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Abstract

In this paper we study a class of dynamic promotional competition models, in which �rms
compete for market share by expending marketing e¤ort. We investigate two main issues. First,
we answer the question if it is possible to give a global characterization of the stability of the
steady state e¤ort allocation. We show that by using the concept of critical curves and an
invariance property of the coordinate axes a characterization of the set of feasible points (points
that generate positive trajectories converging to the steady state allocation) and its changes can
be given. Second, we deal with the assumption of homogeneous �rms, which is often made in
the literature. We demonstrate that the symmetric model which derives from this assumption
exhibits, in many situations, non-generic dynamical behavior. New phenomena, like Milnor
attractors and synchronization of trajectories, arising in the homogeneous case are illustrated.
The introduction of small heterogeneities into the model invalidates many of the conclusions
derived under the hypothesis of homogeneous �rms.

Keywords: promotional competition, homogeneous and quasi-homogeneous �rms, global dy-
namics, Milnor attractors, synchronization, symmetry breaking.

JEL Classi�cation: E32, M30

1 Introduction

Market share attraction models specify that the market share of a competitor is equal to its at-
traction divided by the total attraction of all the competitors in the market, where the �rm�s
attraction is given in terms of competitive e¤ort allocations. Consider the case of two �rms, which
compete against each other in a market on the basis of both the quality and the magnitude of the
marketing e¤ort expended by each competitor. Let B denote the sales potential of the market (in
terms of customer market expenditures). If �rm 1 expends x dollars of e¤ort and �rm 2 expends
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y dollars, then the share of the market (sales revenue) accruing to �rm 1 and to �rm 2 is Bs1 and
Bs2 = B �Bs1, respectively, where

s1 =
ax�1

ax�1 + by�2
(1)

s2 =
by�2

ax�1 + by�2

The terms A1 = ax�1 and A2 = by�2 are the attractions of customers to �rm 1 and 2, respectively,
given the expenditures of x and y units of e¤ort1. The parameters a and b denote the relative
e¤ectiveness of e¤ort expended by the �rms. Since dA1dx

x
A1
= �1 and

dA2
dx

x
A2
= �2 the parameters �1

and �2 denote the elasticity of the attraction of �rm (or brand) i with regard to the e¤ort of �rm
i. Note that the payo¤ of each �rm depends on the actions of both �rms. This type of model is
theoretically appealing because it is logically consistent: it yields market shares that are between
zero and one, and sum to one across all the competitors in the market. Market share attraction
models have been used frequently in empirical work; see, e.g., Bultez and Naert (1975), Naert
and Weverbergh (1981). Moreover, they are prevalent in the economics, game theory, operations
research and marketing literature; see, for example, Monahan and Sobel (1994), Monahan (1987),
Friedman (1958), Schmalensee (1976), Case (1979, Ch. 4), Cooper and Nakanishi (1988).

In the existing literature predominantly static market share attraction models are used. Ques-
tions like the existence and uniqueness of (Nash) equilibria (Friedman 1958, Mills 1961, Schmalensee
1976), and their structure (Schmalensee 1976, Monahan 1987, Karnani 1985) are investigated. Few
authors also study the local stability properties of these equilibria (Schmalensee 1976, Balch M.
1971), but global stability properties are completely neglected. This is quite in contrast to the
recent interest on global phenomena in the economics literature. See, for example, Brock and
Hommes (1997), Kopel (1996), de Vilder (1996). Furthermore, it is often assumed that the elas-
ticities of the attractions of the �rms with respect to e¤ort, given by the parameters �1 and �2
in (1) are the same for all �rms in the industry (often assumed to be equal to one, see Friedman
1958 and Mills 1961). The same can be said for the relative e¤ectiveness of e¤orts, measured by
the parameters a and b. This restrictive assumption of homogenous �rms is only made to keep the
models analytically tractable, but oftentimes lacks empirical evidence.

In this paper several open questions are addressed related to the issues raised in the previous
paragraph. In order to do this we use (1) and introduce a dynamic version of a market share
attraction model with adaptive adjustment of competitive e¤ort allocations. The �rst topic we
then brie�y cover is in line with recent research agendas in economics, namely the characterization
of the global properties of the (symmetric) model. We will be concerned with the question of how
to describe the set of initial e¤ort allocations which will converge to a competitive steady-state
e¤ort allocation, and the changes of this set when parameters (slightly) change. This topic has not
been covered in the literature and will be one of the main points in the paper. The second issue
we will address is the importance of the assumption of homogenous �rms (or brands). That is, we
ask the question if the introduction of small heterogeneities matter or not. If they do (and it will
be shown that they do under certain circumstances), then the conclusions derived in the literature
under the assumption of symmetry should be applied with caution.

1 In marketing theory market share attraction models are used to describe the competition between several brands
of a product in the market. The expressions then describe the attractions of the individual brands.
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2 A brand competition model for market share

In this section we introduce a dynamic version of a market share attraction model with adaptive
adjustment of competitive e¤ort allocations following Bischi et al. (1998a). In this model it is
assumed that the two competitors change their marketing e¤orts adaptively in response to the
pro�ts achieved in the previous period. In particular, the marketing e¤orts in period t + 1 are
determined by

xt+1 = xt + �1(Bs1t � xt)xt (2)

yt+1 = yt + �2(Bs2t � yt)yt

where the market shares s1t and s2t are determined by (1). The decision rule the �rms use is a
type of anchoring and adjustment heuristic (Tversky and Kahneman 1975), and is widely used in
decision theory (see Wansink et al. 1998, Sterman 1989). The marketing e¤orts xt+1 and yt+1
of period t + 1 are determined by, �rst, recalling an anchor - the previous allocations xt and yt -
and then adjusting for the achieved results of the previous period, Bs1t � xt and Bs2t � yt. Note
that this adjustment also depends on how much e¤ort has been expended before. The parameters
�i > 0; i = 1; 2; measure the extent of the adjustment or the adjustment speed. If we replace the
expressions for the market shares s1t and s2t in (2) by the expressions in (1), the dynamic market
share attraction model

T :

8>>>><>>>>:
xt+1 = xt + �1xt

�
B

x
�1
t

x
�1
t +ky

�2
t

� xt
�

yt+1 = yt + �2yt

�
B

ky
�2
t

x
�1
t +ky

�2
t

� yt
� (3)

where k := b=a, describes the evolution of the marketing e¤orts and the corresponding market shares
of the two �rms over time. The local and global properties of the map (3) for the general case of
non-homogeneous �rms have been studied in Bischi et al. (1998a). Here we are more concerned
with the case of homogeneous and almost homogeneous �rms, where the �rms�parameters di¤er
only slightly. We will describe which new phenomena arise in such situations and how they can be
studied.

