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Abstract. In this paper we consider a game-theoretic dynamic model describing the exploitation of a
renewable resource. Our model is based on a Cournot oligopoly game where n profit-maximizing players
harvest fish and sell their catch on m markets. We assume that the players do not know the law governing
the reproduction of the resource. Instead they use an adaptive updating scheme to forecast the future fish
stock. We analyze the resulting dynamical system which describes how the fish population and the forecasts
(expectations) of the players evolve over time. We provide results on the existence and local stability of
steady states. We consider the set of initial conditions which give non-negative trajectories converging to an
equilibrium and illustrate how this set can be characterized. We show how such sets may change as some
structural parameters of our model are varied and how these changes can be explained. This paper extends
existing results in the literature by showing that they also hold in our two-dimensional framework. Moreover,
by using analytical and numerical methods, we provide some new results on global dynamics which show
that such sets of initial conditions can have complicated topological structures, a situation which may be
particularly troublesome for policymakers.
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1. Introduction

The dynamics of a fish stock results from two effects. First, a fish population is a renewable
resource, that is, it is able to reproduce itself over time. Second, the fish stock is reduced
by the activities of fishermen, who extract fish and sell their catch on markets. In fishery
economics, dynamic models are used to capture these effects and to study the evolution
of the resource stock, to derive optimal harvesting policies and to give recommendations
to policy makers which regulatory measures are suitable in order to e.g. avoid overfish-
ing. Game-theoretic models are used frequently in fishery economics to take strategic
interactions among the fishermen into account. Levhari and Mirman (1982) were among
the first who studied optimal harvesting policies in a duopoly framework with infinite
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horizon; see also Clark (1990). A repeated game setting for fishery management is used
e.g. by Hannesson (1995) and for game-theoretic insights into the management of trans-
boundary fisheries, see McKelvey (1997). Mesterton-Gibbons (1993) provides a survey
of game-theoretic modeling in resource economics. More recently, multi-market, multi-
agent models have been introduced by Szidarovszky and Okuguchi (1998, 2000). They
study memoryless harvesting strategies—i.e. they assume that players are myopic and
only consider the short-run success of their policies—in an n-player, n-market oligopoly
game of international commercial fishing. The authors provide existence and stability
results for the non-cooperative and the full cooperation case, where in the former players
maximize their own profits without taking the effects on overall profits into account and
in the latter each player’s goal is to maximize joint profits. Szidarovszky and Okuguchi
(2000) compare the relative stability of the two situations by considering the extensions of
the basins of attractions, i.e. the set of initial conditions converging to the corresponding
sustainable equilibrium.

In the present paper we take the Szidarovszky-Okuguchi-model as a starting point,
but consider a discrete-time version and relax the assumption that fishermen are perfectly
informed about the fish stock (see also Bischi and Kopel (2002)). The assumption that at
any point in time fishermen are able to accurately predict the future fish stock prevailing in
the sea is very common in fishery economics. However, since the environmental system
where fishermen operate is very complex and highly nonlinear (see e.g. Rosser (2001,
2002)), this is a very strong requirement.1 In our model, at the time when the fishermen
determine their optimal harvest for the next period, they use an imperfect estimate of the
fish stock which is derived from past data. As soon as new information about the fish stock
becomes available, this estimate is updated. The crucial point is that the introduction of
an adaptive process of this kind increases the dimension of the (discrete-time) dynamical
system from one to two. As a result, it makes the study of the stability properties of
the equilibria and, in particular, a characterization of the basins of attraction much more
difficult. Hence, in order to answer questions related to the extension and the topological
structure of the set of initial conditions which generate acceptable or feasible time paths
we introduce and use a global dynamic approach based on a combination of analytical
and numerical methods.

An investigation of the extension and the shape of the basins of the sustainable
equilibria becomes crucial in order to shed some light on the question of conservation or
extinction of the resource. Surprisingly, there are only limited attempts in the literature
to address this important issue, which is probably due to the high complexity of the
models. Sethi and Somanathan (1996) study the use of a common property resource in
an evolutionary game-theoretic framework and analyze the size of the basins of attraction
of the stable states and the changes the basins undergo as structural parameters are varied.
Mäler (2000) considers the dynamical behavior of ecosystems in lakes. He studies the
size of the basins of the two stable steady states (an eutrophic and an oligotrophic state) in
order to get insights into the resilience of the system. In intertemporal optimization models
on resource management global dynamics also play an important role. The optimal long
term policy will be often path-dependent: for initial conditions smaller than a threshold
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(often referred to as a Skiba point) the optimal policy converges to the smaller steady
state, whereas for initial conditions larger than this threshold the optimal policy converges
to the larger one (see also Mäler, (2000)).2

Summarizing, our paper makes two contributions to the literature on dynamic
games. First, we extend the multi-agent multi-market model of Szidarovszky and
Okuguchi by allowing imperfect stock information. Second, we use non-standard tools
for analyzing the global dynamics of dynamic games in discrete time. Although here
we consider resource management, our approach has been quite helpful in various ap-
plications, namely in duopoly games with adaptive expectations (Bischi and Kopel,
2001), evolutionary games of market competition with spillovers (Bischi, Dawid, and
Kopel, 2003a, b) and game-theoretic models of rent-seeking contests (Bischi, Gardini,
and Kopel, 2000; Bischi, Kopel, and Naimzada, 2001).

The paper is organized as follows. In Section 2 we introduce the model. In Section 3
we study existence of equilibria and in Section 4 the local stability of these equilibria
is analyzed. Section 5 focuses on the global dynamics. Throughout our analysis we
compare the case where players act non-cooperatively with the case where players fully
cooperate. We end the paper with a discussion and conclusions in Section 6.

2. The model

There are n players and m markets, where n, m > 1. The n players harvest fish and each
player sells the fish on the m markets.3 The inverse demand functions for the markets
i = 1, 2, . . . , m are given by

pi = ai − bi (x1i + x2i + · · · + xni ), (1)

where xki (t) denotes the amount of fish harvested by player k and sold in market i at
time period t . Let X (t) be the total fish biomass at time t in the common sea and

hk(t) = xk1(t) + xk2(t) + · · · + xkm(t) (2)

be the amount of fish harvested (and sold) by player k at time t . Each player’s harvesting
costs depend on the harvest rate hk and, additionally, on the total fish stock X (this
assumption captures the fact that it is easier and less expensive to catch fish, if the fish
population is large). The cost function of player k is given by

Ck = ck + γkh2
k

/
X, (3)

which satisfies the common assumptions that costs are decreasing in the fish stock and
increasing in harvest.4 Let si (t) = x1i (t) + x2i (t) + · · · + xni (t) be the amount of fish
supplied (and sold) in market i at time period t . We assume that the total fish harvested
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by the players equals the total fish supplied in the markets, i.e.

H (t) := h1(t) + h2(t) + · · · + hn(t) = s1(t) + s2(t) + · · · + sm(t). (4)

Following Szidarovszky and Okuguchi (1998, 2000) we assume that in the absence
of harvesting the stock of the fish population is driven by the discrete-time logistic
equation5

X (t + 1) = X (t) (1 + α − β X (t)) . (5)

The parameter α is referred to as the intrinsic growth rate. For any α > 0 the system
without harvesting has two fixed points

X∗
0 = 0 and X∗

1 = α

β
. (6)

The fixed point X∗
0 = 0 represents the extinction of the species and the second steady

state, K = α/β, is called the “carrying capacity”. The equilibrium point X∗
0 = 0 is

unstable for each α > 0, and the positive equilibrium X∗
1 of (5) is stable for 0 < α < 2.

For 2 < α < 3, even if X∗
1 is unstable, a bounded positive attractor exists around it,

characterized by oscillatory dynamics. For each 0 < α < 3 the basin is given by the
interval6

B =
(

0,
1 + α

β

)
.

Hence, if the intrinsic growth rate is not too large, the unharvested fish population might
fluctuate, but never becomes extinct as long as the initial fish stock is in the interval B.
Only if the initial fish stock is taken out of the interval B, the trajectory would take on
negative values, which can be regarded as extinction of the fish population in finite time
(see e.g. Clarke (1990), p. 13).

