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We study a particular bifurcation structure observed in the parameter space of a
one-dimensional continuous piecewise smooth map generated by the credit cycle model
introduced by Matsuyama, where the map is defined over the absorbing interval via three
functions, one of which is a constant. We show that the flat branch gives rise to superstable
cycles whose periodicity regions are ordered according to a modified U-sequence and accu-
mulate to the curves related to homoclinic cycles which represent attractors in Milnor
sense. The boundaries of these regions correspond to fold and flip border collision bifurca-
tions of the related superstable cycles.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Piecewise smooth dynamical systems have recently be-
come quite a popular topic of research. Such an increasing
interest towards nonsmooth dynamics comes both from
purely theoretical problems and from various applied
fields of science. In fact, particular real processes character-
ized by ‘‘nonsmooth’’ phenomena (such as sharp switch-
ing, impacts, friction, sliding and the like), are quite often
modeled by means of piecewise smooth functions, contin-
uous or discontinuous. Among numerous examples the
most known are switching electronic circuits, such as
DC–DC converters, mechanical systems with impacts or
stick–slip motion, relay control systems, etc. (for the
related references and further examples from electronics,
mechanics, control and other fields see [8,5,36,14]). Non-
smooth dynamical systems appear naturally also in
economics and other social sciences when, for instance,
some decision-making process is modeled using logic func-
tions, or if an optimization problem is solved taking into
account limited resources or non-negativity constrains,
and so forth. For example, several oligopoly models with
different kinds of constraints are considered in [32,6]. It
is worth to mention also the papers dealing with non-
smooth maps related to economic and financial market
modeling (see [12,18,23,16,19,35], to cite a few).

General theory of dynamical systems generated by non-
smooth functions has not yet such a complete form as the
one established for smooth systems. As an important
advancement towards such a theory for piecewise smooth
continuous-time systems (flows) one has to mention [14]
where so-called discontinuity-induced bifurcations are clas-
sified by means of properly constructed Poincaré maps (see
also [29,11]). A classification of bifurcations in piecewise
smooth maps is also proposed. An overview of different
bifurcation scenarios observed in nonsmooth flows can
be found in [36] (see also [37]) illustrated by applications
from mechanical engineering, electronics and economics.
It is worth to mention also earlier works, such as [26], in
which bifurcation structures in nonsmooth continuous
and discontinuous one-dimensional (1D for short) maps
are investigated, as well as [15] (see also [13]) in which
bifurcations occurring in nonsmooth n-dimensional con-
tinuous systems (called C-bifurcations) are classified.

The map considered in the present paper arises from an
economic application. Namely, we investigate dynamics of
the credit cycle model which is a particular case of the
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more generic model of credit cycles introduced in [22] (see
also [24]). It is described by a 1D continuous piecewise
smooth map depending on four parameters and defined
by three smooth functions among which one is a constant.
This map possesses quite a rich dynamic behavior, and we
are interested in understanding how the particular bifurca-
tion structure, observed in its parameter space, is orga-
nized. By bifurcation structure we mean the partition of
the parameter space of a map into regions related to qual-
itatively similar asymptotic dynamics. Clearly, the bound-
aries of such regions are defined by the parameter values
corresponding to certain bifurcations. In fact, one of the
characteristic features of nonsmooth dynamics is the
occurrence of so-called border collision bifurcation (BCB
for short), see [30,31,4]. Recall that the BCB occurs when,
under variation of some parameters, an invariant set (for
example, a fixed point or a cycle) collides with a border
at which the system changes the function in its definition,
and this collision leads to a qualitative change in the
dynamics. Such a change can be quite drastic: for example,
one can observe the transition from an attracting fixed
point to an attracting cycle of any period, or directly to a
chaotic attractor, that is impossible in smooth dynamical
systems. Thus, the bifurcation structure of the parameter
space of a piecewise smooth map may be defined, besides
standard ‘‘smooth’’ bifurcations, by the BCBs as well. The
possible results of a generic BCB of an attracting cycle of
a 1D continuous piecewise smooth map with one border
point can be rigorously classified depending on the param-
eters using 1D BCB normal form, which is the well known
skew tent map defined by two linear functions. The
dynamics of the skew tent map are completely described
depending on the slopes of the linear branches (see
[20,21]), that makes it possible to use this map as a BCB
normal form (see [30,31,33]).

Besides nonsmoothness, another notable feature of the
considered map is, as already mentioned, the presence in
its definition of a flat branch. Obviously, for a piecewise
smooth map with a flat branch any cycle with a point
on that branch is superstable, moreover, any initial condi-
tion from its basin of attraction is preperiodic to such a
cycle, that means it is mapped into the cycle in a finite
number of iterations, namely, as soon as the trajectory
reaches the flat branch. From an applied point of view it
may be important that superstable cycles related to a flat
branch, differently from ‘‘smooth’’ superstable cycles, are
persistent under parameter perturbations. That is, in the
parameter space there are open regions related to these
cycles. Clearly, the boundaries of such periodicity regions
can be defined only by BCBs of the related cycles given
that the zero eigenvalue does not allow any other
bifurcation.

The overall bifurcation structure of the parameter space
of a piecewise smooth map with a flat branch obviously
depends on the particular map (see [9,7,2]). Our aim is to
show that in the parameter space of the considered map
the periodicity regions of superstable cycles are organized
according to the well known U-sequence (first described in
[27], see also [9,17]) which is characteristic for unimodal
maps. It consists of two-letter symbolic sequences ordered
for monotonically increasing/decreasing parameter value
according to the appearance of the related cycles. We ad-
just the U-sequence to the considered map by introducing
one more letter related to the flat branch, that does not
influence the basic rule of formation of the U-sequence.
However, it is important to emphasize that in the U-se-
quence of our map the harmonics are related to infinite cas-
cades of flip BCBs (not of standard flip, or period-doubling,
bifurcations), and that the first symbolic sequence in any of
such a cascade is related to the cycle born due to fold BCB
(not to standard fold, or tangent, bifurcation).

Considering the overall bifurcation structure in two
different parameter planes, we notice that the periodicity
regions, ordered in the U-sequence, are accumulating to
particular curves. It is natural to suppose that such curves
are related to the homoclinic bifurcations of the correspond-
ing unstable cycles (cf. with the parameter values of the
logistic map related to the homoclinic bifurcations of its
unstable cycles, to which periodic windows are accumulat-
ing). However, a homoclinic cycle (i.e., the cycle at the
moment of its homoclinic bifurcation) of the considered
map, being locally unstable, is an attractor in Milnor sense
because a positive measure set of initial points of the
absorbing interval is mapped into this cycle (see [3] for
the discussion of similar attractors in a discontinuous
map). That differs from a homoclinic cycle of the logistic
map into which only a zero-measure set of initial points
(formed by all the preimages of the cycle and called stable
set) is mapped.

The plan of the work is as follows. In the next section
we first define the map and explain meaning of its main
variable and parameters from economic point of view.
Then we obtain stability conditions of the fixed points,
specify the region in the parameter space corresponding
to the case in which the map is defined over the absorbing
interval via all the three functions, introduce the symbolic
sequences for the superstable cycles and define their basin
of attraction. In Section 3 we present some numerical re-
sults, namely, the 1D and 2D bifurcation diagrams which
illustrate the bifurcation structures formed by the period-
icity regions related to the superstable cycles. We show
that the boundaries of these regions correspond to the fold
and flip BCBs, as well as persistence border collisions. Then
we present the curves related to the first homoclinic bifur-
cations of the fixed point and of the 2-cycle, obtained using
the conditions of these bifurcations. Examples of homo-
clinic cycles and their stable sets are also discussed. In Sec-
tion 4 we recall some basic rules of the formation of the
standard U-sequence, and then adjust it to the considered
map. In such a way we get the order in which the period-
icity regions of the superstable cycles are organized. Sec-
tion 5 concludes.