3 Homogeneous �rms: general properties

In what follows we will be mainly interested in the homogeneous case of identical �rms

�1 = �2 = � > 0; �1 = �2 = � > 0; k = 1 (4)

in which the map T in (3) assumes the symmetric form

Ts :

8>>>><>>>>:
xt+1 = xt + �xt

�
B

x�t
x�t +y

�
t

� xt
�

yt+1 = yt + �yt

�
B

y�t
x�t +y

�
t

� yt
� (5)
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This map is symmetric in the sense that it remains the same if the variables x and y are swapped.
We will later deal with the case of quasi-homogeneous �rms, where the parameters of the �rms are
only slightly di¤erent. As an example of quasi-homogeneous �rms, one might imagine that �rms
di¤er only slightly in their relative e¤ectiveness of e¤orts, captured by a value of the parameter k
close to, but di¤erent from, one. Hence, k is in e¤ect a measure of the degree of heterogeneity of
the two �rms. Note that the response parameter � measures the degree of competition in model
(5), see also Hibbert and Wilkinson (1994). If � = 0, there is no competition between the �rms and
the attractiveness of each �rm is constant. The two �rms act independently and the market shares
are equal. The larger the parameter �, the larger is the e¤ect of an increase in marketing e¤ort
exerted by the competitor on the other �rms market share and, hence, the larger is the degree of
competition. We will use this simple model as a vehicle to cover the topics described at the end of
the Introduction.

3.1 The Feasible Set

First note that the map (5) is de�ned only for nonnegative values of the marketing e¤orts x and
y, because of the presence of the real exponent �. Starting from a given initial e¤ort allocation
(x0; y0), a feasible time evolution of the system is obtained only if the corresponding trajectory�
(xt; yt) = T

t
s(x0; y0); t = 0; 1; 2:::

	
is entirely contained in the positive orthant. Such a trajectory

has been called feasible trajectory in Bischi et al. (1998a), and the feasible set has been de�ned as
the subset of R2+ whose points generate feasible trajectories. The delimitation of the feasible set is
a prerequisite for any study of models like (3) and (5). This point has not been addressed in the
literature so far, but it has been studied in Bischi et al. (1998a). In that paper it is shown there that
for the model (3) the invariant coordinate axes and their preimages of any rank form the boundary
of the feasible set. We brie�y and informally repeat the argument for the case of homogeneous
�rms. For analytical details (in the non-symmetric case) we refer to Bischi et al. (1998a). An
important feature of the model (5) is that the two coordinate lines are invariant, i.e. xt = 0 implies
xt+1 = 0 and yt = 0 implies yt+1 = 0. This means that if one of the �rms expends no resources,
it cannot achieve a positive market share, hence, earn any pro�t, and will not have anything to
expend in the next period. If, at the same time, the competitor expends positive marketing e¤ort,
it captures the whole market. The decision rule then determines if the marketing e¤ort from one
period to the next is raised or lowered, depending on the fact if the competitor made a pro�t or
a loss. Accordingly, the dynamics of the model (5) restricted to one of the axis is governed by a
one-dimensional system, st+1 = f(st), where

f(s) = (1 + �B)s� �s2 (6)

The map f generates the same dynamics as the so-called logistic map zt+1 = h(zt) = �zt(1 � zt),
where � = 1+�B and the relation between the two systems is s = 1+�B

� z. This feature enables us to
deduce the possible dynamics of the time evolution of the marketing expenditures along the invariant
axes from the well-known properties of the logistic map2. Bounded and feasible trajectories along
the invariant axes are obtained when �B � 3 (corresponding to � � 4), provided that the initial
e¤ort allocations lie in the segments !i = 00

(i)
�1; i = x; y, where 0

(x)
�1 = (

1+�B
� ; 0) and 0(y)�1 = (0;

1+�B
� )

2The logistic map has been the object of interest for researchers from various �elds for many years, and it is
frequently used in applications in economics, see e.g., Day (1994), Baumol and Benahbib (1987). The dynamics
generated by the logistic map are well understood, see e.g. Mira (1987) or Devaney (1989).
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are the rank-1 preimages3 of the origin on the corresponding axis computed using the map f
(corresponding to the unit interval for the quadratic map). If the initial e¤ort expenditures along
the axes are taken outside the segment !i, unfeasible trajectories are obtained. Now consider
the region bounded by the segments !x and !y and their rank-1 preimages !�1x = T�1s (!x) and
!�1y = T�1s (!y).

Following Bischi et al. (1998a), these preimages can be analytically computed as follows. Let
X = (p; 0) be a point of !x. Its preimages are the real solutions of the algebraic system obtained
from (5) with (x0; y0) = (p; 0), and it is easy to see that the preimages of the point X are either
located on the same invariant axis y = 0 (in the points whose coordinates are the solutions of the
equation f(x) = p, with f given in (6)) or on the curve of equation

x =

�
ky�

�
�B � �y + 1
�y � 1

�� 1
�

: (7)

Analogously, the preimages of a point Y = (0; q) of !y belong to the same invariant axis x = 0,
in the points whose coordinates are the solutions of the equation f(y) = q, or lie on the curve of
equation

y =

�
x�

k

�
�B � �x+ 1
�x� 1

�� 1
�

: (8)

These two curves intersect the axes in the points 0(i)�1 and intersect each other in the point 0
(d)
�1,

located on the diagonal (see �g. 1). All points outside the region bounded by !x, !y, !�1x and !�1y
cannot generate feasible trajectories.

This process can now be iterated: in general, the boundary of the feasible set is given by the
union of all the preimages of !x and !y of any rank. However, as shown in the next subsection, as
long as �B � 3, the boundary of the feasible set has the simple shape shown in �g. 1. This is due
to the fact, that the preimages !�1x and !�1y are entirely contained in a region where points have
no preimages. To gain more information about these regions with di¤erent numbers of preimages,
we have to introduce the concept of critical curves.

FIG. 1 APPROXIMATELY HERE

3.2 Critical Curves

If we consider a two-dimensional system (3), then the fact that the map T is single-valued does
not imply the existence and the uniqueness of its inverse T�1. For a given (x0; y0) the rank-1
preimage (or backward iterate) (x; y) = T�1 (x0; y0), obtained by solving the system with respect
to the unknowns x and y, may not exist or it may be multivalued. In other words, there might be
several e¤ort allocations of the two competitors leading to the same marketing expenditures in the
following period, or there may be none. In such cases T is said to be a noninvertible map, and the
plane can be subdivided into regions Zk, k � 0, whose points have k distinct rank-1 preimages. As
the point (x0; y0) varies in the plane R2, pairs of preimages appear or disappear as this point crosses

3A preimage of a point P = (xp; yp) is a point P�1 = (x; y) such that Ts (x; y) = P . A point P may have more
than one preimages (or no preimages) which are obtained by solving the system, with respect to the unknowns x and
y, for given values of xp and yp.
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the boundaries which separate regions of di¤erent numbers of preimages. Hence, such boundaries
are characterized by the presence of at least two coincident (merging) preimages. This leads to the
de�nition of the critical curves, one of the distinguishing features of noninvertible maps. Following
the notations of Gumowski and Mira (1980), Mira et al. (1996), Abraham et al. (1997), the
critical set LC (from the French �Ligne Critique�) is de�ned as the locus of points having two, or
more, coincident rank-1 preimages, located on a set (set of merging preimages) called LC�1. LC
is the two-dimensional generalization of the notion of critical value (a local minimum or maximum
value) of a one-dimensional map, LC�1 is the generalization of the notion of critical point (a local
extremum point)4. Arcs of LC separate the regions of the plane characterized by a di¤erent number
of real rank-1 preimages. The critical sets of rank k are the images of rank k of LC�1 denoted by
LCk�1 = T

k(LC�1) = T k�1(LC), LC0 being LC. Points of LC�1 in which the map is di¤erentiable
are necessarily points where the Jacobian determinant vanishes: in any neighborhood of a point of
LC�1 there are at least two distinct points which are mapped by T in the same point (near LC),
hence the map is not locally invertible in these points. This implies, for a di¤erentiable map T ,
that

