag-

nifications shown in Figs. 1(c) and 1(e), this wave form is

characterized by the presence of high-frequency oscillations

which in this case are quite regular. One can also observe

how the amplitude of the ripple oscillations is modulated by

the low frequency power mode such that the ripple nearly

disappears when the instantaneous amplitude of the power

mode is at its extrema. This is a direct consequence of the

applied control scheme (see Fig. 2(b)).

Fig. 1(b) shows the experimentally observed wave

form for the chaotic dynamics. As one can see, especially in

the magnifications shown in Figs. 1(d) and 1(f), this wave

form is characterized by the existence of quite irregular

high-frequency oscillations that are modulated by the low-

frequency external reference signal. Examples of the appear-

ance of such small-amplitude chaotic ripple in the practical

inverter systems can by found in the book by Kazmierkowski

et al.1

The purpose of the present work is to find explanations

to the observed unusual phenomena. We show that the transi-

tion from a fixed point to chaos in the considered system is

associated with the following phenomenon. For increasing

values of a parameter (such as the feedback gain factor), the

stable fixed point undergoes a sequence of border collisions.

The first border collisions in such a sequence are associated

with persistence of a stable fixed point (a fixed point crosses

a border moving from one branch of the map to the next one

without changing its stability). As the value of the parameter

is further increased, we observe that, at some border colli-

sion, the fixed point becomes unstable, and a different attrac-

tor (a cycle or a chaotic attractor) appears. However, this

destabilization of the fixed point is not ultimate as, at one of

the next border collisions, the fixed point may become stable

again. Such a temporary destabilization with a subsequent

restabilization of the fixed point occurs more and more fre-

quently, the intervals of stability of the fixed point shrink,

and after some transition (destabilization), the fixed point is

not restabilized again. This route to chaos via an irregular

sequence of border collisions differs essentially from other

routes to chaos (such as a regular period-doubling cascade

typical for smooth maps and a direct transition from a stable

fixed point to chaos typical for piecewise-smooth maps). To

our knowledge, this type of phenomenon, leading to an un-

usual and fairly complicated form of the boundary between

the regions of stability of fixed points and the region associ-

ated with chaotic dynamics, has not previously been

reported.
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In the present work, we discuss only the first steps

towards understanding of the observed phenomena.

Therefore, the aims of the present paper do not include any

rigorous proofs or generalizations. After introduction of the

considered model (which can be seen, however, as represen-

tative for a broad class of DC/AC converters), the transition

to chaos mentioned above is studied using heuristic consider-

ations based on results obtained numerically. At the present

stage, no analytical theorems can be provided, so that we

restrict ourselves to describing the phenomenon and leave its

more rigorous treatment for future work.

The paper is organized as follows. In Sec. II, we

describe the considered inverter (Sec. II A), its model given

by a non-autonomous ordinary differential equation with a

discontinuous right-hand side (Sec. II B), the corresponding

1D non-autonomous piecewise-smooth map and the resulting

1D autonomous piecewise-smooth stroboscopic map (Sec.

II C). In Sec. III, we discuss the bifurcation phenomena

occurring in the considered system and explain the mecha-

nisms leading from stable fixed points to chaotic dynamics

via cascades of border collisions. The obtained results are

summarized in Sec. IV.

II. DESCRIPTION OF THE SYSTEM

A. Pulse-width modulated single-phase inverter

Figure 2(a) shows a schematic diagram of the pulse-width

modulated (PWM) H-bridge, single-phase inverter to be con-

sidered in this paper, and Fig. 2(b) illustrates the generation of

the control signal used to operate the four switches S1–S4 that

play an essential role in the functioning of the inverter.

The switches are operated by the sinusoidal pulse-width

modulator. This implies that a feedback signal proportional

to the AC output signal is compared with a reference sinusoi-

dal voltage VrefðtÞ ¼ Vm � cosð2pt=maÞ of frequency fref

¼ 1/T, T¼ma, and amplitude Vm to generate the control

voltage V con (t) (modulating signal). Here, a denotes the

ramp period (the period of the clock signal Vclock) and m is

referred to as the frequency modulation ratio, i.e., the num-

ber of clock cycles during the period T of the reference sig-

nal. The frequency modulation ratio obviously plays an

important role in determining the accuracy with which the

reference signal can be reproduced by the output current.

In the circuit diagram Fig. 2(a), E0 represents the avail-

able DC-source voltage and i(t) is the AC-current supplied to

FIG. 1. Examples of the output signals

of an inverter (a) in the regime of a sta-

ble period-1 dynamics and (b) in the

chaotic regime, as observed experi-

mentally on the screen of a digital os-

cilloscope. (c) and (e) Magnified parts

of the wave form in (a), and (d) and (f)

of the wave form in (b). The experi-

mental setup is similar to that

described by Zhusubaliyev et al.4 Note

that the high-frequency ripple oscilla-

tions are most pronounced during the

up-and downswing phases of the low-

frequency power mode. This is also the

phases where the chaotic variations

first become noticeable.
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the load. R and L represent the resistive and inductive compo-

nents of the load, and CS is the current sensor. The control

signal Vcon (t) is compared with a sawtooth wave form Vramp

(t) to generate the switching signal. The four switches of the

bridge structure operate in pairs such that S1 and S4 are closed

when S2 and S3 are open, and vice versa. When S1, S4 are on

and S2, S3 are off, a positive voltage E0 will be applied to the

load; and when S1, S4 are off and S2, S3 are on, this voltage is

reversed. The switches S1, S4 are turned on and S2, S3 are

turned off at the beginning of every ramp period a. When the

ramp voltage exceeds the value of the control voltage Vcon (t)
during the ramp cycle, then the switches S1, S4 are turned off

and S2, S3 are turned on (this is sometimes called a pulse-

width modulation of the first kind).