2. Description of the map. Preliminaries

We consider a 4-parameter family of 1D piecewise
smooth maps f : ½0;1� ! ½0;1� defined as follows:

f : x # f ðxÞ ¼
xa for 0 6 x 6 xc;

max 1
lb 1� x

m

� �
; 1

b

n oh i a
1�a

for x > xc;

8<
:

ð1Þ
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where a; b; l and m are real parameters such that

0 < a;l < 1; b � B
1� a

a
> 0; 1 < m <

1
1� a

ð2Þ

and xc is the border point defined by

x1�a
c ¼ 1

lb
max 1� xc

m
;l

n o
: ð3Þ

Depending on the parameters, the map f can be defined by
at most three branches (see Fig. 1) which we denote as
follows:

� fLðxÞ � xa (the monotone increasing branch);

� fMðxÞ � 1
lb 1� x

m

� �h i a
1�a

(the monotone decreasing
branch);

� fRðxÞ � 1
b

� � a
1�a � bx (the flat branch).

The border point xc can be defined either from
fLðxcÞ ¼ fMðxcÞ, in which case we denote it as xl:� �
Fig. 1.
region A
E-I). Th
xc � xl : x1�a
l ¼ 1

lb
1� xl

m

� �
ð4Þ
or from fLðxcÞ ¼ fRðxcÞ, in which case we get
xc � xm ¼ bx� �1
a ¼ 1

b

� 	 1
1�a

: ð5Þ
One more possible border point, denoted xr , is related to
the max function and obtained from fMðxrÞ ¼ fRðxrÞ, so that:

xr ¼ mð1� lÞ: ð6Þ

Before investigating the dynamic properties of the map
f let us explain meaning of the variable x and parameters
a; b; l and m from economic point of view, and clarify
briefly why the map f has three (upward-sloping, down-
sloping, and constant) branches.
The map f and its fixed points at l ¼ 0:4; b ¼ 0:8 in (a) on the left, and l
, see Fig. 2); (b) l ¼ 0:7; b ¼ 1:2 (the region B); (c) l ¼ 0:7; b ¼ 1:8 (the r

e other parameter values are m ¼ 1:2 and a ¼ 0:6.
The map describes the dynamic trajectory of the entre-
preneur net worth x in a credit cycle model, first introduced
in [22], under the additional assumption that the aggregate
production function is Cobb–Douglas, see [25]. In this
model, generations of entrepreneurs arrive sequentially.
When they arrive, they first sell their labor and other in-
puts to the production of the consumption good to acquire
some net worth, which they could later use to finance their
own projects or lend to finance the projects run by others.
There are two types of projects, the Good and the Bad. The
Good projects produce capital, which contributes to the
production, together with labor and other inputs supplied
by others who could undertake projects in the future. By
competing for these inputs, more Good projects drive up
the prices of these inputs, thereby improving the net worth
of next generations of entrepreneurs who supply these in-
puts. This also means that they are subject to diminishing
returns. In contrast, the Bad projects are independently
profitable as they directly produce the consumption good.
In other words, they do not require the inputs supplied by
others. This means that they fail to improve the net worth
of next generations of entrepreneurs, and that they are not
subject to diminishing returns. However, they are subject
to borrowing constraints because their revenues are not
fully pledgeable, which means that the entrepreneurs need
to have some net worth of their own to finance them. One
can show that, in this setting, the equilibrium composition
of the credit flows between the Good and the Bad depends
on the current net worth, as follows:

� When the current net worth x is low (x < xl), the entre-
preneurs cannot finance the Bad projects, because the
borrowing constraint is too tight. All credit thus flows
into the Good projects, even after the rate of return of
the Good projects become lower than that of the Bad
projects, and hence, a higher current net worth leads
to a higher net worth in the next period. This explains
the upward-sloping branch fLðxÞ.
¼ 0:05; b ¼ 1:5 in (a) on the right (these parameter values belong to the
egion C); (d) l ¼ 0:6; b ¼ 2 (the region D); (e) l ¼ 0:2; b ¼ 1:5 (the region



Fig. 2. Partition of the ðl; bÞ-parameter plane at m ¼ 1:2; a ¼ 0:6. The
region A corresponds to the stable fixed point x�L ; B [ C to the superstable
fixed point x�R; D to the stable fixed point x�M; E-I is related to the map f
defined over the absorbing interval J ¼ ½f 2ðxlÞ; f ðxlÞ� by fLðxÞ and fMðxÞ, and
for E-II in the absorbing interval J ¼ ½f ðxrÞ; f ðxlÞ� the flat branch fRðxÞ is
defined as well.

1 Recall that persistence border collision of a fixed point occurs when the
fixed point crosses the border without changing stability.
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� When the current net worth is in the intermediate
range, (xl < x < xr), the Bad projects are financed but
still subject to the borrowing constraint, so that the rate
of return of the Bad projects remain strictly higher than
that of the Good projects. Thus, a higher current net
worth, by easing the borrowing constraint of the Bad
projects, thereby making them more appealing to the
lenders, reduces the credit flow to the Good, which
causes a net worth decline in the next period. This
explains the downward-sloping branch fMðxÞ.
� When the current net worth is high (x > xr), the Bad

projects are no longer subject to the borrowing con-
straint, so that both Good and Bad projects earn the
same rate of return in equilibrium. With the Good being
subject to diminishing returns, all additional credit flow
into the Bad, not at all to the Good, hence the net worth
in the next period, is independent of the current net
worth. This explains the constant branch fRðxÞ.

Meaning of the model parameters is the following:

� a represents the share of capital in the Cobb–Douglas
production function, which determines how strongly
the Good projects are subject to diminishing returns;
� B represents the (constant) rate of return of the Bad

projects;
� l represents the pledgeability of the Bad projects (thus,

l ¼ 1 is the fully pledgeable case, where the borrowing
constraint is never binding, while l ¼ 0 is no pledge-
able case, so that the entrepreneurs cannot borrow at
all to finance the Bad projects, so that they must rely
entirely on their own net worth);
� m represents the fixed investment size of the Bad

projects.

For more detailed discussion of the general case see
[22,24], and for the Cobb–Douglas case see [25].

Now let us summarize some simple properties of the
map f and specify the parameter region we are interested
in.

In the simplest case, defined by the condition xm P xr ,

that holds for b 6 ðmð1� lÞÞa�1, the map f is given by the
branches fLðxÞ and fRðxÞ only. The boundary in the parame-
ter space denoted BC and defined as

BC : b ¼ ðmð1� lÞÞa�1 ð7Þ

is related to the appearance of the middle branch in the
definition of f. Namely, for b > ðmð1� lÞÞa�1 the map f
can be written in the following form:

f : x # f ðxÞ ¼

fLðxÞ ¼ xa for 0 6 x 6 xl;

fMðxÞ ¼ 1
lb 1� x

m

� �h i a
1�a

for xl < x 6 xr ;

fRðxÞ ¼ bx for x > xr :

8>><
>>:

ð8Þ

It is easy to see that besides the unstable fixed point in
the origin the map f has one more fixed point denoted
x�i ; i 2 L;M;Rf g, which can be associated with any one of
the functions fiðxÞ. Existence and stability properties of x�i
are discussed below and illustrated in Figs. 1 and 2.
The nonzero fixed point related to fLðxÞ is given by
x�L ¼ 1 (see Fig. 1(a)). It exists for the parameter values
belonging to the region denoted A and defined by

A : b 6max
1
l

1� 1
m

� 	
;1


 �
ð9Þ

(see Fig. 2). The two boundaries of A correspond to the
BCBs of x�L at which x�L ¼ xc , namely, if the parameter point
belongs to the boundary

BCL;1 : b ¼ 1
l

1� 1
m

� 	
; ð10Þ

we have x�L ¼ xl, and for

BCL;2 : b ¼ 1; ð11Þ

we have x�L ¼ xm. If x�L exists, it is globally attracting. Note
that in such a case we have xc P 1, so that the map f in
the interval I ¼ ½0;1� is defined by the branch fLðxÞ only.

