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bstract

This paper formulates and analyzes a two-stage oligopoly game where firms can invest in cost-reducing R&D activity with the
ossibility of sharing R&D results with partner firms as well as gaining knowledge for free through spillovers. Firms are arranged
ithin networks (or districts) inside which they can cooperate by bilateral agreements for sharing knowledge and compete in the
arket. An adaptive dynamic mechanism is proposed to describe how firms in a two-networks system repeatedly decide their
&D efforts over time. This adaptive adjustment may converge to a Nash equilibrium in the long run, or exhibit more complex
ynamic behaviors. Analytical results about stability of equilibrium points are given, as well as numerical simulations to show
lobal dynamical properties, including coexistence of attractors and complicated structures of their basins. In a second paper (Part
I) some analytical results will be given for some relevant benchmark cases, together with numerical experiments that stress the
ole of the level of connectivity (i.e. the collaboration attitude) inside networks, as well as the effects of involuntary knowledge
pillovers inside each network and among different competing networks.

 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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.  Introduction

When firms compete in a global market, their efforts are mainly devoted to gain knowledge in order to adopt
ew technologies and improve production standards. In many cases, such efforts can be identified with expenditures
n Research and Development (R&D) activities with cost-reducing effects. However, R&D activities are often more
fficient, and their results more effective, if firms collaborate and share information on innovation and research results.

Along this line, the seminal paper by D’Aspremont and Jacquemin [11] proposes a two-stage game, where in the
rst stage two identical firms optimize their investment in cost-reducing R&D, with possible R&D spillover from the
ival; then, in the second stage, firms compete in a homogeneous Cournot duopoly game.
Following this line of research, Kamien et al. [21] propose four different models, again in the form of two-stage
ames, where firms decide their effective R&D cost-reducing investments with or without formation of research joint
entures, and then they are engaged in either Cournot or Bertrand competition. All these models admit that research
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efforts are subject to various degrees of knowledge spillovers, and they conclude that the formation of research joint
ventures, associated with competition in the product output, is the most desirable policy because it leads to higher
profits and lower product prices; along the same line of research see also Qiu [28], Suzumura [30] and Amir et al. [2].
A dynamic version of the static game examined in Ref. [11] has been recently proposed by Cellini and Lambertini [9],
in the form of a differential game, where it is shown that R&D cartelization dominates competition. Related issues in
a difference game set-up are analyzed by Petit and Tolwinski [26,27].

As a matter of fact, many empirical studies show that partnerships among firms have significantly increased in recent
years (see, e.g. Gauvin [16] and Goyal and Moraga-Gonzales [19]), and often this partnership is in terms of bilateral
agreement for sharing information on R&D results and technological collaboration. This is the main motivation for
setting up oligopoly models with R&D networks structures. Indeed, traditional models of oligopoly are centered on
markets and neglect the presence of such R&D networks.

The research on networks in economics has become popular in the last decade. The importance of R&D networks
is well explained in Goyal and Joshi [18], where different structures of bilateral collaborative links in firms’ networks
are described, as well as in Cowan and Jonard [10], where the relationship between the network architecture and
knowledge transmission is explored, mainly by numerical analysis. For an extensive survey of the network literature
we refer to Vega-Redondo [31] and Goyal [17].

The most related work to ours is the well-known contribution on R&D networks by Goyal and Moraga-Gonzales
[19], which addresses the issue of collaborative ties formation starting from symmetric cases. In oligopolies with R&D
networks, agents have several sources of strategic interdependence. First of all, oligopolists are strategically related on
the demand side, as they all operate in the same market or in dependent markets. Moreover, also network externalities
arise, as each firm’s payoff is influenced by the R&D efforts by neighbors (‘local’ effects), non-neighbors (‘global’
effects) and by the whole set of connections in the industry. Of course, even without any agreement, knowledge may
spill from one firm to its competitors, due to the difficulty of protecting intellectual properties (see Refs. [29,11,5]).
This clearly introduces another externality between agents and a free-riding dilemma into firms’ relationships, so
that a trade-off between partial (and often asymmetric) involuntary knowledge spillovers, and complete (symmetric)
information share, associated with bilateral agreements, may arise.

In this paper, we consider a repeated two-stage oligopoly where N  ex-ante identical firms are subdivided into one or
more groups (‘sub-networks’). In these sub-networks couples of firms (‘neighbors’) have bilateral ties to share R&D
results. Hence, effective R&D of each firm includes not only its own R&D but also neighbors’ results. Moreover,
a given firm can receive two types of knowledge spillovers: internal (from non-neighbors inside its sub-network) or
external (from non-neighbors outside its sub-network).

Each discrete time step is ideally subdivided into:

• A precompetitive stage, where each firm selects cost-reducing R&D efforts in the direction of increasing individual
profits, along the steepest ascent direction (so-called ‘gradient process’);

• A (Cournot-)competitive stage, where each firm sets its ‘optimal’ quantity, taking into account the level of efforts
of other firms and the networks’ structures, i.e. its effective cost.