In order to generate the switching signal to the inverter,

the corrector amplifier DA2 first determines the error signal

nðtÞ ¼ aðVrefðtÞ � biðtÞÞ that measures the difference

between the reference voltage Vref (t) and output voltage Vcs

(t)¼bi(t) of the current sensor. Here, a is the corrector gain

factor and b is referred to as the current sensor sensitivity pa-

rameter. As illustrated in Fig. 2(b), the sample-and-hold unit

S/H reads the error signal n(t) at every clock time t¼ ka,

k¼ 0, 1, 2,… and maintains it for the following switching

period. This produces the control signal Vcon (t). Finally, the

comparator DA1 compares this control signal from the sam-

ple-and-hold unit with a periodic ramp function Vramp (t) in

order to generate the switching signals to the switches S1, S4,

and S2, S3. The ramp function Vramp (t) varies from �U0 to

þU0 and in synchrony with the clock signal. If Vcon (t)�þ
U0 or Vcon (t)��U0 the modulator is saturated. In the first

case, i.e., if Vcon (t)�þU0, the duration of the positive pulse

(see Fig. 2(b)) is equal to the ramp period a, and in the sec-

ond case (i.e., if Vcon (t)��U0) it is equal to zero.

The normal operational regime for the considered in-

verter, i.e., the regime of stable periodic dynamics with the

period T¼ma, is illustrated in Figs. 3(a) and 3(b). In this fig-

ure, showing the numerically calculated wave form for the

load current i(t), one can clearly identify the oscillations

related to the low-frequency sinusoidal reference signal and

the superimposed rapid modulations associated with the

high-frequency switching cycle. This is similar to the experi-

mental results presented in Fig. 1(a). When attempting to

obtain a faster and more accurate control of the inverter out-

put signal by increasing the corrector gain factor a, the peri-

odic dynamics corresponding to the normal operational

regime may become unstable and chaotic oscillations may

appear. As illustrated in Figs. 3(c) and 3(d), in this case the

large scale dynamics essentially maintains the characteristics

of a regular cycle defined by the reference signal, but, similar

to the experimental results shown in Fig. 1(b), the rapid mod-

ulations associated with the switching process are chaotic.

B. Continuous-time model

The dynamics of a single-phase PWM H-bridge inverter

described above may be represented by the following non-

autonomous differential equation with a discontinuous right

hand side:

L
di

dt
¼ �R iþ E0 KF tð Þ: (1)

Here, the switching function

KF tð Þ ¼ sign Vcon tð Þ � Vramp tð Þ
� �

;

with Vramp tð Þ ¼ U0 t=a� bt=ac � 1

2

� �
;

Vcon tð Þ ¼ n tð Þjt¼abt=ac;

n tð Þ ¼ a Vref tð Þ � bi tð Þð Þ;

Vref tð Þ ¼ Vm cos
2pt

ma

� �
(2)

describes the operation of the four switches S1, S2, S3, and

S4. The number bt=ac is the largest integer number not

greater than t/a (i.e., the integer part, or floor, of t/a).

FIG. 2. (a) Schematic diagram of the considered PWM H-bridge single-phase

inverter. E0 is the externally supplied DC-voltage, and i is the AC-current sup-

plied to the RL (resistive-inductive) load. CS is the current sensor, VrefðtÞ ¼
Vm � cosð2pt=maÞ the sinusoidal reference voltage, Vcs (t)¼bi(t) is the output

voltage of the current sensor, and n(t)¼ a(Vref (t)�bi(t)) the error signal. (b)

Sketch of the current-mode control applied to generate the switching signals.

The sample-and-hold unit S/H detects the error signal n(t) at the beginning of

each clock time. This produces the control signal Vcon (t) that together with

the ramp function Vramp (t) generates the switching signals to the switches S1,

S4, and S2, S3. The four switches operate in pairs such that S1 and S4 are on

while S2 and S3 are off, and vice versa. As long as Vcon (t)>Vramp (t), switches

S1, S4 are on and S2, S3 are off, while S1, S4 are off and S2, S3 on for Vcon

(t)<Vramp (t).
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Let us introduce the dimensionless dynamic variable

x ¼ Ri
E0

, the dimensionless time variable �t ¼ t
a, and the follow-

ing set of dimensionless parameters:

P ¼ R

bE�
U0; q ¼ R

bE�
Vm; C ¼ E0

E�
; k ¼ �R

L
a:

