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Abstract

This is the collection of classroom notes that summarize the lessons on Dynamical systems
delivered during the course on "Theory of games and Dynamical Systems" given at Università di
Urbino "Carlo Bo" during the Fall semester of academic year 2014/2015 and Spring semester of
2015/2016. These classroom notes also include some snapshots about mathematical background.
as well as some examples and related mathematical tools, that generally are not included in the
undergraduate course on "General Maths" . The content of these classroom notes is just a summary
of the main topics and examples given during the course, and is not intended to be a substitute of
standard books on dynamical systems or economic dynamics, that students are invited to use for
a more general and exhaustive exposition of the topics.
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1 Introduction

These lecture notes should provide an introduction to the study of dynamic models in economics and
social sciences, both in discrete and continuous time, by the methods of the qualitative theory of
dynamical systems. At the same time, the students should also practice (and hopefully appreciate)
the "art" of mathematical modelling real systems and time evolving processes.

1.1 The art of mathematical modelling

The mathematical representation of a real system (physical, biological, social, economic etc.) starts
from a rigorous and critical analysis of the systems to be described, their main features and basic
principles. Measurable quantities (i.e. quantities that can be expressed by numbers) that characterize
its state and its bevaviour must be identi�ed in order to describe the system mathematically. This
leads to a schematic description of the system, generally a simpli�ed representation, expressed by
words, diagrams and symbols. This stage is represented by the lower side of the rectangle in �g. 1.
This task is generally carried out by specialists of the real system, such as economists, social scientists
etc. The second stage is described by the right vertical side of the rectangle, and consists in the
translation of the schematic model into a mathematical model, expressed by mathematical symbols
and operators. This leads us to the upper side, dedicated to the mathematical study of the model, by
using mathematical tools, proofs, and/or numerical methods. The output of this process is expressed
in mathematical terms, such as propositions (i.e. Theorems) with proofs or mathematical expressions.
Then these mathematical results must be translated into the natural language and terms typical of the
system described, that is economic or biologic or physical terms, in order to obtain laws or statements
useful for the application considered. This closes the path around the rectangle, but often it is not
the end of the modellization process. In fact, if the results obtained are not satisfactory, in the sense
that they do not agree with the observations or experimental data, then one needs to re-examine the
model, by adding some details or by changing some basic assumptions, and start again the whole
procedure.

Our course in Dynamical Systems in Economics is a Math course, so we should be mainly concerned
with the upper portion of the rectangle: from a dynamic model to the results through a mathematical
analysis by using analytic, geometric and numerical methods. However, during the course we will
often move down to the level of model building as well, because it is the most creative stage, leading
from reality to its formalization in the form of a mathematical model. This requires competence and
fantasy, the reason why we call it "the art of math modelling".

1.2 Dynamical systems in economics

Dynamical systems are systems that change over time, and the mathematical theory of dynamical
systems describes them by using dynamic variables, i.e. functions of time that de�ne their state
as time goes on, in other words their time evolution. Emblematic is the title of a book on the
theory of dynamical systems published in 1980 by Steve Smale, a famous American mathematician
that also obtained important results in economics: the title is "The Mathematics of Time". This
branch of mathematics has been �rst introduced in Physics, where di¤erential equations have been
used to describe the motion of objects, from particles to planets, including oscillatory systems, �uid
dynamics etc. Similar equations of motion have then be applied to the description of ecological systems
(e.g. in population dynamics and interactions among species) or biological problems (such as blood
circulation) or the time development of chemical reactions, as well as in economic problems (such as
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Figure 1: The process of mathematical modelling.

the time changes of prices in a market, or quantities of goods produced in industrial or agricultural
systems). All these systems and phenomena can be described by suitable (generally simpli�ed) models
where given functions of time are used to characterize their state at a given time, and by equations
that state how such state variables evolve in time, so that one may try to forecast their future states
on the basis of the knowledge of their state at a given time. These are the equations of motion (i.e.
the model) used to characterize the rate of change of the dynamic variables. Of course, in the presence
of complex systems and phenomena it is not easy to calculate the state of the modelled systems at
each time in the future, and often only qualitative and generic properties can be inferred.

Moreover, often the simpli�ed mathematical models used to mimic the time evolution of real
systems are only caricatures, arti�cial schematic representations expressed by mathematical objects
(functions, parameters, derivatives) that can be improved when the results obtained are not con�rmed
by experiments and observations.

The simulation of the time evolution of economic systems by using the language and the formalism
of dynamical systems (i.e. di¤erential or di¤erence equations according to the assumption of continuous
or discrete time) dates back to the early days of the mathematical formalization of models in economics
and social sciences.

However, in the last decades the importance of dynamic modelling in economics and �nance in-
creased because of the parallel trends in mathematics on one side and economics and social sciences
on the other side, and the two developments are not independent, in the sense that the new issues in
mathematics favoured the enhancement of understanding of economic systems and policies, and the
needs of more and more complex mathematical models in economic and social studies stimulated the
creation of new branches in mathematics and the development of existing ones.

Indeed, in recent mathematical research a �ourishing literature in the �eld of qualitative theory of
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nonlinear dynamical systems, with the related concepts of attractors, bifurcations, dynamic complex-
ity, deterministic chaos, has attracted the attention of many scholars of di¤erent �elds, from Physics
to Biology, from Chemistry to Economics and Sociology, etc. These mathematical topics became more
and more popular even outside the restricted set of academic specialists. Concepts like bifurcations
(also called catastrophes in the eighties), fractals, chaos, entered and deeply modi�es several research
�elds, not only in the scienti�c research but even in the literature, cinema etc.

On the other side, during the last decades, also economic modelling has been witnessing a paradigm
shift in methodology, and the recent economic and �nancial crisis has strengthened this trend. Indeed,
despite its notable achievements, the standard approach based on the paradigm of the rational and
representative agent (endowed with unlimited computational ability and perfect information) as well
as the underlying assumption of e¢ cient markets, fails to explain many important features of economic
systems, and has been criticized on a number of grounds. At the same time, a growing interest has
emerged in alternative approaches to economic agents�decision making, which allow for factors such
as bounded rationality and heterogeneity of agents, social interaction, and learning, where agents�
behaviour is governed by simpler "rules of thumb" (or "heuristics") or "trial and error" or even
�imitation� mechanisms. Of course, starting from these assumptions of bounded rationality, the
modelled agents are generally not able to choose what is "optimal", but they can at most obtain, using
a famous expression of Simon (Nobel laureate in 1978) what is "good enough" for them, thus replacing
the concept of optimal behavior with the (apparently lower) concept of "satis�cing behaviour".

The result of this approach may seem, at a �rst sight, a quite unsatisfactory and dismissive (in
the sense of understating, reductive) representation of economic agents facing a decision. However,
the signi�cance of this approach is much more interesting and meaningful if it is used at each step of
a repeated decision process, i.e. iterated over time. In fact, under some circumstances, the repetition
of boundedly rational decisions based on trial and error, or imitation of the better, or comparison
between expected and realized results, that we will denote by the general term �adaptive� in the
following, may be a much more realistic (and even more rational) behaviour with respect to a rigid
optimizing attitude, based on �xed rules assumed as fundamental axioms of rational behavior. Indeed,
the latter attitude (typical of mainstream economic modelling where economic agents are assumed to
behave as if they already know the laws that govern the evolution of the system where they operate,
like a physicist who knows the law of motion of simple physical devices) may be quite misleading
(even dangerous) when applied in the presence of incomplete information about the system where the
economic agents operate, or about other agents�degree of rationality, or if the system evolution is
characterized by intrinsic uncertainty, as it occurs when the time evolution is governed by nonlinear
laws allowing for chaotic behavior, with the associated phenomenon of sensitivity to arbitrarily small
perturbations (a quite common situation in economics and social sciences). In fact, the adaptive agents
are allowed, by de�nition, to adjust their repeated actions according to the information collected as
the system evolves, and a repeated (step-by-step) comparison of the expected results of their decisions
with the observed ones allows them to adapt to circumstances.

Moreover, an adaptive system, even if it is governed by local (or myopic) decision rules of boundedly
rational and heterogeneous agents, may converge in the long run to a rational equilibrium, i.e. the same
equilibrium forecasted (and instantaneously reached) under the assumption of full rationality and full
information of all economic agents. This may be seen as an evolutionary interpretation of a rational
equilibrium, and some authors say that in this case the boundedly rational agents are able to learn,
in the long run, what rational agents already know under very pretentious rationality assumptions.
However, it may happen that under di¤erent starting conditions or as a consequence of exogenous
perturbations, the same adaptive process leads to non-rational equilibria as well, i.e. equilibrium
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situations which are di¤erent from the ones forecasted under the assumption of full rationality, as well
as to dynamic attractors characterized by endless asymptotic �uctuations that never settle to a steady
state. The coexistence of several attracting sets, each with its own basin of attraction, gives rise to
path dependence, irreversibility, hysteresis and other nonlinear and complex phenomena commonly
observed in real systems in economics, �nance and social sciences, as well as in laboratory experiments.

From the description given above, it is evident that the analysis of adaptive systems can be for-
mulated in the framework of the theory of dynamical systems. i.e. systems of ordinary di¤erential
equations (continuous time) or di¤erence equations (discrete time); the qualitative theory of nonlin-
ear dynamical systems, with the related concepts of stability, bifurcations, attractors and basins of
attraction, is a major tool for the analysis of their long run (or asymptotic) properties. Not only
in economics and social sciences, but also in physics, biology and chemical sciences, such models
are a privileged instrument for the description of systems that change over time, often described as
"nonlinear evolving systems", and their long-run aggregate outcomes can be interpreted as "emerging
properties", sometimes di¢ cult to be forecasted on the basis of the local (or step-by-step) laws of
motion.

Of course, the use of Nonlinear Dynamics in Economics is well-established since the early contribu-
tions of N. Kaldor and R. Goodwin in the 40s-50s. Even in more recent neoclassical models, the theory
of nonlinear systems has yielded important results on the �indeterminacy�and bifurcations of station-
ary competitive equilibria. However, its use is often restricted to the analysis of the �local�behavior of
the system. As a consequence, this approach is unsuitable to investigate the �global�e¤ects of nonlin-
earity (�emergent phenomena�). Such e¤ects are often remarkable, although they cannot be detected
from the behavior of the system in the vicinity of the stationary equilibria. So a global qualitative
analysis of the economic models, bot in continuous and in discrete time, is necessary. Such a global
analysis can be rarely obtained by analytical methods, and a combination of analytical, geometric and
numerical methods is necessary to grasp the main qualitative features of a nonlinear dynamic system
in order to understand, at least qualitatively, its asymptotic (or long-run) behaviour. For this reason
the usage of some computer software for the numerical simulation of dynamical system is necessary
in order to understand and appreciate the methods introduced in this course.

2 Dynamical systems, some general de�nitions.

In this section we introduce some general concepts, notations and a minimal vocabulary about the
mathematical theory of dynamical systems.

A dynamical system is a mathematical model, i.e. a formal, mathematical description, of an
evolving system, that is a real system whose state changes as time goes on. This includes, as a
particular case, systems whose state remains constant, that will be denoted as systems at equilibrium.

The �rst step to describe such systems in mathematical terms is the characterization of their
"state" by a �nite number, say n, of measurable quantities, denoted as "state variables", expressed
by real numbers

x1; :::; xn

where xi 2 R, i = 1; :::; n. For example in an economic system these numbers may be the prices
of n commodities in a market, or the respective quantities, or they can represent other measurable
indicators, like level of occupation, or salaries, or in�ation. In an ecologic system these n number
used to characterized its state may be the numbers (or densities) of individuals of each species, or
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concentration of inorganic nutrients or chemicals in the environment. In a physical system1 the state
variables may be the positions and velocities of the particles, or generalized coordinates or related
momentums of a mechanical system, or temperature, pressure etc. in a thermodynamic system.

This ordered set of real numbers can be seen as a vector x =(x1; :::; xn) 2 Rn, i.e. a "point" in
an n-dimensional space, and this allows us to introduce a "geometric language", in the sense that a
1-dimensional dynamical system is represented by point along a line, a 2-dimensional one by a point
in a Cartesian plane and so on.

Sometimes only the values of the state variables included in a subset of Rn are suitable to represent
the real system. For example only non-negative values of xi are meaningful if xi represents a price in
an economic system or the density of a species in an ecologic one, or it can be that in the equations
that de�ne the system a state variable xi is the argument of a mathematical function that is de�ned
in a given domain, like a logarithm, a square root or a rational function. As a consequence, only the
points in a subset of Rn are admissible states for the dynamical system considered, and this leads to
the following de�nition

De�nition. The state space (or phase space) M � Rn is the set of admissible values of the state
variables.

As a dynamical system is assumed to evolve with time, these numbers are not �xed but are functions
of time xi = xi(t), i = 1; :::n, where t may be a real number (continuous time) or a natural number
(discrete time). The latter assumption may sound quite strange, whereas it represents a common
assumption in systems where changes of the state variables are only observed as a consequence of
events occurring at given time steps (event-driven time). For example, it is quite common in economic
and social sciences where in many systems the state variables can change as a consequence of human
decisions that cannot be continuously revised, e.g. after production periods (the typical example
is output of agricultural products) or after the meetings of an administration council or after the
conclusions of contracts etc. (decision-driven time).

So, in the following we will distinguish these two cases, according to the domain of the state
functions: xi : R! R or xi : N! R, i.e. the continuous or discrete nature of time. In any case,
the purpose of dynamical systems is the following: given the state of the system at a certain time t0,
compute the state of the system at time t 6= t0. This is equivalent to the knowledge of an operator

x(t) = G (t;x(t0)) (1)

where boldface symbols represent vectors, i.e. x(t) = (x1(t); :::; xn(t)) 2 M � Rn and G (�) =
(G1(�); :::; Gn(�)) : M ! M . If one knows the evolution operator G then from the knowledge of the
initial condition (or initial state) x(t0) the state of the system at any future time t > t0 can be
computed, as well as at any time of the past t < t0. Generally we are interested in the forecasting of
future states, especially in the asymptotic (or long-run) evolution of the system as t ! +1, i.e. the
fate, or the destiny of the system. However, even the �ashback may be useful in some cases, like in
detective stories when the investigators from the knowledge of the present state want to know what
happened in the past.

The vector function x(t), i.e. the set of n functions xi(t), i = 1; :::; n obtained by (1), represents the
parametric equations of a trajectory, as t varies. In the case of continuous time t 2 R the trajectory is
a curve in the space Rn, that can be represented in the n+ 1-dimensional space (Rn; t), and denoted

1Physics is the discipline where the formalism of dynamical system has been �rst introduced, since 17th century, even
if the modern approach, often denoted as qualitative theory of dynamics systems, has been introduced in the early years
of the 20th century.
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as integral curve, or in the state space (also denoted as "phase space") Rn, see �g. 2. In the latter
case the direction of increasing time is represented by arrows, and the curve is denoted as phase curve.

Figure 2: Integral curve and its projection (phase curve).

In the case of discrete time a trajectory is a sequence (i.e. a countable set) of points, and the
time evolution of the system jumps from one point to the successive one in the sequence. Sometimes
line segments can be used to join graphically the points, moving in the direction of increasing time,
thus getting an ideal piecewise smooth curve by which the time evolution of the system is graphically
represented (see �g. 3)

An equilibrium (stationary state or �xed point) x� = (x�1; :::; x
�
n) is a particular trajectory such

that all the state variables are constant

x(t) = G (t;x�) = x� for each t > t0

An equilibrium is a trapping point, i.e. any trajectory through it remains in it for each successive
time: x(t0) = x� implies x(t) = x� for t � t0. This de�nition can be extended to any subset of the
phase space:

De�nition A set A �M is trapping if x(t0) 2 A implies x(t) = G (t;x(t0)) 2 A for each t > t0.

This can also be expressed by the notation G (t; A) � A, where

G (t; A) = fx 2M : 9t � t0 and x(t0) 2 A so that x = G (t;x(t0))g

So, any trajectory starting inside a trapping set cannot escape from it. We now de�ne a stronger
property, in the sense that it concerns particular kinds of trapping sets.

De�nition A closed set A � M is invariant if G (t; A) = A, i.e. each subset A0 � A is not
trapping.
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Figure 3: Discrete time dynamical system in two dimensions.

In other words, any trajectory starting inside an invariant set remains there, and all the points of
the invariant set are reached by a trajectory starting inside it. Notice that an equilibrium point is
a particular kind of invariant set (let�s say the simplest). However, we will see many other kinds of
invariant sets, where interesting cases of non constant trajectories are included.

We now wonder what happens if we start a trajectory from an initial condition close to an invariant
set, i.e. in a neighborhood of it.

The trajectory may enter the invariant set (and then it never escape from it) or it may remain
around it or it may go elsewhere, far from it. This leads us to the concept of stability of an invariant
set (a well known concept for motions in the gravitational �eld, see �g.4.

Figure 4: Analogy with gravitational �eld.

De�nition (Lyapunov stability) An invariant set A is stable if for each neighborhood U of
A there exists another neighborhood V of A, with V � U , such that any trajectory starting from V
remains inside U .

In other words, Lyapunov stability means that all the trajectories starting from initial conditions
outside A and su¢ ciently close to it remain around it (see the schematic picture in �g. 5). Instability
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is the negation of stability, i.e. an invariant set A is unstable if a neighborhood U � A exists such
that initial conditions taken arbitrarily close to A exist that generate trajectories that exit U .