LC�1 � J0 =
�
(x; y) 2 R2jdetDT (x; y) = 0

	
: (9)

For the symmetric model (5) the locus of points for which detDT (x; y) = 0 is given by the union
of two branches, denoted by LC(a)�1 and LC

(b)
�1 in �g. 2a. Also LC is the union of two branches,

denoted by LC(a) = T (LC(a)�1 ) and LC
(b) = T (LC

(b)
�1), see �g. 2b. The branch LC

(b) separates the
region Z0, whose points have no preimages, from the region Z2, whose points have two distinct
rank-1 preimages. LC(a) separates the region Z2 from Z4, where the points in Z4 have four distinct
preimages. It is then said that (5) is a noninvertible map of Z4 � Z2 � Z0 type. Using the critical
curves it is now possible to understand why the feasible set has the simple shape as shown in �g.
1 as long as �B � 3. The branch LC(b) intersects the axes in the points ((1 + �B)2=4�; 0) and
(0; (1+�B)2=4�) respectively, where the value (1+�B)2=4� is obtained as the image of the critical
point 1+ �B=2� of the map f in (6). Recall, on the other hand, that !i; i = x; y intersect the axes
in the points 0(x)�1 = (

1+�B
� ; 0) and 0(y)�1 = (0;

1+�B
� ). These points - and in fact the whole segments

!i; i = x; y - lie above LC(b) (and hence in the region Z0) as long as �B � 3.
The question naturally arises, what happens when �B > 3? An answer is given in Bischi et al.

(1998a) where the critical curves of the map (3) are used in order to study the global bifurcations
that change the qualitative structure of the boundaries of the feasible set. In that paper it is shown
that when a portion of the boundary of the feasible set crosses the critical curve LC passing from Z0
to Z2 or from Z2 to Z4, new portions of the boundaries are created, resulting in a fractal structure
of the boundary.

FIG. 2 APPROXIMATELY HERE

3.3 Steady state e¤ort allocations

We are now ready to get to the �rst main point in the paper. Our economic interest in studying
systems like (3) and (5) is two-folded. First, we want to �nd out if there is something like a steady

4This terminology, and notation, originates from the notion of critical points as it is used in the classical works of
Julia and Fatou. For the logistic map the critical point is c�1 = 1=2, and the critical value c = h(c�1) = �=4:
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state e¤ort allocation, so that we can safely forget studying the transient phase, and investigate
the steady states and their structure instead. Second, we are interested in the delimitation of the
set of points which converge to it, to gain some insights on the robustness of the model and the
dependence of the model�s behavior on the initial e¤ort allocations.

Inside the feasible set we described above, one or more attractors of the dynamical system, e.g.
several �xed points, cycles of di¤erent periods, or more complex attractors, may exist. It can be
shown that for the model (3) for �i 2 (0; 1)5, i = 1; 2, a �xed point

E� = (x�; B � x�) . (10)

exists inside the feasible set, where x� 2 (0; B) is the unique positive solution of the equation

k
1

1��2 x
1��1
1��2 + x�B = 0 (see Bischi et al., 1998a), and it is unique. A particularly simple solution

is obtained in the case of homogeneous �rms

E� =

�
B

2
;
B

2

�
(11)

Note that this steady state allocation belongs to the diagonal � = f(x; y) jx = yg. This yields the
sensible result for the symmetric case that two homogeneous �rms competing in the same market
split the market equally. In order to determine the local stability properties of the steady state
allocation, we consider the Jacobian matrix, computed in a point on the diagonal, which becomes

DT (x; x;�;B; �; ) =

"
1� 2�x+ �B(�+2)

4 ��B�
4

��B�
4 1� 2�x+ �B(�+2)

4

#
(12)

The eigenvalues are

�jj = 1 +
1

2
�B � 2�x , with eigendirection along �; (13)

�? = 1 +
1

2
�B(1 + �)� 2�x , with eigendirection orthogonal to �: (14)

It is easy to see that the steady state allocation E� is locally asymptotically stable for �B < 4.
Furthermore, the results of the previous subsections enable us to say also something about the
global behavior of the model. Numerical results indicate that all the trajectories with initial e¤ort
allocations inside the feasible set converge to E� (i.e., there is no evidence of other attractors).
Accordingly, we have a global stability result, which says that all the points inside the feasible set
converge to E� as long as �B < 4. One further point deserves mentioning: recall that the feasible
set has a simple shape only as long as �B < 3. For �B > 3 portions of the boundary of the feasible
set cross the critical curve LC(b), passing from Z0 to Z2 (see the portions near the axes indicated
the arrow in �g.3a). Hence, portions of the set of unfeasible points enter the region Z2. That means
that all the points belonging to these portions suddenly have two preimages instead of none. These
preimages lie in regions with two and four preimages respectively, and lead to further preimages
in these regions. This cascade of preimages lead to a fractal structure of the (boundary of the)
feasible set, which can be clearly observed in the enlargement of �g.3b (only the region around the

5Only values of the response parameter belonging to this range are meaningful in applications, see Cooper and
Nakanishi (1988).
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y axis is enlarged). It is a rather surprising fact that the set of points which converge to the steady
state e¤ort allocation may have fractal boundaries. On the other hand, the segments !x and !y
and their preimages !�1x and !�1y still give a rather good approximation of the feasible set.

FIG. 3 APPROXIMATELY HERE

4 Homogeneous �rms and synchronization

If homogeneous �rms characterized by identical parameters (4) are considered, the evolution of the
e¤ort allocations over time is given by (5). In this case it is easy to check that the diagonal �
is invariant, i.e., Ts (�) � �: in a deterministic framework, identical �rms starting with identical
initial e¤ort allocations behave identically over time. Formally, x0 = y0 implies xt = yt for all
t � 0. We call such trajectories, which are embedded into �, synchronized trajectories. The
dynamics on the diagonal are governed by a one-dimensional dynamical system st+1 = fd(st),
where fd = Tsj� : � ! � is the restriction of the two-dimensional map Ts to the invariant
submanifold �. For our model this restriction yields

fd(s) = (1 +
1

2
�B)s� �s2: (15)

Again, this one-dimensional system exhibits the same dynamics as the standard logistic map z =
�z(1� z), with

� = 1 +
1

2
�B (16)

by the linear transformation s = 1+0:5�B
� z. Note that the coordinates of the steady state e¤ort

allocation E� are given by the �xed point of the map (15). This simpler model can be interpreted
as the model of the so-called representative agent : it captures the dynamical behavior of both of
the two homogeneous �rms when the dynamics of these two �rms are synchronized.