As mentioned above, it is usually assumed that fishermen have perfect stock in-
formation. In this case the dynamics of the harvested fish stock is governed by a one-
dimensional system

X (t + 1) = X (t) (1 + α − β X (t)) − H (X (t)) =: F(X (t)) (7)

where H (X (t)) is the total harvest in which notation we show the dependence of the
optimal harvest rate on the fish stock. However, we find the assumption that fishermen
know the relation (5) governing the reproduction of the fish population as very strong.
Hence, here we assume that the players try to predict next period’s fish stock based on
past observations of the fish stock level. To keep the model tractable, we consider a
situation where all players have homogeneous expectations with respect to the future
fish stock, which might be due to the fact that they are engaged in the same business and
share a common experience of working in this industry and, furthermore, have access to
the same kind of environmental information. The common expectation of the fishermen
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is denoted by Xe(t + 1) and stands for the level of the fish stock predicted for period
t + 1. We assume that this prediction is formed by the following adaptive scheme

Xe(t + 1) = λX (t) + (1 − λ) Xe(t) (8)

with 0 ≤ λ ≤ 1, that is as a weighted average of the previous estimate and the observed
actual fish stock. The parameter λ can be interpreted as a measure of the inertia of the
fishermen. Re-written as

Xe(t + 1) = Xe(t) + λ(X (t) − Xe(t))

it becomes clear that players revise their previous forecasts of the fish stock in proportion
to the difference between actual fish stock and the previously predicted fish stock level.
Moreover, it is well-known that the forecasts Xe(t + 1) can be written as a weighted
sum of all past observations of the fish stock, with higher weights given to more recent
observations (e.g. Nerlove (1958)).

Given that players have imperfect stock information and predict the fish stock one
period ahead using (8), the evolution of the fish population and the predicted values of
the fish stock can now be described by a two-dimensional dynamical system:

X (t + 1) = X (t)(1 + α − β X (t)) − H (Xe(t)) (9)

Xe(t + 1) = λX (t) + (1 − λ)Xe(t).

The first equation determines the dynamics of the resource which is subject to the har-
vesting activities of the players. Total harvest results from the individual harvests of the
n players, see (4), who determine their individual quantities on the basis of the predicted
level of the fish population. The second dynamic equation describes the prediction up-
dating. Observe that for λ = 1 we get Xe(t + 1) = X (t) for each t . This special case can
be interpreted as a situation where fishermen have “naive” expectations in the sense that
they believe that from one period to the next the fish stock will not change.7

Note that any non-negative steady state of system (9) (if existing) has to fulfil
Xe = X . This corresponds to the equilibrium condition for the case (7) of perfect stock
information. Consequently, the equilibria in the case of perfect stock information and
for the two-dimensional model of imperfect stock information are the same.8 The point
X∗

0 = 0 is always an equilibrium, since clearly we must have H (0) = 0. Moreover, a
positive X is an equilibrium if and only if

α − β X = H

X
=: g(X ). (10)

Accordingly, the steady state fish stocks are given by the positive intersections of the
linear function α − β X and the graph of the function g(X ).

In the next section we derive expressions for the total harvesting quantity H (Xe(t))
when players behave noncooperatively (each maximizing its own profit) and when they
fully cooperate (each player maximizes the sum of the profits of all players). Using the
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properties of the corresponding functions g(X ), we also give results on the existence of
long run steady states in the two cases.

3. Existence of equilibria

3.1. The non-cooperative case

Each player determines its memoryless harvesting strategy such that its expected profit
is maximized, without taking into account any effect on the total profit. That is, the
players select harvest rates as determined by the non-cooperative Nash equilibrium. The
expected profit of player k in period t is

π e
k (t) =

m∑
i=1

[ai − bi (x1i + x2i + · · · + xni )]xki − ck − γk
h2

k(t)

Xe(t)
. (11)

Observe that in this setup the number of players who are actively harvesting in a Nash
equilibrium is in general endogenously determined since the (expected) fish stock level
influences the harvesting costs of each player. If players differ with respect to their
cost parameters ck and γk , then depending on the level of the (expected) fish stock har-
vesting might be profitable for some players, whereas other players exit the market. Al-
though, a model without interrelated markets has been recently analyzed by Szidarovszky,
Okuguchi, and Kopel (2003), a similar analysis of the more general model where inter-
related markets are considered seems impossible. Hence, here we focus on situations
where all players are actively harvesting independent of the level of the expected fish
stock. In Appendix 1 we show that if the value of the cost parameters γk of the players
are sufficiently similar and fixed costs sufficiently small, then π e

k > 0. Furthermore, hk

is always positive; a sufficient condition for si > 0 is that ai ≡ a for all i ; and, if we
additionally assume that γk ≡ γ for all k, then xki > 0. In summary, if we consider the
symmetric model where players face the same costs (γk ≡ γ ) and assume that ai ≡ a,
we can be assured that our problem has a feasible positive solution with all players being
active in all markets.9 Although we will derive the total harvest for the general case, we
have to keep in mind that the values of the parameters have to be chosen appropriately
in order to fulfill the sufficient conditions given above.

The first order conditions for player k are:

∂π e
k

∂xki
= ai − bi (x1i + x2i + · · · + xni ) − bi xki − 2γk

hk(t)

Xe(t)
= 0 i = 1, . . . , m

from which

xki = ai

bi
− (x1i + x2i + · · · + xni ) − 2

γk

bi

hk

Xe
i = 1, . . . , m (12)

follows. We focus on the total amount of harvest by player k since it is the total harvest
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of all players which determines the dynamics of the fish stock. We add the equations
above for all i = 1, . . . , m to obtain

hk = A − (h1 + h2 + · · · + hn) − 2
Bγk

Xe
hk (13)

where A = ∑m
i=1 (ai/bi ) and B = ∑m

i=1 (1/bi ). This relation can also be written as

hk = A

1 + 2Bγk

Xe

− H

1 + 2Bγk

Xe

,

which, after addition over k = 1, 2, . . . , n, gives

H = A
n∑

k=1

1

1 + 2Bγk

Xe

− H
n∑

k=1

1

1 + 2Bγk

Xe

.

By defining

f (Xe) :=
n∑

k=1

1

1 + 2Bγk

Xe

we obtain the optimal total harvesting quantity of all players in the Nash equilibrium:

H (Xe) = A
f (Xe)

1 + f (Xe)
. (14)

From this expression, we can derive the relative harvest

g(Xe) = H (Xe)

Xe
. (15)

Straightforward, although tedious, calculations show that total harvest H (Xe) is strictly
increasing and strictly concave in the expected fish stock,

∂ H/∂ Xe > 0 and ∂2 H/∂ Xe2 < 0.

Moreover, H (0) = 0, limXe→∞ H (Xe) = An/(n + 1), and limXe→∞ H ′(Xe) = 0. The
relative harvest (15) is strictly decreasing and strictly convex in Xe (see Szidarovszky
and Okuguchi (1998)), i.e.

∂g/∂ Xe < 0 and ∂2g/∂ Xe2 > 0,

and limXe→∞g(Xe) = 0, limXe→∞g′(Xe) = 0. Since the total harvesting quantity is
given by (14), the dynamical system (9) can be written as

X (t + 1) = X (t)(1 + α − β X (t)) − A f (Xe(t))

1 + f (Xe(t))
(16)

Xe(t + 1) = λX (t) + (1 − λ)Xe(t)
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where the parameters γk , α, β, A and B are positive and 0 ≤ λ ≤ 1. Notice that X = 0 is
always an equilibrium, and the positive equilibria are obtained by the positive solutions
of equation

α − β X = g(X ) = A f (X )

(1 + f (X ))X

with C := ∑n
i=1 (1/γk). Clearly, g(0) = AC/2B and g′(0) = −A(

∑n
i=1(1/γ 2

k ) +
C2)/4B2.