The following de�nition is stronger

De�nition (Asymptotic stability) An invariant set A is asymptotically stable (and it is often
called attractor) if:
(i) A is stable (according to the de�nition given above)
(ii) limt!+1G (t;x) 2 A for each initial condition x 2V .

Figure 5: Stability, asymptotic stability, instability.

In other words, asymptotic stability means that the trajectories starting from initial conditions
outside A and su¢ ciently close to it not only remain around it, but tend to it in the long run (i.e.
asymptotically), see the schematic pictures in �g.6. At a �rst sight, the condition (ii) in the de�nition
of asymptotic stability seems to be stronger than (i), hence (i) seems to be super�uous. However it
may happen that a neighborhood U � A exists such that initial conditions taken arbitrarily close to
A generate trajectories that exit U and then go back to A in the long run (see the last picture in �g.6)

Of course, all these de�nitions expressed in terms of neighborhoods can be restated by using

a norm (and consequently a distance) in Rn, for example the euclidean norm kxk =
qPn

i=1 x
2
i

from which the distance between two points x = (x1; :::; xn) and y = (y1; :::; yn) can be de�ned
as kx� yk =

pPn
i=1(xi � yi)2. As an example we can restate the de�nitions given above for the

particular case of an equilibrium point.
Let x(t) = G(t;x(t0)), t � 0, a trajectory starting from the initial condition x(t0) = G(t0;x(t0))

and x� an equilibrium point x� = G(t;x�) for t � 0. The equilibrium x� is stable if for each " > 0
there exists �" > 0 such that kx(t0)�x�k < �" =) kx(t)�x�k < " for t � 0. If in addition
limt!1 kx(t)�x�k = 0 then x� is asymptotically stable. Instead, if an " > 0 exists such that for each
� > 0 we have kx(t)�x�k > " for some t > 0 even if kx(t0)�x�k < �, then x� is unstable.
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Figure 6: Phase portraits.

These de�nitions are local, i.e. concern the future behaviour of a dynamical system when its initial
state is in an arbitrarily small neighborhood of an invariant set. So, they can be used to characterize
the behaviour of the system under the in�uence of small perturbation from an equilibrium or another
invariant set. In other words, they give an answer to the question: given a system at equilibrium,
what happens when small exogenous perturbation move its state slightly outside the equilibrium
state? However, in the study of real systems we are also interested in their global behaviour, i.e.
far from equilibria (or more generally from invariant sets) in order to consider �nite (and not always
small) perturbations and to answer questions like: how far can an exogenous perturbation shift the
state of a system from an equilibrium remaining sure that it will spontaneously go back to the originary
equilibrium? This kind of questions leads to the concept of basin of attraction of an attractor

De�nition (Basin of attraction) The basin of attraction of an attractor A is the set of all
points x 2M such that limt!+1G(t;x) 2 A, i.e. B(A) = fx 2M such that limt!+1G(t;x) 2 Ag.

If B(A) = M then A is called global attractor. Generally the extension of the basin of a given
attractor gives a measure of its robustness with respect to the action of exogenous perturbations.
However this is a quite rough argument, as shown in the qualitative sketches of �g.7 on the left,
where basins are represented such that greater measure does not imply greater robustness due to
their peculiar shapes. Moreover, when basins are considered, one realizes that in some cases stable
equilibria may be even more vulnerable than unstable ones (see �g. 7 on the right).

Other important indicators should be critically considered. For example, how fast is the conver-
gence towards an attractor? Even if an invariant set is asymptotically stable and it has a large basin,
an important question concerns the speed of convergence, i.e. the amount of time which is necessary
to reduce the extent of a perturbation. In fact, in some cases this time interval may be too much for
any practical purpose. For example, if a group of economists use a dynamical system to model the
behaviour of an economic system after a crisis, and they conclude that on the basis of their studies the

12



Figure 7: Local stability extent.

system will go back to the originary pre-crisis equilibrium, we are quite happy. But if they complete
this statement by saying that this may require 500 years, then their stability statement may be not
so encouraging.

These arguments (as well as many others that we will give in the following) lead us to the necessity
of a deep understanding of the global behaviour of a dynamical system in order to give useful indications
about the performance of the real system modelled.

The main problem is that, generally, the operator G that allows to get an explicit representation
of the trajectories of the dynamical system for any initial condition in the phase space, is not known,
or cannot be expressed in terms of elementary functions or its expression is so complicated that it
cannot be used for any practical purpose. In general a dynamical system is expressed in terms of local
evolution equations, also denoted as dynamic equations or laws of motion, that state how the dynamical
system changes as a consequence of small time steps. In the case of continuous time the evolution
equations are expressed by the following set of ordinary di¤erential equations (ODE) involving the
time derivative, i.e. the speeds of change, of each state variable

dxi(t)

dt
= fi(x1(t); :::; xn(t);�), i = 1; :::; n (2)

xi(t0) = xi

where the time derivative at the left hand side represents, as usual, the speed of change of the state
variable xi(t) with respect to time variations, the functional relations give information about the
in�uence of the same state variable xi (self-control) and of the other state variables xj , j 6= i (cross-
control) on such rate of change, and � = (�1; :::�m), �i 2 R, represents m real parameters, �xed along
a trajectory, which can assume di¤erent numerical values in order to represent exogenous in�uences on
the dynamical systems, e.g. di¤erent policies or e¤ects of the outside environment. The modi�cations
induced in the model after a variation of some parameters �i are called structural modi�cations, as
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such changes modify the shape of the functions fi, and consequently the properties of the trajectory.
The set of equations (2) are "di¤erential equations" because their "unknowns" are functions xi(t)

and they involve not only xi(t) but also their derivatives. We refer the reader to standard textbooks and
the huge literature about di¤erential equations in order to study their general properties and methods
of solutions. In these lecture notes we will just use them in the formulation and the qualitative
understanding of the models.

In the theory of dynamical systems it is usual to replace the Leibniz notation dx
dt of the derivative

with the more compact "dot" notation
�
x introduced by Newton. With this notation, the dynamical

system (2) is indicated as
�
xi = fi(x1; :::xn;�); i = 1; :::; n (3)

Di¤erential equations of order greater than one, i.e. involving derivatives of higher order, can be
easily reduced to systems of di¤erential equations of order one in the form (2) by introducing auxiliary
variables. For example the second order di¤erential equation

��
x (t) + a

�
x (t) + bx (t) = 0 (4)

with initial conditions x(0) = x0 and
�
x (0) = v0 can be reduced to the form (3) by de�ning x1(t) = x(t)

and x2(t) =
�
x (t), so that the equivalent system of two �rst order di¤erential equations becomes

�
x1 = x2
�
x2 = �bx1 � ax2

with x1(0) = x0, x2(0) = v0.
If along a trajectory the parameters explicitly vary with respect to time, i.e. some �i = �i(t)

are functions of time, then the model is called nonautonomous. Also a nonautonomous model can be
reduced to an equivalent autonomous one in the normal form (2) of dimension n + 1 by introducing
the dynamic variable xn+1 = t whose time evolution is governed by the added �rst order di¤erential
equation

�
xn+1 = 1.

In the case of discrete time, the evolution equations are expressed by the following set of di¤erence
equations that inductively de�ne the time evolution as a sequence of discrete points starting from a
given initial condition

xi(t+ 1) = fi(x1(t); :::xn(t);�), i = 1; :::; n (5)

xi(0) = xi

Also in this case a higher order di¤erence equation, as well as a nonautonomous di¤erence equation,
can be reduced to an expanded system of �rst order di¤erence equations of order one. For example
the second order di¤erence equations

x(t+ 1) + ax(t) + bx(t� 1) = 0

starting from the initial conditions x(�1) = x0, x(0) = x1 can be equivalently rewritten as

x(t+ 1) = �ax(t)� by(t)
y(t+ 1) = x(t)

14



where y(t) = x(t�1), with initial conditions are x(0) = x1, y(0) = x0. Analogously, a nonautonomous
di¤erence equation

xt+1 = f(xt; t)

becomes

xt+1 = f(xt; yt)

yt+1 = yt + 1

where yt = t.
So, the study of (2) and (5) constitutes a quite general approach to dynamical systems in continuous

and discrete time respectively. They are local representations of the evolution of systems that change
with time. Their qualitative study, i.e. how one can (at least qualitatively) deduce from them the
existence and the properties of attracting sets, their basins, and their qualitative changes as the control
parameters are let to vary, is the aim of the next chapters.

We will �rst consider the case of continuous time, then the case of discrete time by stressing the
analogies and di¤erences between these two time scales.

3 Continuous-time dynamical systems

In this chapter we will consider dynamic equations in the form (2), starting from problems with n = 1,
i.e. 1-dimensional models where the state of the system is identi�ed by a single dynamical variable,
and then we move to n = 2. In both cases we will �rst consider linear models, for which an explicit
expression of the solution G can be obtained, and then we move to nonlinear models for which we
will only give a qualitative description of the equilibrium points, their stability properties and the
long-run (or asymptotic) properties of the solutions without giving their explicit expression. We will
see that such qualitative study (also denoted qualitative or topological theory of dynamical system, a
modern point of view developed in the 20th century) essentially reduces to the solution of equations
and inequalities, without the necessity to use advanced methods and tools from calculus (essentially
no integrals, only derivatives and basic algebra). As we will see, a very important role in this theory
is played by graphical analysis, and a fruitful trade-o¤ between analytic, geometric and numerical
methods.

However, these methods built up a solid mathematical theory based on general theorems that can
be found in the textbooks indicated in the references. Here we just give a su¢ ciently general (for the
goals of these lecture notes) theorem of existence and uniqueness of solutions of ordinary di¤erential
equations

Theorem (existence and uniqueness) If the functions fi have continuous partial derivatives
@fi
@xk

in M and x(t0) 2M , then there exists a unique solution xi(t), i = 1; :::; n, of the system (2) such
that x(t0) = x, and each xi(t) is a continuous function.

Indeed, the assumptions of this theorem may be weakened, by asking for bounded variations of the
functions fi in the equations of motion (2), such as the so called Lipschitz conditions. However the
assumptions of the previous Theorem are suitable for our purposes. Moreover, other general theorems
are usually stated to de�ne the conditions under which the solutions of the di¤erential equations have
a regular behavior. We refer the interested reader to more rigorous books, see the bibliography for
details.
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3.1 The simplest one: 1-dimensional linear dynamical system

Let us consider the following dynamic equation

�
x = �x, with initial condition x(t0) = x0 (6)

It states that the rate of growth of the dynamic variable x(t) is proportional to itself, with pro-
portionality constant � (a parameter). If � > 0 then whenever x is positive it will increase (positive
derivative means increasing). Moreover, as x increases also the derivative increases, so it increases
faster and so on. This is what, even in the common language, is called "exponential growth", i.e.
"the more we are, the more we increase". Instead, whenever x is negative it will decrease (negative
derivative) so it will become even more negative and so on... This is a typical unstable behaviour.

On the contrary, if � < 0 then whenever x is positive it will decrease (and will tend to become
negative) whereas when x is negative the derivative is positive, so that x will increase and tend to
become positive. A stabilizing behaviour.

In this case an explicit solution can be easily obtained to con�rm these arguments. In fact, it is
well known, from elementary calculus, that the only function whose derivative is proportional to the
function itself is the exponential, so x(t) will be in the general form x(t) = ke�t, where k is an arbitrary
constant that can be determined by imposing the initial condition x(t0) = x0, hence ke�t0 = x0, from
which k = x0e

��t0 . After replacing k in the general form we �nally get the (unique) solution

x(t) = x0e
�(t�t0) (7)

The same solution can be obtained by a more standard integration method, denoted as separation
of the variables, shown in �g. 8. In this course we are not interested in the several (and interesting per
se) tricks to �nd analytic solutions of particular classes of di¤erential equations, however we will give a
couple of them just to show how they work in the Appendix. Instead, we are mainly interested in the
qualitative approach, that consists in the identi�cation of the equilibrium points and their stability.

Some graphical representations of (7), with di¤erent values of the parameter � and di¤erent initial
conditions, are shown in �g. 9 in the form of integral curves, with time t represented along the
horizontal axis and the state variable along the vertical one. Among all the possible solutions there is
also an equilibrium solution, corresponding to the case of vanishing time derivative

�
x = 0 (equilibrium

condition). In fact, from (6) we can see that the equilibrium condition corresponds to the equation
�x = 0 which, for � 6= 0, gives the unique solution x� = 0. Indeed, the trajectory starting from the
initial condition x0 = 0 is given by x(t) = 0 for each t, i.e. starting from x0 = 0 the system remains
there forever. However, as shown in �g. 9, di¤erent behaviours of the system can be observed if the
initial condition is slightly shifted from the equilibrium point, according to the sign of the parameter
�. In fact if � > 0 (left panel) then the system ampli�es this slight perturbation and exponentially
departs from the equilibrium (unstable, or repelling, equilibrium) whereas if � < 0 (right panel) then
the system recovers from the perturbation going back to the equilibrium after a given return time
(asymptotically stable, or attracting, equilibrium).

This qualitative analysis of existence and stability of the equilibrium can be obtained even without
any computation of the explicit analytic solution (7), by solving the equilibrium equation �x = 0 and
by a simple algebraic study of the sign of the right hand side of the dynamic equation (6) around the
equilibrium, as shown in �g. 10. This method simply states that if the right hand side of the dynamic
equation (hence

�
x) is positive then the state variable increases (arrow towards positive direction of

the axis), if
�
x < 0 then x decreases (arrow towards negative direction).
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Figure 8:

This 1-dimensional representation (i.e. along the line) is the so called phase diagram of the dy-
namical system, where the invariant sets are represented (the equilibrium in this case) together with
the arrows that denote tendencies associated with any point of the phase space (and consequently
stability properties)

Of course, the knowledge of the explicit analytic solution gives more information, for example the
time required to move from one point to another. For example, in the case � < 0, corresponding to
stability of the equilibrium x� = 0, we can state that after a displacement of the initial condition at
distance d = kx0 � x�k from the equilibrium, the time required to reduce such a perturbation at the
fraction d

e (where e is the Neper constant e ' 2:7) is Tr = �
1
� , an important stability indicator known

as return time. As it can be seen, as the parameter � goes to 0 the return time tends to in�nity.
In fact, if � = 0 all the points are equilibrium points, i.e. any initial condition generates a constant
trajectory that remains in the same position forever.

As an example, let us consider the dynamic equation that describes the growth of a natural
population. If x(t) represents the number of individuals in a population (of insects, or bacteria, or
�shes or humans), n > 0 represents the natality (or birth) rate and m > 0 represents the mortality
(or death) rate then a basic balance equation used in any population model states that

�
x = nx�mx = (n�m)x

which is of the form (6) with � = n �m. Of course in this case, due to the meaning of the model,
only non-negative values of the state variable x are admissible. This equation is also known as the
Malthusian model, from the work of T.R. Malthus "An essay of the principle of the population"
(1798). The qualitative analysis of this model states that if natality is greater than mortality then
the population exponentially increases, if the two rates are identical the population remains constant
and if mortality exceeds natality the population exponentially goes to extinction. A quite reasonable
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Figure 9:

Figure 10: .

result.
We now introduce a modi�cation in the simple population growth model by introducing a constant

immigration (emigration) term b > 0 (< 0)

�
x = �x+ b (8)

Now the equilibrium condition
�
x = 0 becomes �x+ b = 0 from which the equilibrium is x� = � b

� . If
� < 0 and b > 0 (endogenously decreasing population with constant immigration) then the equilibrium
is positive and stable (as

�
x < 0 for x > x� and

�
x > 0 for x < x�, see �g. 11). Instead, for � > 0 and

b < 0 (endogenously increasing population with constant emigration) the equilibrium is positive and
unstable.

We conclude by noticing that the dynamic model (8) is called linear non homogeneous (or a¢ ne)
and can be reduced into the form (6) by a change of variable (a translation). In fact, let us de�ne
the new dynamic variable X = x� x� = x+ b

� . This change of variable corresponds to a translation
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that brings the new zero coordinate into the equilibrium point. If we replace x = X � b
� into (8) we

get
�
X = �X. Then we have the linear model (6) in the dynamic variable X(t), with initial condition

X(t0) = x0 +
b
� , whose solution is X(t) = X(t0)e

�(t�t0). Going back to the original variable, by using
the transformation X = x+ b

� , we obtain

x(t) =

�
x0 +

b

�

�
e
�(t�t0) � b

�
.

This is a �rst example of conjugate dynamical systems, as the models (6) and (8) can be transformed
one into the other by an invertible change of coordinates. We will give a more formal de�nition of
conjugate (or qualitative equivalent) dynamic models in the following chapters.