If the two homogeneous �rms start out with di¤erent initial e¤ort allocations, the question
arises if the trajectories synchronize over time, i.e., if jxt � ytj ! 0 as t ! +1. In this case
the initial di¤erence between the marketing e¤orts of the two �rms, jx0 � y0; j > 0, would cancel
out in the long-run by the endogenous dynamics of the system, and the asymptotic behavior
of the two homogeneous competitors is well-represented by the simpler one-dimensional model
(15). If synchronization occurs within a reasonably short time span, we can safely ignore the
transient dynamics of the two-dimensional system, and consider the model of the representative
�rm instead. If synchronization takes very long or does not occur at all, then the concept of the
representative �rm becomes meaningless. This leads to the second main point in our analysis:
under which conditions do the trajectories of marketing e¤orts of identical competitors which
start from di¤erent initial e¤ort choices synchronize, and how does this depend on the di¤erence
jx0 � y0j of the initial e¤ort allocations? Starting from this question, we may then ask, if small
heterogeneities between the two �rms - a small mismatch of some of the parameters - matter for
synchronization or not (see the next section). Answering these questions is not easy, since new
dynamic phenomena may appear, especially when the one-dimensional model (15) exhibits chaotic
behavior. In this case chaotic synchronization may occur, a phenomenon that has been extensively
studied in the recent physical and mathematical literature(see e.g. Fujisaka and Yamada (1983),
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Pecora and Carrol(1990), Pikovsky and Grassberger (1991), Ashwin et al. (1994, 1996), Hasler et
al. (1997), Maistrenko et al. (1998))6. Before we go on to study our model, we brie�y introduce
some (mathematical) de�nitions and notions and present some of the existing results.

4.1 Synchronization in symmetric dynamic models

The question of asymptotic synchronization of the marketing e¤orts xt and yt of the two-dimensional
dynamical system (5), possessing a one-dimensional invariant submanifold, can be rephrased as fol-
lows. Let As � � be an attractor of the one-dimensional map (15): is it also an attractor of
the two-dimensional map Ts? As pointed out above, an answer to this question is not immediate,
because measure theoretic attractors, which are not stable according to the usual Lyapunov (or
topological) de�nition, arise quite naturally in this context, and create the conditions for the oc-
currence of new kinds of dynamic phenomena and bifurcations. Obviously, an attractor As of the
restriction fd is stable with respect to perturbations along the invariant diagonal �. Accordingly,
an answer to the question addressed above can only be given through a study of the stability of
As with respect to perturbations transverse to � (transverse stability). If As = fx1; :::; xkg is
a stable k-periodic cycle of the map fd then an answer to the question addressed above is very
simple: in this case As = f(x1; x1); :::; (xk; xk)g is a k-cycle, embedded into the diagonal �, of the
two-dimensional map Ts and, due to the symmetry of Ts, the Jacobian matrix computed in a point
(x; x) 2 � is symmetric, with eigenvalues

�jj(x), with eigenvector vjj = (1; 1) along �
�?(x), with eigenvector v? = (1;�1) orthogonal to �

(17)

Therefore, the multipliers of the k-cycle As are

�jj(As) =
kY
i=1

�jj(xi); with vjj = (1; 1) and �?(As) =
kY
i=1

�?(xi), with v? = (1;�1) (18)

Since we assumed thatAs is attracting along the diagonal�, i.e.
���jj(As)�� � 1, a su¢ cient condition

for its asymptotic stability7 in the two-dimensional phase space of the map Ts is j�?(As)j < 1.
The situation becomes more complex when As is a chaotic attractor of fd, i.e., when chaotic

synchronization is considered. In this case results on the transverse stability are given in terms of
the so-called transverse Lyapunov exponents

�?(As) = lim
N!1

1

N

NX
i=0

ln j�? (xi)j (19)

where fxi; i � 0g denotes a trajectory embedded into As. If x0 belongs to a k-cycle then �? =
ln
���k?��, so that for each k-cycle embedded into As a particular of �? is obtained. In this case

�? < 0 if and only if
���k?�� < 1, that is, if the corresponding cycle is transversely stable. Instead,

6For a �rst application of these concepts to a dynamic Cournot duopoly game with boundedly rational agents, see
Bischi et al. (1998b).

7By asymptotic stability we refer to the usual topological de�nition: (i) As must be Lyapunov stable, i.e., for
every neighborhood U of As there exists a neighborhood V of As such that T ts (V ) � U 8t � 0 and (ii) for each x 2 V
T ts (x)! As as t! +1 must hold.
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if x0 belongs to a generic aperiodic trajectory of As then �? is independent of x0, provided that
As is an ergodic chaotic attractor, with absolutely continuous invariant measure. In this case �?
is called natural transverse Lyapunov exponent8, denoted by �nat? . Since in�nitely many cycles, all
unstable along �, are embedded inside a chaotic attractor As, a spectrum of transverse Lyapunov
exponents can be de�ned, see Buescu (1997)

�min? � :::: � �nat? � ::: � �max? (20)

The meaning of the inequalities in (20) can be intuitively understood on the basis of the property
that a chaotic attractor As includes within itself in�nitely many periodic orbits which are unstable
in the direction along �, and �nat? expresses a sort of �weighted balance� (see Nagai and Lai
1997) between transversely stable cycles (characterized by �? < 0) and transversely unstable ones
(characterized by �? > 0).

The one-dimensional chaotic invariant setAs � � is asymptotically stable (in the usual topolog-
ical sense) for the two-dimensional dynamical system if all the cycles embedded in it are transversely
stable (or, equivalently, if �max? <0). However, it may occur that some cycles embedded into the
chaotic set As become transversely repelling (�max? >0) even if the natural transverse Lyapunov
exponent �nat? is still negative; this is due to the presence of many other transversely attracting
orbits embedded inside As. In this case As is no longer a Lyapunov attractor: a two-dimensional
neighborhood U of As exists such that in any neighborhood V � U there are points (really a set
of points of positive measure) that exit U after a �nite number of iterations. However, As contin-
ues to be attracting �on average�. More precisely, it is an attractor in Milnor sense (see Milnor
1985, Ashwin et al. 1996), which means that it attracts a set of points of the two-dimensional
phase space of positive (Lebesgue) measure. The transitions between the two di¤erent situations,
as some parameter is changed, de�ne new kinds of local bifurcations. The change from asymptotic
stability to attractiveness only in Milnor sense, occurring when �max? becomes positive, is denoted
as riddling bifurcation in Lai, Grebogi and Yorke (1996) or bubbling bifurcation in Ashwin et al.
(1994) and in Venkataramani (1996). Furthermore, when also �nat? becomes positive, due to the
fact that the transversely unstable periodic orbits embedded into As have a greater weight with
respect to the transversely attracting ones (see Nagai and Lai 1997) a so-called blowout bifurcation
occurs, at which a Milnor attractor becomes a chaotic saddle. In what follows we will mainly focus
on the local and global phenomena occurring after riddling and before blowout bifurcations, that
is, at a range of parameters in which a non topological Milnor attractor exists. Note that even if
the occurrence of riddling and blowout bifurcations is detected through the transverse Lyapunov
exponents, that is, by a local analysis of the linear approximation of the map near � , their e¤ects
are determined by the global properties of the map. The fate of the locally repelled trajectories
is determined by the nonlinearities acting far from the diagonal. In fact, in such a situation, two
possible scenarios can be observed depending on the evolution of the trajectories that are locally
repelled along (or near) the local unstable manifolds of the transversely repelling cycles:

(L) the trajectories may be folded back towards � by the action of the nonlinearities acting far
from �, so that the dynamics are characterized by some bursts far from � before the trajectories
synchronize on the diagonal (a very long sequence of such bursts, which can be observed when �nat?
is close to zero, has been called on-o¤ intermittency in Ott and Sommerer 1994);

8By the term �natural Lyapunov exponent� we mean the Lyapunov exponent associated with the natural (or
SBR) measure, computed for a typical trajectory along the chaotic attractor As.
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(G) the trajectories may belong to the basin of another attractor, in which case the phenomenon
of riddled basins is obtained (see Alexander et al. 1992).

The distinction between the two di¤erent scenarios (L) and (G) described above depends on
the global properties of the dynamical system9. The global dynamical properties can be usefully
studied by the method of critical curves, which we introduced above. The reinjection of the locally
repelled trajectories occurring in local riddling may be described in terms of their folding action10.
This idea has been recently proposed in Bischi et al. (1998b) for the study of symmetric maps
arising in game theory, and in Bischi et al. (1998c) for the study of the e¤ects of small asymmetries
due to mismatches of the parameters. In these two papers the geometric properties of the critical
curves have been used to obtain the boundary of a compact trapping region, called absorbing area
(see Mira et al. 1996a), inside which intermittency and blowout phenomena are con�ned. In other
words, the critical curves are used to bound a compact region of the phase plane that acts as a
trapping bounded vessel inside which the trajectories starting near the diagonal are con�ned. For
further details on the concept of minimal and invariant absorbing area and its use to give a global
characterization of the di¤erent dynamical scenarios, see Bischi and Gardini (1998).

4.2 Synchronization and synchronization failure of homogeneous �rms

After these preparations we can now turn back to our model (5). Recall that the steady state
allocation E� is locally asymptotically stable for �B < 4. In what follows we are more interested
in the situation when E� is unstable and we investigate the question of synchronization of the
marketing e¤orts of the two competing �rms. The point E� loses stability along � (via a so-called
period doubling bifurcation) at �B = 4. For �B > 4 and 1� 4

�B < � < 1 it is a saddle point, with
unstable set along � and stable set transverse to it. At � = 1� 4

�B it also loses transverse stability
(again via a period doubling bifurcation) that creates a stable cycle of period 2 out of the diagonal,
with periodic points located symmetrically with respect to �. In order to determine the transverse
stability of a trajectory fxn; xng 2 � we consider the transverse Lyapunov exponent for the map
(5), readily obtained from (19) with (14):

�
(nat)
? = lim

N!1

1

N

NX
n=0

ln

����1 + 12�B(1 + �)� 2�xn
���� :

It is important to note that in our case only the orthogonal eigenvalue (14) depends on the response
parameter �, i.e. � is a normal parameter : it has no in�uence on the dynamical properties of the
restriction along the invariant submanifold �, and only in�uences the transverse stability11. This
feature enables us to consider a certain attractor along the diagonal and observe for which values of
� the evolution of marketing e¤orts of the two �rms synchronize or not, and which kind of transient
phenomena occur. Recall that � is also a measure of the degree of competition in the market we try
to capture with our model and, accordingly, we can determine how the degree of competition a¤ects
the dynamical properties, in particular, the synchronization properties, of the model (5). Will the
trajectories synchronize for lower or higher degrees of competition between the two �rms? Is the

9The term �global�refers in this context to �not in a neighborhood of the diagonal ��.
10See Mira et al. (1996a) or Mira et al. (1996b) for a description of the geometric properties of a noninvertible

map related to the folding (or foliation) of its phase space.
11This is a typical property of coupling parameters in symmetrically coupled maps; see Buescu (1997), Maistrenko

et al. (1998), Hasler and Maistrenko (1997).
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relation between the degree of competition and synchronization properties of the system monotone
in the sense that higher/lower values of � lead to synchronization/synchronization failure?

We now consider �xed values of the parameters � and B, such that a chaotic attractor As � �
of the map (15) exists, with absolutely continuous invariant measure on As, and we study the
transverse stability of As as the degree of competition between the two �rms, measured by the
parameter �, varies. Suitable values of the aggregate parameter �B, at which chaotic intervals for
the restriction (15) exist, are obtained from the relation (16)12. In the examples given below we
let �2 = 3:5748049387592:::. Using (16) this yields �B = 2(�2� 1), and the attractor As along the
diagonal � is in this case a four-band chaotic set13. Figure 4 shows the result of the computation of
the natural transverse Lyapunov exponent �nat? as � varies in the interval (0; 0:2), where we chose
the interval for the values of the response parameter to be line with empirical evidence; see, e.g.,
Bultez and Naert, (1975). Observe that in �g. 4 a �window�of negative values of �nat? is visible
for 0:0575::: < � < 0:1895:::.

FIG. 4 APPROXIMATELY HERE

Before discussing the e¤ects of the changes of the sign �nat? , we �rst show, by numerical sim-
ulation, that for very small degrees of the competition � the evolution of the marketing e¤ort xt
and yt of two �rms appear to be totally uncorrelated over time. This is no surprise since for � = 0
the payo¤s of the two �rms only depend on the �rm�s own marketing e¤ort and, hence, the �rms
act independently of each other. Fig. 5 has been obtained with the same parameters �, B, and
k as those used in �g.4, and we set � = 0:0001. Due to the particular value of the parameter
� = �� = 2(�2 � 1)=B = 0:5149609877518401::: both of the e¤ort time series exhibit a chaotic
pattern, as shown in �g. 5a, where the early 300 values of xt and yt are represented versus time.
The initial e¤ort allocation is (x0; y0) = (5; 5:001): the �rms start out with almost identical initial
marketing e¤orts and very close to the steady state allocation E� = (5; 5). Nevertheless, no syn-
chronization takes place. Moreover, the two time patterns are totally uncorrelated, as shown by the
graph of �g. 5b, where the di¤erence between the marketing e¤orts of the competitors, (xt � yt), is
represented versus time. It is evident that after a very short transient (approximately 20 iterations)
the di¤erence between the two variables is of the same order of magnitude as the single variables,
even if they are identical and start from quasi-identical initial choices.