These disjointed sub-networks can be interpreted as different Countries or industrial districts or groups of firms
linked by ownership ties, characterized by different rules for partnership or patent protection or different abilities
to take advantage from knowledge spillovers. This kind of structure is actually described in empirical works on the
configuration of national R&D networks.1

All in all, the time evolution of the oligopoly can be described in pretty much the same way of standard dynamic

Cournot models, with adaptive players revising their efforts over time (see Bischi et al. [4] for a complete treatment
of oligopoly theory). In order to reduce the complexity of firms’ decisional processes, the second stage decisions (on
quantities) are univocally determined by firms’ decisions on efforts by backward induction. Indeed, we mainly develop

1 For instance, Gauvin [16] stressed that the formation of research alliances is an increasing phenomenon with coalitions that tend to be domestic
rather than international, with some nations that show higher propensities to form coalitions, such as Japan and Germany, with respect to, e.g.,
USA and Canada. However, the connection between network relationships and innovation intensity in empirical cases is somehow controversial, as
pointed out by Love and Roper [22].
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he model positing regular (‘symmetric’) sub-networks, widely employed in the literature (see Galeotti et al. [15]);
n this case, all agents belonging to the same sub-network have the same degree (i.e. the same number of neighbors)
nd are ex-post in a similar situation. Within this context, we first perform an analysis on network strategic effects of
fforts. Then the evolution of effort’s choices in each sub-network is studied by means of a discrete dynamical system.
or this stylized model of networks competition, it is possible to obtain analytical results on existence and stability of
quilibria as well as on social efficiency. In addition to the local stability analysis, we also perform some simulation
hen the system fails to converge to an equilibrium. From these simulations, interesting global properties typical to
oninvertible maps of the plane (e.g. path dependence) can be detected, according to the theory in Mira et al. [25].

In this paper we try to address the following research questions: (i) How do the exogenous structural properties
f competing networks influence aggregate outcomes? (ii) Under which circumstances (level of collaboration, degree
f knowledge spillovers) is the equilibrium stable, and how can it lose stability? The companion paper Bischi and
amantia [6] (Part II henceforth) will be mainly devoted to the following question: (iii) What are the influences of the
egree of collaboration and knowledge spillovers on profits, social welfare and, more generally, on overall efficiency?

This paper is organized as follows. Section 2 is devoted to the static formulation of the model and comparative
tatics. In Section 3 a dynamic version of the model is proposed with general conditions on local stability of steady
tates and numerical simulations to show some global dynamical properties and disequilibrium dynamics. Section 4
oncludes.

. Static  analysis

.1. Model  formulation  and  equilibrium  solution

We consider a homogeneous-product oligopoly where N ≥  2 quantity setting firms operate in a market characterized
y a linear inverse demand function p  = a −  bQ, a, b  > 0, Q  being the total output in the market.2

These N  firms are ex-ante partitioned into h  groups, (called sub-network  in the following). We say that two firms
f the same sub-network are neighbors (or that they are linked) if they have a direct tie, i.e. they form a bilateral
greement for a complete sharing of R&D results. Two firms without a direct tie are called non-neighbors. Note that
ach sub-network is an undirected graph, as ties are bidirectional.

Each of these h  sub-networks, say sj, j = 1, . . . , h, is formed by nj firms, where of course N  = ∑h
j=1nj . For sake

f simplicity, we assume that each sub-network sj is symmetric 3 of degree kj, with 0 ≤  kj ≤  nj −  1, i.e. every firm in
j has the same number of collaborative ties kj, a parameter that represents the level of connectivity (or collaborative
ttitude) of sub-network sj.

Let us assume that, given a network structure, firms have to decide their R&D efforts and quantities to produce. In
his section we derive the profit functions to be maximized. Then, based on the results of this section, in the next section
e shall describe a dynamic model where firms’ strategies are dynamically chosen at each (discrete) time period.
Each firm decides its R&D effort, whose cost-reducing effects are totally shared with neighbors; moreover, R&D

esults within a sub-network can spill over for free to non-neighbors inside the same sub-network sj (internal spillovers)
s well as to ‘rival’ sub-networks sk with k  /=  j  (external spillovers). Assuming a linear cost function ciqi for a firm i
hat produces qi, a representative firm in sub-network sj has a marginal cost ci of the form

ci(sj) =  c  −  ei −  kjeli −  βjel−i [
(
nj −  1) −  kj

] −  β−j

∑
m/∈sj

em (1)

here c  is the marginal cost without R&D efforts (equal for all firms), ei represents R&D effort of firm i, kjeli
epresents the total effort exerted by firms with whom i  is linked in sj, βj∈[0, 1) are related to knowledge spillovers
ith non-neighbors in network sj, and β−j∈[0, 1) regulate external spillovers, i.e. originating from non-neighbors out
f sj towards firm i. Hence, the last two terms in (1) are, respectively, the spilled effort by l−i and m, i.e. representative

2 We disregard the presence of inventories and, in general, intertemporal demand interactions. These extensions could be added in the model
ollowing Bischi et al. [4].
3 We recall that in a ‘symmetric’ (or ‘regular’) network all nodes (firms) have the same first(-order) degree (i.e. the same number of bilateral R&D
ollaboration links).
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non-neighbors inside sj and outside sj respectively. In order to ensure strictly positive prices, we impose from now on
condition a  > c.

In any case, all N  firms are rivals in the market place (see Refs. [11,19]), and they calculate their optimal outputs by
solving individual profit maximization problems. Then, given optimal quantities as functions of efforts by backward
induction, they assess R&D efforts to increase their individual profits; due to R&D networks of collaboration and
spillovers, each firm calculates these cost-reducing efforts taking into account the whole cost structure of the industry.