3.2. The full cooperation case

We now assume that each player determines its harvesting activity such that the joint
profit of all players is maximized. That is, player k’s harvesting quantity xki is chosen
such that π e = ∑n

k=1π
e
k , is maximized, where π e

k is given in (11). It is easy to see
that the solution obtained under this assumption of full cooperation is the same as for
a situation where a sole owner determines the total harvest and delegates the individual
harvesting quantities to the n players such that total costs are minimized. As in the non-
cooperative case, an industry equilibrium may be determined endogenously, since due to
their costs some players might not find it worthwhile to be active or might pull out from
certain markets. In Appendix 1 we show that, in contrast to the non-cooperative case,
π e

k is always positive if fixed costs are sufficiently small. Therefore, industry profits are
positive. Furthermore, again hk is always positive. A sufficient condition for si > 0 is
that ai ≡ a for all i and there exist xki > 0 as long as si > 0. In summary, if we consider
the case where ai ≡ a for all i , we can be assured that our problem has a feasible positive
solution with all n players being active. Note that in contrast to the non-cooperative case,
no restrictions with respect to the players’ cost values are needed in order to ensure this
existence.

The first-order conditions for each player k are

∂π e

∂xki
= ai − 2bi (x1i + x2i + · · · + xni ) − 2γk

hk(t)

Xe(t)
= 0 i = 1, . . . , m.

We rewrite these conditions as

ai

bi
− 2(x1i + x2i + · · · + xni ) − 2γk

hk(t)

bi Xe(t)
= 0 i = 1, . . . , m. (17)

Adding over all markets i yields

A − 2H − 2γk
Bhk(t)

Xe(t)
= 0,
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where we use the same definitions of A and B as before. Rewriting this condition as

A − 2H

2Bγk
= hk

Xe
, (18)

and summing over all players gives the expression for the total harvest if players fully
cooperate

H V (Xe) = AC Xe

2(C Xe + B)
, (19)

where as before C := ∑n
k=1

1
γk

. The relative harvest in this case is given by

gV (Xe) = H V

Xe
= AC

2(C Xe + B)
.

It is easy to see that, as in the non cooperative case, H V is strictly increasing and strictly
concave. Furthermore, H V (0) = 0, limXe→∞ H V (Xe) = A/2, and limXe→∞ H V ′(Xe) =
0, and gV is strictly decreasing and strictly convex in Xe. In addition, limXe→∞gV (Xe) =
limXe→∞gV ′(Xe) = 0.

The dynamic equations obtained for the full cooperation case under imperfect stock
information are now given by

X (t + 1) = X (t) (1 + α − β X (t)) − AC Xe

2(C Xe + B)
(20)

Xe(t + 1) = (1 − λ)Xe(t) + λX (t)

and the equilibrium condition (10) is

α − β X = gV (X ) = AC

2(C X + B)
.

Clearly, gV (0) = AC/2B = g(0), but gV ′(0) = −AC2/2B2 < g′(0).

3.3. Equilibrium analysis

We can state the following result on the existence and number of steady states in both
non-cooperative and cooperative cases, which can be derived directly from the properties
of the function g and from figure 1.

Proposition 3.1. Let H (X ) be the total harvest (14) or (19) and let g(X ) = H (X )/X
denote the relative harvest. Then the following holds.
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Figure 1. Graphical representation of the equilibrium condition α − β X = g(X ), where g(X ) and gV (X )
represent the relative harvests under the assumptions of no cooperation (solid line) and full cooperation
(dashed line) respectively. Four different situations can be distinguished resulting in a different number of

equilibria.

(i) Assume first that g(0) > α and g′(0) < −β. Then, there is a unique X̄ such that
g′(X̄ ) = −β.
(iA) If g(X̄ ) > α − β X̄ , then no positive equilibrium exists.
(iB) If g(X̄ ) = α − β X̄ , then there is a unique positive equilibrium.
(iC) If g(X̄ ) < α − β X̄ , then there are two positive equilibria.

(ii) Assume next that g(0) > α and g′(0) ≥ −β. Then no positive equilibrium exists.

(iii) Assume that g(0) = α.
(iiiA) If g′(0) < −β, then there is a unique positive equilibrium.
(iiiB) If g′(0) ≥ −β, then there is no positive equilibrium.
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(iv) Assume finally that g(0) < α. Then there is a unique positive equilibrium.

Notice that (iiiB) is the borderline case of (ii), (iiiA) is a borderline case of (iv),
and (ii) and (iA) can be treated in the same way. So we have four basic cases (see
figure 1). In case 1, no positive equilibrium exists. Case 2 is characterized by the existence
of a unique positive equilibrium. In case 3, two positive equilibria X∗

1 and X∗
2 exist, where

X∗
1 < X∗

2 . In case 4, again only 1 unique equilibrium exists.
We can compare the total harvest rates of all players in the non-cooperative and

cooperative cases in the following way.

Lemma 3.2. For a given expected fish stock Xe and a given number of players n, we
have

H V (Xe) < H (Xe),

i.e. the total harvest in the full cooperation case (19) is smaller than in the non-cooperative
case (14).

Proof. The inequality H V (Xe) < H (Xe) is equivalent to

f (Xe(t)) >
C Xe

C Xe + 2B
.

Let zk = Xe

2Bγk
. Then f (Xe) = ∑n

k=1
1

1+ 1
zk

= ∑n
k=1

zk
1+zk

. The right hand side of the

inequality can be also expressed in terms of zk as C Xe

C Xe+2B = 1
1+2B/C Xe = 1

1+1/
∑n

k=1zk=
∑n

k=1zk∑n
k=1zk+1 . Since, for k = 1, 2, . . . , n we have zk

1+zk
> zk

1+∑n
k=1zk

, adding these inequali-
ties for all k proves the claim.

Note, however, that this result is valid only for a given expected fish stock. In
general, the positive long-run equilibrium fish stock levels for the full cooperation case
and the non-cooperative case differ. Therefore, this result does not tell us how these
steady states and the corresponding total harvests in these steady states relate to each
other.10

In comparing the two cases we have the following additional result.

• In case 1, if there is no positive equilibrium for the non-cooperative case, full coop-
eration may result in the emergence of one or two (positive) equilibria, X∗V

1 and X∗V
2

(figure 1(a)).

• In case 2, full cooperation will result in the appearance of two positive equilibria,
X∗V

1 and X∗V
2 , where the original positive equilibrium (for the non-cooperative case)

is always between the two new equilibria (for the full cooperation case) (figure 1(b)).

• In case 3, with full cooperation two equilibria still exist. The change occurs with
respect to the location of the equilibria: the smaller equilibrium decreases and the
larger one increases, i.e. X∗V

1 < X∗
1 and X∗V

2 > X∗
2 (figure 1(c)).
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• Considering case 4 we notice that with full cooperation the unique positive equilibrium
increases with respect to the noncooperative game, i.e. X∗V > X∗ (figure 1(d)).

Intuitively, our results show that for the same expected fish stock, agents acting
cooperatively harvest less than if they act in a noncooperative way. The aggregate behavior
eventually leads to a higher sustainable fish stock in the long run. Therefore, cooperation
leads in this sense to conservation of the resource. These insights are in line with earlier
results for game-theoretic models of fisheries (e.g. Clark, 1990; Levhari and Mirman,
1982).

4. Local stability of equilibria

The two-dimensional dynamical system in (9) can be represented as an iterated point
mapping

T :

{
X (t + 1) = X (t)(1 + α − β X (t)) − H (Xe(t))

Xe(t + 1) = λX (t) + (1 − λ)Xe(t).
(21)

Each time the map T is applied, a point of the plane (X, Xe) is moved to another point,
which represents the state of the system at the next time step. A trajectory of the system

τ (X (0), Xe(0)) = {(X (t), Xe(t)) = T t (X (0), Xe(0)), t ≥ 0}

is generated by T starting from an initial condition (X (0), Xe(0)). The projection of
points of a trajectory on the horizontal axis gives the time evolution of the fish stock, the
projection on the vertical axis gives the time evolution of players’ forecasts. Time periods
at which the trajectory is close to the diagonal Xe = X correspond to periods at which
expectations are quite accurate, whereas points far away from the diagonal represent
situations where players overestimate (points above the 45-degree line) or underestimate
(points below the 45-degree line) the actual fish stock.