FIG. 5 APPROXIMATELY HERE

A quite di¤erent situation is obtained for slightly higher degrees of competition �, where the
natural transverse Lyapunov exponent �nat? is negative. For example, for � = 0:09 we have �nat? =
�8:36 � 10�2 < 0 (see �g. 4), and we expect that synchronization of the marketing e¤orts of
the two �rms occurs for a set of initial conditions of positive Lebesgue measure (this implies that
trajectories that synchronize, even starting out of the diagonal, can be numerically observed). The

12Recall that the mathematical properties of the logistic map are well understood. Hence, we can use these results
if we take into account that the relation between the parameter values and the state variables of the two systems is
as described by the equations above.
13At the parameter value �2 the period-4 cycle of the quadratic map undergoes the �rst homoclinic bifurcation,

and four cyclic chaotic intervals are obtained by the merging of 8 cyclic chaotic intervals.
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issue of synchronization gets more complex in this case, however, because for this values of the
parameters two coexisting attractors inside the feasible set can be numerically observed: the 4-
cyclic chaotic set As � � and an attracting cycle of period 2 with periodic points located out of �.
The cycle C2 = ((5:975; 3:371); (3:371; 5:975)) has been created at � = 1� 4

�B = 0:22, via a (period
doubling) bifurcation of E� in the transverse direction as explained above. In �g. 6 the coexisting
attractors are represented by black points, each with its own basin of attraction: the white points
represent the basin B (As) of the points generating trajectories that synchronize along As, whereas
the light grey points represent the basin B (C2) whose points generate trajectories converging to
the stable cycle C2. The dark-grey region represents the set of points which are not feasible, i.e.,
which generate unfeasible trajectories. Observe that the issue of synchronization becomes quite
complicated now without having any knowledge of the global behavior of the model (5). If we
do not have �g. 6 available, it is hard to predict from which initial e¤ort allocations synchronized
marketing e¤orts over time are obtained and for which initial outlays marketing e¤orts would (two-)
cycle. Hence, it is hard to decide when the lower-dimensional model of a representative �rm would
be a reasonable substitute for the higher-dimensional model (5), and when such a substitution would
be misleading. It is interesting to note that (long-run) synchronization of the marketing e¤orts can
also occur starting from initial allocations located very far from the diagonal. In other words, even
starting from fairly heterogeneous choices of the two identical competitors, the �rms may end up
with perfectly synchronized marketing e¤orts over time, if the initial allocations happen to lie in
the white region in �g. 6. On the other hand, and quite counter to one�s intuition, even if the initial
e¤ort allocations are very close to the diagonal, i.e., x0 �= y0, they may not synchronize because they
generate trajectories converging to the cycle C2. Actually, in this case the evolution of marketing
e¤orts exhibits conditions of asynchronous behavior (phase opposition between the choices of the
two competitors). The reason for this synchronization failure is that near the steady state e¤ort
allocation E�, and its preimages along �, there are �tongues�formed by initial outlays such that
the corresponding trajectory converges to the cycle of period 2. Another important feature to
notice is the complex structure of the boundaries that separate B(As) from B(C2). In particular,
B(As) is a non connected set with a fractal structure (self-similarity), a situation which is peculiar
of dynamical systems represented by noninvertible maps. Although the feasible set still has a
shape similar to the one obtained for �B < 3, inside the feasible set we now have two coexisting
attractors and, accordingly, two situations might arise - synchronization or synchronization failure
of the marketing e¤orts of the two �rms - depending on the fact if initial allocations are chosen
from the white or the grey region. This feature is only revealed if we look at the global properties
of the system.

For the set of parameters used in preparing �g. 6 the four-band chaotic set As, embedded into
the invariant diagonal �, is not a topological attractor however. In fact, an 8-cycle C8 embedded
inside the diagonal exists, which is transversely repelling14. This means that trajectories starting
along the local unstable setW u

?(C8), issuing from the periodic points of C8, as well as those starting
from narrow tongues alongW u

?(C8) and from all the in�nitely many preimages of the periodic points
of C8 (such preimages are densely distributed along As due to the fact that As is a chaotic set
with absolutely continuous invariant measure) are repelled away from the diagonal. These locally
repelled trajectories are then folded back by the action of the global dynamical properties of the map
(5), and after a transient with some bursts away from � occurring, they synchronize in the long-

14The 8-cycle is C8 = (5:588; 3:894; 6:112; 2:612; 5:824; 3:352; 6:197,2:378) of the map (15) and it has the transverse
multiplier �?(C8) = �3:0, as can be easily computed from (18) with (14).
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run. The time evolution of the di¤erence of the marketing e¤orts, (xt � yt), during the transient
portion of a typical trajectory, starting from the initial allocations (x0; y0) = (6; 6:01), is shown in
�g. 7, where the early 300 iterates are represented. After about 40 periods the evolution of the
system seems to have reached almost complete synchronization. During the next 40 periods the
two competitors behave practically in the same way. At this point the trajectory seems to have
de�nitively settled down on the attractor As (this would be the case for a topological attractor),
and we would tend to conclude that the two-player-model can be replaced by a one-player-model.
However, the trajectory then moves again far away from the diagonal, and the two competitors
now act again in a very di¤erent fashion. Several bursts of the trajectory, out of �, are observed
until perfect synchronization of the marketing e¤orts is eventually obtained. Such an intermittent
behavior is a typical characteristic of the convergence to a non-topological Milnor attractor. The
pattern of the time series resembles that of a system which is subject to exogenous random shocks,
even if the dynamical system that generates such a pattern is completely deterministic. This
peculiar dynamical behavior is related to the fact that even if the Milnor attractor attracts �on
average�according to the fact that �nat? < 0, the presence of some transversely repelling cycles (even
if less in�uent than the transversely attracting ones) causes sudden bursts when the trajectories
happen to get close to them.

FIGURES 6 and 7 APPROXIMATELY HERE

The locally repelled trajectories cannot reach the other attractor C2 however, i.e., the scenario
(L) of locally riddling (or intermittency) occurs. This is due to the presence of a so-called absorbing
area A around As, from which the trajectory starting close to As cannot escape15. We brie�y
describe now how the boundary @A of such an absorbing area can be easily obtained (see Bischi
and Gardini 1998 for more details). The boundaries of the region in which the asymptotic dynamics
are con�ned (absorbing and chaotic areas) can be obtained by segments of critical curves and their
iterates. It can be used to obtain minimal and invariant absorbing areas which include the Milnor
attractor where chaotic synchronization takes place. A practical procedure to obtain the boundary
of an absorbing area makes use of the concept of critical curves and can be outlined as follows:
starting from a portion of LC�1, approximately taken in the region occupied by the area of interest,
its images by Ts of increasing rank are computed until a closed region is obtained. When such a
region is mapped into itself, then it is an absorbing area A. The length of the initial segment must
be taken, in general, by a trial and error method, although several suggestions are given in the
books referenced above. Once an absorbing area A is found, in order to see if it is invariant or not,
the same procedure must be repeated by taking only the portion

 = A \ LC�1 (21)

as the starting segment. In order to obtain the boundary of the absorbing area A shown in �g.
8, six images of the generating arc  = A\LC�1 are su¢ cient. However, only the portion of 
belonging to the branch LC(b)�1 has been used because the images of the other portion, the one