Following Ref. [19], we assume that each oligopolist i  in sub-network sj maximizes a profit function of the form

πi(sj) =
⎧⎨
⎩a −  b[qi(sj) +

∑
p /=  i

qp] −  ci(sj)

⎫⎬
⎭ qi(sj) −  γe2

i (sj)

where qi(sj) and ei(sj) are, respectively, the quantity produced and the R&D effort by agent i  in sub-network sj, and
γe2

i , γ  > 0, is the cost of effort (see Ref. [11]).
The optimal quantity of firm i  in sub-network sj is

qi(sj) =
a −  Nci(sj) +

∑
p /=  i

cp

b(1 +  N)
(2)

with corresponding optimal profit

πi(sj) =

⎡
⎢⎢⎢⎣

a −  Nci(ei) +
∑
p /=  i

cp

√
b(1 +  N)

⎤
⎥⎥⎥⎦

2

−  γe2
i (3)

Given this setting, each firm tries to maximize its individual profit with respect to its own R&D efforts. Substituting
the cost functions of representative agents in each sub-network, we can reformulate the optimal profit for firm i in
sub-network sj (3) as the following quadratic functions of efforts only (see Appendix A for details):

πi(sj) =

⎡
⎢⎢⎢⎢⎢⎣

a −  Nci(sj) +  kjcli (sj) +  (nj −  1 −  kj)cl−i (sj) +
h∑

w=1,w /=  i

nwcv(sw)

√
b(1 +  N)

⎤
⎥⎥⎥⎥⎥⎦

2

−  γe2
i (4)

By standard arguments, it is possible to establish the existence of a Nash equilibrium. In fact, if each firm i chooses
an effort level ei ∈ [0, c], the strategy space is a compact and convex set. Moreover profit functions are continuous
with respect to strategies of all players and, for large γ , concave in own strategies. Then by theorem 3.1 in Ref. [17],
there exists a Nash equilibrium in pure strategies (see also Ref. [19]).

Under concavity of payoffs in own strategies, the FOCs ∂πi

∂ei
=  0,  i = 1, . . . , h  are necessary and sufficient for an

interior optimum E∗. As sub-networks are symmetric, all firms belonging to the same sub-network exert the same
effort, (i.e. eli =  el−i =  ei). So in general we obtain a system of h  reaction functions (one for each sub-network) in h
unknowns. This system of equations is linear, as profits are quadratic functions of efforts; consequently the existence
and uniqueness of a Nash equilibrium can be given in terms of non-singularity of a h  × h  matrix, as we show in the

following section. When all firms start the game exactly at the Nash equilibrium, then there is no unilateral incentive
to deviate and the model reduces to a one shot game. Otherwise a dynamic mechanism for updating R&D effort over
time must be defined. Before doing so, we briefly analyze the main relationships between marginal profits and effort
in the proposed multi-network competition.
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.2.  Effects  of  increasing  collaboration  level  and  spillovers  on  profits

From the expression (4) for the optimal profit, it is clear that individual efforts exerted by any firm in any network
nfluence, with different degrees, profits of all other firms. Here we show that efforts do not necessarily increase or
ecrease when collaboration level or knowledge spillovers are increased, as they depend on several factors. Let us
egin by considering the direct effect on the marginal profit of firm i in network sj, πi(sj), from changing its own R&D
ffort, i.e.

∂2πi(sj)

∂e2
i

=
2(N  −  kj(1 −  βj) −  βj(nj −  1) −

h∑
w=1,w /=  j

β−wnw)2

b(1 +  N)2 −  2γ  (5)

Hence, as effort ei is increased, both marginal revenues and marginal costs (whose slopes are the first and second
omponents in Ref. (5)) increase, even if an increase in degree kj raises the number of neighbors with which the research
fforts are shared, and this lowers marginal returns to firm i.

This can be explained by noting that when a firm has more collaborators, an increase in its effort not only lowers
ts own costs, but it lowers the costs for neighbors as well, and, consequently, they become tougher competitors in
he marketplace. Exactly the same effect, for similar reasons, is observed as internal spillovers βj in network sj and/or
xternal spillovers β−w in networks sw, w  =  1,  ...,  h,  w  /=  j, increase, since marginal revenues are decreasing in βj

nd β−w. In both cases, again, R&D effort by firm i  is discouraged as this spills over to competitors.4

From this point of view, a firm could try to act as a free rider and exploit the effort by partners without actually
xerting its own. To understand better this point, it is useful to consider the so called strategic effects, i.e. whether
&D efforts between firms are strategic complements or strategic substitutes, see Refs. [8] and [15]. Moreover, these

trategic effects can be ‘local’ if they come from neighbors or ‘global’ if they originate from non-neighbors (see Ref.
17]). In the present model, different global effects arise depending on the network they originate, as shown below.

First of all, we consider ‘local’ strategic effect; in this case, efforts by linked firms are always strategic complements;

n fact, denoting by eli the effort of a generic neighbors of i  (as in the previous section), the expression for ∂2πi

∂ei∂eli
is

lways strictly positive, being identical to the first component in Eq. (5). This has an immediate economic justification,
s incremental efforts by neighbors always reduce unitary costs to i for free.

Now we consider how an effort variation by non-neighbors impacts i’s payoff, i.e. the global network effects. In
eneral, mixed partial derivatives of profits with respect to efforts are quadratic functions in spillover parameters.
owever, when all spillover effects are neglected, these derivatives with respect to unlinked firms reduce to

∂2πi

∂ei∂el−i |β=0

=  −2(nj −  kj −  1)(N  −  kj)

b(1 +  N)2 <  0 (6)

nd

∂2πi

∂ei∂em |β=0
=  −2np(N  −  kj)

b(1 +  N)2 <  0 (7)

here el−i and em are, respectively, R&D efforts by a non-neighbor in sj (i.e. the same network of i) and in a different
etwork sp (with np firms and degree kp). In the notation, it has been emphasized that no spillovers are present. These
elations say that, without spillovers, efforts of non-neighbor firms are strategic substitutes, which is a very intuitive
roperty in the context of the model.5 Moreover, by Eqs. (6) and (7), the higher the degree kj, the lower the magnitude

f non-neighbors’s strategic substitutability is.