The parameter P controls the amplitude of the ramp function,

q represents the amplitude of the reference voltage, and C
represents the DC source voltage, all normalized with respect

to E*¼ 1 V. The absolute value of k is proportional to the re-

ciprocal of the time constant of the converter filter, normal-

ized with respect to the period a of the ramp signal. In these

terms, Eq. (1) can be rewritten in the form

_x ¼
gþðxÞ ¼ kðx� 1Þ; if fð�t; xÞ > 0;

g�ðxÞ ¼ kðxþ 1Þ; if fð�t; xÞ < 0;

(
(3)

where _x denotes the derivative of x with respect to �t. The

scalar function fð�t; xÞ determines the switching manifold

R ¼ fð�t; xÞ : fð�t; xÞ ¼ 0g; fð�t; xÞ ¼ uð�t; xÞ � gð�tÞ

that separates the state space into two different regions

Rþ ¼ fð�t; xÞ : fð�t; xÞ > 0g; R� ¼ fð�t; xÞ : fð�t; xÞ < 0g;

with

u �t; xð Þ ¼ q

C
cos

2pb�tc
m

� �
� x �tð Þj�t¼b�tc;

g �tð Þ ¼ 2P

aC
�t � b�tc � 1

2

� �
; b�tc ¼ k; k ¼ 0; 1; 2; ::::

The function uð�tÞ represents the normalized control signal

Vcon (t), i.e., the output signal from the sample-and-hold unit.

The sawtooth function gð�tÞ is a periodically repeated ramp

function with the ramp period 1, i.e., gð�t þ 1Þ � gð�tÞ. The

value b�tc ¼ k; k ¼ 0; 1; 2; ::: is the normalized discrete time

variable.

Note that the function fð�t; xÞ has a nonvanishing gradi-

ent rf ¼ ð@f=@�t; @f=@xÞ on R. For points ð�t; xÞ 2 R of the

switching manifold we have

hrf; ð1; gþÞi � hrf; ð1; g�Þi > 0

by virtue of the fact that

hrf; 1; g6ð Þi ¼ @f
�t; xð Þ
@�t

þ @f
�t; xð Þ
@x

g6 xð Þ ¼ � 2P

aC
< 0:

Here h�; �i denotes the standard scalar product. This result

implies that any solution of Eq. (3) with an initial condi-

tion in Rþ which hits after some time the switching

manifold R, crosses it transversally and proceeds into the

region R�.

In the following simulations, we shall use R¼ 1.0 X,

L ¼ 10�4H; Vm ¼ 4:0V; U0 ¼ 2:0V; a ¼ 2 � 10�5s, b¼ 0.1

X, and m¼ 100. These values are chosen in accordance

with the parameters of the experimental setup. For the

normalized system, this implies that P¼ 20.0, q¼ 40.0,

and k¼�0.2. The corrector gain factor a and the nor-

malized input voltage C are used as control parameters:

a> 0, 25.0<C< 60.0. It is not easy in practice to decide

on the optimal structure of the feedback corrector, its pa-

rameters and the kind of pulse-width modulation to be

used in order to attain the desired dynamical characteris-

tics of the operating mode. Moreover, under realistic

conditions both the available DC voltage and the load

FIG. 3. (a) Numerically observed wave

forms for the load current i of the

single-phase PWM H-bridge inverter

under regular period-1 operation with

a¼ 4.0, m¼ 100. Note the rapid fluctu-

ations stemming from the finite fre-

quency modulation ratio. (b) Magnified

part of the temporal variation (a) as out-

lined by the red rectangle. (c) Wave

form observed after the transition to an

unusual form of chaotic dynamics for

a¼ 6.0. (d) Magnified part of the tem-

poral variation (c) that is outlined by

the red rectangle. The transition to

chaos mainly affects the ripple associ-

ated with the switching dynamics.
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resistance are likely to vary over time. The choice of the

above pair of varied parameters is motivated by the wish

to involve one parameter (such as the corrector gain fac-

tor a) that represents the control structure of the system

and one parameter (such as the available DC voltage C)

that represents the external conditions of operation. We

emphasize, however, that preliminary experiments with

other parameter combinations have shown results similar

to those that we present here.

C. Piecewise-smooth map

By direct integration of the equations of motion for the

continuous-time system (3) ramp period by ramp period, our

investigation is reduced to the analysis of the piecewise-

smooth map:

xkþ1 ¼ Fðxk; kÞ; k ¼ 0; 1; 2;… (4)

with

Fðxk; kÞ ¼
FLðxkÞ ¼ ekðxk � 1Þ þ 1; if xk � s�k ;

FMðxkÞ ¼ ekðxk � 1Þ þ 2ekð1�zkÞ � 1; if s�k < xk < sþk ;

FRðxkÞ ¼ ekðxk þ 1Þ � 1; if xk � sþk ;

8><
>: (5a)

sþk ¼
q

C
cos

2pk

m

� �
þ P

aC
; s�k ¼

q

C
cos

2pk

m

� �
� P

aC
; (5b)

zk ¼ a cos
2pk

m

� �
� aC

2P
xk þ

1

2
; 0 � zk � 1:0: (5c)

If xk � sþk or xk � s�k the modulator is saturated. The pulse

duration zk is then equal to 1 (i.e., equal to the period of the

ramp function gð�tÞ) if xk � s�k and equal to zero if xk � sþk .