For the non-cooperative and cooperative case, the total harvest H is given by (14)
or (19). To derive conditions for the local stability of the equilibria, we have to analyze
the eigenvalues of the Jacobian matrix

DT (X, Xe) =
[

1 + α − 2β X −H ′(Xe)

λ 1 − λ

]
,

evaluated at the equilibrium (or fixed point) under consideration. At a given fixed point
(X∗, X∗), the characteristic equation becomes P(z) = z2 − T r∗z + Det∗ = 0, where

T r∗ = 2 + α − 2β X∗ − λ and Det∗ = (1 − λ)(1 + α − 2β X∗) + λH ′(X∗).
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A sufficient condition for the stability is given by the following system of inequalities

P(1) = 1 − T r∗ + Det∗ > 0 ; P(−1) = 1 + T r∗ + Det∗ > 0 ; Det∗ < 1

(22)

which provide necessary and sufficient conditions for the two eigenvalues to be inside
the unit circle of the complex plane (see e.g. Gumowski and Mira (1980) or Medio and
Lines (2001)).

As an example consider the equilibrium O = (0, 0). The first condition in (22) gives
H ′(0) > α. It is easy to see that this condition coincides with the stability condition of the
one-dimensional model (7) where agents have perfect stock information (see also Bischi
and Kopel (2002)). The second condition becomes 4 + (2 − λ)α + λH ′(0) − 2λ > 0,
which is always satisfied, since 0 ≤ λ ≤ 1. The third condition gives the extra stability
condition

H ′(0) < (λ − α (1 − λ)) /λ.

So, we can conclude that the range of local asymptotic stability of the extinction equi-
librium, defined by

α < H ′(0) < 1 − α
1 − λ

λ

is non-empty only if α < λ. It is again easy to see that the range of stability of the
extinction equilibrium is smaller under the adaptive forecasting scheme (8) than in the
case of perfect stock information (Bischi and Kopel, 2002). However, from this insight we
must not conclude that extinction is less probable if agents adapt their beliefs using such
an adaptive scheme. In fact, the conditions above only concern the asymptotic stability
of the extinction equilibrium, whereas extinction may occur in finite time. The reason for
this is that trajectories may exit the positive quadrant in finite time, although eventually
converging towards an equilibrium. As an example consider the situation where the
fixed point (0, 0) is an unstable focus (complex eigenvalues with modulus greater than
one). Trajectories can be described as spiralling around (0, 0) with increasing amplitude.
Of course, this implies that the time paths would involve negative and hence unfeasible
values of the fish stock. In such a case, in fishery economics this matter is solved by saying
that extinction occurs in finite time (see Clark (1990) and Bischi and Kopel (2002) for a
more detailed discussion on this point).

A rigorous analytical study of the conditions for the stability of the positive equilib-
ria, when they exist according to Proposition 3.1, is not easy, because in the general case
we do not have analytical expressions of their coordinates. However, we know that if a
positive equilibrium (X∗, X∗) of the model (9) exists, then X∗ is also an equilibrium of
the model with perfect stock information (7). Starting from this observation, we investi-
gate the influence of the degree of inertia in revising expectations (which is represented
by the parameter λ) on the stability of the equilibrium (X∗, X∗) given that a positive
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equilibrium X∗ is stable under the assumption of perfect stock information. Although
the coordinates of a steady state of (9) are independent of the parameter λ, its stability is
influenced by λ according to the following Proposition.

Proposition 4.1. Let X∗ be a positive steady state which is stable under the dynamics
with perfect stock information (7) with H defined in (14) or (19).

(i) If H ′(X∗) < 1 and α − 2β X∗ < 0, then (X∗, X∗) is a stable steady state of (9) for
each λ ∈ [0, 1].

(ii) If H ′(X∗) > 1 and α − 2β X∗ < 0, then (X∗, X∗) is a stable steady state of (9) for
λ ∈ [

0, λ̄
]
, where

λ̄ = α − 2β X∗

1 + α − 2β X∗ − H ′(X∗)
(23)

and it loses stability through a Neimark-Hopf bifurcation as λ is increased across
the bifurcation value λ̄ ∈ (0, 1).

(iii) If H ′(X∗) < 1 and α − 2β X∗ > 0, then (X∗, X∗) is a stable steady state of (9)
for λ ∈ [λ̄, 1], where λ̄ ∈ (0, 1) is given by (23), and it loses stability through a
Neimark-Hopf bifurcation as λ is decreased across the bifurcation value λ̄.

(iv) If H ′(X∗) > 1 and α − 2β X∗ > 0, then (X∗, X∗) is unstable for each λ ∈ [0, 1]
under the dynamics of (9).

Proof. Stability under perfect stock information means that |F ′(X∗)| < 1, i.e. H ′(X∗)−
2 < α−2β X∗ < H ′(X∗). Under this assumption it is easy to show that the first and second
stability conditions (22) are always satisfied. In fact, P(1) = λ(2β X∗−α+ H ′(X∗)) > 0,
and P(−1) = (2 − λ) (α − 2β X∗ + 2) + λH ′(X∗) > 2H ′ (X∗) > 0 for each λ ∈ [0, 1].
The third stability condition can be written as Det∗(λ) < 1, where Det∗(λ) is a linear
function of λ such that Det∗(0) = (1 + α − 2β X∗) and Det∗(1) = H ′(X∗). So, if the
assumptions in (i) hold, then Det∗(λ) < 1 for each λ ∈ [0, 1], if the assumptions in (iv)
hold, then Det∗(λ) > 1 for each λ ∈ [0, 1], whereas under the assumptions in (ii) and
(iii) the graph of Det∗(λ) crosses the value Det∗(λ) = 1 at λ = λ̄ ∈ (0, 1), with positive
or negative slope respectively. The conditions P(1) > 0, P(−1) > 0 and Det∗(λ̄) = 1
ensure that for λ = λ̄ the two eigenvalues of DT (X∗, X∗) are complex conjugate with
unitary modulus, i.e. they are on the unit circle of the complex plane, and are crossing
it with d Det∗(λ̄)

dλ
	= 0. These are the conditions for the occurrence of a Neimark-Hopf

bifurcation at λ = λ̄.

Our numerical investigations suggest that the Neimark-Hopf bifurcation is sub-
critical. That is, a repelling invariant closed curve exists around the stable equilibrium
when the parameter λ is close to the bifurcation value (23) and this curve constitutes
the boundary of the immediate basin of the stable equilibrium. This basin shrinks as λ

approaches the bifurcation value λ̄, at which the equilibrium becomes unstable.
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Propositions 3.1 and 4.1 are valid in both cases, non-cooperative and cooperative.
However, important differences in the quantitative effects are caused by the fact that total
harvest is lower in the cooperative case. As argued above, when a unique equilibrium
exists in both cases, we have X∗V > X∗; when two equilibria exist, then for the larger
one (which is the only one that can be stable under perfect stock information) the relation
X∗V

2 > X∗
2 holds. Now start from a given equilibrium X∗ which is stable in the perfect

stock information case with harvesting H . Denote by X∗V > X∗ the corresponding
stable equilibrium in the perfect stock information case with cooperative harvesting H V .
Then, the inequalities H V ′(X∗V ) < H ′(X∗) and α − 2β X∗V < α − 2β X∗ hold and,
consequently, the stability range as the parameter λ is varied is larger in the case of full
cooperation.

As far as stability and the stability extent of the equilibria are concerned, the main
differences between the two cases, non-cooperation and full cooperation, can be better
illustrated by numerical studies which are guided by the analytic and qualitative insights
presented above.