The fixed point denoted x�R is related to the flat branch
fRðxÞ and given by x�R ¼ bx. Clearly, x�R < 1, and x�R exists ifbx P xm (as in Fig. 1(b)) or if bx P xr (as in Fig. 1(c)) that
holds for the parameter region defined by

1 < b < ðmð1� lÞÞ1�
1
a: ð12Þ

If x�R exists, it is a superstable fixed point, globally attract-
ing. At the boundary b ¼ 1 (denoted as BCL;2 in (11))
x�R ¼ xm, moreover, x�R ¼ x�L ¼ 1. If the parameter point
crosses BCL;2 we observe the transition from the supersta-
ble fixed point x�R to the stable fixed point x�L (for example,
see the transition from Fig. 1(b) to Fig. 1(a) on the left), so
that it is the so-called persistence border collision.1 While at
the boundary

BCR : b ¼ ðmð1� lÞÞ1�
1
a; ð13Þ
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we have x�R ¼ xr , so that BCR is related to one more border
collision of x�R. The region of existence of x�R is divided by
the boundary BC given in (7) in two subregions, denoted
B and C:

B : 1 < b < ðmð1� lÞÞa�1
; ð14Þ

C : ðmð1� lÞÞa�1
< b < ðmð1� lÞÞ1�

1
a ð15Þ

(see Fig. 2).
Finally, the fixed point x�M of the map f related to the

middle branch fMðxÞ is implicitly defined by

x�M ¼ 1
lb 1� x�M

m

� �h i a
1�a

(see Fig. 1(d) and (e)). It exists if

xl 6 x�M 6 xr , and this is satisfied for parameter values
belonging to the region defined by

b P max
1
l

1� 1
m

� 	
; ðmð1� lÞÞ1�

1
a


 �
: ð16Þ

Both boundaries of this region are related to the border
collision of x�M , namely, at the boundary BCL;1 (see (10))
we have x�M ¼ xl, moreover, x�M ¼ x�L ¼ 1, so that if the
parameter point crosses BCL;1 we observe the transition
from the fixed point x�M to the stable fixed point x�L (for
example, see the transition from Fig. 1(e) to Fig. 1(a) on
the right). While at the boundary BCR (see (13)) we have
x�M ¼ xr , moreover, x�M ¼ x�R so that crossing BCR we observe
the transition from the superstable fixed point x�R to the
fixed point x�M (see, for example, the transition from
Fig. 1(d) to Fig. 1(c)). The slope of fMðxÞ at the fixed point
x�M is negative, so that this fixed point may become unsta-
ble via a flip bifurcation (which is subcritical for a < 0:5,
degenerate [34] for a ¼ 0:5 and supercritical for a > 0:5).
The flip bifurcation curve of x�M is given by

FBM : b ¼ a
l
ðmð1� aÞÞ1�

1
a: ð17Þ

Thus, for parameter values belonging to the region denoted
D defined by

D : b > max
a
l
ðmð1� aÞÞ1�

1
a; ðmð1� lÞÞ1�

1
a


 �
(see Fig. 2) there exists the locally attracting fixed point x�M .

Let us define now an invariant absorbing interval of the
map f given in (8), denoted J. There are two possibilities:

(1) In the absorbing interval J only the functions fLðxÞ and
fMðxÞ are defined, that holds for parameter values
belonging to the region denoted E-I and defined as
E-I :
b < a

l ðmð1� aÞÞ1�
1
a;

b > max 1
l 1� 1

m

� �
; 1� 1

lþ 1
l ðmð1� lÞÞ1�

1
a

n o
8<
:

ð18Þ
(see Fig. 2). In such a case J ¼ ½f 2ðxlÞ; f ðxlÞ� (an example is
shown in Fig. 3(a)).

(2) All the three functions, fLðxÞ; f MðxÞ and fRðxÞ, are
involved in J, that holds in the region denoted E-II
and given by
E-II :
b> ðmð1�lÞÞ1�

1
a;

b<min 1� 1
lþ 1

lðmð1�lÞÞ1�
1
a; a

lðmð1�aÞÞ1�
1
a

n o
8<
:

ð19Þ
(see Fig. 2). In such a case J ¼ ½f ðxrÞ; f ðxlÞ� ¼ ½bx; f ðxlÞ� (see
Fig. 3(b) for an example). The contact of J with the border
point xr , occurring when the condition f ðxlÞ ¼ xr is satis-
fied, corresponds to the boundary
BCJ : b ¼ 1� 1
l
þ 1

l
ðmð1� lÞÞ1�

1
a: ð20Þ
All the parameter regions and bifurcation curves intro-
duced above are illustrated in Fig. 2. As an economic inter-
pretation of this figure we notice, in particular, that the
unique fixed point x�M is unstable (E-I or E-II) or oscillatory
stable (D), if the Bad projects are highly profitable (a high B,
and hence a high b) and the pledgeability of their revenues
(l) is in the intermediate range (if it were sufficiently close
to one, the entrepreneurs could finance them even with a
low net worth, and if it is sufficiently close to zero, the
entrepreneurs could not finance them even with a high
net worth).

Preliminary description of the bifurcation structure of
the region E-I is discussed in [25]. The main object of the
present paper is the bifurcation structure of the region E-
II, formed by the periodicity regions related to superstable
cycles of the map f existing due to its flat branch. From now
on we shall consider the parameter values belonging to the
region E-II.

To distinguish between different cycles with the same
period it is quite convenient to use their symbolic represen-
tation. To write down the symbolic sequence of an n-cycle
cn ¼ xif gn

i¼1 of the map f given in (8) we need at most 5 sym-
bols: the symbol L is used for the periodic points
xi : 0 < xi < xl, the symbol M is reserved for xi : xl < xi < xr ,
the symbol R is used for xi : xi > xr , and the symbols Cl

and Cr are used for xi ¼ xl and xi ¼ xr , respectively. In such
a way the symbolic sequence, denoted r, of the cycle cn

consists of n symbols related to the location of the periodic
points: r ¼ r1r2 . . .rn;ri 2 fL;Cl;M;Cr ;Rg.

Let cn be a superstable cycle of the map f, and let x1 > xr ,
so that the first symbol of the symbolic sequence of cn is R
(given that any cycle can have at most one point in the def-
inition region of fRðxÞ, the symbolic sequence of such a cy-
cle has only one symbol R). Then x2 ¼ fRðx1Þ ¼ bx, that is,
any superstable cycle of the map f consists of the point bx
and its n� 1 images by f. Obviously, two superstable cycles
cannot coexist, while coexistence of a superstable cycle
and a stable cycle (with symbolic sequence consisting of
symbols L and M only) is possible, as well as coexistence
of stable fixed point and stable 2-cycle.