Figure 11:

Let us now consider a dynamic formalization of a partial market of a single commodity, under the
Walrasian assumption that the price of the good increases (decreases) if the demand is higher (lower)
than supply. The simplest dynamic equation to represent this assumption is given by

�
p = f(p) = k [D(p)� S(p)] (9)

where q = D(p) represents the demand function, i.e. the quantity demanded by consumers when the
price of the good considered is p, q = S(p) represents the supply function, i.e. the quantity of the
good that producers send to the market when the price is p, k > 0 is a constant that gives the speed
by which the price reacts to disequilibriums between supply and demand. The standard occurrence
is that supply function S(p) is increasing and demand function is decreasing, as shown in �g. 12.
The equilibrium point p� is located at the intersection of demand and supply curves, and it is stable
because the derivative of p is positive on the left and negative on the right of p�, so that p� is always
reached in the long run even if the initial price p(0) is not an equilibrium one (or equivalently if the
price has been displaced from the equilibrium price). An analytic solution of the dynamic equations
can be obtained under the assumption that demand and supply functions are linear

D(p) = a� bp ; S(p) = a1 + b1p

where all the parameters a, b, a1, b1 are positive. In fact, in this case the dynamic equation is a linear
di¤erential equation with constant coe¢ cients

�
p = �k (b+ b1) p+ k (a� a1)
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which is in the form (8) and has equilibrium point p� = a�a1
b+b1

. As we will see in the next sections, a
similar analysis, based on the linearization of the model around the equilibrium point, is possible by
computing the slopes of the functions (i.e. their derivatives) at the equilibrium point.

Figure 12: Price dynamics in the standard case.

Let us now consider a di¤erent demand curve, obtained by assuming that consumers exhibit a
non-standard behaviour for intermediate prices. In the situation shown in �g. 13, even if demanded
quantity is high for low prices and low for high prices, like in the standard case, we assume that
for intermediate prices consumers prefer to buy the good at higher price because they use price as a
quality indicator. Such assumption leads to a"bimodal" shape of the demand function (i.e. with two
inversion points, a relative minimum and relative maximum) that may intersect the supply curve in
three points, like in �g. 13, and consequently three coexisting equilibrium prices, say p�1 < p�2 < p�3. By
using the qualitative analysis, we can see that the time derivative of the price p(t) is positive whenever
p < p�1 or p

�
2 < p < p�3, i.e. where D(p) > S(p). This leads to a situation of bistability as both the

lowest equilibrium price p�1 and the highest one p
�
3 are asymptotically stable, each with its own basin

of attraction, whereas the intermediate unstable equilibrium price p�2 separates the basins, i.e. it acts
as a watershed located on the boundary between the two basins.

3.2 Qualitative analysis and linearization procedure for the logistic model.

The population model described in the previous section is quite unrealistic as it admits unbounded
population growth, which is impossible in a �nite world. As already noticed by Malthus (1798),
when the population density becomes too high, scarcity of food or space (overcrowding e¤ect) causes
mortality, proportional to the population density. So an extra mortality term, say sx, should be added
to the natural mortality m, and thus the model becomes

�
x = f(x) = nx� (m+ sx)x = �x� sx2 (10)

which is a nonlinear dynamic model. Also in this case, after separation of the variables, an analytic

solution can be found by integrating a rational function. In fact, from

x(t)Z
x0

dx
x(��sx) =

tZ
0

dt (notice that
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Figure 13: Price dynamics in the case with "snob" inversion in the demand function.

the initial condition x(0) = x0 has been imposed) after some algebraic transformations of the rational
function the following solution is obtained

x(t) =
�x0e

�t

�+ sx0 (e�t � 1)
(11)

whose graph (for di¤erent initial conditions) is shown in �g. 14.

Figure 14: Integral curves for the logistic equation.

As it can be seen from the graph of x(t) in (11), all solutions starting from a positive initial condition
asymptotically converge to the attracting equilibrium K = �

s (usually called carrying capacity in the
language of ecology) represented by the horizontal asymptote. Another equilibrium point exists, given
by the extinction equilibrium Q = 0, which is repelling.

However, the possibility to �nd an analytic solution by integrating a nonlinear di¤erential equation
is a rare event, so we now try to infer the same conclusions without �nding the explicit solution, i.e.
by using qualitative methods. As usual, the �rst step is the localization of the equilibrium points,
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solutions of the equilibrium condition
�
x = 0, i.e. f(x) = x(�� sx) = 0, from which the two solutions

x�0 = 0 and x�1 =
�
s are easily computed. In order to determine their local stability properties, it

is su¢ cient to notice that the graph of the right hand side of (10), see �g.15, has negative slope
around the equilibrium x�1, so that

�
x is positive on the left and negative on the right, and vice-versa

at the equilibrium x�0, as indicated by the arrows along the x axis (the 1-dimensional state space of
the system). This can be analytically determined even without the knowledge of the whole graph
of the function, as it is su¢ cient to compute the sign of the x-derivative of the right hand side at
each equilibrium point. In fact, it is well known that the derivative computed in a given point of the
graph represents the slope of the graph (i.e. of the line tangent to the graph) at that point. So, the
local behaviour of the dynamical system in a neighborhood of an equilibrium point, hence its local
stability as well, is generally the same as the one of the linear approximation (i.e. the tangent). This
rough argument will be explained more formally in the next section. In the particular case of the
logistic model (10) the derivative is dfdx = f 0(x) = ��2sx, and computed at the two equilibrium points
becomes f 0(0) = � > 0, f 0(�s ) = �� < 0, hence Q = 0 is unstable, K = �

s is stable. Moreover the
parameter � can be seen as an indicator of how fast the system will go back to the stable equilibrium
after a small displacement, as the return time for the linear approximation is Tr = 1=�.

Before ending this part, we notice that the equilibrium points x�0 = 0 and x
�
1 =

�
s are two (constant)

solutions of (10), whose graphs in the plane (t; x) are horizontal lines. Thus, by the theorem of existence
and uniqueness of a solution stated above, any other (nonconstant) solution x(t) of (10) cannot cross
these two horizontal lines. From (10) by a simple second-degree inequality, it is easy to see that

�
x > 0

occurs whenever x 2
�
0; �s

�
. Moreover, being d2x

dt2
= d

�
x
dt = �

�
x � 2s �xx = �

x (�� 2sx), we deduce that
x(t) is strictly decreasing and concave whenever x(0) 2 (�1; 0) and that x(t) is strictly decreasing
and convex whenever x(0) 2

�
�
s ;+1

�
. Finally, when x(0) 2

�
0; �s

�
, x(t) is strictly increasing and

from convex becomes concave when x(t) = �
2s , see again �g. 14.

Figure 15: Right hand side of logistic equation (10).

3.3 Qualitative analysis of 1-dimensional nonlinear models in continuous time

The qualitative method used to understand the dynamic properties of the logistic equation can be
generalized to any one-dimensional dynamic equation in continuous time

�
x = f(x) (12)
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It consists, �rst of all, in the localization of the equilibrium points according to the equilibrium
condition

�
x = 0, i.e. the solutions of the equation f(x) = 0.

As a consequence of the Theorem of uniqueness, oscillations are not possible for a 1-dimensional
dynamical system in continuous time, hence for a system starting from any initial condition which is
not an equilibrium, only increasing or decreasing solutions can be obtained. Hence just four di¤erent
phase portraits characterize the dynamic behaviour of the 1-dimensional system around an equilibrium,
as shown in �g.16

Figure 16: The four di¤erent kinds of local phase portraits around an isolated equilibrium point.

Of course, if an initial condition coincides with an equilibrium point, i.e. x(0) = x� and f(x�) = 0,
then the unique solution is x(t) = x� for t � 0. In other words, starting from an equilibrium point,
the system remains there forever. The natural question arising is what happens if the initial condition
is taken close to an equilibrium point, i.e. if the system is slightly perturbed from the equilibrium
considered. Will the distance from the equilibrium increase or will the perturbation be reduced so
that the system spontaneously goes back to the originary equilibrium? An answer to this question is
easy in the case of hyperbolic equilibria, de�ned as equilibrium points with nonvanishing derivative,
i.e. f 0(x�) 6= 0. In fact, if x� is one of such solutions and f 0(x�) 6= 0, then the right hand side of (12)
can be approximated by the �rst order Taylor expansion (linear approximation)

f(x) = f(x�) + f 0(x�)(x� x�) + o(x� x�) = f 0(x�)(x� x�) + o(x� x�)

being f(x�) = 0. So, if f 0(x�) 6= 0 and we neglect the higher order terms then we obtain a linear
approximation of the dynamical system (12). In fact, if we translate the origin of the x coordinate
into the equilibrium point by the change of variable X = x � x�, that represents the displacement
between x(t) and the equilibrium points x�, then (12) becomes

�
X = �X

with � = f 0(x�), i.e. a linear di¤erential equation in the form (6), that governs the time evolution
of the system in a neighborhood of the equilibrium point x�. Of course, this linear di¤erential equa-
tion constitutes only a local approximation, i.e. for initial conditions taken in a su¢ ciently small
neighborhood of the equilibrium point considered. This leads to the following result:

Proposition (1-dim. local asymptotic stability in continuous time). Let x� be an equilib-
rium point of (12), i.e. f(x�) = 0. If f 0(x�) < 0 then x� is a locally asymptotically stable equilibrium;
if f 0(x�) > 0 then x� is unstable.

This gives a simple method to classify the stability of an hyperbolic equilibrium. Instead, for a
non-hyperbolic equilibrium, i.e. a point x� such that f(x�) = 0 and f 0(x�) = 0, nothing can be said
about the stability of x�, and further investigations are necessary, involving higher order derivatives or,
equivalently, the knowledge of the shape of the function f(x) around x�. In �g.17 we can see, through
four simple examples, that all possible phase portraits can be obtained around a non-hyperbolic
equilibrium.
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Figure 17: Four examples of di¤erent phase portraits around the non-hyperbolic equlibrium x� = 0
such that f(x�) = 0 and f 0(x�) = 0.

These situations characterized by a non-hyperbolic equilibrium point have been denoted as struc-
turally unstable, in the sense that a slight (i.e. arbitrarily small) modi�cation of the shape of the
function f(x) generally leads to a modi�cation in the stability property as well as in the number of
equilibrium points. Such a modi�cation may be caused by the presence of parameters that may be
used as devices (or policies) to modify the shape of the function f . Such slight modi�cations leading
to qualitatively di¤erent dynamic scenarios are denoted as bifurcations, and are described in the next
section. To end this section we stress that the notion of structural stability should not be confused
with that of dynamic stability: The latter deals with the e¤ect on the trajectories of a small displace-
ment of the initial condition (i.e. of the phase point), whereas the former deals with the e¤ect, on the
phase portrait (i.e. the dynamic scenario) of a slight modi�cation of the function f due to a slight
change of the value of a parameter.

Before giving a complete classi�cations of the bifurcations, we give some examples. Let us consider
the case of a �shery with constant harvesting, i.e. a �sh population x(t) characterized by a logistic
growth equation, which is exploited for commercial purposes. Let us assume that in each time period
a constant quota h is harvested. This leads to the following dynamic model

�
x = x(�� sx)� h (13)

where the quota h is a parameter that indicates the policy imposed by an authority to regulate the
�shing activity. The right hand side of the dynamic equation is a vertically translated parabola, as
shown in �g. 18 with increasing values of h. The equilibrium points, determined by imposing the
equilibrium condition x(�� sx)� h = 0, are given by x�0 = ��

p
�2�4hs
2s and x�1 =

�+
p
�2�4hs
2s provided

that h < �2

4s . The qualitative analysis shows that the higher equilibrium x�1 is stable, and gives
the equilibrium value at which the harvested population settles, whereas the lower is unstable, and
constitutes the boundary that separates the basin of attraction of x�1 and the set of initial conditions
leading to extinction. A sort of "survival threshold": If, due to some accident, the initial condition
falls below x�0 then the dynamics of the system will lead it to extinction. Moreover, if the harvesting
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quota exceeds the value �2

4s , then the two equilibrium points merge and then disappear. This occurs
when the graph of the right hand side of (13) is tangent to the horizontal axis: the two equilibria
merge into a unique (non-hyperbolic) equilibrium. This is a bifurcation, after which no equilibrium
exists and the only possible evolution is a decrease of population towards extinction.

Figure 18: Example of fold bifurcation (or catastrophe) in the �shery with constant harvesting model.

This sequence of these dynamic situations, shown in �g. 18, are summarized in the diagram
of �g. 19, called bifurcation diagram, where in the horizontal axis is represented the bifurcation
parameter h and in the vertical axis are reported the equilibrium values, represented by a continuous
line when stable and by a dashed line when unstable. As it can be seen, as far as h < �2

4s we observe
only quantitative modi�cations, i.e. the stable equilibrium decreases and the unstable one increases
(thus causing the shrinking of the basin of attraction), whereas at the bifurcation value an important
qualitative change occurs, leading to the disappearance of the two equilibrium points and consequently
to a completely di¤erent dynamic scenario. This is the essence of the concept of bifurcation, related
to slight modi�cations of a parameter leading to a qualitatively di¤erent phase diagram. It is worth
to notice that in this case the bifurcation occurring for increasing values of the "policy parameter" h
is characterized by irreversibility (or hysteresis e¤ect). In fact, if the harvesting quota h is gradually
increased until it crosses the bifurcation point, then the �sh population will decrease, see point A in
�g. 19. At this stage, even if the parameter h is decreased to reach a pre-bifurcation value h < �2

4s , it
may be not su¢ cient to bring the system back to the stable equilibrium, because the phase point is
trapped below the survival threshold x�0.

3.4 Local bifurcations in 1-dimensional nonlinear models in continuous time

Two one-dimensional dynamical systems
�
x = f(x) and

�
x = g(x) are qualitatively equivalent if they

have the same number of equilibrium points that orderly have, along the phase line, the same stability
properties. This equivalence relation de�ne classes of equivalent dynamical systems on the line, see
e.g. the sketch represented in �g. 20. One of these dynamical systems is structurally stable if after a
slight modi�cation of the graph of the function at the right hand side, for example a small variation
of a parameter, it remains in the same equivalence class. In other words, such small variation only
causes quantitative modi�cations of the equilibrium points. Instead if an arbitrarily small modi�cation
causes a qualitative change in the number and/or in the stability properties of the equilibria, so that
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Figure 19: Bifurcation diagram with harvesting quota h as a bifurcation parameter. Hysteresis e¤ect.

the system enters a di¤erent equivalence class, then a bifurcation occurs at the boundary between two
equivalence classes, and the system is said structurally unstable when it is along the boundary. These
bifurcation situations, i.e. these situations of structural instability, are characterized by the presence
of one or more non-hyperbolic equilibrium points.

The kinds of bifurcations through which such qualitative changes occur can be classi�ed into a
quite limited number of categories.

3.4.1 Fold bifurcation.

This bifurcation is characterized by the creation of two equilibrium points, one stable and one unstable,
as a parameter varies. Of course, if the same parameter varies in the opposite direction, at the
bifurcation point two equilibrium points, one stable and one unstable, merge and then disappear.
A canonical example is given by the dynamical system

�
x = f(x) = � � x2 as the parameter �

varies through the bifurcation value �0 = 0 (see �g. 21, where the bifurcation diagram is shown as
well). Notice that two equilibrium points x�1;2 = �p� only exist for � � 0, and they are coincident
x�1;2 = 0 for � = 0 and non-hyperbolic, as f 0(x) = �2x vanishes for x = 0. Instead, for � > 0
the two equilibrium points are one stable and one unstable being f 0(x�1) = f 0(�p�) = 2

p
� > 0

and f 0(x�2) = f 0(
p
�) = �2p� < 0. Of course, if we start our analysis from a positive value of the

parameter � and decrease it until it reaches and crosses the bifurcation value � = 0, we observe two
equilibrium points, one stable and one unstable that join at � = 0 and then disappear. It is worth to
notice that the unstable equilibrium represents the boundary of the basin of attraction of the stable
one, so we may describe this bifurcation by saying that a stable equilibrium collides with the boundary
of its basin and then disappears.

A model where this kind of bifurcation occurs is given in the previous section by the dynamical
system (13) which describes a population with logistic growth and harvesting with �xed quotas.
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Figure 20:

3.4.2 Transcritical (or stability exchange) bifurcation.

This bifurcation is characterized by the existence of two equilibrium points, one stable and one un-
stable, that merge at the bifurcation point and after the bifurcation they still exist but both with
opposite stability property, i.e. the once stable becomes unstable whereas the once unstable becomes
stable. A canonical example is given by the dynamical system

�
x = f(x) = �x� x2 as the parameter

� varies through the bifurcation value �0 = 0 (see �g. 22, where the bifurcation diagram is shown as
well). Notice that two equilibrium points x�1 = 0 and x

�
2 = � always exist: they are coincident x�1;2 = 0

for � = 0 and non-hyperbolic, as f 0(x) = �� 2x vanishes for � = 0 and x = 0. As f 0(x�1) = f 0(0) = �
and f 0(x�2) = f 0(�) = ��, x�1 = 0 is stable for � < 0 and unstable for � > 0 whereas x�2 = � is unstable
for � < 0 and stable for � > 0. So we can say that they merge at the bifurcation point and exchange
their stability.

As an economic example let us consider a simpli�ed version of the neoclassical model of Solow
(1956)

�
k = sy(k)� nk (14)

where k = K
L represents the capital per unit of labour, y =

Y
L is the production per labour unit, y(k)

is the production function, s is the saving rate (or propensity to save) and n is the labour growth rate.
The production function is increasing and concave:

y(0) = 0; y0(k) > 0, y00(k) < 0.