5. Global dynamics

Now we turn to an analysis of the global dynamics of our fishery model for various
choices of the parameters. Our goal in this section is to characterize the set of initial
conditions which (i) lead to time paths involving only non-negative values of the fish
stock and (ii) converge to a positive steady state. Following Bischi et al. (2000) we will
refer to this set as the feasible set. If negative values of the fish stock are obtained, we
consider the fish populations as extinct (in finite time). Hence, the feasible set is (in
most cases considered here) a subset of the basin of attraction in a mathematical sense.
As numerical experiments will show, the feasible set may have complicated topological
structure. Indeed, it may be formed by several non-connected portions or it may be a
connected set with “holes” inside, where such “holes” represent portions of the basins
of other attractors.11 These phenomena are related to the fact that the two-dimensional
dynamical system in discrete time which governs the adaptive process is obtained through
the iteration of a noninvertible (or many-to-one) map.12 The global bifurcations that
cause qualitative changes of the structure of the feasible set will be explained by using the
concept of critical curves. A brief introduction into this concept is provided in Appendix 2.
The interested reader is also referred to Mira et al. (1996), Puu (2000); see Bischi, Gardini,
and Kopel (2000), Bischi and Kopel (2001, 2002, 2003), Bischi, Dawid, and Kopel (2003),
for recent applications in economics.

In the numerical examples described in this section, the values of the “biological”
parameters are13

α = 3, β = 1. (24)

Moreover, for both cases—cooperative and non-cooperative—situations with two players
and two markets, i.e. n = m = 2, and no fixed costs, ck = 0, are considered. To make



314 BISCHI, KOPEL AND SZIDAROVSZKY

sure that quantities and profits are positive, we choose values for the parameters such
that the sufficient conditions provided in Appendix 1 are fulfilled (γ1 = γ2 = γ and
a1 = a2 = a).

5.1. The non-cooperative case

We first study the global dynamics of the non-cooperative case with a1 = a2 = 4.8, b1 =
b2 = 2, γ1 = γ2 = 1.1, and λ = 0.6. These parameter values yield A = 4.8, B = 1,
C = 1.8182. We have AC/(2B) > α, and there are two positive equilibria for the
competitive harvesting case with perfect stock information, X∗

1 = 0.6 < X∗
2 = 1.67,

where X∗
1 is unstable and X∗

2 is stable. The corresponding steady states of the two-
dimensional model with imperfect stock information, (X∗

1, X∗
1) and (X∗

2, X∗
2), are a saddle

point and a stable focus respectively. The feasible set of the stable equilibrium (X∗
2, X∗

2),
represented by the white region in figure 2(a), is rather large. Moreover, the equilibrium
is far away from the boundaries. This can be taken as an indication that in such a situation
even exogenous shocks will not lead to disaster, i.e. the stable equilibrium is robust with
respect to noise (see Mäler, 2000). The grey region in figure 2(a) represents the set of
initial conditions which result in extinction of the fish population (recall that this means
extinction in the long run or extinction in finite time). The boundary that separates the
two sets is formed by the stable manifold of the saddle point (X∗

1, X∗
1).

We will study the impact of changes in the cost parameters γ1 and γ2 on the extent
of the feasible set and its structure. The influence of changes in the cost parameters is of
significant interest for policy makers, since the costs of harvesting can be changed by such
methods as restricting the length of the fishing season, setting total catch limitations, and
regulating the type of fishing gear used. Furthermore, we will also investigate the effect
of variations in λ, which measures the inertia of the fishermen to revise their forecasts as
new information becomes available. The influence of changes in λ is interesting from a
behavioral point of view: if fishermen put a higher weight on the most recently observed
fish stock, how does this change the feasible set of the stable equilibrium?

Intuitively speaking, high harvesting costs should prevent over-fishing and lead
to more conservation. Indeed, this is the situation shown in figure 2(a). The situation
changes drastically, however, for decreasing cost values. This is shown in figure 2(b),
obtained with γ1 = γ2 = 0.9. In this case, the size of the feasible set (which here
coincides with the basin) of the positive equilibrium is small, and it will reduce even
further for decreasing values of the cost parameters, until the equilibrium will become
unstable and every initial condition will lead to extinction. So, as the intuition suggests,
as it becomes cheaper to harvest fish, extinction of the fish stock becomes increasingly
more likely.

To investigate the role of the inertia of fishermen to revise their forecasts, we use
the same set of parameters as in figure 2(b), and consider the stability results stated in
Proposition 4.1. In this case we have H ′(X∗

2) = 0.8 < 1 and α−2β X∗
2 = 0.2 > 0. So, we

expect that the positive equilibrium will lose stability via a Neimark-Hopf bifurcation, if



MULTI-AGENT FISHERIES 315

Figure 2. The non-cooperative case. The figures show the set of points (white region) that generate positive
trajectories converging to the equilibrium (X∗

2 , X∗
2). All points in the grey region generate trajectories that

converge to the (0, 0) equilibrium (i.e. asymptotic extinction) and points that generate trajectories leading
to extinction in finite time. (a) a1 = a2 = 4.8, b1 = b2 = 2, γ1 = γ2 = 1.1, λ = 0.6. (b) same as (a), but

γ1 = γ2 = 0.9. (c) same as (a), but λ = 0.3. (d) same as (b), but λ = 0.9.

λ becomes lower than λ̄ = 0.278. Indeed, for λ = 0.3 the feasible set (which coincides
with the basin) of the positive equilibrium is so small that the term “stability” has lost
any practical meaning (see figure 2(c)). It can be noticed that now the basin is formed
by several non connected portions: the “immediate basin”, i.e. the portion of the basin
that includes the stable equilibrium, is bounded by a repelling closed invariant curve of
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circular shape, thus suggesting that a subcritical Neimark-Hopf bifurcation is going to
occur if λ is further decreased. The other portions are preimages of the immediate basin.
Of course, in such a situation an increase in λ, i.e. less inertia in revising expectations,
causes an enlargement of the basin or feasible set. This is shown in figure 2(d), which is
obtained with the same values of the cost parameters as figure 2(b) and 2(c) and λ = 0.9.
This seems to suggest that less inertia in revising expectations yields more robustness of
the stable equilibrium.

Consequently, it seems that there are two possible ways to achieve more stability
in terms of the extent of the feasible set of the equilibrium. A policy maker may increase
the costs of harvesting the resource and may prevent over-fishing of the resource. If it is
more expensive for fishermen to harvest the resource, total harvesting activity is reduced.
As a result, conservation of the resource is achieved from a larger set of initial conditions
for fish stock and predictions. A different route to higher stability seemingly is to make
the fishermen believe that the use of the most recent observation of the fish stock gives
a better prediction of future fish stocks than relying on past observations.

However, the second route does not always work, as suggested by Proposition 4.1.
For example, let us consider the situation shown in figure 3(a), which is obtained for
a1 = a2 = 5.5, b1 = b2 = 1, γ1 = γ2 = 2.58 and λ = 0.3. These values yield
A = 11, B = 2, C = 0.775. In this case AC/(2B) < α, so we have only one positive
equilibrium at X∗ = 1.522. Since H ′(X∗) = 1.02 and α − 2β X∗ = −0.0443, the case
(ii) of Proposition 4.1 implies that stability is lost for increasing values of the parameter
λ at the bifurcation value λ̄ = 0.64. In fact, figure 3(b) shows the result obtained for
λ = 0.6, which indicates that a subcritical Neimark-Hopf bifurcation at which stability

Figure 3. The non-cooperative case. The values of the parameter are a1 = a2 = 5.5, b1 = b2 = 1,
γ1 = γ2 = 2.58. (a) λ = 0.3; (b) λ = 0.6.
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Figure 4. The non-cooperative case. The values of the parameters are a1 = a2 = 6, b1 = b2 = 2, λ = 0.3.
(a) γ1 = γ2 = 1.75, λ = 0.3. (b) γ1 = γ2 = 1.725. (c) γ1 = γ2 = 1.71. In the figures the critical curves LC−1

(locus of vanishing Jacobian) and LC = T (LC−1) are depicted. Branches of LC constitute the boundaries
that separate regions with different number of preimages, denoted by Zk and Zk+2.

is lost will occur. So, in this situation stability (as well as a larger feasible set) is ensured
for higher inertia in revising expectations, i.e. for lower values of λ.