The basin of attraction of any superstable cycle cn de-
noted S is given by the interval ½xr ;1Þ related to the flat
branch, and the preimages of any rank i > 0 of the interval
xr; fLðxlÞ½ �:

S ¼ [1i¼1f�ið xr; fLðxlÞ½ �Þ [ ½xr;1Þ: ð21Þ

Obviously, any point of S is preperiodic to cn, that is, it is
mapped into cn in a finite number of iterations. Note that
due to noninvertibility of f, its inverse function is not un-
iquely defined, so that constructing the set S one has to in-
clude all the preimages of the interval ½xr ; fLðxlÞ� by all the
three branches of the inverse function. See, for example,
Fig. 4 which shows the map f, its superstable 3-cycle



Fig. 3. The invariant absorbing interval J ¼ ½f 2ðxlÞ; f ðxlÞ� in (a) and J ¼ ½f ðxrÞ; f ðxlÞ� in (b) of the map f for the parameter values belonging to the regions E-I and
E-II, respectively. Here m ¼ 1:2; a ¼ 0:6; l ¼ 0:4 and b ¼ 2 in (a), b ¼ 1:5 in (b).

Fig. 4. The map f and its superstable cycle c3 ¼ fxig3
i¼1. Basin of attraction

of c3 includes the interval xr ; fLðxlÞ½ � and all its preimages (several of them
are shown by thick lines). Here m ¼ 1:05; B ¼ 1:5; a ¼ 0:5 and l ¼ 0:15.
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c3 ¼ ff 2
L ðbxÞ; bx; fLðbxÞg with the symbolic sequence RL2, and

the interval ½xr ; fLðxlÞ� together with a few its preimages.
In this case the set of preimages of any rank fills densely
the absorbing interval J ¼ ½bx; f ðxlÞ�. However, it is clear that
not all the points of J are mapped into c3. There exists an
invariant set of points which are not mapped into the cycle
c3, defining its basin boundary, which is a chaotic repeller
(of zero Lebesgue measure) consisting of the points of all
the repelling cycles, their preimages of any rank and an
uncountable set of aperiodic orbits. Indeed, it can be
shown that for any superstable cycle cn its basin boundary
has such a complicated structure, except for the supersta-
ble 2-cycle and its harmonics (that is, the 2k-cycles, k > 1,
born due to a cascade of flip BCBs of the 2-cycle) as we clar-
ify in next sections.

3. Numerical results

In this section we present numerical results illustrating
the bifurcation structure of the region E-II in the parameter
space of the map f, related to its superstable cycles.
The 2D bifurcation diagram in the ðl; bÞ-parameter
plane for m ¼ 1:2, a ¼ 0:6 is shown in Fig. 5(a), and for
m ¼ 1:2, a ¼ 0:5 in Fig. 5(b). Fig. 6 presents the 2D bifurca-
tion diagram in the ðl;aÞ-parameter plane and its enlarge-
ment for m ¼ 1:05; B ¼ 1:5. In these figures different
colors correspond to the periodicity regions related to
attracting cycles of periods n 6 30 (the correspondence of
the colors and periods is indicated at the color bar), and
white color is related to either higher periodicity regions
or to chaotic attractors. Note that several regions of the
same color are related to attracting cycles having the same
period but different symbolic sequences: for example, in
Fig. 6(b) three 5-periodicity regions are clearly visible. As
we shown in the next section, the rightmost 5-periodicity
region is related to the superstable cycles with symbolic
sequences RLM3 and RLM2L, the middle region to RL2ML

and RL2M2 and the left region to RL3M and RL4. The bifurca-
tion curves BCL;1; BCL;2; BCR, FBM as well as the curves BC
and BCJ are plotted using their analytical expressions de-
rived in the previous section (note that the boundary
BCL;2 in Fig. 6 is defined by a ¼ 0:6, obtained from
b ¼ B 1�a

a at b ¼ 1 and B ¼ 1:5). Some periodicity regions
are additionally marked by the corresponding periods.

As we have already mentioned, two superstable cycles
of the map f cannot coexist, while a superstable cycle can
coexist with a stable cycle. In Figs. 5 and 6 the regions re-
lated to coexisting attractors cannot be seen (except for the
narrow green region bounded from above by the subcriti-
cal flip bifurcation curve FBM in Fig. 6(a), related to coexis-
ting attracting fixed point x�M and 2-cycle), because only
one initial condition has been used to plot these diagrams.
The problem of coexistence of different attractors is dis-
cussed in the forthcoming paper.

A first observation is related to the particular bifurca-
tion point denoted O in Figs. 5 and 6, which is the intersec-
tion point of several border collision curves, namely,
BCL;1; BCL;2 and BCR. However, it can be clearly seen that
not only these bifurcation curves issue from O, but also
infinitely many curves bounding periodicity regions which
belong to the region E-II. Following the notation in [1], the
codimension-2 BCB point O is called organizing center, de-
fined as a bifurcation point from which an infinite number
of bifurcation curves issue.



Fig. 5. 2D bifurcation diagram of the map f in the ðl;bÞ-parameter plane at m ¼ 1:2 and a ¼ 0:6 in (a), a ¼ 0:5 in (b).

Fig. 6. 2D bifurcation diagram of the map f in the ðl;aÞ-parameter plane
at m ¼ 1:05; B ¼ 1:5 in (a) and its enlargement in (b). The rectangle
marked in (a) is shown enlarged in Fig. 13. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
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3.1. Boundaries of a periodicity region

Let Pr denote the periodicity region related to the cycle
with the symbolic sequence r. We first clarify which bifur-
cations define the boundaries of the regions Pr using as an
example the 3-periodicity region (see Fig. 6(b)). This region
consists of three subregions, namely, the regions PRLM and
PRL2 related to the superstable 3-cycles with the symbolic
sequences RLM and RL2, respectively, and the region PML2

related to the stable 3-cycle with the symbolic sequence
ML2. Note that even if a part of the region PML2 belongs to
the region E-II, for which the absorbing interval involves
all the three branches of f, the stable 3-cycle ML2 is defined
by the functions fL and fM only. The region PML seen in
Fig. 6(a) and the region PML2 seen in Fig. 6(b) belong to both
regions E-I and E-II. For different values of m other period-
icity regions, related to stable but not superstable cycles,
belonging to E-I can extend to E-II as well. The boundaries
of the regions PRL2 and PRLM shown in Fig. 6(b) are plotted
using the conditions of the border collision of the related
3-cycle. Namely, the right boundary of PRLM denoted
BCCr LM is related to the 3-cycle CrLM as, for example, the cy-
cle shown in Fig. 7(a) (the related parameter point is
marked a in Fig. 6(b)); the left boundary BCRLCl

of PRLM ,
which is also the right boundary of PRL2 , is related to the
3-cycle RLCl, as, for example, the one shown in Fig. 7(b)
(the related parameter point is marked b in Fig. 6(b)) and
the left boundary BCCr L2 of PRL2 corresponds to the 3-cycle
CrL

2, as in Fig. 7(c) (the related parameter point is marked
c in Fig. 6(b)). Note that all the three curves BCCr LM ; BCRLCl

and BCCr L2 issue from the point belonging to the curve
BCJ and related to the 3-cycle CrLCl.