The map (4) is a non-autonomous 1D map that can eas-

ily be transformed into a 2D autonomous map. Moreover, as

the cosine function in Eq. (5) is m-periodic, for any x the

equality

Fðx; kÞ ¼ Fðx; k þ mÞ (6)

is satisfied. Therefore, the mth iterate

xkþ1 ¼ f mðxkÞ
¼ FðFð…FðFðxk; 0Þ; 1Þ…Þ;m� 2Þ;m� 1Þ (7)

represents a 1D stroboscopic map for the 2D autonomous

variant of map (4) and completely reflects the dynamics of

that map.

To understand the properties of map (7), it is worth

noticing that for each fixed k 2 f0;…;m� 1g the function

F(x, k) is a continuous piecewise-smooth bimodal func-

tion. On the two outer partitions (i.e., for xk � s�k and for

xk � sþk ), the function F is defined by linearly increasing

branches FL and FR, whereas on the middle partition, i.e.,

for s�k < xk < sþk , it has a non-linear decreasing branch

FM. The shape of the function F(x, k) is illustrated in

Fig. 4(a) which shows the functions F(x, 0) and F(x, 7).

As one can see, what changes when varying k are the bor-

der points s�k ; sþk and the middle non-linear branch FM,

whereas the outer linear branches FL; FR remain the same

for all k.

An example of the shape of the function fm for m¼ 100

is shown in Figs. 4(b)–4(d). Clearly, it is a continuous 1D

piecewise-smooth map. However, depending on other

parameters, the number of border points of this map may

grow exponentially when increasing m. These border points

are given by s6
k ; k ¼ 0;…;m� 1 of F and their preimages.

As for each k, the points s6
k are points of local extrema of F,

each border point of fm is a point of a local extremum for this

map.

Note that the stable period-1 dynamics with �T ¼ m of

the continuous-time system (3) which corresponds to the nor-

mal operational regime of the considered class of converter

systems is represented in the map (7) by a stable fixed point.

Accordingly, our goal is reduced now to the investigation of

the stability domains of the fixed points of map (7), and in

particular, of its boundary.

III. BOUNDARY OF THE STABILITY DOMAIN OF FIXED
POINTS

Figure 5(a) provides an overview of an interesting part

of the bifurcation structure that can be observed in the (a,

C)-parameter plane for the map (7). Recall that a is the cor-

rector gain factor and C is the normalized DC supply volt-

age. In the left part of this diagram, where the corrector gain

factor is relatively small, we observe the region P1 of stabil-

ity of a unique fixed point. This fixed point represents the

intended mode of operation for the inverter. The white

region P1 observed for higher values of the corrector gain

factor, and particularly pronounced, for relative high values

of the DC supply voltage represents a region of chaotic dy-

namics. It is interesting to see how the transition between

these two regions takes an unusual and fairly complicated

form.

In the upper left corner of the bifurcation diagram shown

in Fig. 5(a), we observe the region P1,1 where two stable

fixed points coexist. The transition from P1 to P1,1 involves

the destabilization of the original fixed point and the birth of

a pair of new stable fixed points along the pitchfork bifurca-

tion curve Np. This process is illustrated in Fig. 6(a) that

shows the variation of the normalized output current x as a

function of the corrector gain factor. At the point ap (corre-

sponding to the curve Np in Fig. 5(a)), the eigenvalue q of
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the fixed point crosses through þ1 (see Fig. 6(b)). The loss

of stability for the fixed point leads to the appearance of two

new stable fixed points.

The most striking feature of Fig. 5 is the unusual form

of the transition between the stability domain of fixed points

P1 [ P1,1 and the chaotic domain P1. The sequence of

magnifications as shown in Figs. 5(b)–5(d) indicates a fine

structure of rhomboid regions related to fixed points which

may be surrounded by regions corresponding to 2- and 4-

cycles (marked in Fig. 5(d) with P2 and P4, respectively)

and partially overlapping with P1 (see regions marked with

P1,1 in Fig. 5(d) in which a stable fixed point and a chaotic

attractor coexist). Although the sequence of periods (1, 2, 4)

resembles the beginning of a period-doubling cascade, the

shape of the associated regions is inconsistent with such cas-

cades. In fact, some of the regions associated with a stable

fixed point are surrounded by regions associated with a sta-

ble 2-cycle, while others are not. Similarly, a few of 2-cycles

are followed by 4-cycles, while most of them are not, and

not a single 8-cycle was detected. The above description

raises a number of questions about the nature of the mecha-

nisms responsible for the formation of such a frayed transi-

tion zone as observed between P1 [ P1,1 and P1. One such

question conserns the possibility of describing the transition

analytically.13 A fixed point xp can be found as a solution of

the equation

xp ¼ Fð…FðFðxp; pÞ; 1Þ…Þ; pþ m� 1Þ;
p ¼ k;…;m� 1þ k; k ¼ 0;…;m� 1: (8)

The stability of the fixed point is determined by the condition

jqj < 1 where

q ¼
Ym�1

p¼0

@F x; pð Þ
@x

����
x¼xp

(9)

and

@F x; pð Þ
@x

¼
@FM xð Þ
@x

¼ ek þ kaC
P

ek 1�zpð Þ if s�p < x < sþp ;