For suitable values of the parameters n and s two equilibrium points exist, such that sy(k) = nk, i.e.
located at the intersections between the curve y(k) and the line of slope n, say k�0 = 0 and k

� > 0. If
a critical value s0 exists such that sy0(0) = n, then it represents a transcritical bifurcation value, as
schematically shown in �g. 23.
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Figure 21: Fold bifurcation

3.4.3 Pitchfork bifurcation

This bifurcation is characterized by a transition from a single equilibrium point to three equilibria: the
one already existing changes its stability property as the bifurcation parameter crosses the bifurcation
point, and this leads to the simultaneous creation of two further equilibria. Of course, if the same
parameter varies in the opposite direction, at the bifurcation point two equilibrium points merge and
disappear and only the central one survives, even if it changes its stability property. A canonical
example is given by the dynamical system

�
x = f(x) = �x � x3 as the parameter � varies through

the bifurcation value �0 = 0 (see �g. 24, where the bifurcation diagram is shown on the left). Notice
that the equilibrium points x�0 = 0 always exists, and two further ones, x�1;2 = �p� for � � 0. All
three are coincident x�0 = x�1;2 = 0 for � = 0, thus giving a unique non-hyperbolic equilibrium at
the bifurcation point. In fact, from f 0(x) = � � 3x2 follows that f 0(0) = �, hence x�0 is stable for
� < 0 and unstable for � > 0. Instead, for � > 0 the two newly born equilibrium points x�1;2 are
both stable being f 0(�p�) = �� < 0. Of course, if we start our analysis from a positive value of
the parameter � and decrease it until it reaches and cross the bifurcation value � = 0, we observe
three equilibrium points, the one in the middle unstable and two stable at opposite sides, that join at
� = 0 and then disappear while the central one becomes stable. It is worth to notice that for � > 0,
when three equilibrium points exist, a situation of two coexisting stable equilibria, each with its own
basin of attraction, occurs. Moreover, the central (unstable) equilibrium represents the boundary that
separates the two basins of attraction in this situation of bistability.

This kind of bifurcation is called supercritical pitchfork bifurcation in order to distinguish it from
the subcritical, represented in the right portion of �g.24, where a unique unstable equilibrium becomes
stable at the bifurcation value with the simultaneous creation of two unstable equilibrium points
located at opposite sides, and constitutes the upper and lower boundary of the basin of attraction
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Figure 22: Transcritical bifurcation

Figure 23:

of the central stable one. The canonical dynamical system that gives rise to a subcritical pitchfork
bifurcation is

�
x = f(x) = x3 � �x, as the parameter � is increased through the bifurcation value

�0 = 0.
As an economic example let us consider a simpli�ed version of the Kaldor Model:2

�
Y = � [I(Y )� S(Y )] (15)

where Y is the national income, I(Y ) is the investment function and S(Y ) represents the saving
function. Kaldor�s basic idea is that the marginal propensity I 0(Y ) is positive but varying so that it
has an S-shaped graph as shown in �g. 25. This captures the fact that the propensity to invest has a
given "normal" slope for intermediate values of income Y whereas its slope is lower for small values
as well as high values of Y , due to missing opportunities to invest for low Y and because of decreasing
economies of scale for too high income. This shape, associated to a linear saving function S = sY ,

2An extended version of this model is presented below.
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Figure 24: Supercritical (left) and subcritical (right) pitchfork bifurcation.

gives rise to one or three equilibrium points according to the slope s. If we �x the central (or normal )
equilibrium and the investment function is symmetric with respect to this "central" equilibrium point,
then a supercritical pitchfork bifurcation occurs for decreasing values of the slope s. For example, we
can use the "sigmoidal" function arctan() in order to imitate the shape of the "kaldorian" investment
function

I(Y ) = sYc + arctan (� (Y � Yc)) (16)

so that the two curves I(Y ) and S(Y ) intersect at the "normal" central equilibrium Yc, and two further
intersections appear for decreasing values of s through the pitchfork bifurcation value s0 = �, where
� represents a sensitivity parameter that measures how much investments increase as a consequence
of increased income in a neighborhood of the central equilibrium Yc.

4 Two-dimensional Dynamical Systems in continuous time

In this section we consider dynamic models of systems whose state is described by two variables,
say x1(t) and x2(t), which are interdependent, i.e. the time evolution of x1(t), expressed by its time
derivative

�
x1, can be in�uenced by itself and by x2(t), and the same holds for

�
x2:

�
x1 = f1(x1(t); x2(t)) (17)
�
x2 = f2(x1(t); x2(t))

A general method to get a qualitative global view of the phase portrait of a model in the form (17)
is obtained by a representation, in the phase space (x1; x2), of the two curves of equation f1(x1; x2) = 0
and f2(x1; x2) = 0, usually called nullclines (see �g. 26). The points of intersection of these curves
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Figure 25:

are the equilibrium points, solutions of the following system of two equations with two unknowns

f1(x1; x2) = 0 (18)

f2(x1; x2) = 0

Moreover, the two curves subdivide the phase plane into zones characterized by di¤erent signs of the

time derivatives
� �
x1;

�
x2

�
as shown by the red arrows in �g. 26. The resulting directions (obtained by

the usual graphical rule of vector sum) give a qualitative idea of the dynamics of the model in each
region of the phase plane.

Figure 26: Nullclines and phasors in a qualitative sketch of a two-dimensional dynamical system in
continuous time.

As an example of this method, let us consider the prey-predator model, also known as Lotka-
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Volterra model3
�
x1
�
x2

=
=

�x1 � sx21 � bx1x2 = x1(�� sx1 � bx2)
�dx2 + cx1x2 = x2(cx1 � d)

(19)

where x1 = x1(t) represents the numerosity (or the density) in a given region of a species (the prey)
that feeds from the environment, and x2 = x2(t) represents the numerosity (or density) of predators
that can only take nourishment from the prey population x1. In the absence of predators (x2 = 0)
the prey population evolves according to the usual logistic growth function, whereas in the absence
of preys (x1 = 0) predators exhibit an exponential decay at rate d (mortality for starvation). The
interaction term, proportional to the product xy under the assumption of random motion of prey and
predators in the region considered (like in gas kinetics) has a negative e¤ect on preys and positive
on predators. This simple ecological model was proposed by the Italian mathematician Vito Volterra
to explain the endogenous mechanism leading to oscillations in the �sh harvesting observed in the
Adriatic Sea.

Let us �rst consider the simpler case obtained by assuming s = 0 (like in the �rst model proposed
by Volterra). In this case, the nullcline

�
x1 = 0 is given by x1 = 0, i.e. the vertical axis, or the

horizontal line x2 = �
b , and the nullcline

�
x2 = 0 is given by x2 = 0, i.e. the horizontal axis, or the

vertical line x1 = d
c (see �g. 27). The coordinate axes are trapping sets, i.e. any trajectory starting

from an initial condition taken on the vertical axis x1 = 0 remains there (as the rate of change of x1
is

�
x1 = 0 on it) and the corresponding trajectory goes to 0, the exponential decline of predators in

the absence of preys. Instead along the trapping horizontal axis x2 = 0 the prey population increases
without any bound, as the term of overcrowding is neglected being in this case s = 0. In order to
understand what happens starting from initial conditions interior to the positive orthant, i.e. from
initial situations of coexistence of preys and predators, we represent the horizontal and vertical arrows
with orientations according to the signs of

�
x1 and

�
x2 (see �g. 27). The directions of the phase vectors

(also called phasors) clearly indicate a counterclockwise cyclic motion. This represents a oscillatory
motion of both x1(t) and x2(t), hence endogenous or self-sustained oscillations. This is an important
result, because it states that a dynamic system can exhibit autonomous oscillations, without any
oscillatory forcing term. In other words a system with interacting components can oscillate even if
nobody shakes it from outside.

An intuitive explanation of this dynamic behaviour can be easily provided in the case of the prey-
predator system modelled by Volterra. In fact, let us assume that at the initial time a few preys and
a lot of predators are present, i.e. a small x1 value and a large x2 value, an initial state located in
the upper-left quadrant of the phase space. In this case predators su¤er for scarcity of food, and their
number will decline. After this decline a few predators remain and preys will increase because of low
predatory pressure. After this preys�population increase predators will have plenty of available food
and consequently their population will increase, and this will lead to severe predatory pressure and
thus a decay in preys�population. So, we again �nd the system in a situation with a few preys and a
lot of predators, and the same process will be repeated, thus giving the cyclic time evolution.

Some trajectories starting from di¤erent initial conditions are shown in the left panel of �g. 28,
whereas the versus time representation of a typical trajectory can be seen in the right panel. Of course,
the trajectory starting from the positive equilibrium point E =

�
d
c ;
�
b

�
, located at the intersection of

3Lotka, A.J., "Analytical Note on Certain Rhythmic Relations in Organic Systems�, Proc. Natl. Acad. Sci. U.S., 6,
410�415, (1920).
Volterra, V., �Variazioni e �uttuazioni del numero d�individui in specie animali conviventi�, Mem. Acad. Lincei Roma,

2, 31�113, (1926)
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Figure 27: Phasors for the classical prey-predator Volterra model.

two nullclines, will remain there forever. However, if a perturbation causes a shift of the phase point
from E then endless oscillations will start, with greater amplitude according to the distance of the
initial condition (i.e. the entity of the shift) from the equilibrium point. Of course also O = (0; 0) is
an equilibrium point, located at the intersections of the nullclines that coincide with the coordinate
axes. A classi�cation of these equilibrium points will be proposed in the next section.

Figure 28: Trajectory represented as a phase curve (left) and versus time (right) in the prey-predator
Volterra classical model.

One may wonder what happens if the overcrowding parameter s > 0, i.e. the prey population alone
follows a logistic growth. In this case the prey nullcline has equation � � sx1 � bx2 = 0, i.e. it is a
tilted line with negative slope (see �g.29). It is not easy to understand how the trajectories change by
the qualitative method of nullclines and phasors. A numerical representation of a typical trajectory in
the phase plane as well as the corresponding time paths x1(t) and x2(t) are shown in �g.29; however
a more detailed analysis will be possible with the methods described in the next sections.

We end this section by stressing the fact that endogenous oscillations are a well known phenomenon
in a capitalistic economy, where up and down patterns have been (and currently are) observed in the
main macroeconomic indicators. As we will see in more details later in these lecture notes, the
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Figure 29: Prey-predator model with logistic growth of the preys.

same dynamic equations proposed by Volterra to describe the time evolution of preys�and predators�
populations have been used (with founded motivations) by the economist Richard Goodwin in 1967
to represent endogenous business cycles, by using salaries and occupation as dynamic variables. This
is an example of how dynamic models can be usefully applied in di¤erent �elds.

4.1 Linear systems

Following the same path as for the one-dimensional case, let us �rst of all consider a linear homogeneous
system of two di¤erential equations of �rst order (i.e. involving only the �rst derivative of the dynamic
variables) with constant coe¢ cients in the (normal) form:( �

x1 = a11x1 (t) + a12x2 (t)
�
x2 = a21x1 (t) + a22x2 (t)

(20)

This linear system can be written in matrix form

�
x = Ax (21)

where

A =

�
a11 a12
a21 a22

�
; x(t)=

�
x1(t)
x2(t)

�
;
�
x(t)=

 �
x1(t)
�
x2(t)

!
The aim of this section is to show a procedure to �nd the solutions of this system that reduces to
a very simple algebraic method that essentially consists in the solution of a second degree algebraic
equation (in the �eld of complex numbers).

However, before stating this result, we outline the arguments at the basis of the proof.
An important general property of a linear system of ordinary di¤erential equations is that given

two solutions, say

'(t) =

�
'1(t)
'2(t)

�
and  (t) =

�
 1(t)
 2(t)

�
any linear combination of them

y(t) = �'(t) + � (t); with �; � 2 R (22)
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is a solution of (20) as well. In fact, assuming that both '(t) and  (t) satisfy (21) being them
solutions, we obtain

�
y = �

�
'+ �

�
 = �A'+ �A = A (�'+ � ) = Ay

so that also y(t) is a solution. This means that the set of all the solutions, obtained with di¤erent
"weights" � and � in the linear combination, is a vector space. Moreover, it is possible to prove that it
has dimension 2, i.e. all the solutions can be generated as linear combinations of just two independent
solutions, that form a base of the vector space. The de�nition of independent solutions is the usual
one: given two solutions, say again '(t) and  (t), they are independent if �'(t)+� (t) = 0 8t implies
� = � = 0. In order to check such independence it is possible to use the Wronskian determinant

W (t) = det

�
'1(t)  1(t)
'2(t)  2(t)

�
= '1(t) 2(t)�  1(t)'2(t)

If W (t) 6= 0 for at least a t value, then the two solutions '(t) and  (t) are independent. In fact, it
is possible to prove that only one of the following is true: W (t) = 0 8t or W (t) 6= 0 8t. Hence it is
su¢ cient to check it for just one value of t, for example W (0) 6= 0.

So, in order to �nd the general solution (i.e. all the possible solutions) of (20) it is su¢ cient to
�nd just two of them which are independent. Then the general solution will be in the form (22) and,
by imposing an initial conditions x1(0), x2(0) the two constants � and � can be uniquely determined
by solving the following linear algebraic system

�

�
'1(0)
'2(0)

�
+ �

�
 1(0)
 2(0)

�
=

�
'1(0)  1(0)
'2(0)  2(0)

��
�
�

�
=

�
x1(0)
x2(0)

�
which is a linear system whose coe¢ cient matrix is nonsingular, being W (0) 6= 0 its determinant.

In the following we show a direct method to �nd two independent solutions. Following again the
same arguments as in the one-dimensional case, let us propose a "trial solution" in exponential form,
i.e.

xi (t) = vie
�t, i = 1; 2 (23)

As
�
x1 (t) = �v1e

�t and
�
x2 (t) = �v2e

�t, after replacing this trial solution into (20) we get�
�v1e

�t = a11v1e
�t + a12v2e

�t

�v2e
�t = a21v1e

�t + a22v2e
�t

and after simpli�cation of all the identical exponential it becomes�
(a11 � �)v1 + a12v2 = 0
a21v1 + (a22 � �)v2 = 0

or (A� �I)v = 0 (24)

an algebraic linear homogeneous system with unknowns v1 and v2 and parameter �. This homogeneous
systems has non-trivial solutions (i.e. solutions di¤erent from (0; 0)). provided that

det

��
a11 � � a12
a21 a22 � �

��
= 0: or det (A� �I) = 0

This condition can be expressed in the form of the "characteristic equation"

�2 � Tr(A)�+Det(A) = 0 (25)
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where Tr(A) = a11+a22 (the sum of diagonal elements of the matrix A) and Det(A) = a11a22�a12a21
(the determinant of the matrix A).

This is a standard problem of linear algebra, known as eigenvalue problem. In fact, in matrix form
it can be expressed as

Av = �v with v 6= 0 and � 2 C
i.e. the linear operator A, applied to the vector v, gives a vector �v proportional to it, let�s say in
the same direction. The real number � is called eigenvalue and the solution vector v eigenvector.

To sum up, ve�t is a solution of (20) if and only if [A� �I]v = 0, i.e. � is an eigenvalue of
A with corresponding eigenvector v 6= 0, i.e. det [A� �I] = 0 or, equivalently, if � satis�es the
characteristic equation (25). This reduces the problem of �nding two independent solutions of (20) to
the computation of two solutions of the second degree algebraic equation (25). According to the sign
of the discriminant of the characteristic equation, Tr(A)2 � 4Det(A), we can have two real distinct,
two real coincident or two complex conjugate eigenvalues. This will give rise to di¤erent kinds of phase
portraits, as explained below (see also �g. 30 and 31).

1. If we have two real, distinct and negative eigenvalues �2 < �1 < 0, i.e. Tr (A)
2 � 4 det (A) > 0

with Tr(A) < 0 and Det(A) > 0, then the two independent solutions are v1e�1t and v2e�2t,
both decreasing to 0 as t!1. The general solution is

x(t) = c1v1e
�1t + c2v2e

�2t (26)

where the two constants c1 and c2 are uniquely determined according to the initial condition
x(0) = (x1(0); x2(0)). The corresponding phase diagram is represented in �g. 30 and the
asymptotically stable stable equilibrium is called stable node (or sink)

2. If we have two real, distinct and positive eigenvalues �1 > �2 > 0, i.e. Tr (A)2 � 4 det (A) > 0
with Tr(A) > 0 and Det > 0, then the two independent solutions are v1e�1t and v2e�2t, both
increasing to 1 as t ! 1. The general solution is again of the form (26), the corresponding
phase diagram is represented in �g. 30 and the unstable equilibrium (0; 0) is called unstable node
(or source).

3. If we have two real distinct eigenvalues of opposite sign, �2 < 0 < �1, i.e. Tr (A)
2�4 det (A) > 0

with Det < 0, then the two independent solutions v1e�1t and v2e�2t are one increasing to 1
and one decreasing to 0 as t ! 1. The corresponding phase diagram is represented in �g. 30
and the unstable equilibrium (0; 0) is called saddle. Notice that an invariant line exists, called
stable manifold (along the direction indicated by the eigenvector v2 associated with the negative
eigenvalue, whereas the line along the eigenvector v1, associated to the positive eigenvalue, is
referred to as the unstable manifold), on which the dynamics is asymptotically convergent to
the equilibrium (0; 0). Nevertheless the equilibrium is unstable, and the kind of notion around
it may even be misleading, as the generic trajectory �rst moves towards it (so that it may look
as a convergent trajectory) whereas it then turns away from the equilibrium.