4 This result is an extension of proposition 4 in Ref. [19], where βj = 0 and nw = 0, w = 1, ..., h, w /= j, are assumed.
5 The expression in Ref. (6) is always strictly negative, because it vanishes only at kj = nj − 1, i.e. when all firms in sj are neighbors.
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However the situation overturns as knowledge spillovers are considered. A complete characterization of strategic
effects would be very lengthy and therefore we omit it here. We just observe that when all knowledge spills over firms
in network sj, (βj = 1 ; with all other βs equal to zero), it is

∂2πi

∂ei∂el−i |βj=1

= 2(1 +  N  −  nj)2

b(1 +  N)2 >  0 (8)

and so, by continuity, there exists an intermediate internal spillover level βj ∈ (0, 1) such that efforts in network sj

cross from strategic substitutes to strategic complements. Again, this is very easy to justify: when internal spillovers
are not present, an increment of the R&D activity by a non-neighbor of i  in sj reduces the unitary cost of that firm
without providing an advantage to i; all the same, if internal spillovers are present, a cost reduction to firm i  is granted.
Hence, incremental effort can become strategic complement for sufficiently high internal spillovers. In the limiting
case of full internal spillovers, it is as if the network structure disappear, as all firms inside the network fully share their
knowledge through spillovers, and so, the first component of Eq. (5) with full connections (kj = nj −  1) coincides with
Eq. (8). These results are analogous to the ones reported in Ref. [11].

A similar argument can be applied to external spillovers. In fact, we have that

∂2πi

∂ei∂em |β−j=1
= 2(N  −  kj)

b(1 +  N)2 >  0 (9)

so that, again, efforts in a network different to that i  belongs to become strategic complements if external spillovers
are sufficiently high (all other βs are equal to zero), i.e. substantial cost reductions are granted to firms inside network
sj as a consequence of spillovers from network sp to network sj. Notice that, depending on the number of firms in each
sub-network, their degree and spillovers, we can have pure local effects (only neighbors’ actions matter), pure global
effects (actions of all individuals have the same effects) and different combinations of them (see Ref. [17]).

In addition, individual effort by firm i  in network sj influences profits to firms outside i’s network. As a matter of
fact, an increment of efforts by firm i in network sj affects the profit function of firm g  in any competing network sp;
from πg(sp), we obtain that marginal revenue grows linearly in ei with slope

∂2πg(sp)

∂e2
i

= 2n2
j (−1 −  kj(1 −  βj) −  βj(nj −  1) +  β−p(1 +  nj))2

b(1 +  N)2 (10)

As this expression represents a nonnegative and convex parabola in kj, that vanishes at kmin
j = −1−βj(nj−1)+β−p(1+nj)

1−βj
,

we can conclude that without external spillovers β−p, or when they are sufficiently small, an increment in effort ei by
a firm in sj gives more advantages to competitors in network sp as the number of links kj in sj increases. This fact is
exactly the mirror image of the previous case: in fact, as the number of links kj in sj increases, marginal revenue in sj

declines and this is an advantage for their competitors in network sp. However, as β−p is increased, this effect can be
inverted or we can observe that the benefit to πg(sp) is minimized for intermediate levels of collaborative activity kj.
This can be explained by noting that when β−p > 0, firms in sp has substantial cost reductions when their rivals in sj

invest in R&D; however as kj increases and with high external spillovers β−p, firms in sj tend to invest less in R&D,
in order not to advantage firms in sp, so that less knowledge spills over from network sj to sp.

Now we turn to total profit. Ref. [19] shows that when knowledge spillovers are absent and only one network
operates (βj = β−j = 0 and ni = 0, i  = 2, . . . , h), then total profit π(sj) is always maximized for an intermediate level of
collaborative activity kj. As along an invariant axis (e.g. ei = 0, i  = 2, . .  ., h) our model reduces to Ref. [19], we can
also say that profits at steady states are maximized for intermediate number of collaborative arrangement kj. However
it is not easy to answer this question in the general model with multi-network competition, since payoffs depend on

the overall compensation between several opposing forces, as mentioned. For these reasons, in the following section
we address the problem of disequilibrium dynamics, where firms repeatedly modify their R&D decisions toward the
direction of increasing profits, and we analyze, the existence and stability of equilibria in the case of two interacting
R&D sub-networks.
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.  A dynamic  adaptive  model  for  R&D  efforts

.1. Myopic  disequilibrium  dynamic  and  equilibria

Due to the complex network structure of R&D collaborations and spillover externalities, it is unlikely that agents
re able to play the Nash equilibrium strategy in one shot. Consequently, we assume that firms behave myopically, i.e.
ach player cares about immediate payoffs and believes that actions of other players in the current period are the same
s the actions in the immediately preceding period (see Ref. [17]). In this setting, agents adaptively adjust their efforts
ver time towards the ‘optimal’ strategy, following the direction of the local estimate of expected marginal profits,
ccording to the so called “gradient dynamics” (or “gradient process”, see Refs. [3,14,12,7,13])

ej(t  +  1) =  ej(t) +  αj(ej)
∂πj

∂ej

; j  =  1,  ...,  h  (11)

here ej(t) represents the R&D effort at time period t  of a representative firm belonging to the sub-network sj; αj are
ositive functions that represent speeds of adjustment. So, efforts at time t, which are observable by all agents, lead
o the choice of next period R&D activities, through a repeated adaptive process (11). It can easily be seen that the
ash equilibria are also equilibrium points for the dynamic process (11). If such an equilibrium is stable, then we can

ay that the adaptive agents are able to learn, in the long run, how they can choose R&D efforts in an optimal way.
owever, as we shall see, these equilibria are not always stable under the gradient dynamics (11).
In the following we focus on the case of only two sub-networks s1 and s2 with n1 and n2 firms and connection

egrees k1 and k2 respectively. Moreover, we assume linear speeds of adjustment αj(ej) = αjej, i.e. the relative effort
hange [ej(t  + 1) − ej(t)]/ej(t) is posited to be proportional to the expected marginal profit.