@FL xð Þ
@x

¼ @FR xð Þ
@x

¼ ek otherwise

8>><
>>:

and the values s6
p , zp are given by Eqs. (5b) and (5c)

However, Eq. (8) can be solved only numerically. Moreover,

it is unclear for which particular sequence of applications of

functions FL; FM; and FR that Eq. (8) must be solved in

order to detect the boundary between regular and chaotic

domains. Therefore, the results presented below are obtained

numerically. Stable sets are found by forward iterations of

map (7). Coexisting attractors are detected by using an

appropriate number of different initial values. Unstable

FIG. 4. (a) Function F(x, k) defined by

Eq. (5) at k¼ 0 and at k¼ 7. (b)

Function fm defined by Eq. (7). (c) and

(d) Magnifications of the red rectangles

outlined in (b) and (c), respectively.

Parameters: a¼ 4.9, C¼ 45, m¼ 100.
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cycles are detected by the variant of the cell-to-cell mapping

method14,15 described in Ref. 16. Multiplier q of the fixed

point is calculated by Eq. (9).

When investigating the boundary of the stability domain

for fixed points of the map (7), it is natural to start by asking

what types of bifurcations such fixed points may undergo. In

addition to smooth bifurcations (as, for example, the pitch-

fork bifurcation discussed above) the fixed points may

undergo different forms of border-collision bifurcations. In

general (apart from codimension-two bifurcation cases), to

predict the dynamics after such a bifurcation, the one-

dimensional continuous piecewise linear map with one

border point, known as the skew tent map, can be used as a

normal form. The bifurcation structure of the skew tent map

has been completely described (see, e.g., the papers 17–20).

Then, for a general piecewise smooth continuous map

xnþ1¼ g(xn) the behavior after a border collision of a fixed

point can be obtained from the behavior of the skew tent

map with the slopes given by the left- and right-side deriva-

tives of g evaluated at the fixed point at the moment of the

bifurcation. In principle, it is possible to evaluate numeri-

cally these derivatives for map (7), thus predicting the

behavior after the bifurcation. However, this approach only

provides a description of a single border-collision bifurcation

and not of the overall frayed transition zone between peri-

odic and chaotic domains which is evidently formed by a

high number of such bifurcations following each other in a

quite irregular manner (see Figs. 5(c) and 5(d)). Therefore,

for the purposes of the present paper we restrict the analysis

to numerical experiments. In particular, we shall discuss the

following phenomena:

(a) Border collisions associated with persistence of a sta-

ble fixed point. Indeed, if both the left-side and the

right-side derivative of fm at the border point does not

exceed one in modulus, then after the border collision

there is a stable fixed point located on the next branch

of fm. Clearly, these border collisions occur not at the

boundary of the stability domain of fixed points, but

inside this domain.

(b) Border-collision period-doubling bifurcations leading

to the appearance of a stable 2-cycle.

(c) Transitions from a stable fixed point to an n-band cha-

otic attractor with n¼ 2‘, ‘¼ 0, 1, 2,….

An example of a sequence of border collisions associ-

ated with persistence of stable fixed points (case (a) men-

tioned above) is shown in Fig. 7. This may occur both for the

two fixed points existing after the pitchfork bifurcation (see

Fig. 7(a)), and for other parameter values when the pitchfork

bifurcation does not occur (see Fig. 7(b)). The mechanism

leading to the appearance of such cascades is illustrated in

Fig. 7(c). As one can see, for increasing values of a a stable

fixed point of map (7), while remaining stable, moves from

one branch of fm to the next. Note that the dependence of the

values of fm on a is non-monotonous, so that when a
increases the values of fm may increase or decrease, as illus-

trated in Fig. 7(c). Therefore, several border collisions of a

fixed point with the same border point of fm are possible.

FIG. 5. Bifurcation structure of the pa-

rameter plane (a, C). (a) Overview of

the mode distribution. (b)–(d)

Subsequent magnifications of the

lower right part of (a). P1 is the do-

main of stability for a single fixed

point, and P1,1 is the domain where

two stable fixed points coexist. P2 and

P4 are domains of stability for 2- and

4-cycles, respectively. P1,1 and P2,1
are the regions of coexistence of a sta-

ble fixed point and of a 2-cycle with a

chaotic attractor, respectively, and P1
is the region of chaotic dynamics. NP

is the pitchfork bifurcation curve.
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Examples for the case (b) mentioned above are shown in

Fig. 8. As one can see in Fig. 8(a), the bifurcations occurring

at a1� 4.6586033 and a4� 4.6586209 are supercritical

border-collision period-doubling bifurcations. Note that the

stable 2-cycle existing between these bifurcations undergoes

two further border collisions (at a2� 4.6586120 and

a3� 4.6586122) of the persistence type. A similar example

for a border-collision period-doubling bifurcation is shown

in Fig. 8(b), at a5� 4.658797.