In a similar way we can obtain the boundaries of the 2-
periodicity region shown in green in Fig. 6(a), consisting of
three subregions, namely, the regions PRM; PRL and PLM . The
lower boundary of PRM (connecting the points marked s1

and ClCr) is related to the 2-cycle CrM hence denoted as
BCCr M , the right boundary of PRM (connecting s1 and O) is



Fig. 7. The 3-cycle c3 at the moment of the border collision: in (a) c3 has the symbolic sequence CrLM, in (b) c3 is represented by RLCl and in (c) c3 has the
symbolic sequence CrL2. Here m ¼ 1:05; B ¼ 1:5; a ¼ 0:5 and l ¼ 0:17 in (a), l ¼ 0:1638 in (b), l ¼ 0:1394 in (c) (the related parameter points are marked
a; b and c, resp., in Fig. 6(b)).
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just the curve BCR, and its left boundary which is also the
right boundary of PRL (connecting ClCr and O), corresponds
to 2-cycle RCl, hence denoted as BCRCl

. The left boundary of
PRL is related to the cycle CrL, hence denoted as BCCr L. The
narrow region bounded by the curves BCCr M ; BCRCl

and
FBM (note that a < 0:5 here, thus, the flip bifurcation is sub-
critical) is related to coexisting stable fixed point x�M and
superstable 2-cycle RM, while the region bounded by
BCRCl

; BCCr L and FBM is related to the coexistence of the sta-
ble fixed point x�M and the superstable 2-cycle LR.

This bifurcation structure is schematically illustrated in
Fig. 8(a) where the bistability regions mentioned above, as
well as the region of coexistence of the stable fixed point
x�M and the stable 2-cycle LM, are dashed. Additionally it
is indicated that stable 2-cycles with symbolic sequences
LMs; RLs and RMs (the index s means stability) born due
the fold BCB in pair with the unstable cycle MMu (the index
u means that this cycle is unstable) coexist with the stable
fixed point x�M indicated by the symbol Ms. If the parameter
point crosses the curve FBM the fixed point Ms and the
unstable 2-cycle MMu merge, the fixed point losses stabil-
ity, the 2-cycle MMu disappears, so that above the curve
FBM there exist the unstable fixed point x�M and the related
2-cycle (stable or superstable). Such a bifurcation structure
is observed in the ðl;aÞ-parameter plane if a < 0:5 at the
point s1 and, thus, the flip bifurcation is subcritical (as,
for example, it occurs in Fig. 6(a)). The point s1 is called
Fig. 8. Schematic structure of the regions PRM ; PRL and PLM in the ðl;aÞ-para
bifurcation of x�M with the bistability regions dashed; with a > 0:5 at CrCl (b) sh
border-flip codimension-two bifurcation point. It is shown
in [10] that in general three bifurcation curves are issuing
from such a point, among which one is a curve related to
the smooth bifurcation and the other two curves are BCB
curves.

The bifurcation structure in the case of a supercritical
flip bifurcation of x�M is schematically illustrated in
Fig. 8(b) for a > 0:5 at the point CrCl. Note that it is possible
to have a < 0:5 at CrCl and a > 0:5 at the border-flip point
s1, in which case FBM intersects with BCCr M , and it is also
possible that the curve FBM intersects with the curve
BCClM (for a > 0:5 at CrCl). In both cases we have a ¼ 0:5
at the intersection point, and the flip bifurcation is super-
critical above the intersection and subcritical below it.

To see what kind of bifurcation occurs when parameter
point crosses boundaries of a periodicity region related to
superstable n-cycle, recall first that the only bifurcation
which is possible for a superstable cycle, is a BCB. Using
the skew tent map as the BCB normal form [34], it is easy
to show that a superstable n-cycle cn can undergo either a
fold BCB, or a flip BCB, or a persistence border collision. In
fact, evaluating the left- and right-side derivatives, de-
noted a and b, of the function f n at the border-crossing
superstable fixed point of f n at the bifurcation parameter
value, we have that one such derivative is obviously 0,
say, a ¼ 0, and, depending on the other derivative, b, the
following cases can be distinguished:
meter plane. With a < 0:5 at s1, (a) shows the case of a subcritical flip
ows the case of supercritical flip bifurcation of x�M .



Fig. 9. The map f 3 and its border-crossing fixed points related to the 3-cycle of the map f. Here the parameter values in (a)–(c) are as in Fig. 7, and
a ¼ 0:435; l ¼ 0:1358 in (d) (the related parameter points are indicated by a; b; c and d, resp., in Fig. 6(b)).
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(1) If b > 1 then a fold BCB (also referred to as nonsmooth
fold bifurcation) occurs at which one point of cn and
one point of the repelling complementary2 n-cycle
collide with the border point simultaneously and both
cycles disappear after the bifurcation. An example of
f 3 together with the border-crossing fixed points at
the moment of the fold BCB is shown in Fig. 9(a);
the related parameter point is marked by a in
Fig. 6(b).

(2) If jbj < 1, then a persistence border collision occurs at
which the superstable cycle cn is transformed into
the complementary cycle which is either again
superstable, or stable (see Fig. 9(b) and (d), respec-
tively; the related parameter points are marked by
b and d in Fig. 6(b)).

(3) If b < �1 then a supercritical flip BCB occurs at which
cn is transformed into the complementary repelling
n-cycle, while a superstable 2n-cycle c2n is born
(see Fig. 9(c) and the related parameter point
marked by c in Fig. 6(b)).

3.2. Cascades of flip border collision bifurcations

The results of these bifurcations are illustrated in the 1D
bifurcation diagram shown in Fig. 10(a), corresponding to
the parameter path for fixed a ¼ 0:5 varying l, as indicated
in Fig. 6(b) by the horizontal line with an arrow. In partic-
ular, it can be seen that at l � 0:17 the boundary BCCr LM is
crossed (see the point a in Fig. 6(b)) and the fold BCB
2 Recall that two cycles of a continuous piecewise smooth map, born at a
fold BCB are so-called complementary cycles: their symbolic sequences differ
by the one, colliding, symbol.
occurs at which for decreasing l the superstable cycle
RLM is born together with the complementary repelling cy-
cle MLM (which is not shown). At the moment of the fold
BCB these cycles coincide and have the symbolic sequence
CrLM (see also Fig. 7(a)). At l � 0:1638 the parameter
point crosses the boundary BCRLCl

(see the point b in
Fig. 6(b)) and the persistence border collision occurs: the
cycle RLM is transformed into the cycle RL2 (the persistence
border collision occurs also if the boundary BCCr L2 is
crossed below the point marked by s3 in Fig. 6(b), e.g., at
the point d, in which case we observe the transition from
RL2 to ML2). At l � 0:1394 the boundary BCCr L2 is crossed
(see the point c in Fig. 6(b)) and the flip BCB occurs leading
to the superstable 6-cycle with the symbolic sequence
RL2ML2.

Fig. 10(b) shows an enlargement of the window indi-
cated in Fig. 10(a), where it can be seen that the supersta-
ble 6-cycle RL2ML2 for decreasing l first undergoes the
persistence border collision, at l � 0:123, being trans-
formed into the superstable cycle RL2MLM. Both the se-
quences RL2ML2 and RL2MLM are the so-called first
harmonics of RL2, as explained in the next section. We con-
tinue to decrease the value of l, and at l � 0:122 the flip
BCB occurs, leading to the superstable 12-cycle with the
symbolic sequence RL2MLM2L2MLM. The 12-cycle in its
turn also first undergoes the persistence border collision,
at l � 0:12197, leading to the cycle RL2MLM2L2ML2 (both
RL2MLM2L2MLM and RL2MLM2L2ML2 are the second har-
monics of RL2), which then, at l � 0:1216, undergoes the
flip BCB resulting to the 24-cycle whose symbolic sequence
RL2MLM2L2ML2ML2MLM2L2ML2 (the third harmonic of RL2).
Indeed, an infinite cascade of flip BCBs occurs for decreas-
ing l which is difficult to observe numerically due to the