Under these assumptions the dynamical system that describes the time evolution of the efforts chosen by the two
epresentative firms is given by

ei(t  +  1) =  ei(t) + αiei(t)

b(1 +  ni +  nj)2 [Ai +  Biej(t) +  Ciei(t)],  i,  j  =  1,  2; i /=  j  (12)

here the following aggregate parameters have been introduced:

Ai =  2(a  −  c)[(ni −  ki)(1 −  βi) +  βi +  nj(1 −  β−j)]

Bi =  2nj[(1 −  βi)(ni −  ki) +  βi +  nj(1 −  β−j)][−βj(nj −  kj −  1) +  β−i(nj +  1) −  kj −  1]

Ci =  2
{

(−ki +  βi(1 +  ki −  ni) +  N  −  β−jnj)(1 +  ki +  nj +  kinj −  β−jninj −  βi(1 +  ki −  ni)(1 +  nj)) −  bγ(1 +  N)2
} (13)

with N  = n1 + n2. It is useful to notice that Ai > 0 for all economic meaningful parameters, and the sign of Bi is the
ame as the sign in the second term in square brackets. In particular, if β−i →  0, i.e. network i has a low capacity
o gain knowledge from network j  for free, then Bi< 0 ; on the other hand, if β−i →  1 and βj →  0 then Bi > 0; in this
ase network i is able to gain knowledge for free from network j  whereas the opposite does not hold for network j.

ith respect to Ci it is immediate to observe that condition Ci < 0 is equivalent to ∂2πi

∂e2
i

<  0 so that the profit function

i(ei) is strictly concave and the FOC for a maximum is also sufficient. As observed before, this condition holds for a
ufficiently high level of effort cost γ .

The dynamical model (12) always admits three boundary equilibria:

O =  (0,  0),  E1 =  (−A1/C1,  0),  E2 =  (0,  −A2/C2),  (14)

ocated on the invariant coordinate axes, with nonzero coordinate strictly positive if and only if the corresponding profit
unction πi(ei) is strictly concave, and a unique interior equilibrium

E∗ =
(

A2B1 −  A1C2

C1C2 −  B1B2
,
A1B2 −  A2C1

C1C2 −  B1B2

)
(15)

hich is obtained from the system{

C1e1 +  B1e2 =  −A1

B2e1 +  C2e2 =  −A2.
(16)

rovided that C1C2 −  B1B2 /=  0.
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We observe that, in general, at a boundary equilibrium Ei only ni agents invest in R&D even if N  agents sell their
product in the market. Equilibrium E∗ is obtained by unilateral profit maximization by representative firms in the two
sub-networks and correspond to the Nash equilibrium solution described in the previous Section. We characterize the
equilibrium E∗ in some benchmark cases in Part II.

3.2. Stability  properties  of  equilibria  with  two  sub-networks

Now we tackle the problem of local stability of the equilibria of model (12), whose Jacobian matrix is given by

J (e1,  e2) =

⎡
⎢⎢⎣

1 + α1

b(1 +  N)2 (A1 +  B1e2 +  2C1e1)
α1B1e1

b(1 +  N)2

α2B2e2

b(1 +  N)2 1 + α2

b(1 +  N)2 (A2 +  B2e1 +  2C2e2)

⎤
⎥⎥⎦ (17)

From standard local stability analysis we get:

Proposition  1.  Equilibrium  O  = (0, 0) is  a  repelling  node.6

In fact, J (0, 0) is a diagonal matrix, and the stability conditions for the equilibrium O, given by −2 < αiAi

b(1+N)2 <  0,

i = 1, 2, never hold.
This means that for a sufficiently low initial R&D level (no matter how low) there will be at least one network

exerting a positive (and increasing with time) level of effort. We can restate this result by saying that it is always
convenient, for at least one network, to invest in R&D.

We now consider the equilibrium Ei located on the invariant axis ei, along which the dynamics are described by the
unidimensional map

ei(t  +  1) =  ei(t) + αiei(t)

b(1 +  N)2 [Ai +  Ciei(t)] (18)

Of course, it is also important to study the stability along the direction transverse to ei, as it explains under which con-
ditions one network (the second if i  = 1) progressively reduce its efforts to zero. The main conclusions are summarized
in the following

Proposition  2.  Equilibrium  Ei,i  = 1, 2,  is  attracting  along  the  ei axis  as  long  as  Ai < 2b(1 + N)2/αi. At  Ai = 2b(1 + N)2/αi

equilibrium  Ei undergoes  a  flip  bifurcation  and,  as  Ai > 2b(1 + N)2/αi,  cascades  of  period  doubling  bifurcations  are
created leading  to  a  chaotic  regime.

In the  direction  transverse  to  ei,  Ei is  stable  if  condition

−2 <
αj(AjCi −  BjAi)

Cib(1 +  N)2 <  0

holds. At  αj(AjCi −  BjAi) = −2bCi(1 + N)2 equilibrium  Ei undergoes  a  flip  bifurcation  along  the  transverse  eigendirec-
tion, whereas  at  AjCi = BjAi a  transcritical  bifurcation  occurs  at  which  equilibria  Ei and  E∗ merge.