Another interesting situation is obtained for a1 = a2 = 6, b1 = b2 = 2, λ = 0.3,
γ1 = γ2 = 1.75 and λ = 0.3, which yields A = 6, B = 1, C = 1.1428 (figure 4(a)).
In this case two positive equilibria exist for harvesting under perfect stock information,
the stable one being X∗

2 = 1.5. Since H ′(X∗
2) = 0.65 and α − 2β X∗

2 = 0, case (i) of
Proposition 4.1 ensures that the positive equilibrium is stable for each λ = [0, 1], i.e.
the equilibrium is not destabilized as the predictions move closer to so-called “naive”
forecasts (λ = 1).

However, surprising and unexpected effects are obtained for decreasing cost values.
As we will demonstrate, the observed changes in the feasible set can be explained by
global bifurcations due to contacts between critical curves and the feasible sets’ bound-
aries (see Mira et al. (1996), or Bischi and Kopel (2001), for more details). We refer the
reader to Appendix 2 where we give a brief introduction into the concepts used for our
analysis. In figure 4(a) the critical curves LC−1 and LC are shown. The region inside
the two branches of LC (joining at a cusp point) is characterized by points that have two
more preimages than points located outside of this region. Hence, in figure 4, we denote
these two regions by Zk+2 and Zk . The critical curve LC can now be used to understand
the qualitative changes in the topological structure of the feasible sets shown in figure 4 in
terms of contacts between LC = T (LC−1) and the sets’ boundaries (global bifurcations).
Starting from a situation presented in figure 4(a), for decreasing cost values the feasible
set of the stable equilibrium shrinks. In figure 4(b), obtained for γ1 = γ2 = 1.725, we
show the situation right after the boundary of the feasible set had a contact with LC . A
small portion of the grey set (the “extinction set”)—denoted by H0—entered the region
Zk+2 and two new rank-1 preimages of H0 are created, which are located at opposite
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sides with respect to LC−1 and joining along it (this is due to the fact that LC−1 is the
locus of merging preimages of the points of LC). These newly created two preimages,
denoted by H (1)

−1 and H (2)
−1 in figure 4(b), constitute a “hole” inside the feasible set of the

positive stable equilibrium. This hole belongs to the grey set, and hence initial conditions
in this set lead to extinction of the fish population.14 The rank-1 preimages of the points
which belong to this “main hole” form another “hole”, denoted by H−2, whose points are
mapped into H0 after two iterations. This iterative procedure gives rise to a sequence of
holes nested inside the feasible set of the positive equilibrium. Observe that this global
bifurcation drastically changes the topological structure of the feasible set from a simply
connected set to a multiply connected set (compare figures 4(a) and (b)). However, if
cost values are decreased further, another global bifurcation can be detected. In this case
it is due to the contact between the portion of the boundary of the feasible set denoted
by K0 in figure 4(b). The effect on the feasible set is shown in figure 4(c), obtained
after a decrease of γ1 and γ2 to 1.71. Now the feasible set is formed by the immediate
basin (bounded by a repelling invariant closed curve) and several non connected portions
which are preimages of the immediate basin.

Generally speaking, if we denote by B0 the immediate basin, then the total basin
can be expressed as

B(A) =
∞⋃

n=0

T −n(B0(A))

where T −n(x) represents the set of all the rank-n preimages of x , i.e. the set of points
which are mapped in x after n iterations of the map T . This suggests an intuitive ex-
planation of the mechanism that gives rise to non-connected sets or basins. If a map is
noninvertible, it maps distinct points into the same point. Put differently, we can say it
folds the phase plane. Equivalently, the backward iteration of a noninvertible map re-
peatedly unfolds the phase space. This implies that the basins (or feasible sets) may be
non-connected, i.e. formed by several disjoint portions (see e.g. Mira et al., 1996; Abra-
ham, Gardini, and Mira, 1997; Bischi, Gardini, and Kopel, 2000; Bischi and Kopel, 2001;
Agliari, Bishi, and Gardini, 2002). Note that such a complexity of the basin (multiply
connected or non-connected) can only arise in discrete dynamical systems generated by
the iteration of a noninvertible map.15 Structures of the feasible set like those shown in
figure 4(c) have important consequences for practical considerations. In such a situation,
we have distinct sets of initial conditions for the fish stock and its predicted value which
lead to a sustainable fish stock in the long run. They are embedded, however, in the set of
combinations which lead to extinction of the fish population (in finite or infinite time).
This contrasts sharply with the cases described by Mäler (2000), Sethi and Somanathan
(1996), Deissenberg et al. (2003) or others, since in their models only one critical thresh-
old value between the “good” and the “bad” outcome exists. If basins or feasible sets
have a complicated structure like in figure 4(c), there are several such threshold values
which relate to each other in a non-systematic fashion. To strengthen our argument, we
show one final scenario in figure 5, where a1 = a2 = 5.5, b1 = b2 = 1, λ = 0.3,
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Figure 5. The non-cooperative case. The values of the parameters are a1 = a2 = 5.5, b1 = b2 = 1, λ = 0.3,
γ1 = γ2 = 2.5735. The critical curves LC−1 and LC are shown.

γ1 = γ2 = 2.5735. In contrast to the cases discussed before, now even a very small dif-
ference in the value of either the fish stock or its prediction can have serious consequences
with respect to the long run fate of the fish population. This kind of complexity of the
feasible set is particularly relevant in fishery economics, because very small differences
in initial conditions (or slight displacements due to noise) can lead to vastly different
outcomes, namely conservation or extinction of the species. Authors have used the term
final-state sensitivity to describe such situations (see Grebogi et al., 1983; Brock and
Hommes, 1997).

5.2. The full cooperation case

For the sake of comparison, we briefly discuss the full cooperation case and compare
the results with the observations of the previous subsection. We first consider the same
parameter values as in figure 2(c) and examine the extent of the feasible set of the
stable positive equilibrium in the full cooperation case (figure 6(a)). The feasible set
is much larger than in the non-cooperative case. Moreover, X∗V

2 = 2.03 and, since
H ′(X∗V

2 ) = 0.175 and α − 2β X∗V
2 = −1.07, Proposition 4.1 ensures that the positive

equilibrium is stable for each λ = [0, 1]. Figure 6(b) is obtained with the same parameters
as those used in figure 5. Also in this case, the equilibrium fish stock is larger, namely
X∗V = 1.71 > X∗ = 1.51. The most evident difference however, is that the feasible set is
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Figure 6. The full-cooperation case. The white region represents the feasible set of the equilibrium (X∗
2 , X∗

2).
The region in grey represents points leading to extinction of the fish population. (a) the same set of parameters

as in figure 2(c). (b) the same parameters as in figure 5.

larger and any complexity of its structure is lost. Also in this case, since H ′(X∗V ) = 0.77
and α − 2β X∗V

2 = −0.42, Proposition 4.1 ensures that the positive equilibrium is stable
for each λ = [0, 1]. These two examples illustrate that cooperation among players leads
to a considerable enlargement of the feasible set. Given initial players’ forecasts of the
fish stock and actual fish stock levels, the likelihood of obtaining a feasible trajectory is
higher if players behave cooperatively.

6. Conclusions and discussion

In this paper we have introduced a game-theoretic model, where a fish population is
subject to the harvesting activities of n fishermen who sell their catch on m different
markets. In contrast to the existing literature, we have assumed that fishermen do not know
the biological growth function of the resource. Instead they use an adaptive forecasting
scheme to update their estimates of the fish stock. We have considered the cases of
full cooperation and non-cooperation and have provided existence and local stability
conditions. Furthermore, we have studied the global dynamics of our model. For the
non-cooperative case we have illustrated that feasible sets can be non-connected and
multiply connected, and that this complexity vanishes if players cooperate. We have also
observed that for the same set of parameters the feasible sets of the equilibrium is larger
when players cooperate.