It is remarkable in Fig. 8(a) that for increasing values of

a we observe first the appearance and then the disappearance

of a stable 2-cycle. After a momentary destabilization, the

fixed point is stable again and eventually, for further increas-

ing values of a it will be destabilized and restabilized again

and again, before the final transition to chaos occurs. This

leads to the complexity of the boundary between the domain

of stable fixed points P1 [ P1,1 and the chaotic domain P1
shown in Fig. 5.

The mechanism leading to destabilization and eventu-

ally restabilization of a fixed point is illustrated in Fig. 9. Let

us consider the four branches of the function fm, denoted for

the sake of clarity by f m
1 ; …; f m

4 , as shown in Fig. 9. Let sij

denote the border point of fm at which the branches f m
i and

f m
j (with i, j � 1,…, 4) are adjacent. To explain the observed

phenomenon, we note that when a increases in the consid-

ered range, then the branches f m
1 and f m

4 move upwards and

the border points s12 and s34 move towards each other.

Before the first border-collision period-doubling bifurca-

tion (at a� 4.658602< a1, see Fig. 9(a)), the fixed point

belongs to the stable branch21 f m
2 . At the bifurcation moment,

i.e., for a¼ a1� 4.6586033, it collides with the border point

s12. Immediately after the border-collision period-doubling

bifurcation, the fixed point belongs to the unstable branch

f m
1 , and the points of the stable 2-cycle are located on the

branches f m
1 and f m

2 (see Fig. 9(b), which corresponds to

a1< a� 4.658606< a2). In this way, as a result of a border-

collision period-doubling bifurcation, an absorbing interval

J ¼ ½f mðs12Þ; f 2mðs12Þ	 appears.

For increasing values of a, the border point s23 and even-

tually also the border point s34 enter the absorbing interval

FIG. 6. (a) Pitchfork bifurcation occurring at the parameter point

a¼ aP� 4.6691 which belongs to the curve Np shown in Fig. 5(a). Before

the bifurcation (for a< aP), the fixed point x(1) is stable (shown with a red

line), after the bifurcation (for a> aP) it is unstable (shown with a blue line),

and two stable fixed points x(2), x(3) have appeared. (b) Multiplier diagram.

At the point a¼ aP, the multiplier q of the fixed point x(1) crosses

throughþ 1. C¼ 43.

FIG. 7. Cascades of border collisions of stable fixed points (a) after a pitch-

fork bifurcation (at C¼ 45) and (b) in the absence a pitchfork bifurcation (at

C¼ 36). As in Fig. 6, stable fixed points are shown with red lines and unsta-

ble ones with blue lines. Inset in (a) shows the marked rectangle enlarged.

The stable fixed points at the moment of border collisions at a� 4.650934,

a� 4.652986, and a� 4.654263 marked in the inset with A, B, and C,

respectively, are shown in (c).
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J. The corresponding parameter values are given by the

conditions f 2mðs12Þ ¼ s23 and f 2mðs12Þ ¼ s34, respectively.

However, this has no direct influence on the asymptotic dy-

namics until at a¼ a2� 4.658612009 the 2-cycle undergoes

a border collision, as its right point collides with the border

point s23. So, between a¼ a2 and a¼ a3 the right point of the

cycle belongs to the stable branch f m
3 (see Fig. 9(c), which

corresponds to a2< a� 4.6586121< a3), and the cycle

remains stable. At a¼ a3� 4.658612204, the 2-cycle under-

goes the next border collision, caused by the collision of its

right point with s34. Thereafter, the right point of the cycle

belongs to the stable branch f m
4 which, for increasing a,

moves upwards, causing the 2-cycle to shrink. Moreover, at

some value of a between a3 and a4 the branches f m
2 and f m

3

disappear, as the border points s12, s23, and s34 merge into a

single border point s14. After this collision only the branches

f m
1 and f m

4 , at which the stable 2-cycle is located, remain.

Accordingly, the absorbing interval is now given by

J ¼ ½f mðs14Þ; f 2mðs14Þ	. For further increasing a, the absorb-

ing interval J and the 2-cycle continue to shrink (see Fig.

9(d), which corresponds to a3< a� 4.658618< a4). Then, at

the second border-collision period-doubling bifurcation (at

a¼ a1� 4.6586209) the cycle disappears and the fixed point

moves to the branch f m
4 which is necessarily stable (see Fig.

9(e)).

With some variation, the mechanism described above is

repeated several times. For example, the sequence of bifurca-

tions shown in Fig. 8(b) starts with a border-collision period-

FIG. 8. Appearance and disappearance

of a 2-cycle via supercritical border-

collision period-doubling bifurcations.

Inset in (a) shows the marked rectangle

enlarged; two border collisions of the

2-cycle are clearly visible. The rectan-

gle marked in (b) corresponds to (a).

C¼ 45.

FIG. 9. Shapes of the relevant part of the function fm are shown at a� 4.65093, a� 4.65299, a� 4.65426, a� 4.65299, and a� 4.65299 marked in Fig. 8(a)

with A, B, C, D, and E, respectively. In (b)–(d), the invariant absorbing interval J is shown. C¼ 45.
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doubling bifurcation at a¼ a5 and follows the same pattern.

In this case, the disappearance of the 2-cycle is related not to

a border-collision period-doubling bifurcation but to a

border-collision fold bifurcation, as described below.