4. If we have two coincident and negative eigenvalues �1 = �2 = � < 0 (and consequently v1 =
v2 = v), i.e. Tr (A)

2 � 4 det (A) = 0 with Tr < 0, then two independent solutions are ve�t and
vte�t, both converging to 0 as t!1, and the general solution becomes

x(t) = c1ve
�t + c2vte

�t (27)

The corresponding phase diagram is represented in �g. 30 and the stable equilibrium (0; 0) is
called stable improper node (or stable star node in particular symmetric situations).
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5. If we have two coincident and positive eigenvalues �1 = �2 = � > 0 (and consequently v1 =
v2 = v), i.e. Tr (A)

2 � 4 det (A) = 0 with Tr > 0, then we have the same general solution and
the corresponding phase diagram is obtained from the previous one just reversing the arrows
and is called unstable improper node (or unstable star node in particular symmetric situations).

Figure 30: Local phase portraits with real eigenvalues.

6. If Tr (A)2�4 det (A) < 0 we have two complex conjugate eigenvalues �1 = a+ib and �2 = a�ib,
where a = Re(�) = Tr(A)

2 is the real part and b = Im (�) =

p
4Det(A)�Tr(A)2

2 is the imaginary
part. Again two independent solutions are '(t) = v1e

�1t and
_
'(t) = v2e

�2t, with both the
eigenvalues as well as the corresponding eigenvectors complex. However,

_
'(t) is the complex

conjugate of '(t), and we can write them in trigonometric form

'(t) = v1e
at (cos(bt) + i sin(bt)) and

_
'(t) =

_
v1e

at (cos(bt)� i sin(bt)) :
As any linear combination of two solutions is again a solution of (20) we can obtain two inde-
pendent real solutions in the form

1

2

�
'(t) +

_
'(t)

�
= Re'(t) = (Rev1)e

at cos(bt)

1

2i

�
'(t)�

_
'(t)

�
= Im'(t) = (Imv1)e

at sin(bt)

So, the general solution can be written in the form

x(t) = eat [c1(Rev1) cos(bt) + c2(Imv1) sin(bt)] (28)
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from which we can see that the part inside square brackets causes oscillations around the equilib-
rium (0; 0) whereas the exponential term outside the square brackets determines the expanding
or contracting nature of the oscillations: if a < 0, i.e. Tr(A) < 0, then the oscillations exhibit
decreasing amplitude and converge to the equilibrium (0; 0), if a > 0, i.e. Tr(A) > 0, then
the oscillations increase in amplitude and diverge. Finally, if a = 0, i.e. Tr(A) = 0, then the
oscillations are of constant amplitude. The corresponding phase diagram are represented in �g.
31, and the corresponding phase diagrams are denoted as stable focus (or stable spiral), unstable
focus (or unstable spiral) and centre respectively. Notice that the case of complex eigenvalues is

the �rst one giving oscillations, and the imaginary part of the eigenvalues b =
p
4Det(A)�Tr(A)2

2
determines the time required to complete a whole oscillation, given by T = 2�

b .

Figure 31: Local phase portraits with complex eigenvalues.

To summarize all these cases it is useful to represent the trace Tr(A) and the determinant Det(A)
on the coordinate axes of a cartesian plane (see �g. 32), together with the curve of equation Tr(A)2�
4Det(A) = 0 (a parabola with vertex in the origin of the axes). Above the parabola we have Tr(A)2�
4Det(A) < 0, hence oscillatory behaviour, below it we have Tr(A)2 � 4Det(A) > 0, so we have nodes
and saddles according to the sign of Det(A).

Remark (important) It is worth to notice that asymptotic stability of the unique equilibrium
occurs only in the quadrant with Tr(A) < 0 and Det(A) > 0. Moreover, in this case of linear dynamic
models the local asymptotic stability is equivalent to global asymptotic stability, i.e. if the equilibrium
is stable it attracts all the initial conditions (x1(0); x2(0)) 2 R2. Instead, when the equilibrium is
unstable, then all the initial conditions starting outside the equilibrium generate diverging trajectories.
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Figure 32: Di¤erent phase portraits in the Trace-Determinant diagram.

Some other particular cases can be noticed. For example, if Det(A) 6= 0 then the linear homoge-
neous algebraic system to obtain the equilibrium pointsAx = 0 has the unique solution (0; 0), whereas
if Det(A) = 0 then in�nitely many equilibrium points exist, located along a line through the origin.
These equilibria are non-hyperbolic being one of the eigenvalues equal to zero. Even in the case of
Tr(A) = 0 and Det(A) > 0 the equilibrium point is denoted as non-hyperbolic as the real part of
the eigenvalues vanishes. These will identify the bifurcation cases when dealing with 2-dimensional
nonlinear dynamic models (in continuous time) that depend on a bifurcation parameter.

4.1.1 Some example of computations of explicit solutions for linear models

Let us consider, as an example ( �
y (t) = 2y (t)� 2z (t)
�
z (t) = �3y (t) + z (t)

that can be interpreted as a positive in�uence of self-interactions, i.e. each state variable increases its
rate of growth, and a negative in�uence of cross-interactions, i.e. each state variable inhibits the rate
of growth of the other one. In matrix form it becomes:" �

y (t)
�
z (t)

#
=

�
2 �2
�3 1

� �
y (t)
z (t)

�
As the trace of the matrix is Tr = 3 and the determinant isDet = �4, on the basis of the analysis given
above we deduce that the eigenvalues are both real and with opposite sign. In fact, the characteristic
equation �2 � 3� � 4 = 0 has solutions �1 = �1, �2 = 4. So, we can immediately conclude the
qualitative analysis by saying that the equilibrium O = (0; 0) is a saddle.

In order to get the explicit expression of the solutions, we need to compute the corresponding
eigenvectors:

�1 = �1 :
�
2� �1 �2
�3 1� �1

� �
v11
v21

�
=

�
0
0

�
)
�
3 �2
�3 2

� �
v11
v21

�
=

�
0
0

�
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As expected, this is a linear homogeneous algebraic system with two unknowns and rank=1, so 11

solutions exist such that 3v11 � 2v21 = 0, i.e. in the form v1 =

�
v11
v21

�
=

�
1
3=2

�
obtained by choosing

v11 = 1. Analogously, for the other eigenvalue we have

�2 = 4 :

�
2� �2 �2
�3 1� �2

� �
v12
v22

�
=

�
0
0

�
)
�
�2 �2
�3 �3

� �
v12
v22

�
=

�
0
0

�

hence v12 + v
2
2 = 0 from which v2 =

�
v12
v22

�
=

�
1
�1

�
.

All the solutions can be written in the form of linear combinations of these two independent
solutions: �

y (t)
z (t)

�
= c1v1e

�1t + c2v2e
�2t = c1

�
1
3=2

�
e�t + c2

�
1
�1

�
e4t

Given an initial solution, e.g.
�
y (0)
z (0)

�
=

�
4
3

�
, the two constants c1 and c2 can be determined as the

unique solution of the following algebraic system�
1 1
3
2 �1

� �
c1
c2

�
=

�
4
3

�
that give c1 = 3 and c2 = 1.

A numerical simulation is shown in �g.33,where the red trajectory is obtained by taking an initial
condition along the direction indicated by the eigenvector v1 associated with the negative eigenvalue

�1 (stable invariant manifold) e.g.
�
y (0)
z (0)

�
= v1q, q > 0. The other trajectories initially move towards

(0; 0) and then turn away from it, asymptotically to the line along the direction of the eigenvalue v2
associated with the positive eigenvalue �2 (unstable invariant manifold). Another example:

­4

­3

­2

­1

 0

 1

 2

 3

 4

­4 ­3 ­2 ­1  0  1  2  3  4

Figure 33: Numerical computed trajectory with real eigenvalues.
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( �
y (t) = �5y (t) + 8z (t)
�
z (t) = �y (t) + z (t)

From the matrix form: " �
y (t)
�
z (t)

#
=

�
�5 8
�1 1

� �
y (t)
z (t)

�
we have Tr = �4, Det = 3 hence two real and negative eigenvalues (stable node). Indeed, the
characteristic equation �2+4�+3 has solutions �1 = �3, �2 = �1. The eigenvectors are obtained as:�

�5� �1 8
�1 1� �1

� �
v11
v21

�
=

�
0
0

�
with �1 = �3 :)

�
�2 8
�1 4

� �
v11
v21

�
=

�
0
0

�

hence �v11 + 4v21 = 0 and with v11 = 1 we get v1 =
�
1
1=4

�
;

with �2 = �1)
�
�4 8
�1 2

� �
v12
v22

�
=

�
0
0

�

we get v2 =
�
1
1=2

�
and the general solution

�
y (t)
z (t)

�
= c1

�
1
1=4

�
e�3t + c2

�
1
1=2

�
e�t

from which a particular solution is obtained by imposing an initial condition
�
y (0)
z (0)

�
.

For the following example ( �
y (t) = y (t)� 5z (t)
�
z (t) = y (t) + z (t)

we have Tr2�4Det = 22�4�6 = �20 < 0, hence complex conjugate eigenvalues with positive real part
(being Tr > 0). This means that the equilibrium (0; 0) is an unstable focus. Indeed, the characteristic
equation �2 � 2�+ 6 = 0 has solutions �1 = 2+2i

p
5

2 = 1 + i
p
5, �2 = 2�2i

p
5

2 = 1� i
p
5. The complex

eigenvectors are obtained from:�
1� �1 �5
1 1� �1

� �
v11
v21

�
=

�
0
0

�
with �1 = 1 + i

p
5)

�
�i
p
5 �5

1 �i
p
5

� �
v11
v21

�
=

�
0
0

�

hence v11 � i
p
5v21 = 0 and with v

2
1 = 1 we get v1 =

�
i
p
5
1

�
; Analogously,

with �2 = 1� i
p
5)

�
i
p
5 �5
1 i

p
5

� �
v12
v22

�
=

�
0
0

�

gives v2 =
_
v1 =

�
�i
p
5

1

�
. The general complex solution is

�
y (t)
z (t)

�
= c1

�
i
p
5
1

�
e(1+i

p
5)t + c2

�
�i
p
5

1

�
e(1�i

p
5)t
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where c1 and c2 are arbitrary complex numbers. However, remembering that

e(1�i
p
5)t = ete�i

p
5t = et

h
cos
�p
5t
�
� i sin

�p
5t
�i

we have

�1 (t) =

�
i
p
5
1

�
etei

p
5t = et

�
i
p
5 cos

�p
5t
�
�
p
5 sin

�p
5t
�

cos
�p
5t
�
+ i sin

�p
5t
� �

=

= et
��

�
p
5 sin

�
t
p
5
�

cos
�
t
p
5
� �

+ i

� p
5 cos

�
t
p
5
�

sin
�
t
p
5
� ��

=

and

�2 (t) = et
��

�
p
5 sin

�
t
p
5
�

cos
�
t
p
5
� �

� i
� p

5 cos
�
t
p
5
�

sin
�
t
p
5
� ��

we can obtain two independent real solutions:

 1 =
�1 (t) + �2 (t)

2
= et

�
�
p
5 sin

�
t
p
5
�

cos
�
t
p
5
� �

;  2 =
�1 (t)� �2 (t)

2i
= et

� p
5 cos

�
t
p
5
�

sin
�
t
p
5
� �

as a base to get the general real solution�
y (t)
z (t)

�
= c1e

t

�
�
p
5 sin

�
t
p
5
�

cos
�
t
p
5
� �

+ c2e
t

� p
5 cos

�
t
p
5
�

sin
�
t
p
5
� �

= et
�
c1

�
�
p
5 sin

�
t
p
5
�

cos
�
t
p
5
� �

+ c2

� p
5 cos

�
t
p
5
�

sin
�
t
p
5
� ��

Again, a particular solution is obtained by imposing a given initial condition. Fig.34 shows some
trajectories numerically, each obtained by taking an initial condition close to the unstable focus
(0; 0).To end this set of examples, let us consider what happens in the case of coincident eigenval-
ues �1 = �2 = �, a solution of the characteristic equation with algebraic multiplicity 2 occurring
when Tr (A)� 4 det (A) = 0. We can distinguish two cases, according to the number of independent
eigenvectors (geometric multiplicity mg (�)) associated with the eigenvalue of algebraic multiplicity 2.
In fact, mg (�) � 2 according to the following relation

mg (�) = dim (V )� rank (A� �I)

where dim (V ) represents the dimension of the phase space, hence dim (V ) = 2 in our case, and
rank (A� �I) is the rank of the homogeneous algebraic system whose solutions are the eigenvectors.
The two cases are:

(a) mg (�) = 2, i.e. two independent eigenvectors exist because rank (A� �I) = 0.
(b) mg (�) = 1, i.e. only one independent eigenvector exists being rank (A� �I) = 1.
In case (a) two independent solutions exist, given by v1e�t and v2e�t, where v1 and v2 are two

independent eigenvectors associated to �, and then one can proceed by considering all the linear
combinations of these two independent solutions as general solution, as usual.

Otherwise, in case (b) it can be proved that two independent solutions are given by ve�t and vte�t,
where v is the only independent eigenvector.

As an example, let us consider the following linear model:( �
y (t) = 3y (t)� z (t)
�
z (t) = y (t) + z (t)
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Figure 34: Numerically computed trajectory with complex eigenvalues.

that, as usual, can be written in the matrix form:" �
y (t)
�
z (t)

#
=

�
3 �1
1 1

� �
y (t)
z (t)

�
As Tr = 4 and Det = 4 we have Tr2 � 4Det = 16 � 16 = 0, and the unique eigenvalue � = 2 of
algebraic multiplicity 2 is obtained. From�

3� �1 �1
1 1� �1

�
with � = 2)

�
1 �1
1 �1

� �
v11
v21

�
=

�
0
0

�
we can see that rank (A� �I) = 1, hence the geometric dimension of the eigenspace is 2� 1 = 1, and

v =

�
1
1

�
. Besides the solution �1 (t) = c1

�
1
1

�
e2t a second solution is proposed in the form �2 (t) =�

a1
a2

�
te2t +

�
b1
b2

�
e2t, where the two vectors must be determined so that

�
�2 (t) = A�2 (t), i.e.

�
a1
a2

�
e2t +

�
a1
a2

�
2te2t +

�
b1
b2

�
2e2t = A

�
a1
a2

�
te2t +A

�
b1
b2

�
e2t

equivalent to

e2t
��
a1
a2

�
+

�
b1
b2

�
2�A

�
b1
b2

��
+ te2t

��
a1
a2

�
2�A

�
a1
a2

��
= 0

which is true provided that both the expressions inside brackets vanish, i.e.

A

�
a1
a2

�
= 2

�
a1
a2

�
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that is
�
a1
a2

�
is an eigenvector of � = 2, i.e.

�
a1
a2

�
= v =

�
1
1

�
, and

[A� 2I]
�
b1
b2

�
=

�
a1
a2

�

where
�
b1
b2

�
is called "generalized eigenvector". From

�
1 �1
1 �1

� �
b1
b2

�
=

�
1
1

�

we get
�
b1
b2

�
=

�
1
0

�
.

All in all, the general solution becomes�
y (t)
z (t)

�
= c1

�
1
1

�
e2t + c2

��
1
1

�
t+

�
1
0

��
e2t

The equilibrium in an unstable improper node, and some trajectories obtained starting from initial
conditions close to (0; 0) are shown in �g.35.
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Figure 35: Unstable improper node.

4.2 Nonlinear dynamic models in two dimensions.

Let us consider a nonlinear model in the form (17) and let E = (x�1; x
�
2) be an equilibrium point, solution

of the system (18). Di¤erently from the linear models, in the nonlinear case several equilibrium points
can coexist. However, what we have seen for a linear system can be used to understand the local
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behaviour of a nonlinear system around a single equilibrium, i.e. locally, in a neighborhood of the
equilibrium point. We recall that a neighborhood of a point of x� 2 Rn is a set Nr(x�) de�ned as

Nr(x
�) = fx 2Rnj kx� x�k < rg for some r > 0

where k�k is a norm, such as the Euclidean norm kxk =
qPn

i=1 x
2
i . Hence in Rn a neighborhood is an

open disk of radius r and centre x�. In the following we will characterize the local phase portrait in a
neighborhood of an equilibrium point E = (x�1; x

�
2) by using the linear approximation of the nonlinear

system obtained by the �rst order Taylor expansion

f1 (x1; x2) = f1 (x
�
1; x

�
2) +

@f1
@x1

����
E

(x1 � x�1) +
@f1
@x2

����
E

(x2 � x�2) + o(kx� x�k)

f2 (x1; x2) = f2 (x
�
1; x

�
2) +

@f2
@x1

����
E

(x1 � x�1) +
@f2
@x2

����
E

(x2 � x�2) + o(kx� x�k)

where the symbol o (�) represents higher order in�nitesimal terms as x! x�. Being E an equilibrium,
fi (x

�
1; x

�
2) = 0, i = 1; 2, so if we de�ne the Jacobian matrix as the matrix that collects the four partial

derivatives

J (x1; x2)=

"
@f1
@x1

(x1; x2)
@f1
@x2

(x1; x2)
@f2
@x1

(x1; x2)
@f2
@x2

(x1; x2)

#
and we substitute the Taylor expansion, then (17) can be written as24 �

X1
�
X2

35 = J (x�1; x�2) � X1X2
�
+ o kXk

where X1 = x1 � x�1; X2 = x2 � x�2 are coordinated centered in E, i.e. that measure the displacement
from the equilibrium. Under suitable conditions we can use the linear approximation around x� to
classify the local phase portrait according to the following result

Linearization Theorem Let the nonlinear system (17) have an equilibrium x� such that all
the eigenvalues of J (x�) have nonvanishing real part. Then in a neighborhood of x� the local phase
portrait of (17) is qualitatively equivalent to that of the linear approximation.