15An absorbing area A is a bounded region of the plane, whose boundary is given by critical curves segments of
�nite rank (segments of the critical curve LC and its images), such that the successive images of the points of a
neighborhood of A, say U(A), enter inside A after a �nite number of iterations, and never exit, being T (A) � A.
See, e.g., Gumowski and Mira (1980), Mira et al. (1996), Abraham et al. (1997).
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belonging to the upper branch LC(a)�1 , are always inside the absorbing area, so that they do not

form part of the boundary. Hence in �g. 8 we have  = A\LC(b)�1 and @A �
S6
k=1 T

k().
We remark that A includes the Milnor chaotic attractor As � � (see �g. 6), and all the tra-

jectories starting from a neighborhood of As cannot go out of A. Loosely speaking @A behaves
as a bounded vessel for the intermittency phenomena related to the presence of the transversely
repelling cycles embedded inside As. The local unstable sets of these cycles are folded back (rein-
jected) by the folding action of the critical curves that form the @A. A similar transient behavior is
observed with lower values of the degree of competition � such that �nat? < 0. The only di¤erence
is that the absorbing area is smaller (so that the bursts are of smaller amplitude) and longer tran-
sients, characterized by intermittency, are observed before the marketing e¤orts of the two �rms
synchronize along the diagonal. This is due to the fact that for values of �nat? closer to zero (but
negative) the in�uence of the transversely repelling cycles is stronger and, consequently, the bursts
are more frequent and persist longer before the trajectories are eventually captured by As in the
long run.

The bottom-line of the investigation so far is this, given the initial allocations are in B(As):
�rst, the size of the absorbing area containing the Milnor attractor As gives us an idea of the
maximal di¤erence between the marketing e¤orts of the two �rms. Second, there is an inverse
relationship between the longevity of transients and the values of the natural Lyapunov exponent
�nat? . For values of the degree of competition � for which �nat? is strongly negative, the absorbing
area is large (and, hence, the possible di¤erence between the marketing e¤orts is large), but the
transient phase where bursts occur before the trajectories of marketing e¤orts settle down along the
diagonal is relatively short. Neglecting this relatively short transient period we can conclude that
the model of the representative player is a good approximation. On the other hand, if �nat? is close
to zero but negative, then the transient phase is rather long. Frequent and persistent bursts occur
before the marketing e¤orts of the competitors synchronize. However, in this case the absorbing
area is (very) small, which means that the di¤erence between the marketing e¤ort is (very) small.
Neglecting this small di¤erence, again we can conclude that the model of a representative player is
a good approximation even in the transient phase. It might seem that this justi�es the assumption
often made in economic and game theory models, where for analytical convenience it is often
assumed that �rms are homogeneous. Our analysis so far has shown that even if we consider a
dynamic promotional competition model there is either only a relatively short transient before the
�rms behave in a similar way, or the di¤erence between the choices of the two competitors in the
transient phase (which might be long) is negligibly small. Of course, we still have to assume that
the initial e¤ort allocations are located inside the basin of attraction of the Milnor attractor.

FIG. 8 APPROXIMATELY HERE

5 Quasi-Homogeneous Firms and Symmetry Breaking

In the previous subsection we made the very restrictive assumption that the �rms� structural
parameters are the same and the di¤erence between the competitors lies only in their initial choices
of the e¤ort allocations. Although synchronization does not necessarily occur for all initial e¤ort
allocations (namely those in the grey region) we can determine for which initial marketing outlays
the two-dimensional model (5) can be substituted by the model of a representative player. One
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question, however, raised in the Introduction, has not been answered yet: Is the assumption of
homogeneous �rms which is so predominant in the literature an innocuous one? Or do small
heterogeneities matter. This is the topic we will now turn to. If a small heterogeneity due to a
small parameter mismatch is introduced, additional interesting phenomenons occur. Let us assume,
for example, that there is a small di¤erence between the two response parameters �1 and �2 of the
two competitors in the model (3), that is

�1 = �2 = �; k = 1; and �2 = �1 + " (22)

where " is small with respect to �1, i.e. "=�1 � 1. Such an assumption should not invalidate the
conclusions made in the previous subsection unless these conclusions where only valid under the
restrictive assumptions that these results only hold for parameter values which are exactly equal.
If this would be the case, then these results are not robust to small parameter perturbations and
can be questioned on empirical grounds. For any practical purpose we have to make sure that
the insights derived from the symmetric model carry over to the model with slightly perturbed
parameter values in order to show the robustness of our �ndings. Unfortunately, as it will turn
out, in general the symmetric model does not give rise to a generic behavior. That is, if a small
heterogeneity is introduced into the model (3) the evolution of the marketing e¤orts of the two
�rms over time may be quite di¤erent.

Note, �rst of all, that such a mismatch of structural parameters causes the destruction of the
invariance of �, due to the fact that the map is no longer symmetric (this kind of perturbation
has been called symmetry breaking in Bischi et al. (1998c)). The fact that the diagonal is no
longer an invariant set also causes the disappearance of the one-dimensional Milnor attractor As
along the diagonal. In e¤ect, such a small perturbation may lead to quite di¤erent dynamics,
since after the symmetry breaking synchronization can no longer occur, and the bursts never stop.
The generic trajectory �lls up the absorbing area, which now appears to be a two-dimensional
chaotic area. Figure 9a is obtained after the introduction of a very small di¤erence between the
response parameters of the �rms with respect to the set of parameters used in �gures 6, 7 and
8: �2 = 0:09001 (" = 0:00001). The evolution of the system (3) starting from the initial e¤ort
allocation (x0; y0) = (3:5; 3:5) 2 �, i.e., from homogeneous initial choices, is represented in the
phase space (x; y). As in the homogeneous case we have two coexisting attractors, but the two
attractors are now a two-dimensional chaotic area and the cycle C2. In other words, after an
apparently negligible heterogeneity has been introduced, the dynamical behavior of the resulting
model is quite di¤erent: the Milnor chaotic attractor on which asymptotic synchronization occurs
is replaced by a two-dimensional chaotic attractor on which on-o¤ intermittency occurs, i.e., bursts
never stop. This is clearly visible in �g. 9b, where the di¤erence of the marketing e¤orts over time,
(xt � yt), is represented over 10000 periods. It is evident that long time intervals exist in which the
two �rms show quasi-synchronized behavior, but in-between such intervals asynchronous behavior
emerges with an apparently random pattern. As suggested in Bischi et al. (1998c), if the attractor
As embedded in the diagonal in the symmetric case is a topological attractor, i.e., no transverse
repelling cycles exist, then the introduction of small heterogeneities does not have such a disruptive
e¤ect. In this case the symmetric model still serves as a good approximation of the behavior of the
two �rms.

From an economic point of view, the results of this section make us aware how restrictive the
assumptions made in (or almost throughout) the literature are. If the assumption of homogeneity
is made for analytical tractability, we should be aware that we solve the model for a very special
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case. The reason is that for dynamic models the symmetric case is often non-generic, i.e., it exhibits
a behavior which is quite di¤erent from the model with heterogeneous agents. On the other hand,
parameter regions may exist, where the assumptions of homogeneity does not matter at all (see the
last remark in the previous paragraph). If the attractor of the symmetric model is a topological
attractor, i.e., if all the cycles embedded into the diagonal are attractive, then even after the
introduction of a small heterogeneity the evolution of the (now asymmetric) model would still lead
to almost perfectly synchronized trajectories. In other words, model builders have to be aware
when the assumption of homogeneous players is justi�ed and when it is not. For certain ranges of
the structural parameters this assumption might be sensible and valid, whereas for other regions
it might be simply wrong and misleading. Assuming homogeneity among all players would in this
case give a wrong idea of the variety of dynamical phenomena which can be observed for given
model.