However, the overall effect is the same, as eventually the

fixed point moves to a stable branch of fm and thus is stabi-

lized again.

The mechanism described above is not necessarily asso-

ciated with the appearance of a 2-cycle. In fact, for increas-

ing or decreasing values of a the same mechanism may lead

to the appearance and disappearance of n-band chaotic

attractors with n ¼ 2‘; ‘ ¼ 0; 1; 2;… (case (c) mentioned

above). An example of that is shown in Fig. 10(a). The

border-collision bifurcations occurring at a1� 4.6757663

and a2� 4.6759822 lead from a stable fixed point to a 4-

band chaotic attractor as well as to an unstable fixed point

and an unstable 2-cycle.

As in the previous example, the destabilization and

restabilization of a fixed point are associated with the disap-

pearance of two branches of map (7). Numbering the

branches of the map as in the previous example, and consid-

ering the location of the attractors for increasing values of a,

we find that, immediately before a1, a stable fixed point is

located on the branch f m
2 (see Fig. 11(a)). After the border-

collision bifurcation that occurs when this fixed point col-

lides with the border point s12, the map has an invariant

absorbing interval J ¼ ½f mðs12Þ; f 2mðs12Þ	, and once the orbit

has entered this interval, the complete asymptotic dynamics

takes place inside it. As in the previous example, inside this

interval there is an unstable fixed point on the branch f m
1 , sur-

rounded by a 2-cycle whose points belong to the branches f m
1

and f m
2 . The difference to the previous example is associated

with the fact that the absolute value of the slope of the

branch f m
1 is higher. As a consequence, a 2-cycle appearing

after the bifurcation is unstable and the map has a 4-band

chaotic attractor located on the branches f m
1 and f m

2 (see Fig.

11(b)). Note that as long as f 2mðs12Þ < s23, the point s12 is

the only border points inside J. Therefore, the boundaries of

the chaotic attractor are completely determined by the

images of s12 and are given by f j�mðs12Þ with j¼ 1,…, 8.

For increasing values of a, the border points s12 and s23

move closer to each other so that at a� 4.6758577 the border

point s23 enters the interval J (as in the previous example,

the value of a when it occurs is determined by the condition

f2m(s12)¼ s23). When the point s23 is located inside J, its

images determine the boundaries of the chaotic attractor,

which are now given by fj�m(s23) with j¼ 1,…, 8. Moreover,

as the dynamics of a map with two border points in the

absorbing interval can be significantly more complicated

than the dynamics of a map with one such point, several

multi-band chaotic attractors appear (see Fig. 10(c)). In any

case, the border collisions occurring at the points s12 and s23

lead to the appearance of a stable 4-cycle (see Fig. 11(c)).

This may be associated with a direct transition from a 4-band

chaotic attractor to a stable 4-cycle, or, as illustrated in Fig.

10(b), with border-collision fold bifurcation of a 4-cycle

which leads to the coexistence of a chaotic attractor and a

stable 4-cycle. Eventually, once the branches f m
2 and f m

3 have

disappeared, a 4-band chaotic attractor located on the

branches f m
1 and f m

4 exists (see Fig. 11(d)), until the border-

collision bifurcation occurring at a¼ a2, where a stable fixed

point appears at the branch f m
4 (Fig. 11(e)).

In fact, sequences of bifurcations between destabiliza-

tion and restabilization of a fixed point may be even more

complicated than illustrated in Figs. 8 and 10. An example

hereof is shown in Fig. 12. As one can see, the 4-band cha-

otic attractor which appears at the border-collision bifurca-

tion at a1� 4.676082 disappears again at a border-collision

fold bifurcation (at a4� 4.6766085) at which also two unsta-

ble 2-cycles disappear. Similarly, the 2-band chaotic

FIG. 10. Appearance and disappearance of a 4-band chaotic attractor.

Rectangles outlined in (a) and (b) are shown magnified in (b) and (c), respec-

tively. C¼ 45.
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attractor which appears at the border-collision bifurcation at

a8� 4.677315 for decreasing a turns into a one-band chaotic

attractor and eventually disappears in a border-collision fold

bifurcation (at a6� 4.67707) related to the disappearance of

two unstable fixed points. Moreover, at a7� 4.677153 a dif-

ferent one-band chaotic attractor appears also at a border-

collision fold bifurcation, at which (for decreasing a) two

unstable fixed points appear. As a6< a7, chaotic attractors

coexist in the interval (a6, a7). With further decreasing val-

ues of a this attractor is split into two bands (a band-merging

bifurcation occurring at a¼ a5� 4.676908), to be interrupted

by a small periodicity window of a stable 2-cycle, and finally

to disappear at a¼ a3� 4.676603.22 By contrast to other

bifurcations leading to disappearance of chaotic attractors,

the bifurcation occurring at a¼ a2 is a final bifurcation

(boundary crisis), caused by the collision of the attractor

with an unstable 2-cycle. Note that as a2< a3, a two-band

and a 4-band chaotic attractor coexist in the parameter inter-

val (a2, a3). For even smaller values of a, immediately after

the final bifurcation the typical orbit converges to the 4-band

chaotic attractors, but there exists still a chaotic repeller,

which disappears at a¼ a2� 4.6765875 in a border-collision

fold bifurcation related to two unstable 2-cycles.