This is a quite informal and intuitive version of a more general theorem known as Hartman-
Grobman Theorem. Here below we give a more rigorous version of it, extended to n dimensions,
where the de�nition of qualitative (or topological) equivalence is included as well.

Theorem (Hartman-Grobman, 1964) Given a nonlinear system of di¤erential equations
�
x =

f (x), x 2 Rn, let x� 2 Rn be an equilibrium point, i.e. f (x�) = 0. If x� is hyperbolic, i.e. all
the eigenvalues of the Jacobian matrix J (x�) have nonvanishing real part, then the general solution
y(t) 2 Rn of the linear system

�
y = J (x�) y is such that a neighborhood U of x� exists and an

homeomorphism y = h (x) exists, with h de�ned in U and with values in a neighborhood of the
equilibrium 0 of the linear system, such that y (t) = h (x (t)) 8t 2 R with x (t) 2 U solution of
�
x = f (x).

We recall that a homeomorphism is a continuous and invertible function.

The Hartman-Grobman theorem essentially states that the trajectories of a nonlinear dynamic
model in a neighborhood of an hyperbolic equilibrium are similar to the ones of its linear approximation
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whose matrix of coe¢ cients is given by the Jacobian matrix computed at the equilibrium. This implies
that any hyperbolic equilibrium point of a nonlinear dynamical system can be classi�ed as a stable
(unstable) node, or a saddle, or a stable (unstable) focus as for the corresponding linear approximation.
The corresponding phase portraits may be in some way disported (stretched, rotated etc.) however
they are topologically equivalent. In particular the stable and unstable invariant manifold of saddles
still exist, even if they are no longer lines but smooth curves tangent to the eigenvectors of the
corresponding linear approximation.

A corollary of the Hartman-Grobman Theorem and the knowledge of the general solutions of linear
systems, is given by the following proposition about local asymptotic stability of an equilibrium, that
will be easily extended to continuous-time dynamical systems of dimension n.

Theorem on local asymptotic stability. Let x� be an equilibrium point of
�
x = f (x), x 2

Rn. If all the eigenvalues of J (x�) have negative real part then x� is a locally asymptotically stable
equilibrium. If at least one eigenvalue of the Jacobian matrix J (x�) has positive real part then x� is
unstable.

To sum up, given an equilibrium point we can analyze the local qualitative behaviour in a neigh-
borhood of an hyperbolic equilibrium (i.e. the qualitative structure of the phase portrait around it)
just studying the eigenvalues of the Jacobian matrix computed in it, that follows immediately from
the computation of the trace and the determinant according to the classi�cation listed for linear sys-
tems. However this procedure only gives information about the local behaviour around the equilibrium
points, and nothing about the global behaviour, even if this is usually a good starting point to have
a global view as well.

We also stress that the Hartman-Grobman Theorem provides no information about the behaviour
of the dynamical system around non-hyperbolic equilibria, i.e. when the determinant or the trace
of the Jacobian matrix vanish. Such non generic situations are often characterized by structural
instability, and in the presence of a parameter they may give rise to bifurcations, as will be discussed
in the next Section.

As an example. Let us consider the system of nonlinear di¤erential equations( �
x1
�
x2

=
=

2x1 � x21 � 2x1x2
2x2 � x22 � 2x1x2

(29)

with a generic initial condition (x1(0); x1(0)) 2 R2.
The equilibrium points are the solutions of

x1 (2� x1 � 2x2) = 0
x2 (2� x2 � 2x1) = 0

given by O = (0; 0), A = (2; 0), C = (0; 2), E =
�
2
3 ;
2
3

�
. Given the Jacobian matrix

J (x1; x2)=

�
2� 2x1 � 2x2 �2x1

�2x2 2� 2x1 � 2x2

�
a classi�cation of the equilibrium points is easily obtained by the method of linear approximation
based on the computation of the Jacobian in each of them.

J (O)=

�
2 0
0 2

�
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is a diagonal matrix, hence the eigenvalues are readily computed being them the diagonal entries4:
�1 = �2 = 2 > 0. Hence the equilibrium is a repelling node, and due to the particular symmetric
structure of the model, the equilibrium point of the corresponding linear approximation is a star node.

J (A)=

�
�2 0
�4 �2

�
is a triangular matrix, so even in this case the eigenvalues are given by the diagonal entries: �1 =
�2 = �2, and we have a stable improper node. Analogously for the equilibrium B. Finally,

J (E)=

�
�2
3 �4

3
�4
3 �2

3

�
from which we can see that Tr(E) = �4

3 < 0 and Det(E) = �
4
3 < 0. Hence, E is a saddle. It is easy

to verify that the eigenvalues are �1 = �2 with corresponding eigenvalue v1 = (1; 1) (tangent to the
stable manifold) and are �1 = 2

3 with corresponding eigenvalue v1 = (1;�1) (tangent to the unstable
manifold), see �g. 36. Notice that, due to the symmetric form of (29), in this case the line along the
direction indicated by v1 = (1; 1) is the invariant stable manifold. Moreover, as usual, such stable
manifold constitutes the boundary that separates the basins of the two stable equilibrium points A
and B.

Figure 36: Phase portrait for a Volterra competition model.

The restriction of the system (29) to the positive orthant R2+ =
�
(x1; x2) 2 R2jx1 � 0;x2 � 0

	
, is

an example of Volterra model of competition between two species( �
x1
�
x2

=
=

�1x1 � s1x21 � b1x1x2
�2x2 � s2x22 � b2x1x2

(30)

4The property that the diagonal entries coincide with the eigenvalues of the matrix holds for all triangular matrices.
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where each species alone grows according to a logistic law of motion, and the interaction has a negative
e¤ect on both, as each of them is assumed to subtract food to the other one. The study of this model
led to the mathematical formulation of the principle of competitive exclusion: if two species need the
same vital resources, then only one will survive. Which species will survive depends on the parameters
that characterize each species behaviour as well as on the initial advantage (i.e. the initial condition).
This principle can be extended to the case of n species, and may have several applications even in
social and economic systems. A good exercise is to generalize the results obtained in the particular
case considered above to the more general model (30) in order to understand the role of each parameter
on existence and stability of equilibria.

Another ecological example: the prey-predator Lotka-Volterra model.
The prey-predator Lotka Volterra model has been already described at the beginning of this section.

Let us consider again the model (19) and compute its equilibrium points, solutions of the algebraic
system

x1(�� sx1 � bx2) = 0
x2(cx1 � d) = 0

(31)

given by

O = (0; 0) ; A =
��
s
; 0
�
; E =

�
d

c
;
�c� sd
bc

�
; (32)

The equilibrium O represents the extinction of both species, so its stability indicates that there are
no viability conditions for both species, at least for initial conditions in its basin of attraction; if the
equilibrium A is stable, then the ecological conditions are not suitable to allow predators�survival.
Only the stability of the equilibrium E can ensure the coexistence of the two species, provided it is
positive, i.e. �c > sd, and for initial conditions in its basin. In order to study the local stability of
the three equilibrium points, let us consider, as usual, the Jacobian matrix

J (x1; x2)=

�
�� 2sx1 � bx2 �bx1

cx2 cx1 � d

�
and compute it in each equilibrium point. At the equilibrium

J (0; 0)=

�
� 0
0 �d

�
we have a diagonal matrix with eigenvalues �1 = � > 0 and �2 = �d < 0, so that the equilibrium O
is a saddle. It is easy to check that, as usual with a diagonal matrix, the eigenvector associated with

the �rst eigenvalue (the positive one in this case) is v1 =
�
1
0

�
, hence the unstable manifold is along

the horizontal axis. Instead, the eigenvector associated with the second eigenvalue (the negative one

in this case) is v2 =
�
0
1

�
, so the stable manifold of the saddle is along the vertical axis. Notice that

both the coordinate axes are invariant lines. In fact, x1 = 0 implies
�
x1 = 0, so a trajectory starting

from an initial condition on the vertical axis, i.e. (0; x2(0)) with x2(0) > 0, is trapped inside it and
is governed by the one dimensional restriction

�
x2 = �dx2, hence exhibits an exponential decay (the

decay of predator population in the absence of preys). The same holds for the horizontal axis x2 = 0,
and the dynamics on that trapping line is given by the logistic growth of preys�population in the
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absence of predators. As shown in section 3.2, such dynamics converge to the equilibrium A. This is
con�rmed by the analysis of

J (A)=

�
�� �b�s
0 c�s � d

�
which is a triangular matrix, hence the eigenvalues are given, again, by the diagonal entries, �1 =
�� < 0 and �2 = c�s � d < 0, negative for �c < sd and positive otherwise. Hence the equilibrium
A is a stable node if �c < sd, whereas it is a saddle if �c > sd. Notice that the latter is also the
condition for the positivity of the equilibrium E, thus con�rming that stability of A is equivalent to
the extinction of predators�population. When �c = sd, equilibrium A is non-hyperbolic and merges
with E, being in this case also d

c =
�
s which implies E = A. This is typical example of a transcritical

bifurcation. Notice that v1 =
�
1
0

�
, hence the equilibrium A is always stable in the horizontal direction,

whereas the eigenvector associated to �2, given by v2 =
�

1
sd��c��s

�b

�
, is transverse to the horizontal

axis, and is tangent to the unstable manifold when A is a saddle (see �g.37).

Figure 37: Phase portraits for a prey-predator model with logistic growth of preys.

The stability of the equilibrium of coexistence E is obtained through

J (E)=

�
� sd

c
�bd
c

�c�sd
b 0

�
from which Tr (J) = � sd

c � 0 and Det (J) = d(�c�sd)
c > 0 whenever the equilibrium E has positive

coordinates. If s > 0 then the equilibrium E is locally asymptotically stable whenever it is positive.
Moreover, being Tr (J)2 � 4Det (J) = d2s

c2
(s+ 4)� 4d� < 0, if � > ds

4c2
(s+4) then E is a stable focus

(see �g.37). A particular case occurs if s = 0, as Tr(J) = 0 and consequently we have pure imaginary
eigenvalues (i.e. eigenvalues with real part equal to zero). This implies that E is non-hyperbolic,
hence the Hartman-Grobman Theorem cannot be applied. However, it can be shown that in this very
particular case the trajectories are given by closed curves around E, which is marginally stable. This
has been proved by Volterra in 1926 and can be con�rmed numerically as shown in �g.28. Some other
numerical simulations are shown here below.
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Figure 38: Parameters: � = 1; s = b = 0:5; c = 0:4; d = 0:3. Initial conditions: blue (0:25; 0:2); pale
blue (1:5; 1:4); red (0:25; 1:5); green (0:25; 0:8); magenta (1:5; 1:2).

We now propose another modi�cation of the prey-predator model by introducing an e¤ect of
satiation of predators�appetite, i.e. we assume that predators cannot eat more than a given upper
limit. This is expressed by the following model proposed by Rosenzweig and McArthur in 19635

�
x1
�
x2

=
=

�x1 � sx21 � b x1x2h+x1
�dx2 + c x1x2h+x1

(33)

where the function g(x1) = x1
h+x1

is a typical "saturation function" (see �g.42) with the following
properties: g(0) = 0 (no eating without preys), g0(x1) > 0, i.e. it increases with x1 (more preys
implies more food to eat) but saturates, i.e. g(x1) ! 1 as x1 ! 1 (too many preys lead to appetite
saturation). The constant h, called "half saturation constant", gives a measure of how fast is appetite
satiation, as g(h) = 1

2 .
The dynamic behaviour of this model is characterized by the presence of an invariant closed orbit

on which trajectories move periodically, like in the classical Lotka-Volterra model. However, in this
case the closed orbit is unique and attracts the trajectories around it. Such orbit will be called limit
cycle.

4.3 Periodic solutions and limit cycles

From the examples shown in the previous sections we have seen that with 2-dimensional dynamical
systems in continuous time, di¤erently from what happens for 1-dimensional systems, the invariant
sets are not only given by equilibrium points. In fact, we can also have invariant closed orbits on
which periodic trajectories exist, de�ned as solutions x(t) = '(t) for which there is a T > 0 such that
'(t + T ) = '(t) and for each jt1 � t2j < T we have '(t1) 6= '(t2). T is called period of the periodic
trajectory. As usual for an invariant set, the question of stability arises (see section 2): if a trajectory

5M. Rosenzweig and R. MacArthur (1963) "Graphical representation and stability conditions of predator-prey inter-
action", American Naturalist vol. 97, pp. 209-223.
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Figure 39: Versus time (temporal series) representation. Prey (red) and predator (blue) populations.
Parameters as in the previous picture, initial condition (0:2; 0:25).

starts from an initial condition belonging to the invariant closed orbit �, then it remains trapped inside
� by de�nition, but what about trajectories starting around it, i.e. from a neighborhood of �? Do they
approach � asymptotically for t ! 1 ? or, do they move away from it? or, do they remain distinct
from � and close to it? These are the cases shown in �g. 44, where a new kind of attractor or repellor
existing in 2-dimensional dynamical systems is shown: the limit cycle. These kinds of solutions are
very interesting in economic modelling, as they represent self-sustained cyclic behaviours, that every
time go back to an already "visited" state, repeating the same path periodically.

Some general theorems and methods exist, for continuous time 2-dimensional dynamical systems,
to detect the presence of limit cycles, as well as some results on bifurcations that create them, as we
will see in the following.

First of all, in R2 the Jordan curve lemma states that any closed orbit � divides the plane into
two connected and disjoint regions, one inside and one outside the closed curve, such that two points
taken one in the inside region and one outside, can only be connected by a trajectory crossing �.
This implies that if a smooth6 dynamical system of the plane has a closed invariant curve, then any
trajectory starting from an initial condition inside it remains inside forever, and the same must hold
for a trajectory starting outside. In other words, both regions are trapping. This is due to the fact
that two trajectory cannot cross in an ordinary point due to the Theorem of uniqueness, hence a
trajectory starting inside � cannot exit it because this cannot occur without crossing the orbit �.

This lemma, which is quite intuitive for a system of the plane, is no longer true in more than two
dimensions, as it is possible to move from A to B in �g. 45 without crossing the closed curve � if the
third dimension is available. And the same holds with discrete time even in two dimensions as the
trajectories in discrete time can jump from a point to another. So, the following Theorem, which is a
consequence of the Jordan curve lemma, only holds for two-dimensional dynamical systems.

6By the term smooth we mean a C(1) dynamical system, i.e. expressed by equations of motion with continuous
derivatives, so that the Theorem of existence and uniqueness apply.
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Figure 40: Parameters�values: � = 1; s = b = 0:5; c = 0:1; d = 0:3. Initial conditions: blue (0:25; 0:2);
pale blue (1:5; 1:4); red (0:25; 1:5); green (0:25; 0:8); magenta (1:5; 1:2).

Poincaré-Bendixson Theorem: Let
�
x = f (x) be a set of two ordinary di¤erential equations

de�ned in an open set G � R2, and let D � G be a compact (i.e. closed and bounded) trapping set
that does not contain any equilibrium point. Then D must contain at least one closed invariant orbit
of the dynamical system.

Figure 46 illustrates the meaning of the theorem.
A corollary of this theorem states that if K � G is a non empty compact and trapping set then

it must contain an equilibrium point or a closed invariant orbit. Moreover, if � is a closed orbit such
that its interior region is entirely included into G (the set where the dynamical system is de�ned) then
� must include at least one equilibrium point.

The Poincaré-Bendixson gives an existence result, that is it can be used to detect the presence of
limit cycles, but gives no information about their stability or creation/destruction as a consequence
of bifurcations as some parameters are varied.

We will see in the next section an application of the Poincaré-Bendixson theorem to the Rosenzweig-
MacArthur model (33).

4.4 Bifurcations of 2-dimensional dynamical systems

In section 4.1 we have seen that a topological classi�cation of the unique equilibrium point of a
2-dimensional linear dynamical system is reduced to a simple inspection of the sign of the trace
and the determinant of the matrix of coe¢ cients. In particular, the equilibrium is asymptotically
stable whenever the trace is negative and the determinant is positive. If the coe¢ cients depend
on some parameters it may happen that, starting from a con�guration with a stable equilibrium, a
continuous variation of a parameter leads to a change in sign of the trace or of the determinant, so
that the equilibrium loses stability. In a linear system this implies that a dynamic scenario of global
asymptotic convergence to the equilibrium is transformed into a situation of global divergence, i.e.
any initial condition outside the equilibrium leads to an explosive trajectory going in�nitely far from
the equilibrium point. In other words, in a linear system the local behaviour and the global behaviour
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Figure 41: With the same parameters as in the previous picture, x1(t) (blue), x2(t) are represented
versus time, starting from the initial condition (1:5; 1:4).

coincide.
According to the Hartman-Grobman Theorem, the topological classi�cation of an (hyperbolic)

equilibrium point of a nonlinear system can be obtained by the same procedure, provided that the
matrix of coe¢ cient of the linear approximation is obtained from the Jacobian matrix computed at
the equilibrium considered. However, this equivalence is only local, i.e. it holds in a neighborhood
(no info on the size) of the equilibrium point considered. So, in general nothing guarantees that such
local classi�cation can be extended globally, to the whole phase space. Moreover, a nonlinear system
may have several equilibrium points (and even other invariant sets, such as the closed invariant orbits
discussed in the previous section) so the global phase portrait may be quite complicated and cannot
be, in general, deduced by a simple union of local phase portraits obtained around the hyperbolic
equilibria. But the di¤erences between linear and nonlinear models are not limited to these local/global
considerations, as remarkable di¤erences are related to the study of structural stability, i.e. what
happens when, due to slight variations of some parameters, one or more equilibrium points change
their stability properties, i.e. the trace and/or the determinant of a Jacobian matrix computed at an
equilibrium point show a sign change. Indeed, in general such transitions of an equilibrium point from
stable to unstable do not just imply a transition from stability to instability, but are associated with
the creation/destruction of other equilibrium points around them or even to the creation/destruction
of invariant closed orbits. The former occurrence will be described in terms of fold, transcritical or
pitchfork bifurcations, as already seen in the case of one-dimensional dynamical systems, whereas
the latter case will be described by a new kind of bifurcation, that has no one-dimensional analogue,
denoted as Andronov-Hopf bifurcation. It will be characterized by the presence of complex conjugate
eigenvalues crossing the imaginary axis, i.e. changing the sign of their real part, or equivalently
situations with positive determinant and vanishing trace in the Jacobian matrix. All phenomena
related to the presence of oscillatory behaviour (due to focus, or spiral, equilibrium points) hence only
occurring in dimension greater than one.