Fig. 10. 1D bifurcation diagram of the map f at m ¼ 1:05; B ¼ 1:5, a ¼ 0:5 and l 2 ½0:12;0:18� in (a) (the related parameter path is indicated in Fig. 6(b) by
the horizontal line with an arrow), and l 2 ½0:12;0:125� in (b), which is the enlarged window indicated in (a). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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high rate of the compression of the related parameter
ranges. The sequence of superstable cycles described above
can be written schematically as follows:

. . .�!Cr LM
RLM�!RLCl RL2 �!Cr L2

RL2ML2 �!RL2MLCl ð22Þ

RL2MLM �!Cr L2MLM
RL2MLM2L2MLM . . . ð23Þ

As one more example, let us consider the cascade of flip
BCBs of the 2-cycle. It is illustrated in Fig. 11 by means of
the 1D bifurcation diagram (the related parameter path
for fixed a ¼ 0:5 and varying l is indicated by the horizon-
tal line with an arrow in Fig. 6(a)). Namely, the following
sequence of flip BCBs (related to the collision with the bor-
der point xr) and persistence border collisions (due to the
collision with the border point xl) can be observed for
Fig. 11. 1D bifurcation diagram of the map f at m ¼ 1:05; B ¼ 1:5; a ¼ 0:5, and l
the horizontal line with an arrow); l 2 ½0:184;0:19� in (b) (it is an enlargement
decreasing l. The superstable fixed point x�R whose sym-
bolic sequence is just one symbol R, undergoes the flip
BCB (the parameter point crosses the boundary BCR above
the point s1, see Fig. 6(a)), that leads to a 2-cycle with sym-
bolic sequence RM. Then this cycle is transformed into the
one with symbolic sequence RL due to the persistence bor-
der collision (the parameter point crosses the boundary
BCRCL ). Note that the sequences RM and RL are the first har-
monics of R. Then the 2-cycle RL undergoes the flip BCB
(the parameter point crosses the boundary BCCr L above
the point s2) leading to a 22-cycle whose symbolic se-
quence is RLML. Then this cycle changes its symbolic se-
quence to RLM2 due to persistence border collision (RLML
and RLM2 are the second harmonics of R). Then it under-
goes the flip BCB leading to a 23-cycle with the symbolic
sequence RLM3LM2 which is transformed into RLM3LML
2 ½0:175;0:4� in (a) (the related parameter path is indicated in Fig. 6(a) by
of (a)).



Fig. 12. In (a) the cycle c2 ¼ fxig2
i¼1 and in (b) the cycle c4 ¼ fxig4

i¼1 which is the first harmonic of c2, are shown. Any point of J ¼ ½bx; f ðxlÞ� is mapped into the
attractor except for x�M in (a), and except for x�M , the 2-cycle LM (shown by white circles) and its preimages in (b). Here m ¼ 1:05; B ¼ 1:5; a ¼ 0:5 and
l ¼ 0:25 in (a), l ¼ 0:186 in (b).

Fig. 13. An enlargement of the window indicated in Fig. 6(a) by the
rectangle. The curves marked H1 and H2 are related to the first homoclinic
bifurcations of the fixed point x�M and 2-cycle with the symbolic sequence
LM, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 14. 1D bifurcation diagram of the map f at
m ¼ 1:05; B ¼ 1:5; a ¼ 0:41 and l 2 ½0:145;0:165� (the related parame-
ter path is indicated in Fig. 13 by the horizontal line with an arrow). The
values l ¼ lH1

and l ¼ lH2
correspond to the first homoclinic bifurca-

tions of the fixed point and 2-cycle, respectively.
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due to the persistence border collision (RLM3LM2 and
RLM3LML are the third harmonics of R), so on, that can be
schematically represented as follows:

R�!Cr RM�!RCl RL�!Cr L
RLML �!RLMCl RLM2 �!Cr LM2

RLM3LM2 . . . ð24Þ

As we have mentioned in the previous section, in the
case of the superstable 2-cycle RL or any of its harmonics,
the basin of attraction defined in (21) has a simpler struc-
ture than in the generic case, being not associated with a
chaotic repeller on the basin boundary. For example, it is
easy to see that in case of the 2-cycle RL shown in
Fig. 12(a), any point of the absorbing interval J ¼ ½bx; f ðxlÞ�,
except for the unstable fixed point x�M , is mapped into this
cycle in a finite number of iterations while in case of the
4-cycle RLM2 shown in Fig. 12(b), any point of J is mapped
into this cycle except for the unstable fixed point x�M , unsta-
ble 2-cycle LM and its preimages (converging in backward
iterations by f�1

M to x�M). In general, for a superstable cycle
whose symbolic sequence is the kth harmonic of
R; k > 0, the basin boundary includes the fixed point x�M ,
the points of all the m-harmonic cycles for any m < k
(which are unstable due to flip BCBs), as well as their pre-
images. Such a structure of the basin boundary is qualita-
tively similar to the one of an attracting 2k-cycle of the
logistic map born during the first cascade of period-dou-
bling bifurcations.
3.3. Homoclinic bifurcations and Milnor attractors

Let us now consider the sets in the parameter space to
which the periodicity regions of the superstable cycles
are accumulating, and the dynamics related to these sets.
Such accumulation parameter values are visible in the 1D
bifurcation diagrams as those related to the ‘‘bodies of
the spiders’’, like, for example, the value l ¼ 0:1215 indi-
cated by a red arrow in Fig. 10(b). For the logistic map it



Fig. 15. The map f for the parameter values corresponding to the first
homoclinic bifurcation of the 2-cycle c2 ¼ fx1; x2g. Here
m ¼ 1:05; B ¼ 1:5; a ¼ 0:41 and l ¼ 0:160635 � lH2

. The related param-
eter point belongs to the curve H2 and is marked by the red circle in
Fig. 13. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 16. The map f for the parameter values related to the first homoclinic
bifurcation of the fixed point M. Here m ¼ 1:05; B ¼ 1:5; l ¼ 0:16,
a ¼ 0:4285. This parameter point belongs to the curve H1 and marked
by the green circle in Fig. 13. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this
article.)

3 Recall that a Milnor attractor [28] is defined as a closed invariant set
A 	 J such that the set qðAÞ consisting all the points x 2 J for which xðxÞ 	 A
has strictly positive measure, and qðA0Þ coincides with qðAÞ up to a set of
measure zero. Here xðxÞ is the set of accumulation points of the orbit under
the forward iterations of x, called x-limit set of x.
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is known that the periodicity windows at the well-known
1D bifurcation diagram are accumulating to the parameter
values related to homoclinic bifurcations of the unstable
cycles. Moreover, on the other side of any accumulation
point of a cascade of period-doubling bifurcations, a cas-
cade of the homoclinic bifurcations is accumulating. To
see that for the map f the periodicity regions are accumu-
lating on the parameter sets related to homoclinic bifurca-
tions of the corresponding cycles, we first present in Fig. 13
the enlargement of the window marked by the rectangle in
Fig. 6(a), and in Fig. 14 the 1D bifurcation diagram related
to the parameter path indicated in Fig. 13 by the horizontal
line with an arrow which pierces the red circle on the line
H2. In this diagram the accumulation points l ¼ lH1

and
l ¼ lH2

are clearly visible, related to the first homoclinic
bifurcations of the fixed point x�M and of the 2-cycle with
the symbolic sequence LM, respectively.