FIG. 9 APPROXIMATELY HERE

6 Concluding remarks and further developments

So far we have presented two main ideas. First, we have demonstrated that by using the concept
of critical curves and segments on the invariant coordinate axes we can determine the feasible set
and the changes of it as some parameters are varied. This gives us the opportunity to derive global
stability results, which tells us something about the conditions under which convergence to a steady
state allocation is achieved and for which set of initial allocations. Second, we have argued that the
assumption of homogeneity, which is so often made in the literature, may lead to wrong conclusions
about the resulting dynamical behavior of a model for certain values of the models�parameters.

However, the study of dynamical phenomena of the symmetric model can be continued. As the
degree of competition � spans the whole interval (0; 1) other global bifurcations can be evidenced
that cause strong qualitative changes of the structure of the set of initial condition which generate
trajectories that synchronize. This will be object of further researches, and we just give here a
brief description of some phenomena that occur as � is further increased. For slightly increased
values of the degree of competition � (with respect to the value � = 0:09), a transition from the
scenario (L) of locally riddling to the scenario (G) of globally riddling is observed. This occurs
because the absorbing area A that included the Milnor chaotic attractor As where synchronization
takes place (�g. 8) becomes larger as � increases, so that �nally it has a contact with the boundary
that separates B(As) from B(C2). After this contact the absorbing area A is destroyed, and some
trajectories that are locally repelled from As can reach the basin B(C2). This leads to a situation of
additional uncertainty about the fate of a trajectory starting from a given initial e¤ort allocation,
due to the creation of a riddled basin. Given an initial allocation in the feasible set, the evolution
of the system may lead to the 2-cycle or it may synchronize, converging to As after a short16

transient with intermittent behavior. Since the model is deterministic, the fate of the trajectory of
marketing e¤orts is uniquely determined by the initial allocation, but due to the riddled structure
of B(As) the presence of arbitrarily small perturbations or of arbitrarily small errors in measuring
the initial outlays makes it practically impossible to forecast the long-run behavior. This would also

16Given an initial allocation which belongs to B(As), the transient before synchronization is shorter with respect
to that obtain for � = 0:09 because the natural Lyapunov exponent is smaller.
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mean that it is practically impossible to decide, when the model of a representative agent might
be used to replace the two-dimensional model. We can say that the contact bifurcation described
in this situation marks a transition from a situation in which the model allows to make reasonable
forecasts about the long-run behavior of the system (�g. 6) to a situation of complete uncertainty,
in which a forecast of the long-run synchronization behavior is impossible. We remark that such a
strong qualitative change in the predictability of the time evolution of the system is not related to
local properties of the system near the invariant diagonal (i.e., the Lyapunov exponent) but it is
due to a global bifurcation, a contact occurring far from �.

If the natural Lyapunov exponent �nat? changes sign from negative to positive, the chaotic set
As becomes a chaotic saddle, i.e., B(As) has zero measure. This means that the probability for
emergence of synchronized behavior is zero, even when the homogeneous �rms are starting out with
initial allocations arbitrarily close to the diagonal, i.e., x0 �= y0. Trajectories after the so-called
blowout bifurcation �ll up a large chaotic area. Again, this chaotic area is bounded by critical
curves: it is the minimal invariant absorbing area that already existed around the Milnor attractor
before the occurrence of the blowout bifurcation. However, even if the marketing e¤orts of the two
�rms never synchronize, their behavior is not totally uncorrelated. The trajectories remain close
to the line of equal choices � quite often, that is, the probability that the decisions made by the
two �rms are similar is higher with respect to a totally uncorrelated competitive system17.
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scienze economiche e sociali�, MURST, Italy.

17From a dynamic point of view this is due to the fact that even if As is now a chaotic saddle, i.e., transversely
repelling �on average�, in�nitely many transversely stable cycles still exist embedded into it. As is a chaotic saddle,
but not a normally repelling chaotic saddle.
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Figure captions

Fig. 1: The boundary of the feasible set is given by the segments !x = 00
(x)
�1 and !y = 00

(y)
�1 on

the invariant axes, and their rank-1 preimages !�1x and !�1y . The curves on which the preimages

!�1x and !�1y are located intersect the diagonal in the point 0(d)�1.

Fig. 2: (a) Critical curves of rank-0, obtained as the locus of points where the Jacobian
det(DTs(x; y)) = 0. (b) Critical curves of rank-1, obtained as LC = Ts(LC�1). These curves
separate the plane into three distinct regions: Z0; Z2; Z4, whose points have no, two, and four rank-
1 preimages respectively. For this parameter setting the preimages !�1x and !�1y are competely
contained in the region Z0, hence they have no further preimages.

Fig. 3: (a) Feasible set for 3 < �B < 4. The steady state allocation E� is asymptotically
stable. Numerical evidence suggests that all the feasible trajectories converge to it. The feasible set
has fractal boundaries due to the fact that a portion of the unfeasible set, indicated by the arrow,
entered the region Z2. (b) Enlargement of (a), obtained by zooming along the x axis of a factor 20,
in order to see the fractal structure of the boundary of the feasible set near !y. Similar structures
also exist along the other portions of the boundaries, i.e. along !x, !�1x and !�1y .

Fig. 4: Natural Lyapunov Exponent �(nat)? as a function of the degree of competition �, with
� ranging from 0 to 0:2, B = 10; � = 0:5149609877518401::: Each point is obtained by iterating
the map (starting from an initial condition along the diagonal) 10.000 times to eliminate transient
behavior, and then averaging, according to (19) over another 100.000 iterations.

Fig. 5: (a) E¤ort allocations of the �rm 1 and 2 respectively over time, shown for the �rst
300 periods. (b) Di¤erence between the marketing e¤orts of the two �rms for small values of the
degree of competition. The decisions of the two �rms seem to be independent of each other.

Fig. 6: Two coexisting attractors in the feasible set, a Milnor attractor along the diagonal
4 and a stable period two cycle symmetric with respect to 4. The white regions indicate points
which converge to the Milnor attractor, whereas points in the light-grey region converge to the
two-cycle.

Fig. 7: Typical trajectory converging to a Milnor attrator along the diagonal. Before the
marketing e¤orts of the two �rms �nally synchronize (i.e. xt � yt = 0), several bursts can be
observed in the transient phase.

Fig. 8: Boundary of the absorbing are around the Milnor attractor along the diagonal, obtained
by arcs of critical curves: L = T (), with  2 LC�1, L1 = T (L),...Lk = T (Lk�1), with k = 2; :::; 5.

Fig. 9: The introduction of a small heterogeneity in the form of a mismatch of the parameters
causes the disappearance of the Milnor attractor along the diagonal; symmetry breaking occurs.
Marketing e¤orts of the two �rms no longer synchronize and bursts never stop.
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