Therefore, while for linear systems a loss of stability leads to uninteresting dynamic scenarios, as
loss of stability implies global divergence, in the case of nonlinear models the bifurcations leading to
the loss of stability of an equilibrium may open new interesting dynamic scenarios, characterized by
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Figure 42: Predators�saturatuion of appetite: Holling uptake function.

Figure 43: Creation of a stable limit cycle in the Rosenzweig McArthur prey-predator model.

new equilibria and even new kinds of attracting sets. This means that the regions of the space of
parameters characterized by instability of one or more equilibrium points may indicate the outcome
of more interesting and even intriguing global phase portraits, characterized by coexistence of several
attracting sets each with its own basin of attraction separated by basin boundaries on which unstable
equilibria are located.

In the following part of this section we recall in a more formal way some de�nitions and local
bifurcations already described in an intuitive (mainly graphical) way in section 3.4, and then we will
introduce the Andronov-Hopf bifurcation.

As already intuitively stated, the notion of structural stability is strictly related to the de�nition
of topological equivalence between two dynamical systems.

De�nition A dynamical system
�
x = f (x) ; x 2 Rn, is topologically equivalent (or conjugate) to

the dynamical system
�
y = g (y) ; y 2 Rn, if an homeomorphism h : Rn ! Rn, y = h(x), exists that

transforms the phase portrait (i.e. all the orbits) of the x of the former into the phase portrait in the
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Figure 44: Lomit cycles.

Figure 45: Jordan curve.

y space of the latter, preserving the direction of time.

We recall that an homeomorphism is an invertible function h such that both h and h�1 are
continuous.

Given a dynamical system that depends on a parameter

�
x(t) = f (x(t); �) ; x(t) 2 Rn , � 2 R

let us consider its phase diagram. Of course it will depend on �, in the sense that di¤erent values
of the parameter � will cause modi�cations (let�s say deformations, distortions etc.) of the phase
lines. Such variations of the global phase portrait may be only quantitative (displacements or con-
tinuous deformations that are topologically equivalent) or qualitative (an arbitrarily small variation
of � leads to a phase portrait which is not equivalent, due to a local stability change and/or to the
creation/destruction of invariant sets, such as equilibrium points or closed orbits). This leads to the
following de�nition

De�nition The transition between two non equivalent phase diagrams due to the variation of a
parameter is called bifurcation.
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Figure 46: Qualitative illustration of Poincaré-Bendixson theorem.

In other words, a bifurcation is a qualitative modi�cation of the phase diagram of a dynamical
system when a parameter crosses a critical (or threshold) value, called bifurcation value. It is worth
to notice that the kinds of bifurcations can be classi�ed according to a quite limited number of
cases. Without entering the details of a more general topological view of this phenomenon, we just
mention that the existence of a limited set of possible bifurcations is related to a general theory on
structural stability of vector �elds depending on parameters, known as singularity theory or theory of
catastrophes.7

If a real eigenvalue, say �1(�), changes its sign at the bifurcation value �0, i.e. it crosses through
the origin of the complex plane moving along the real axis as the parameter � is varied through �0,
then along the invariant manifold associated to �1 we have one of the one-dimensional bifurcations
already described for one-dimensional system, namely a fold (or tangent) bifurcation, also denoted
as saddle-node bifurcation in dimension greater than 1, or a transcritical bifurcation or a pitchfork
bifurcation. This bifurcation only a¤ects the qualitative dynamic behaviour along the one-dimensional
invariant manifold associated to �1, as shown in the qualitative pictures 47.

In this case at each value of the parameter � is associated a planar phase portrait around the
bifurcating equilibrium, hence a three-dimensional bifurcation diagram is required to represent the
bifurcation, with a coordinate axis on which the parameter � is measured and the 2-dimensional phase
plane where the corresponding invariant sets are graphically represented, see e.g. �g.48 where the case
of a supercritical pitchfork bifurcation is qualitatively shown. In other words, these bifurcations are
caused by a single real eigenvalue that changes the sign, associated to an eigenvalue that vanishes,
i.e. a change of sign of the determinant of the Jacobian matrix, can be described in terms of the
corresponding bifurcations of the one-dimensional restriction of the 2-dimensional dynamical system
along the invariant manifold associated with the eigenvalue vanishing at the bifurcation value of the
parameter.

In order to give a classi�cation, in the following we generalize and make more precise the classi�-

7See e.g. René Thom, Stabilité Structurelle et Morphogénèse, Essai d�une Théorie Générale des Modèles, Benjamin,
New York, 1971, or V.I. Arnold "Catastrophe Theory", Springer-Verlag, 1992.
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Figure 47: saddle-node and pitchfork in a 2-dim. dynamical system

cation of such bifurcations. If we denote by

�
x = f (x; �) ; x 2 R; � 2 R

the one-dimensional restriction of the 2-dimensional dynamical system along the invariant manifold
along which the bifurcation occurs, such that f is smooth and x�(�) is the equilibrium such that
for � = 0 we have x�(0) = 0 with associated eigenvalue �(0) = fx (0; 0) = 0, we have the following
classi�cation:

� If fxx (0; 0) 6= 0 and f� (0; 0) 6= 0 then the restriction is topologically equivalent to the normal
forms:

�
y = �� y2

i.e. the normal forms of the fold bifurcation.

� If @f(x;�)
@x = 0 (vanishing eigenvalue); @3f(x;�)

@x3
6= 0 and @2f(x;�)

@�@x 6= 0, then the restriction is
topologically equivalent to the normal form

�
y = �y � y3

and according to the sign of @
3f(x;�)
@x3

and @2f(x;�)
@�@x we have a supercritical or a subcritical pitchfork

bifurcation.

� If @f(x;�)@x = 0 (vanishing eigenvalue); @
2f(x;�)
@x2

6= 0; @
2f(x;�)
@�@x 6= 0. then the restriction is topologi-

cally equivalent to the normal form
�
y = �y � y2
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Figure 48: Pitchfork in a bifurcation diagram for 2-dim. dynamical system..

and we have a transcritical (or stability exchange) bifurcation.

It is worth to stress that in all these cases the equilibrium points involved are nodes and saddles,
that become non-hyperbolic at the bifurcation. Instead, in the case of spiral (or focus) equilibriums
that change stability due to a couple of complex conjugate eigenvalues that cross the imaginary axis,
i.e. �1;2 = �i!0, hence due to a positive determinant of the Jacobian matrix and a trace that changes
its sign. The corresponding bifurcation is known as Hopf (or Andronov-Hopf) bifurcation.

Theorem (Andronov, 1933, Hopf, 1942). Let us consider the 2-dimensional dynamical system

�
x = f (x; �) ; x 2 R2; � 2 R

with f formed by two smooth functions, and let x�(�) be an isolated equilibrium point, i.e. f (x�; �)
= 0. Let us assume that the eigenvalues �1;2 (�) = � (�)� i! (�) are complex for � in a neighborhood
of �0 and that for � = �0 they are purely imaginary, i.e. the real part vanishes: �(�0) = 0, ! (�0) =

!0 > 0. If
@ Re�1;2
@�

���
�=�0

> 0 (transversality condition) holds then x� is a stable focus for � < �0 and

an unstable focus for � > �0, and at � = �0 a closed invariant orbit � is created around x
� such that

one of the following holds:
(i) � exists for � > �o and is a stable limit cycle (supercritical case)
(ii) � exists for � < �o and is an unstable limit cycle (subcritical case)
(iii) in�nitely many closed invariant curves exist for � = �o which are neutrally stable (centre

case).
The period of the trajectories moving around is T (�) = 2�

!0
+ o(j�� �0j) and in cases (i) and

(ii) the amplitude of � increases as the bifurcation parameter moves away from the bifurcation value
proportionally to

p
j�� �0j.

To sum up, this bifurcation is a device to create limit cycles (see �g. 49).
In the supercritical case, when the equilibrium from stable focus is transformed into an unstable

focus, a small stable limit cycle is created around it, and attracts the trajectories starting inside
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Figure 49: Hopf bifurcation.

the cycle, close to (but di¤erent from) the equilibrium, as well as those starting outside it. So, the
loss of stability is denoted as "soft" in the sense that trajectories issuing from a neighborhood of
the equilibrium remain close to it even if they oscillate around it without converging. Instead, in the
subcritical case an unstable closed orbit surrounds the stable equilibrium and constitutes the boundary
that delimitates its basin of attraction. As the bifurcation parameter approaches its bifurcation value,
the basin shrinks because the unstable orbit collapses to the equilibrium point, and then disappears.
Hence after the bifurcation the orbits issuing from the unstable equilibrium are not con�ned and move
towards another attracting set, that may be a di¤erent equilibrium or some other closed orbit of large
amplitude already existing towards in�nity (i.e. diverging trajectories). This situation is also denoted
as "hard stability loss".

It is worth to notice that in the case of a supercritical Hopf bifurcation, at the bifurcation value the
non hyperbolic equilibrium is stable, whereas in the case of subcritical bifurcation at the bifurcation
value the non hyperbolic equilibrium is unstable.

Let us also notice that the case (iii) is similar to what happens in a linear system when the trace
of the matrix of coe¢ cient changes its sign while the determinant is positive so that a pair of complex
conjugate eigenvalues cross the imaginary axis, see the bifurcation diagram shown in �g. 50.

As an example, let us consider the following "normal form"( �
x1 = �x1 � x2 � x1

�
x21 + x

2
2

�
�
x2 = x1 + �x2 � x2

�
x21 + x

2
2

� (34)
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Figure 50: Hopf in the linear case.

The unique equilibrium is x� = (0; 0) where the Jacobian matrix is

J (x�) =

�
� �1
1 �

�
whose eigenvalues are �1;2 = � � i, hence it is immediate to see that for � = 0 a Andronov-Hopf
bifurcation occurs as the two complex conjugate eigenvalues cross the imaginary axis at � = 0 going
from left to right for increasing �. Analytical methods to distinguish super/subcritical cases exist,
based on higher order derivatives, however we can try to see numerically if a stable limit cycle exists
for � > 0 or an unstable one (bounding the basin of x�) exists for � < 0.

However in this case, due to the particular structure of the dynamical system, the model can be
written in a simpler form by using polar coordinates r (distance from the equilibrium) and � (angle
of rotation):

x1(t) = r(t) cos �(t)

x2(t) = r(t) sin �(t)

from which

�
x1 =

�
r cos (�)� r sin (�)

�
�

�
x2 =

�
r sin (�) + r cos (�)

�
�

Replacing x1, x2,
�
x1,

�
x2 in (34) the model becomes( �

r = r
�
�� r2

�
�
� = 1
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The second equation indicates a constant rotation speed, the �rst the presence of an equilibrium r = 0
which is stable for � � 0 (even if it is not hyperbolic at � = 0) and a further equilibrium r =

p
� (r

can only assume positive values) that coincides with r = 0 for � = 0 and departs from it for � > 0.
This newborn equilibrium is stable, and represents a limit cycle of radius r(�) =

p
� around the

unstable equilibrium r = 0 for � > 0. So, the bifurcation occurring at � = 0 represents a supercritical
Andronov-Hopf bifurcation.

As an exercise it can be proved that the following model exhibits a subcritical Andronov-Hopf
bifurcation at � = 0 ( �

x1 = �x1 � x2 + x1
�
x21 + x

2
2

�
�
x2 = x1 + �x2 + x2

�
x21 + x

2
2

�
It can be noticed that at the bifurcation value � = 0 the equilibrium (0; 0), corresponding with

r = 0 in polar coordinates, is stable in the supercritical case and unstable in the subcritical case. If
we consider only the linear part (identical in both the systems proposed) given by( �

r = �r
�
� = 1

we can notice that the equilibrium r = 0 is asymptotically stable for � < 0 and unstable for � > 0, but
di¤erently from the nonlinear case, at � = 0 it is a centre, with in�nitely many limit cycles around it.
In fact, for � = 0 we have

�
r = 0, hence any r > 0 is an equilibrium. However all these closed invariant

circles disappear for � > 0.

An economic example: The Kaldor business cycle model (1940).

This is a two-dimensional nonlinear dynamical system to model the endogenous generation of
oscillations in an economic system.8 Let Y (t) be the national income (or output) and K(t) the capital
stock at time t. The model can be expressed as8<:

�
Y = � (I (Y;K)� S (Y;K))
�
K = I (Y;K)� �K

(35)

where the rate of change
�
Y of the output is proportional to the di¤erence between investment I (Y;K)

and savings S (Y;K), the positive proportionality constant � being the a measure of the speed of
reaction of the national income to such di¤erence.

Kaldor assumes that investments I (Y;K) are positively in�uenced by income Y , i.e. @I
@Y := IY > 0,

and investments decrease if the capital stock increases, i.e. @I
@K := IK < 0. The latter assumption

is related to the fact that if the capital level is very high entrepreneurs are not motivated to invest
to increase production. For sake of simplicity Kaldor assumes that saving S is an increasing function
of Y with9 0 < SY < 1, and also an increasing function of the capital stock, i.e. SK � 0. The fact
that the level of economic activities, measured by Y , increases proportionally to the demand excess
I (Y;K)� S (Y;K) is in agreement with the short-period dynamics assumed in Keynesian models.

Also the second dynamic equation is quite standard, as it states that the rate of growth of the
capital stock K is given by the level of investments I (Y;K) and reduced by a depreciation (or capital
decay) rate �.

8Kaldor, N., A Model of the Trade Cycle, The Economic Journal, Vol. 50, No. 197, (Mar., 1940), pp. 78-92.
9The condition SY < 1 states the principle of Keynesian multiplier, being SY the reciprocal of the Keynesian multiplier
1

1�CY
where CY is the consumption propensity given by CY = 1� SY .
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Following these general assumptions, let us consider for sake of simplicity a linear saving function
depending on Y only, and a nonlinear investment function with "saturation e¤ects" for small and high
values of Y as well:

S (Y ) = �Y , with 0 � � � 1

I (Y;K) = ��+ 

���
�
�K

�
+ arctan (Y � �)

so the following "Kaldorian" model is obtained:8<:
�
Y = �

�
��+ 


���
� �K

�
+ arctan (Y � �)� �Y

�
�
K = ��+ 


���
� �K

�
+ arctan (Y � �)� �K

From the equilibrium conditions
�
Y = 0 and

�
K = 0 we get

��+ 

���
� �K

�
+ arctan (Y � �)� �Y = 0

��+ 

���
� �K

�
� �K = � arctan (Y � �)

hence
K = �

� Y
�
�
1 + 


�

�
(Y � �) = arctan (Y � �)

The point P =
�
�; ���

�
is always an equilibrium of the model (35), however two further equilibrium

points may be created as further intersections, symmetric with respect to Y = �, between the line
z = �

�
1 + 


�

�
(Y � �) and the sigmoid curve z = arctan (Y � �), as the slope of the line is varied.

The Jacobian matrix

J (Y;K)=

24�� 1
1+(Y��)2 � �

�
��


1
1+(Y��)2 �
 � �

35
at the equilibrium P becomes

J (P ) =

�
� (1� �) ��


1 �
 � �

�
hence

Tr (J (P )) = � (1� �)� 
 � �
Det (J (P )) = �� (1� �) (
 + �) + �


and from the stability conditions Tr (J (P )) < 0, Det (J (P )) > 0 we obtain

Tr (J (P )) < 0) � <

 + �

(1� �) or � >
�� 
 � �

�

det (J (P )) > 0) � >
�


 + �

These two stability conditions de�ne a region of stability in the space of the parameters. For
example, if we consider the parameters� plane (�; �) the stability region is bounded by the curve
(branch of an equilateral hyperbola) � = �h =

��(
+�)
� that represents a Hopf bifurcation curve, and

the horizontal line � = �p =
�

+� that represents a pitchfork bifurcation curve. In �g. 51 the stability
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region in the parameters�plane (�; �) is represented by the grey-shaded region. If, starting from the
stability region with � > � + 
, the propensity to save is decreased below the Hopf bifurcation value
�h =

�

+� then a supercritical Hopf bifurcation occurs after which a stable limit cycle is created on

which periodic oscillations occur. The same occurs for � > �
�+
 and speed of adjustment � increasing

beyond the bifurcation value �h =
�+

1�� . In these cases the model is suitable to describe endogenously

generated oscillations. However, if starting from a set of parameters inside the stability region the
propensity to save � is decreased below �p, then a pitchfork bifurcation occurs at which two stable
node are created, one below and one above the central equilibrium, which becomes a saddle at the
bifurcation. After the bifurcation, bistability is observed, with two equilibrium points characterized
by a lower and an higher value of national income Y , each with its own basin of attraction separated
by the stable set of the saddle: a poverty trap and a richness trap. These two di¤erent situations may
be both present in the lower-right region of the plane, i.e. with su¢ ciently high values of � and low
values of �, with dynamic scenarios given by three equilibria (two stable spirals with a saddle in the
middle whose spiralling stable set separates the basins) surrounded by a large stable limit cycle.