Let us first consider the 2-cycle with the symbolic se-
quence LM, that is, the cycle c2 ¼ fx1; x2g where x1 < xl,
xl < x2 < xr ; f Lðx1Þ ¼ x2 and fMðx2Þ ¼ x1. Its first homoclinic
bifurcation is defined by the condition of the border point
xl to be preperiodic to this cycle, namely, as illustrated in
Fig. 15, this condition can be written as

fM � fM � fL � fR � fLðxlÞ ¼ x2 ð25Þ

or, taking into account that for the parameter region E-II
we have fR � fLðxlÞ ¼ fRðxrÞ, the condition in (25) becomes

fM � fM � fL � fRðxrÞ ¼ x2

and from fRðxÞ ¼ bx we have:

fM � fM � fLðbxÞ ¼ x2: ð26Þ

The bifurcation curve numerically obtained correspond-
ing to the condition in (26) is denoted H2 in Fig. 13. In
Fig. 15 we present the map f at the moment of the first
homoclinic bifurcation of the 2-cycle (the related point of
the curve H2 is marked by red circle in Fig. 13). It can be
seen that even if this cycle is locally repelling, almost all
the points of the absorbing interval J ¼ ½bx; f ðxlÞ� are
mapped into this cycle, so it is an attractor in Milnor
sense.3 In the considered map such an attractor occurs due
to the flat branch fRðxÞ, namely, the complete interval
½xr ;1Þ is ultimately mapped to the point x2, as well as infi-
nitely many preimages of the interval ½xr ; fLðxlÞ� marked by
red in Fig. 15. Its preimages of increasing rank fill densely
the interval J and define the stable set, given in (21), of the
locally repelling 2-cycle c2. We notice that any homoclinic
cycle of the map f for the considered parameter range has
the stable set as given in (21). Clearly in J there exist also
infinitely many points which are not attracted to the cycle
c2, which belong to the chaotic repeller of zero Lebesgue
measure consisting of the points of all the repelling cycles,
their preimages of any rank and their limit sets.

One more example is shown in Fig. 16 where the func-
tion f is plotted at the parameter values corresponding to
the first homoclinic bifurcation of the fixed point x�M (the
related parameter point belongs to the curve H1 and
marked by green circle in Fig. 13), which in our case also
leads to an attractor in Milnor sense, whose stable set is
as given in (21). A few preimages of the interval xr ; fLðxlÞ½ �
are shown in red in Fig. 16, and all the existing preimages
are filling densely the interval J. The condition of the first
homoclinic bifurcation of x�M is given by

fL � fRðxrÞ ¼ x�M ; ð27Þ

where the fixed point x�M is implicitly defined from
x�M ¼ fMðx�MÞ. The bifurcation curve related to the condition
in (27) is denoted H1 in Fig. 13.



Fig. 17. The map g defined in (28) at m ¼ 1:05; B ¼ 1:5; a ¼ 0:5 and
l ¼ 0:15.
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4. Modified U-sequence

The numerical results presented in the previous section
suggest that the periodicity regions of the superstable cy-
cles of the map f given in (8) are ordered according to
the well-known U-sequence. Recall that the U-sequence
(where ‘‘U’’ stands for ‘‘universal’’) was first described in
[27] and referred to symbolic sequences of superstable cy-
cles of maps of a particular class. Namely, it was estab-
lished for 1D continuous piecewise differentiable maps
g : I! I depending on a parameter, with a unique maxi-
mum gmax assumed either at a point or in an interval, and
such that to the left or right of this point (or interval) the
map is strictly increasing or strictly decreasing, respec-
tively. Additionally it was assumed that at any x such that
gðxÞ ¼ gmax the derivative of g exists and is equal to 0, and
the condition defining the parameter range. The most
known example of maps whose superstable cycles are or-
dered on parameter according to the U-sequence are uni-
modal maps with ‘‘smooth’’ maximum, in which case the
U-sequence can be easily extended to the sequence of sta-
ble cycles, as we clarify below using the logistic map as an
example (recall that a 1D continuous map g : I! I is called
unimodal if there exists exactly one point of local extrema
in the interior of I, moreover, g is strictly increasing on one
side of the point of local extrema and strictly decreasing on
the other side). However, in [27] it was also mentioned,
that the conditions listed above are sufficient to guarantee
the existence of the U-sequence, but not necessary. In fact,
it is known (see, e.g., [17]) that the U-sequence is valid also
for the unimodal maps which are not differentiable at the
point of maximum (as, for example, the considered map f
for parameter values belonging to the region E-I given in
(18), or the skew tent map), in which case the U-sequence
may be related to not only stable but also unstable cycles,
or even unstable cycles only (in [27] the U-sequence in
the tent map was mentioned as an example of such a case).
Obviously, the considered map f for parameter values
belonging to the region E-II given in (19) does not belong
to the classes of maps mentioned above. To see why the
U-sequence is nevertheless valid for our map, let us con-
sider the map g : I! I defined as follows:

g : x # gðxÞ ¼

fLðxÞ ¼ xa for 0 < x 6 xa;

fCðxÞ ¼ xa
c for xa < x 6 xc;

fMðxÞ ¼ 1
lb 1� x

m

� �h i a
1�a

for xc < x 6 xr;

fRðxÞ ¼ bx for x > xr;

8>>>>><
>>>>>:

ð28Þ

where xa ¼ f�1
L ðxrÞ; xc ¼ f�1

M ðxrÞ, bx ¼ 1
b

� � a
1�a
; xr ¼ mð1� lÞ,

and parameters a; b; l and m satisfy (2) and (19) (see
an example of the map g in Fig. 17). The map g is con-
structed from the map f by introducing a new flat branch
fCðxÞ defined on the interval bounded by two preimages
of the border point xr , so that the absorbing interval of g
is J ¼ ½bx; xr � and the flat branch fRðxÞ plays no role for the
dynamics. Clearly, the map g belongs to the class of maps
considered in [27] (see also [9]), thus, the U-sequence is
valid for such a map (of course, to discuss the U-sequence
in the map g we need to specify the related parameter
path). On the other hand, it is easy to see that the map g
is topologically conjugate to the considered map f, thus,
the U-sequence is valid for it as well.

Before we describe the U-sequence of the map f let us
recall in short how the standard U-sequence is formed
using the logistic map g : x # gðxÞ ¼ axð1� xÞ; 3 < a < 4,
as an example. In [27] the U-sequence is constructed for
the superstable cycles, for which the first letter in the
symbolic sequence is C (corresponding to the point of max-
imum, separating the two partitions, L and R), and it is
omitted. For example, the symbolic sequence of the super-
stable 3-cycle is RL � CRL. Note that due to the fold bifur-
cation two 3-cycles are born, stable and unstable, with
the same symbolic sequence, namely, RRL. Then, increasing
a, at a suitable value the stable cycle becomes superstable,
that is, it has the symbolic sequence CRL, and after we have
the stable cycle with LRL sequence (which soon after be-
comes unstable via the flip bifurcation) while the unstable
cycle, born in pair with the stable one, always persists with
the sequence RRL. We can say that the sequence RL of the
superstable 3-cycle represents both the 3-cycles, with the
sequences LRL and RRL. As a different example consider
the sequence RLR � CRLR of the superstable 4-cycle. It rep-
resents only one cycle, namely, the 4-cycle with the sym-
bolic sequence RRLR. Indeed, the sequence RLR is the first
harmonic of R which represents the cycle born due to the
period-doubling bifurcation of the 2-cycle. Recall that the
(first) harmonic of a symbolic sequence r is the sequence
rjr, where j ¼ L if the number of R in r is odd while
j ¼ R if this number is even. The k-harmonic is constructed
by k consecutive applications of the same rule.