Proof. See Appendix B.
In terms of original parameters we can restate the previous proposition by saying that if the cost of effort γ  is

sufficiently high (thus Ci < 0 and profits are concave in efforts) and only network i invest in R&D, then this network
will tend to adopt a constant level of efforts provided that its reaction coefficient αi or the aggregate parameters Ai are
sufficiently small: we can relate “small” Ai values to a small differences between the maximum selling price a  and
the maximum marginal cost coefficient c  and/or to a great cost reduction within network i (due to many collaborative

arrangements within network i or high internal spillovers). Otherwise equilibrium Ei looses stability through a period

6 By “repelling node” we mean an equilibrium with both eigenvalues real and with modulus greater than one.
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oubling cascade of bifurcations, as in the standard logistic model, and R&D efforts inside network i are characterized
y increasing levels of unpredictability.

When Ei is stable also in the direction transverse to ei, then we observe a decrease in R&D efforts by network j  till its
ffort goes to zero, and only network i  will invest at the equilibrium level Ei.Now we tackle the more difficult problem
f the stability of the inner equilibrium E∗, where both sub-networks exert a positive R&D effort. We first analyze
ts local stability in terms of aggregate parameters, then, with the help of numerical explorations, we investigate the
ole of some original economic parameters, such as ki, βi, β−i, as well as the kinds of dynamic behaviors that can be
bserved when E∗ is not stable.

The following proposition states necessary conditions for the local stability of E∗.

roposition 3.  If  C1C2 ≥  B1B2,  with  Ci < 0,i  = 1, 2 and  equilibrium  E∗ = (
e∗

1,  e∗
2

)
is  stable  then

α1C1e
∗
1 +  α2C2e

∗
2

b(1 +  N)2 ≥  −4 (19)

olds.

Proof. See Appendix C.
It is worth noticing that the case Ci > 0 is not interesting from an economic point of view, as it corresponds to the case

f strictly convex profit function and the equilibrium E∗ is not of Nash type, as profits are there in a global minimum.
From an economic point of view, Proposition 3 says that when the marginal demand b  is low or speeds of adjustments

1 and/or α2 are sufficiently large or C1 and/or C2 are sufficiently negative, then the fixed point E∗ will be unstable, i.e.
nequality (19) will not be satisfied. For example, the aggregate parameters Ci are increasing functions of ki, the degree
f collaboration, so they became more negative for decreasing values of the respective R&D collaboration parameters.
n other words, more collaboration will help to obtain the stability of E∗.

Remaining in a general case but with homogeneous agents (so that all symbols can be written without subscripts

s they coincide), let us consider the internal equilibrium E∗ =
(

−A
C+B

, −A
C+B

)
, with C  + B  < 0, so that both coordinates

f E∗ are strictly positive. Conditions (i) in (C.2) with strict inequality is equivalent to C  −  B  < 0. Condition (ii) and
iii) in (C.2) hold as strict inequalities in the following cases: if B  ≤  0, then it must be b  > αA

2(1+N)2 ; if B > 0, then

 > αA(C−B)
2(C+B)(1+N)2 .  Thus in the homogeneous case, when C  −  B < 0, and b  is sufficiently high (and/or α  sufficiently

ow), the inner equilibrium is always stable.

.3. Numerical  simulations  of  the  model  with  two  sub-networks

The results of the three propositions given above, obtained through the standard linearization procedure, only
oncern local stability of the equilibrium points, and give no information about the global dynamics of the system. For
his reason, in this subsection we carry on some numerical experiment for the dynamical system (12) to investigate the
ossible basins of attraction, the kinds of disequilibrium dynamics that prevail when an equilibrium point, in particular
∗, loses stability and the possible coexistence of several attractors, each with its own basin of attraction. As we shall
riefly see, some typical feature of nonlinear dynamical system can be numerically evidenced, in particular some global
tructures of the attractors and the basins which are typical of noninvertible maps of the plane (see, e.g. [25]).

First of we consider a fixed set of parameters:

α1 =  0.27,  α2 =  0.26; n1 =  n2 =  10; k2 =  5; γ  =  6;

β1 =  β2 =  0.1,  β−1 =  β−2 =  0.02; a  =  200; c =  80; b  =  1

nd the collaboration parameter k1 ∈ [0,  9] as a bifurcation parameter7. As shown in the bifurcation diagram of Fig. 1,

he set of parameters considered (in particular the low value of b  and the sufficiently high values of the speed of reaction
i) are such that all the four equilibria exist and are unstable, and chaotic dynamics characterizes the asymptotic behavior

7 Of course, k1 must assume integer values, however we shall consider fractional values as well in the numerical computation of the bifurcation
iagram.
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Fig. 1. Bifurcation diagram with bifurcation parameter the k1 ∈ [0, 9] ∩ Z and fixed parameters α1 = 0.27,
α2 = 0.26 ; n1 = n2 = 10 ; k2 = 5 ; β1 = β2 = 0.1, β−1 = β−2 = 0.02 ; a = 200 ; c = 80 ; γ = 6 ; b = 1 with initial condition taken close to the positive
equilibrium E∗.

of the adaptive system for low values of k1, i.e. low degrees of R & D  collaboration in the first network. As k1 increases,
a sequence of period-halving (or backward flip) occurs, leading to stability of E∗ for sufficiently high levels of R & D
sharing in the first network. This confirms the stability analysis given in the previous subsection. From an economic
point of view, this numerical example outlines that a parameter proper to a network (its degree) can strongly influence
the long-run R&D efforts of the other network, so that the analysis for a single R&D network can be somehow
misleading if such interrelations are neglected.