From this comparison, we can conclude that our results are in line with the existing
literature on the role of cooperation in fishery economics; see Clarke (1990), Levhari
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and Mirman (1982), and Szidarovszky and Okuguchi (2000). There it is shown that
cooperation among the players lead to a higher long run fish stock and, as far as the
stability extent of the positive stable equilibrium is concerned, cooperation leads to more
stability. In this paper we have shown that these results carry over to a two-dimensional
framework. On the other hand, our simulations also show that the structure of the sets
which lead to a sustainable fish population can be quite complex, a property which has
not been observed before in fishery economics, but seems to be particularly relevant for
it.

To conclude our paper, we would like to discuss the issue of measuring “stability”
in higher-dimensional models, which is an important topic and not only relevant in the
context of fishery economics. Put differently, what do we mean when we talk about the
“extent of the feasible sets or the basins of attraction of a stable equilibrium”? Comparing
the figures obtained for the non-cooperative and the full cooperation case (e.g. figures 2(c)
and 6(a)), one can observe that the stable equilibrium in the former case is closer to the
boundary of the feasible set than in the latter. Moreover, in figures 2(d), 3(a), 4(a)—
although the feasible set is large and simply connected—the equilibrium is nevertheless
quite close to its boundary. Such a situation might not be considered as being stable
despite a large feasible set, since displacements of the trajectory—which might be due
to small perturbations or small errors in the prediction of the fish stock—might result in
extinction of the fish population. Small mistakes can cause large differences in outcomes.
The situation is different for the same sets of parameters for the full cooperation case,
where the stable equilibrium is further away from the boundary. Accordingly, in addition
to having a larger set of initial conditions which lead to a sustainable long run steady
state, we would consider such a situation as being more stable in the sense that it is more
robust to exogenous influences or prediction errors (for a more rigorous treatment of
these ideas, see McDonald et al., 1985). This certainly is a topic for future research.

Appendix 1: Positivity of profits and quantities

In this appendix we provide conditions such that the profits, the supplied and the harvested
quantities of the players are positive.

The non-cooperative case

• Player k’s harvest
From (13) we get using (14)

hk = A − H

1 + 2Bγk/Xe
= A

(1 + 2Bγk/Xe)(1 + f (Xe))

which is always positive.
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• Total quantity supplied to the i-th market
By adding the individual quantities in (12) for all players k, we get

si = nai

bi
− nsi − 2

bi Xe

n∑
k=1

γkhk

Therefore,

si = 1

(n + 1)bi

(
nai − 2

Xe

n∑
k=1

γkhk

)

For Xe → ∞, we have f (Xe) → n and hk → A/(n + 1). Hence, the expression
in the parenthesis tends to nai . Consequently, if Xe is sufficiently large, then si > 0.
Furthermore, if ai ≡ a for all i , then

2

Xe

n∑
k=1

γkhk = 2

Xe

n∑
k=1

γk A

(1 + 2Bγk/Xe)(1 + f (Xe))

<
2

Xe

n∑
k=1

γk A

2Bγk/Xe
= n A

B
= na

since A = aB. This gives a sufficient condition for si > 0.

• Individual quantities of players
In addition to ai ≡ a for all i , we now assume that players use the same fishing
technology, so that γk = γ for all k. Note that due to the latter assumption, the game
becomes symmetric, since all n players face the same costs and supply the same m
markets. Therefore, we have xki = xi (all the players offer the same quantity on
market i) and hk = h = H/n. Then from (12) we get

xki = xi = a

bi
− si − 2

bi Xe
γ h =

= a

bi
− 1

(n + 1)bi

(
na − 2

Xe
nγ h

)
− 2

bi Xe
γ h

= 1

(n + 1)bi

(
a − 2

Xe
γ h

)

where we used the expression for si from above. Since

2

Xe
γ h = 2γ AXe

Xe((n + 1)Xe + 2Bγ )
<

A

B
= a

it follows that xki = xi > 0.
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• Player k’s profit
Assume that xki ≥ 0 for all k and i . Then for ck = 0 we have

π e
k =

m∑
i=1

(ai − bi si )xki − γk
h2

k

Xe

=
m∑

i=1

[
ai − 1

(n + 1)

(
nai − 2

Xe

n∑
l=1

γlhl

)]
xki − γk

h2
k

Xe

=
m∑

i=1

1

(n + 1)

[
ai + 2

Xe

n∑
l=1

γlhl

)]
xki − γk

h2
k

Xe

>
2hk

(n + 1)Xe

n∑
l=1

γlhl − γk
h2

k

Xe

= hk

(n + 1)Xe

(
2

n∑
l=1

γlhl − (n + 1)γkhk

)

The last expression is clearly positive in the symmetric case, γk = γ for all k. If the
cost values γk of the players are very close to each other, then the player’s harvests
hk are also close to each other. Hence, the expression in the last line above remains
positive, since we have 2n positive terms and only (n + 1) negative terms.

The full cooperation case

• Player k’s harvest
From (18) and (19), we get

hk = (A − 2H V )Xe

2Bγk
= AXe

2γk(C Xe + B)

which is clearly positive.

• Total quantity supplied to the i-th market
From (17), we obtain

si = 1

2bi

(
ai − 2γkhk

Xe

)
= 1

2bi

(
ai − A

C Xe + B

)

which is positive if and only if ai > A
C Xe+B . If ai B ≥ A or Xe is sufficiently large,

then si > 0. If ai ≡ a for all i , then si > 0.
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• Individual quantities of players
Recall that

n∑
k=1

xki = si i = 1, 2, . . . , m

m∑
i=1

xki = hk k = 1, 2, . . . , n

and
∑m

i=1 si = ∑n
k=1 hk = H ; see (4). Therefore, from the theory of linear pro-

gramming (the transportation problem) we know that there is always a set of positive
solutions xki if si > 0 and hk > 0.

• Player k’s profit
Assume that xki ≥ 0 for all k and i . Then for ck = 0 we obtain by using the expressions
for hk and si given above

π e
k =

m∑
i=1

(ai − bi si )xki − γk
h2

k

Xe

=
m∑

i=1

(
ai

2
+ A

2(C Xe + B)

)
xki − A2 Xe

4γk(C Xe + B)2

>
A

2(C Xe + B)
hk − A2 Xe

4γk(C Xe + B)2
= 0.

Therefore, the individual profits are always positive. As a consequence, the industry
profit is also positive.

Appendix 2: Noninvertible maps and critical curves

In this appendix, we give some basic definitions and a minimal vocabulary concerning
noninvertible maps of the plane and the method of critical curves.16

Let us consider a two-dimensional map T : (x(t), y(t)) → (x(t + 1), y(t + 1))
written in the form

(x(t + 1), y(t + 1)) = T (x(t), y(t)) (25)

where (x, y) ∈ R
2 and the two components of T are assumed to be real valued continuous

functions T1 : R
2 → R and T2 : R

2 → R. The point (x(t + 1), y(t + 1)) ∈ R
2 is the

rank-1 image of the point (x(t), y(t)) under T , and (x(t), y(t)) is called rank-1 preimage
of the point (x(t + 1), y(t + 1)). The point (x(t + s), y(t + s)) = T s(x(t), y(t)), s ∈ N,
is called image of rank-s of the point (x(t), y(t)), where T 0 is identified with the identity
map and T t (·) = T (T t−1(·)). A point (x, y) such that T s(x, y) = (xs, ys) is called rank-s
preimage of (xs, ys).
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The map T is said to be noninvertible (or “many-to-one”) if distinct points (xa, ya)
	= (xb, yb) exist which have the same image, T (xa, ya) = T (xb, yb) = (x, y). This can be
equivalently stated by saying that points (x, y) exist which have several rank-1 preimages,
i.e. the inverse relation T −1(x, y) is multi-valued.