If we consider all the symbolic sequences of the logistic
map related to its superstable cycles up to some period m,
then these symbolic sequences belong to the U-sequence
(the complete U-sequence includes all the admissible
symbolic sequences of the superstable cycles of a unimodal
map), and they are ordered for increasing values of the
parameter a according to the following rule. For two
different symbols j – m, the order of j and m is in the sense
of the natural order: L < C < R. Given two symbolic
sequences r1 ¼ rj and r2 ¼ rm with common string r



26 I. Sushko et al. / Chaos, Solitons & Fractals 59 (2014) 13–27
and next symbol j – m, the order of r1 and r2 is the same
(opposite) as the order of j and m if the number of R in r is
even (odd). For example, comparing two symbolic se-
quences of the superstable 4-cycles, r1 ¼ RL2 and
r2 ¼ RLR, we see that the number of R in their common
string r ¼ RL is odd, while the next symbols are L in r1

and R in r2, and L < R. Thus, we have that RL2 > RLR.
The rule described above implies, in particular, that the

symbolic sequence of the so-called basic n-cycle is the
largest among the symbolic sequences of the other
n-cycles.4 Recall that a basic n-cycle has only one symbol
R in its symbolic sequence, that is, this sequence is RLn�2.
It can also be shown [27] that the k- and ðkþ 1Þ-harmonics
of some symbolic sequence for any integer k > 0 are adja-
cent in the U-sequence (i.e., there are no any other symbolic
sequences in between them). For example, the order of the
symbolic sequences of the cycles of period 2 6 n 6 6 of a
unimodal map is the following:

R < RLR < RLR3 < RLR2 < RL < RL2RL < RL2R

< RL2R2 < RL2 < RL3R < RL3 < RL4; ð29Þ

where the first or, equivalently, the last symbol, is C (which
is omitted). Note that other symbolic sequences of higher
periods exist between any two consecutive sequences but
not between a sequence and its harmonic.

Let us now turn to the U-sequence observed in the map
f. As we have already mentioned, we need first to specify
an appropriate parameter path, which, roughly speaking,
has to cross all the existing periodicity regions. Consider
first the region E-I. As an appropriate parameter path in
the ðl; bÞ-parameter plane (for values of a and m fixed
as, for example, in the case shown in Fig. 5) we can con-
sider a cross-section of E-I from the right boundary FBM

to the left boundary BCL;1. In the ðl;aÞ-parameter plane
(for the values of B and m fixed as, for example, in the case
shown in Fig. 6) an appropriate parameter path can be the
one connecting a point of the boundary FBM with the orga-
nizing center O. Given that the map f for parameter values
belonging to the region E-I is unimodal (and its cycles have
symbolic sequences consisting of symbols L and M only),
the order (29) is valid for f as well: we simply have to sub-
stitute the symbol R by M, while the first (omitted) symbol
C corresponds to the symbol Cl:

M < MLM < MLM3 < MLM2 < ML < ML2ML

< ML2M < ML2M2 < ML2 < ML3M < ML3 < ML4: ð30Þ

It is worth to emphasize that differently from the logistic
map, the sequence given above is not related to the super-
stable cycles, but to the cycles one point of which is xl

(where f is not differentiable).
Now we adjust the standard U-sequence to describe the

cycles which can be observed in the map f when the param-
eters belong to the region E-II. An appropriate parameter
path has to cross all the periodicity regions of superstable
cycles. For example, we can vary the parameter values
4 For a prime period n > 2 the number of stable n-cycles having different
symbolic sequences is kðnÞ ¼ ð2n�1 � 1Þ=n. For the case in which n is
nonprime see, e.g., [17].
along an arc connecting the point marked by s1 in Fig. 6a
with the organizing center O. In each of the symbolic
sequences constituting the order (30), the first symbol M
corresponding to the maximal periodic point, has to be
substituted by R (and, as we have already noticed, only
one point R can exist in a symbolic sequence):

R < RLM < RLM3 < RLM2 < RL < RL2ML < RL2M

< RL2M2 < RL2 < RL3M < RL3 < RL4: ð31Þ

Such a sequence corresponds to the order of the supersta-
ble cycles of f one point of which is xl, with the symbol Cl

omitted in the above order. The generic rule recalled above
to determine the order of such sequences, has to be modi-
fied taking into account that one letter R takes the place of
one letter M in the standard U-sequence. So, the rule for
the order (31) is as follows. Given two different symbols
j – m, the order of j and m is, as before, in the sense of
the natural order: L < Cl < M. Given two symbolic se-
quences r1 ¼ rj and r2 ¼ rm with common string r and
next symbol j – m, the order of r1 and r2 is the same
(opposite) as the order of j and m if the number of M in
r is odd (even).

Let us now extend the order (31) to all the superstable
cycles of the map f (i.e., not only those with periodic point
xl). As we have seen, the curves corresponding to the cycles
with point xl are related to the persistence border collisions
and located inside the periodicity regions of the corre-
sponding superstable cycles. In some sense, these curves
constitute a skeleton of the overall ‘‘superstable’’ bifurca-
tion structure, quite similar to the parameter values of
the superstable cycles of the logistic map, located inside
the related periodicity windows. To construct the complete
sequence we can substitute each symbolic sequence r by
two new sequences, rL and rM, ordered according to the
rule stated above. For example, the sequence R related to
the superstable 2-cycle RCl can be substituted by two se-
quences, RM and RL (representing the related superstable
2-cycles) ordered as RM < RL. The sequence RLM represent-
ing superstable 4-cycle RLMCl can be substituted by RLML
and RLMM ordered as RLML < RLMM (cf. with (24)). One
more example is the sequence RL � RLCl representing the
superstable 3-cycle which can be substituted by RLM < RLL.

Thus, the complete order of the superstable cycles peri-
ods 2 6 n 6 6 of the map f is the following:

RM < RL < RLML < RLM2 < RLM3L < RLM4 < RLM3

< RLM2L < RLM < RL2 < RL2ML2 < RL2MLM < RL2ML

< RL2M2 < RL2M3 < RL2M2L < RL2M < RL3 < RL3ML

< RL3M2 < RL3M < RL4 < RL4M < RL5: ð32Þ
5. Conclusions

To summarize, we have obtained an analogue of the
U-sequence according to which the periodicity regions re-
lated to the superstable cycles of the map f defined in (8)
are ordered. As an economic interpretation of the obtained
results we note that in the credit cycle model defined by
the map f, the economy experiences a fluctuation of the
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entrepreneur net worth due to changing composition of
the credit between the two types of projects, the Good
and the Bad. When the current net worth is very low, the
entrepreneurs cannot finance the Bad projects, because
the borrowing constraint is too tight. All credit thus goes
to the Good projects, and hence, a higher current net worth
leads to a higher net worth in the next period. When the
current net worth is in the intermediate range, the Bad
projects are financed but still subject to the borrowing con-
straint, so that a higher current net worth, by making the
Bad projects more appealing, reduces the credit flow to
the Good, which causes a decline in the net worth in the
next period. When the current net worth is very high, the
Bad projects are no longer subject to the borrowing con-
straint, so that a higher current net worth would not make
the Bad projects more appealing, so that the credit flow to
the Good, and hence the net worth in the next period, is
not affected. We have studied the bifurcation structure of
the region E-II given in (19), related to the superstable
cycles generated by this model, in the terms of the param-
eters representing the share of capital in the Cobb–Douglas
production function, the profitability of the Bad project, as
well as the pledgeability of the revenues of the Bad
projects and the fixed investment requirement of the Bad
projects, which jointly affect the tightness of their borrow-
ing constraint. It is important to emphasize that supersta-
ble cycles created due to the constant branch of the map f
are persistent under parameter perturbations. The bifurca-
tion structure in the parameter region E-I given in (18)
which, differently from E-II, includes regions related to
chaotic attractors, as well as the periodicity regions
belonging to E-II but not related to the superstable cycles,
is discussed in a forthcoming paper.
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