It is also interesting to analyze the kind of chaotic attractors and the basin of attraction that characterize, respectively,
the long run dynamics and the role of the initial conditions, i.e. the path dependence, of the adaptive system. The example
depicted in Fig. 2 is obtained with the same set of parameters as in Fig. 1 except higher speeds of reaction α1 = 0.35,
α2 = 0.3 and with k1 = 5. The attractor is a 2-cyclic chaotic attractor, and the white region represents its basin of
attraction, while the grey shaded region represents the set of initial conditions that generate diverging trajectories.
Therefore, following the direction of higher profits, firms in each networks alternate low and high R&D investments

over time without converging to an equilibrium.

However, by slightly changing the set of the parameters of the last example, it is obtained an interesting case of
coexistence between two distinct attractors, whose basins share the region of initial conditions that generate bounded

Fig. 2. A 2-cyclic chaotic attractor with its basin of attraction (white region) represented in the phase plane (e1(t), e2(t)) for the set of parameters as
in Fig. 1 but α1 = 0.35, α2 = 0.3 and k1 = 5. The initial conditions taken in the grey shaded region generate diverging trajectories.
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Fig. 3. Two coexisting attractors: a 2-cyclic chaotic attractor and a 4-cycle, each with its own basin of attraction represented by the white and light
g
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t
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o
i
[
(
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o
w
b

rey regions respectively. The dark-grey region represents the basin of diverging trajectories, as in the previous picture. Parameters are as in Fig. 2
ut α2 = 0.325 and β1 = 0.2.

rajectories. In Fig. 3, obtained with parameters α1 = 0.35, α2 = 0.325, n1 = n2 = 10, k1 = k2 = 5, β1 = 0.2, β2 = 0.1,
−1 = β−2 = 0.02, a = 200, c  = 80, γ  = 6, b = 1, a 2-cyclic chaotic attractor (white basin) coexist with a periodic cycle
f period 4 (intermediate grey region), whereas the dark grey region denotes, as usual, the points that generate diverg-
ng trajectories. The complicated topological structure of the basins is typical of noninvertible maps (see, e.g. Refs.
25,1,4]) and implies a strong path dependence, i.e. even a negligible displacement of the point in the space of efforts
e1(t),  e2(t)) may cause the crossing of a basin boundary, so that the asymptotic dynamics of the trajectory may be
uite different; this phenomenon is also denoted as “final state sensitivity” following Ref. [20].

Even the structure of the chaotic attractor is typical of a noninvertible map, like folded veils due to the folding action
f the critical curves (see Ref. [1]). This is even more evident in Fig. 4, obtained with a slight increase of α2 = 0.36,
hich shows the merging of the two coexisting attractors in a bigger chaotic attractor so that R&D effort dynamics

ecomes highly unpredictable.

Fig. 4. A unique chaotic attractor with its basin obtained after the merging of the two coexisting ones; parameters as in Fig. 3 but α2 = 0.36.
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4.  Conclusions

In this paper we have introduced a repeated two-stage game, for describing the competition between firms constituting
Research Joint Ventures, in the form of R&D networks. As often postulated in the literature, R&D efforts have a cost-
reducing effect and they are decided in a pre-competitive stage; in most cases, they can be carried out by firms linked
in networks. We assumed that firms act non-cooperatively at the second stage, where quantities to sell are decided in
order to maximize their individual profit, as in a Cournot oligopoly game.

Our model was mainly motivated by Ref. [19], however it departs from Ref. [19] in several points. Firstly, we focus on
network effects but we do not address here the issue of network formation and we assumed that several (sub-)networks
of collaboration coexist and are exogenously given. Secondly, we consider an adaptive dynamic adjustment process
in the first stage, given by a step by step adaptive process to decide R&D efforts. In other words, as suggested in Ref.
[21], we assume that the decision about R&D efforts involves an heuristic trial and error process, just following local
signals of profit gradients. In fact, given the structure of the game, the agents’ rationality requirements for a one-shot
positioning to a Nash equilibrium are very high; instead, with myopic dynamic adjustments, the only requirement is
that a representative agent of each sub-network is able to assess how small variations in its R&D efforts influence its
expected profit.

After analyzing the effect of individual R&D efforts on profit of the various rival firms in the general multi-network
framework, we proposed a dynamical system for studying R&D effort over time in the case of two competing networks
of firms. Although this model can be employed just to perform equilibrium analysis, as in Ref. [11], i.e. supposing
that agents are able to select, in one shot, the proper Nash equilibrium level, we adopted the weaker assumption of a
repeated adaptive process for updating R&D effort choices over time. The long run outcome of such adaptive process
may coincide with an underlying Nash equilibrium of the game. However, when several equilibria are present, as it
occurs in the model proposed when inner and boundary equilibria coexist, an equilibrium  selection  problem arises,
so it is crucial to analyze the path dependent dynamic transition toward an equilibrium, as the initial condition of the
system plays a role in the long run behavior of the model. This point recalls Nash’s concern, expressed in his thesis,
about a possible evolutionary interpretation of the concept of Nash equilibrium, see Ref. [23].