For a fixed C, blocks similar to the bifurcation sequen-

ces described above appear more and more frequently for

increasing a. As a result, the stability intervals of fixed points

become smaller and smaller until they disappear completely.

This leads to the complex structure of the region in the

FIG. 11. Relevant branches of fm are shown at a� 4.67576, a� 4.67582, a� 4.6758735, a� 4.67591, and a� 4.67599 marked in Fig. 10(a) with A, B, C, D,

and E, respectively. In (b)–(d), the invariant absorbing interval J is shown. C¼ 45.

FIG. 12. Appearance and disappear-

ance of several (one-, two-, and four-

band) chaotic attractors. Coexistence

of chaotic attractors is clearly visible

in the parameter intervals (a3, a4) and

(a6, a7). In (b), the red rectangle out-

lined in (a) is shown magnified.

C¼ 45.
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parameter space close to the boundary between the stability

domain of fixed points P1 [ P1,1 and the chaotic domain

P1 (see Fig. 5).

IV. CONCLUSION

The normal operational regime for the considered class

of converter systems is the regime of stable period-1 dynam-

ics. Different types of feedback correctors may be used in

order to obtain a faster response, a more accurate control, or

a higher efficiency. However, in practice it is not easy to

adjust the parameters, such that an operating mode with

the desired dynamic characteristics is obtained. When

parameters are varied, the period-1 operating mode may loss

stability. This is known to lead to the appearance of

complex dynamics, including subharmonic and chaotic

oscillations.4,12

In general, complex dynamics in power electronic DC/

AC converters is caused by the presence of two externally

applied oscillatory modes (the ramp cycle and the reference

signal). The appearance of significant fluctuations associated

with the rapid switching dynamics has been observed in

practical inverter systems,1 and has been confirmed by

experiments in the present work. However, this phenomenon

and the associated unusual transition to chaos appear not pre-

viously have been explained in detail. In the present work,

we considered a model of a single-phase H-bridge inverter

with pulse-width modulated control. The behavior of this in-

verter was described by a non-autonomous piecewise-

smooth map F(xk, k) given by Eq. (4). Note that the stable

period-1 dynamics with the period �T ¼ m of the continuous-

time system (3) (which corresponds to the normal opera-

tional regime of the converter considered in this paper) is

represented in the one-dimensional autonomous stroboscopic

map (7) by a stable fixed point. With respect to the properties

of this stroboscopic map it is worth noticing that it corre-

sponds to the mth iterate of the map F(xk, k). To ensure a

good quality of the output signal, i.e., to decrease the ampli-

tude of undesired distortion of the wave form, it is necessary

to use a sufficiently large value of m. Accordingly, the num-

ber of border points of fm may become very high, as it grows

exponentially with increasing m. This leads to a complex

shape of the boundary between the region in the parameter

space corresponding to stable fixed points of the stroboscopic

map (or, in other words, to the desired mode of operation of

the considered inverter) and the chaotic domain. It is well

known that piecewise-smooth maps with a single border

point may show a direct transition from a stable fixed point

to chaos via a single border-collision bifurcation. Clearly,

such bifurcations occur in our map (7). However, the transi-

tion from the parameter region corresponding to the normal

operational regime of the inverter to the chaotic domain is

essentially related to the existence of a high number of bor-

der points of fm. Possibly (but not necessarily) after an initial

pitchfork bifurcation, we observe a sequence of border colli-

sions. At the beginning, these border collisions are associ-

ated with transitions of a fixed point from one stable branch

to another one. This leads to persistence of a stable fixed

point after such a border collision. It is worth to note that a

high number of such border collisions are not only due to a

high number of branches of fm but also to the non-

monotonous dependence of the amplitude of fm on the cor-

rector gain factor a. As a increases, the value fm(x) for any

particular x may either increase or decrease.

For increasing values of some of the branches of fm

become unstable. Then the fixed point after the border colli-

sion is unstable, an absorbing interval J appears, and the

attractor of fm located inside this interval may be either a sta-

ble 2k-cycle, k� 1, or a 2k-band chaotic attractor, k� 0. At

the beginning, there are only a few unstable branches of fm,

so that we observe a destabilization and eventually restabili-

zation of fixed points. Particular sequences of border-

collision bifurcations are caused predominantly caused by

the entrance of new branches of fm in the absorbing interval

J and by disappearance of previously existing branches of fm

inside the absorbing interval J. For increasing values of a,

more and more branches of fm become unstable, so that sta-

bility intervals of fixed points become smaller. Eventually,

all branches of fm are unstable so that only chaotic dynamics

remains.

Further development of the investigations discussed in

the present work is important both from the theoretical and

applied points of view, as it will provide a theoretical foun-

dation for design and control of a wide class of DC/AC

power converter systems and similar applications. At the

present stage, many questions are still open, as, for example,

the behavior of the boundary described in the present work

in the limiting case m ! 1. Preliminary works show that it

is promising to apply concepts of symbolic dynamics to map

(4), as well as the mapping dynamics technique,23 since the

Poincar�e mapping from the switching manifold R to itself

can be obtained for system (3) analytically.
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