As the point (x, y) varies in the plane, the number of its rank-1 preimages can
change, and according to the number of distinct rank-1 preimages associated with each
point of R

2, the plane can be subdivided into regions, denoted by Zk , whose points
have k distinct preimages. Generally pairs of real preimages appear or disappear as
the point (x, y) crosses the boundary separating regions characterized by a different
number of rank-1 preimages. Accordingly, such boundaries are generally characterized
by the presence of two coincident (merging) preimages. This leads us to the definition
of critical curves, one of the distinguishing features of noninvertible maps. The critical
curve of rank-1, denoted by LC (from the French “Ligne Critique”) is defined as the
locus of points having two, or more, coincident rank-1 preimages. These preimages
are located in a set called critical curve of rank-0, denoted by LC−1. The curve LC is
the two-dimensional generalization of the notion of critical value (local minimum or
maximum value) of a one-dimensional map, and LC−1 is the generalization of the notion
of critical point (local extremum point). From the definition given above it is clear that the
relation LC = T (LC−1) holds, and the points of LC−1 in which the map is continuously
differentiable are necessarily points where the Jacobian determinant vanishes:

LC−1 ⊆ {(x, y) ∈ R
2| det DT = 0} (26)

In fact, as LC−1 is defined as the locus of coincident rank-1 preimages of the points of
LC , in any neighborhood of a point of LC−1 there are at least two distinct points mapped
by T in the same point near LC . This means that the map T is not locally invertible in the
points of LC−1 and, if the map T is continuously differentiable, it follows that det DT
necessarily vanishes along LC−1. Portions of LC separate regions Zk of the phase space
characterized by a different number of rank − 1 preimages, for example Zk and Zk+2

(this is the standard occurrence). This property is at the basis of the contact bifurcations
which give rise to complex topological structures of the basins, like those formed by
non connected sets or multiply connected sets. In fact, if a parameter variation causes a
crossing between a basin boundary and a critical set which separates different regions
Zk so that a portion of a basin enters a region where an higher number of inverses is
defined, then new components of the basin may suddenly appear at the contact.

Geometrically, the action of a noninvertible map T can be expressed by saying that
it “folds and pleats” the plane, so that two or more distinct points are mapped into the
same point, or, equivalently, that several inverses are defined which “unfold” the plane.
So, the backward iteration of a noninvertible map repeatedly unfolds the phase plane, and
this implies that a basin may be non-connected, i.e. formed by several disjoint portions.

The map T defined in (16) is a noninvertible map. In fact, given a point (X (t +
1), Xe(t + 1)) several distinct points may exist which are mapped into it. Put differently,
several preimages can be obtained by solving (16) with respect to (X (t), Xe(t)), so that
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the inverse relation (X (t), Xe(t)) = T −1(X (t + 1), Xe(t + 1)) is a multi-valued function.
In fact, from {

X (t + 1) = X (t)(1 + α − β X (t)) − H (Xe(t))

Xe(t + 1) = λX (t) + (1 − λ)Xe(t)

we obtain X (t) = 1
λ
(Xe(t +1)− (1−λ)Xe(t)), where Xe(t) can be obtained as a function

of X (t + 1), Xe(t + 1) by solving the equation

β(1 − λ)

λ2
(Xe)2 + 1 − λ

λ

(
2β

λ
Xe(t + 1) − (1 + α)

)
Xe

− X (t + 1) + 1 + α

λ
Xe(t + 1) − β

λ
Xe2

(t + 1) = H (Xe).

We are interested in the real and positive solutions, that are located at the intersections
(if any) of a parabola and the increasing and concave function H . Hence, we can have no
solutions or at two real and positive solutions (indeed, there are several negative solutions,
but we can neglect these preimages).

As the map T in (16) is continuously differentiable, it is easy to obtain the equation
of LC−1, since it is included in the set of points at which the determinant of the Jacobian
vanishes, i.e. det DT (X, Xe) = 0. For λ < 1 the locus LC−1 of merging preimages has
equation

X = 1

2β

[
1 + α + λ

1 − λ
H ′(Xe)

]
. (27)

The graph of the curve LC−1 is characterized by a vertical asymptote at X = (1+α)/(2β)
and crosses the X axis at X = (1 + α)/(2β) + λAC/(4(1 − λ)Bβ). Applying the map
T to the points of LC−1 one gets the critical curve LC = T (LC−1), that can be used to
identify regions of the (X, Xe)-plane whose points have different number of preimages,
just as the critical points of a one-dimensional map can be used to locate regions with
different preimages (see e.g. the quadratic map). These critical curves separate the phase
plane into regions Zk whose points have k preimages, or, equivalently, where k distinct
inverses of T are defined (see e.g. Mira et al., 1996; or Agliari, Bischi, and Gardini,
2002).
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Notes

1. For criticism and a suggestion of a different modeling approach than in our paper, see e.g. Clark and
Kirkwood (1986).
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2. Multiple equilibria may be due convex-concave production functions, externalities, or expectational
phenomena. For a recent survey and counter-intuitive results, see Deissenberg et al. (2003).

3. If each player represents a different country, and each country has its own market, then m = n, and each
player is assumed to supply its domestic country as well as the (n − 1) foreign countries. This is the
point of view assumed in Szidarovszky and Okuguchi (1998, 2000) and in Bischi and Kopel (2002).

4. See Clark (1990) and Szidarovszky and Okuguchi (1998). This type of cost function is derived from a
“production function” of the Cobb-Douglas-type with fishing effort and biomass as the two inputs.

5. The dynamical behavior of this equation has been studied extensively by May (1976, 1987) and May
and Oster (1976).

6. The basin of attraction of the positive attractor is bounded by the unstable fixed point X∗
0 = 0 and its

rank-1 preimage (X∗
0)−1 = (1 + α)/β.

7. In the economics literature, an adaptive scheme of the form used here is referred to as “adaptive ex-
pectations”, and it is seen as a slightly more sophisticated form of learning or adjustment than “naive”
expectations for obvious reasons.

8. However, the reader should be aware that the stability properties are different. For a comparison of the
stability properties of the case of perfect stock information and the 2-D model we refer to Bischi and
Kopel (2002).

9. For finding the equilibrium harvest we could also formulate an optimization problem for each player. The
objective function is given by (11). The (linear) constraints may be given by the non-negativity conditions
of quantities, the requirement that fish stock has to be positive, or that prices have to be positive. It can
be shown that the set of these optimization problems is equivalent to a quadratic programming problem
with linear constraints, which can be derived by using the Kuhn-Tucker conditions for the individual
optimization problems of the n players.

10. More specific results can be proven for the two cases when all players have the same harvesting costs,
γk ≡ γ for all k. Under this additional assumption the games are symmetric. Because of space restrictions
we do not present the results here, but they are available upon request.

11. For definitions of terms like “immediate basin”, or “holes”, see e.g. Abraham, Gardini, and Mira (1997),
Mira et al. (1996), or Bischi and Kopel (2001).

12. This property also holds for the one-dimensional map which gives the dynamics under perfect stock
information (7). It is easy to see that this map has an unimodal graph (see Bischi and Kopel, 2002).
The map is a Z0 − Z2 noninvertible map, i.e. a point of its codomain may have two preimages or no
preimage.

13. The values of the parameters have been chosen for illustrative purposes. For α = 3, β = 1, the dynamics
of the unharvested fish population which evolves according to (5) would exhibit chaotic oscillations
around the carrying capacity K = 3 (see Conrad and Clark, 1987). We wanted to check how the two-
dimensional system behaves for these parameter values. We are aware, however, that the value of the
intrinsic growth rate is unusually high.

14. From the definition of a rank-1 preimage, we can alternatively say that the points of this hole are mapped
into H0 after one iteration.

15. For high values of the parameter λ any complexity in the topological structure of the basins is lost. This
is due to the fact that as λ → 1 (the naive expectation case) the Jacobian determinant never vanishes,
so no critical curves exist; see Appendix 2, equation (27). It is also interesting to note that under the
assumption of perfect stock information, with the same parameter values as in the present scenario, no
such complexities arise.

16. For a deeper treatment see Mira et al. (1996), see also Puu (2000), or Agliari, Bischi, and Gardnini
(2000), for several applications of the method of critical curves to noninvertible maps arising in dynamic
economic modeling.
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