In this way, we stated several results on the convergence to a Nash equilibrium in terms of the parameters of the
system. The last part of the paper briefly deals with the global dynamics of the system when an equilibrium loses
stability and more complex attractors arise, also showing the possible path dependence of R&D efforts in these cases.
The set-up of the model as well as the analytical results obtained in this paper are relevant for the analysis carried out
for the two-networks case the in the companion paper [6].
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Appendix A.  Model  derivation

A.1. Cost  functions

By the assumption of homogeneity of firms within sub-network sj and analogously to Eq. (1), we can write the
marginal cost for a firm li /=  i linked to i  in the sub-network sj as

cli (sj) =  c −  kjeli −  ei −  βjel−i [(nj −  1) −  kj] −  β−j

∑
m/∈sj

em (A.1)
Analogously, the marginal cost for l−i, in sj and non-neighbors of i, is

cl−i (sj) =  c  −  (kj +  1)el−i −  βj{eli [(nj −  2) −  kj] +  ei}  −  β−j

∑
m/∈sj

em (A.2)
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A firm vi in sub-network sw /=  sj (formed by nw firms) has kw links with firms in its sub-network and a marginal
ost of the form

cv(sw) =  c  −  (kw +  1)evi −  βwev−i [(nw −  1) −  kw] −  β−w(ei +
∑

m /∈  sw

m  /=  i

em) (A.3)

here ev−i is effort by a non-neighbors of vi in sw.8

All in all, by Eqs. (1), (A.1), (A.2), (A.3) and the assumption of symmetry, for firm i in network sj, the cost of
roduction for the rest of the industry in Eq. (3) is given by

∑
p /=  i

cp =  kjcli (sj) + (
nj −  1 −  kj

)
cl−i (sj) +

h∑
w =  1

w  /=  j

nwcv(sw)

.2. Profit  functions  with  two  sub-networks

Let us consider the case of only two competing sub-networks, say s1 and s2, with n1 and n2 firms and connection
egrees k1 and k2 respectively. We can rewrite Eq. (1) as

ci(s1) =  c −  ei −  k1el −  β1el[(n1 −  1) −  k1] −  β−1n2em

nd (A.1), the cost function for a firm linked to i, as

cli (s1) =  c  −  k1el −  ei −  β1el[(n1 −  1) −  k1] −  β−1n2em =  ci(s1)

hereas the cost function (A.2) for a firm untied to i but still in network s1 reads as

cl−i (s1) =  c −  (k1 +  1)el −  β1{el[(n1 −  2) −  k1] +  ei}  −  β−1n2em

nd the marginal cost (A.3) for a representative firm in s2 is

cm(s2) =  c  −  (k2 +  1)em −  β2em[n2 −  1 −  k2] −  β−2[(n1 −  1)el +  ei]

n all these expressions we emphasized the dependence on the ei, i.e. the effort exerted by firm i  in s1.
All in all, for firm i in network s1, the average cost of production for the rest of the industry to substitute in (3) is

iven by∑
p /=  i

cp =  k1cli (s1) +  (n1 −  1 −  k1)cl−i (s1) +  n2cm(s2)

Substituting all these cost functions into Eq. (3), optimal profit for firm i in sub-network s1 (for sub-network s2 the
erivation is analogous) can be written as

πi(s1) =
[
a −  Nci(s1) +  k1cli (s1) +  [n1 −  1 −  k1]cl−i (s1) +  n2cm(s2)√

b(1 +  N)

]2

−  γe2
i

ppendix  B.  Proof  of  proposition  2

All stability results follow from standard local analysis and are left to the reader. With respect to the period doubling

oute to chaos, we observe that the map (18) is topological conjugate to the well known Myrberg quadratic map
(x) = x2 −  c (see, e.g. [24], or [25], chapter 2) through the linear homeomorphism τ(x) = αCi

b(1+N)2 x  + αAi

2b(1+N)2 + 1
2 ,

8 Notice that in (A.3) the possible dependence of cv(sw) on ei through external spillovers is evidenced.
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with c = 1
4

(
1 + αAi

b(1+N)2

)2 − 1
2

(
1 + αAi

b(1+N)2

)
. The first flip bifurcation for q(x) at c = 3

4 translate for Eq. (18) to the

condition aforementioned.

Appendix  C.  Proof  of  proposition  3

By condition (16), Jacobian matrix (17) computed at E∗, given by Eq. (15), reads

J(E∗) =

⎡
⎢⎢⎣

1 + α1C1e
∗
1

b(1 +  N)2

α1B1e
∗
1

b(1 +  N)2

α2B2e
∗
2

b(1 +  N)2 1 + α2C2e
∗
2

b(1 +  N)2

⎤
⎥⎥⎦

Necessary conditions for stability of E∗ can be expressed by⎧⎪⎨
⎪⎩

1 −  Tr  +  Det  ≥  0

1 +  Tr  +  Det  ≥  0

Det ≤  1
(C.1)

where Tr  and Det  represent the trace and the determinant of J(E∗) respectively.9

These conditions become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1α2e
∗
1e

∗
2

b2(1 +  N)4 (C1C2 −  B1B2) ≥  0 (i)

4 + 2α1C1e
∗
1

b(1 +  N)2 + 2α2C2e
∗
2

b(1 +  N)2 + α1α2e
∗
1e

∗
2

b2(1 +  N)4 (C1C2 −  B1B2) ≥  0 (ii)

− α1C1e
∗
1

b(1 +  N)2 − α2C2e
∗
2

b(1 +  N)2 − α1α2e
∗
1e

∗
2

b2(1 +  N)4 (C1C2 −  B1B2) ≥  0 (iii)

(C.2)

From the first condition we get that C1C2 ≥  B1B2 is necessary for stability; moreover, if also the last two conditions

hold true, by adding them we get 4 + α1C1e
∗
1+α2C2e

∗
2

b(1+N)2 ≥  0, i.e.

4 + 2α1A2B1C1 +  2C2(A1α2B2 −  α1A1C1 −  α2A2C1)

b(C1C2 −  B1B2)(1 +  N)2 ≥  0

It is interesting to notice that when Ci ≥  0, i  = 1, 2 the first condition implies the second one that in turn is incompatible
with the third condition. Hence when Ci ≥  0, i = 1, 2, equilibrium E∗ is never stable.
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