Figure 51: Stability region of the central equilibrium and bifurcation curves for the Kaldor model.

So, this version of the Kaldor model exhibits many di¤erent dynamic scenarios, some expected on
the basis of the local stability analysis, but other situations can only be revealed through a global
numerical explorations with di¤erent sets of parameters.

As an example, let us consider the model with the following parameters: 
 = 0:4; � = 0:1;� = 1,
so that the bifurcation curves become � = �h = 0:2 and � = �p = 1 � 0:5

� . The following numerical
experiments can be performed:

� � = 1; � = 0:6; P is the unique equilibrium, a stable focus.

� � = 2; � = 0:6, P is the unique equilibrium, an unstable focus, surrounded by a stable limit
cycle.
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� � = 1; � = 0:1 three equilibrium points exist, a saddle point and two stable nodes.

� If � = 0:65 and � is decreased from 0:3 to 0:1, �rst a Hopf bifurcation occurs and then a
Pitchfork.

� For � = 1 and � = 0:19 a large stable limit cycle surrounding three unstable equilibria.

� � = 0:9; � = 0:18 a stable limit cycle surrounding three equilibria: a central saddle point and
two stable focuses each surrounded by an unstable limit cycle that bounds the corresponding
basin, see �g.52.

x ' = alpha (sigma mu + gamma (sigma mu/delta ­ y) + atan(x ­ mu) ­ sigma x)
y ' = sigma mu + gamma (sigma mu/delta ­ y) + atan(x ­ mu) ­ delta y

sigma = 0.18
mu = 0.5

gamma = 0.4
delta = 0.1

alpha = 0.9
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Figure 52: Coexisting equilibria and limit cycles in the Kaldor model.

Goodwin�s endogenous business cycle model (1967).
In 1967, Goodwin proposed a business cycle model where the dynamic variables are occupation

and salaries.10 On the basis of macroeconomic assumptions, Goodwin obtained a two-dimensional
dynamic model formally identical to a Lotka-Volterra model, so that trajectories are characterized by
endogenous oscillations. We brie�y describe the economic assumptions on which the dynamic model
is built. Given the measurable quantities: Y = National income, L = Number of occupied workers,
N = Total number of available workers (active population), K = Capital stock, ! = Per capita salary,
a = Y

L = Labour productivity, the dynamic variables are de�ned as

v(t) =
L

N
, fraction of occupied workers (occupation)

u(t) =
!L

Y
=
!

a
fraction of national income for salaries (salaries quota)

The model is based on the following assumptions:
1- All the salaries !L received by the workers are used for consumption;

10R. M. Goodwin (1967) "A Growth Cycle", in C.H. Feinstein, editor, Socialism, Capitalism and Economic Growth.
Cambridge: Cambridge University Press
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2- The pro�t of capitalists Y � !L is totally invested:
�
K = I = Y � !L

hence
�
K = Y � !L = Y

�
1� !L

Y

�
= Y

�
1� !

a

�
The rate of change of the dynamic variables is obtained as follows:

�
v

v
=
d

J
ln

�
L

N

�
=

�
L

L
�

�
N

N

We also assume that the population grows at a constant rate �, i.e.
�
N
N = �, the rate of change of

occupation determined as

L =
Y

Y
L =

Y

a
)

�
L

L
=
d

J
ln (L) =

"
a = Y

L

d

J
ln

�
Y

a

�
=

�
Y

Y
�

�
a

a

the technological progress grows at a constant rate �, i.e.
�
a
a = �, and the ratio between capital and

income is constant, i.e. KY = 
, then we get

K

Y
= 
 ) d

J

�
K

Y

�
= 0,

�
KY �

�
Y K

�
Y
2 = 0,

�
K

K
=

�
Y

Y

Replacing
�
Y
Y with

�
K
K in the expression of L we get

L =

�
K

K
� �

and from the model�s assumption
�
K = Y

�
1� !

a

�
follows that

�
K

K
=
Y

K

�
1� !

a

�
=
1



(1� u)

where u = u(t) is the dynamic variable. From

�
L

L
=
1



(1� u)� �

we get the �rst dynamic equation about occupation:

�
v = v

�
��� � + 1



(1� u)

�
= v

�
r � 1



u

�
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The dynamic equation of salaries is obtained according to

�
u

u
=
d

J
ln

�
!L

Y

�
=
d

J
ln
�!
a

�
=

�
!

!
�

�
a

a
=

�
!

!
� �

The rate of change of real salaries is positively in�uenced by occupation v according to a given a
function f (v)

�
!

!
= f (v)

see �g. 53 taken from Goodwin (1967):

Figure 53: From Goodwin (1967)

For sake of simplicity (but this is a quite strong assumption) the function f (that expresses the
Phillips curve) is assumed to be linear

f (v) = �v � �

from which we get the dynamic equation for salaries

�
u = u [�v � � � �]

All in all, the Goodwin model is obtained in the form:( �
v = v

h
r � 1


u
i

�
u = u [�v � (�+ �)]

which is a classical Volterra model with neutral stability, where v represents the prey population and
u predators�one. Like in the classical Volterra model of 1926, any trajectory moves along a di¤erent
closed invariant curve according to the initial condition, and these orbits are not con�ned inside the
square (v; u) 2 [0; 1] � [0; 1] as they should be according to the de�nition of the dynamic variables.
This is a consequence of the fact that the function f(v), that should be characterized by a vertical
asymptote in v = 1 as in �g. 53, has been approximated by a linear function.
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A good exercise should be to replace the linear f (v) = �v� � with a more realistic nonlinear one,
such as f(v) = v��

1�v with 0 < � < 1.

Goodwin model with in�ation Following Flaschel (1984)11 the rate of change of real salaries
is assumed to be not only positively in�uenced by occupation v but also negatively in�uenced by
in�ation rate i (u), which is assumed to be a function of salary level

�
!

!
= f (v)� �i (u)

where � is a proportionality parameter that re�ects how much real salaries are in�uenced by in�ation.

The function i (u) is assumed to be expressed by

i (u) = (1 + �)u� 1

So, the dynamics of the occupation rate becomes

�
u = u [�v � � � � ((1 + �)u� 1)� �]

and the modi�ed Goodwin model is:( �
v = v

h
r � 1


u
i

�
u = u [�v � �� � � � ((1 + �)u� 1)]

The equilibrium points are

E1 = (0; 0) ; E2 =

�
0;
�� �� �
� (1 + �)

�
; E3

�
�+ � + � ((1 + �) r
 � 1)

�
; r


�
In order to study the stability of the equilibrium points let us compute the Jacobian matrix:

J (v; u) =

�
r � 1


u � 1

 v

u� �v � �� � � � (2 (1 + �)u� 1)

�
at the equilibrium points.

J (E1) =

�
r 0
0 ��� � + �

�
hence �1 = r, �2 = ��� � + �2:

J (E2) =

�
r � 1


u 0

u� �� (1 + �)u

�
=

"
r
�(1+�)��+�+�


�(1+�) 0
�����
�(1+�)� ��+ �+ �

#

where the equilibrium condition �v��� ��� ((1 + �)u� 1) = 0 has been used to simplify J2;2. The
eigenvalues are �1 =

r
�(1+�)��+�+�

�(1+�) , �2 = ��+ �+ �. Finally:

J (E3) =

�
0 � 1


 v

u� �� (1 + �)u

�
=

"
0 ��+�+�((1+�)r
�1)


�

r
� �� (1 + �) r


#
11Flaschel, P. (1984) Some stability properties of Goodwin�s growth cycles. Zeitschrift fuer Nationaloekonomie 44,

281-285.
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where the equilibrium conditions r� 1

u = 0 and �v��� �� � ((1 + �)u� 1) = 0 have been used to

simplify J1;1 and J2;2. The stability conditions become

TrJ (E3) = �� (1 + �) r
 < 0 if and only if � > 0
detJ (E3) =

�



v�u� > 0 provided that v� > 0 and u� > 0

For su¢ ciently small values of � (both positive and negative) the eigenvalues are complex conjugate as
� = TrJ (E3)

2 � 4 detJ (E3) < 0 because this is true when � = 0 (for which � = �4 detJ (E3) < 0)
hence by continuity it must be true for � values in a neighborhood of 0. So, the necessary conditions
for an Hopf bifurcation hold. However, for � = 0 we have in�nitely many orbits around E3 (a "centre"
situation) and no closed orbits exist for � 6= 0, like in a linear case.

Again the Rosenzweig MacArthur model. From the equilibrium conditions of the model
(33)

x1

�
�� sx1 � b x2

h+x1

�
= 0

x2

�
�d+ c x1

h+x1

�
= 0

we obtain the nullclines
�
x1 = 0 for x1 = 0 or x2 = 1

b

�
�sx21 + �x1 + (�� s)h

�
(the vertical axis and

a concave parabola);
�
x2 = 0 for x2 = 0 or x1 = dh

c�d (the horizontal axis and a vertical line). At the
three intersections of the nullclines are located three equilibrium points

O = (0; 0); A =
��
s
; 0
�
; E =

�
dh

c� d;
h (�(c� d)� sdh)

b(c� d)2

�
The Jacobian matrix

J (x1; x2) =

"
�� 2sx1 � bhx2

(h+x1)
2 � bx1

h+x1
chx2

(h+x1)
2

cx1
h+x1

� d

#
at the interior equilibrium becomes

J (E) =

"
�� 2shd

c�d �
�(c�d)�shd

c � bd
c

c(�(c�d)�shd)
bc 0

#

and the stability conditions

Tr(J (E)) < 0 () � <
sh(c+ d)

c� d

Det(J (E)) > 0 () � >
shd

c� d

So, if shdc�d < � < sh(c+d)
c�d then the equilibrium E is stable; if � decreases below shd

c�d then a transcritical
bifurcation occurs at which E = A and then E exits the positive orthant (i.e. exits the phase space
of the model); if � increases beyond sh(c+d)

c�d an Andronov-Hopf bifurcation occurs at which a stable
limit cycle is created around the unstable focus E (see �g.43).

The existence of a limit cycle can also be determined by the Poincaré-Bendixson Theorem, as
shown in �g. 54: the grey-shaded region, which is bounded from outside by the unstable set of the
saddle A, the upper dashed line and the coordinate axes and from inside by the dashed circle around
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Figure 54: Poincaré-Bendixson theorem in a modi�ed Goodwin model.

E, is a compact trapping annular region that contains no equilibrium points. Hence it must include
at least one limit cycle, indicated by the red closed invariant curve �. Now we know that the limit
cycle is generated through the Andronov-Hopf bifurcation.

Exercise: An advertising di¤usion model. The following model, proposed as exercise, has
been published by G. Feichtinger (1995) to show how some widely accepted rules to publicize products
in marketing practice lead to persistent �uctuations of selling. Let us assume that the population in
a marketing system is subdivided into two groups: x1(t) is the number of potential buyers of a given
product and x2(t) is the number of actual buyers at tine t. Potential consumers are not yet buyers
because they do not know the existence of that product, however they can become aware of the product
after they meet actual buyers (word-of-mouth information). So, the di¤usion of information about the
product considered is proportional to the number of encounters, i.e. the product between respective
densities (like in the ecological models with random encounters). However in this case the di¤usion of
information is also positively in�uenced by advertising activities a (t) = �x2 (t), proportional to the
number of buyers with � > 0 proportionality constant that re�ects advertising e¢ cacy. The model
also includes the possibility that actual buyers decide to change the brand, i.e. they buy a similar
product from another (concurrent) �rm producing it, at a rate � > 0 (so they are no longer actual
buyers even if they remain potential buyers), whereas a fraction " > 0 of consumers leave the market
forever. Finally, denoting by k > 0 the rate of new potential customers entering the system, the model
becomes ( �

x1 = k � �x1x22 + �x2
�
x2 = �x1x

2
2 � (� + ")x2

It can be proved that the model undergoes a supercritical Andronov-Hopf bifurcation (see �g. 55).

Van der Pol equation. This is a famous example, a di¤erential equation of the second order
(i.e. involving the second order derivative) used to describe oscillations in physical devices, also used
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Figure 55: From Feichtinger, Ghezzia and Piccardi "Chaotic behaviour in an advertising di¤usion
model", International Journal of Bifurcation and Chaos (1995)

by Goodwin (1951) to represent oscillations in an economic system

��
x� �

�
1� x2

� �
x+ x = 0 (36)

As usual for second order di¤erential equations, it can be re-written in the standard form of a system
of �rst order di¤erential equations by de�ning a new dynamic variable y(t) =

�
x, so that (36) can be

equivalently written as
�
x = y
�
y = �

�
1� x2

�
y � x

(37)

as
�
y =

��
x: The study of (37) follows the usual steps. It is easy to see that the unique equilibrium is

O = (0; 0) and the Jacobian matrix

J (x; y) =

�
0 1

�2�xy � 1 �
�
1� x2

��
computed at the equilibrium becomes

J (O) =

�
0 1
�1 �

�
Hence Tr(J (O)) = � < 0 for � < 0, and Det(J (O)) = 1 > 0 8�, from which the equilibrium is a
stable focus for � < 0 and becomes an unstable focus as � increases beyond the bifurcation value
� = 0, at which a supercritical Hopf bifurcation occurs.

5 n-dimensional dynamical systems in continuous time

Many of the results about linear systems, linearization of nonlinear ones around equilibrium points,
their stability and related bifurcations, can be extended to n-dimensional dynamical systems with
n > 2, i.e. with more than two dynamic variables. However, as we will see, some important di¤erence
are worth to be emphasized, �rst of all the possibility of chaotic trajectories and chaotic attractors for
n � 3.
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5.1 Linear systems

For a linear system
�
x = Ax, x 2Rn, with A n � n matrix of constant coe¢ cients, we again have

solutions given by linear combinations of functions like:

ve�t, vte�t, vt2e�t,:::, veRe(�)t cos (Im (�) t) , veRe(�)t sin (Im (�) t) ,vteRe(�)t cos (Im (�) t) , vteRe(�)t sin (Im (�) t) ; :::

where � is a (real or complex) solution of the characteristic equation det (A� �I) = 0, expressed by
an algebraic equation of degree n

P (�) = �n + a1�
n�1 + a2�

n�2 + :::+ an�1�+ an = 0 (38)

where again a1 = Tr(A) = a11+ a22+ :::+ ann, ak, k = 2; ::n� 1, given by a sum of n minors of order
k, an = det(A). Let v 2Rn be a corresponding eigenvector, solution of the homogenous linear system,
of order n, (A� �I)v = 0. The condition for the asymptotic stability of the unique equilibrium 0
is that all the eigenvalues12 have negative real part, i.e. Re (�) < 0 for each eigenvalue. This can
be equivalently stated as Re (�1) < 0 where �1 is the dominant eigenvalue, de�ned as the one with
maximum real part in the set of all eigenvalues (i.e. the rightmost one in the complex plane). Of
course, we can have a single real dominant eigenvalue of a couple of complex conjugate dominant
eigenvalues.

If the dominant eigenvalue �1 is real and negative, then the long run dynamics towards the equilib-
rium is monotonic as all the possible oscillatory modes associated with complex eigenvalues vanish in
the long run more fastly than the solution associated to �1. The return time is estimated as Tr = � 1

�1
.

If the dominant eigenvalue is a couple of complex conjugate ones, hence with the same real part
Re (�1), then an oscillatory convergence is observed in the long run with characteristic return time
Tr = � 1

Re(�1)
and rotation period Trot = 2�

Im(�1)
.

A necessary condition for all the eigenvalues (i.e. the solutions of the characteristic equation 38)
to have negative real parts is ak > 0 for k = 1; :::; n.

A necessary and su¢ cient condition for the same property is formulated through the Routh-Hurwitz
criterion, which is expressed in terms of the coe¢ cients ak, k = 1; :::; n, of (38) as follows.

Routh-Hurwitz criterion. Let us consider the matrix formed by coe¢ cient of (38) arranged in
the following matrix 266664

a1 1 0 0 0 ::: 0
a3 a2 a1 1 0 ::: 0
a5 a4 a3 a2 a1 ::: 0
::: :::
0 0 0 0 0 ::: an

377775 (39)

Then all the solutions of (38) have negative real parts if and only if the leading principal minors of
the matrix (39) are positive.

For example, for n = 2 we have a1 > 0 and det
�
a1 1
0 a2

�
> 0, i.e. a1a2 > 0, equivalent to the

already stated stability conditions a1 > 0 and a2 > 0, i.e. Tr(A) < 0 and det(A) > 0.

12According to the Fundamental Theorem of Algebra a polynomial P (�) of degree n always has n complex solutions
(counted with proper multiplicity in the case of coincident ones). Moreover, if the coe¢ cients ak of the polynomial are
real numbers, like in our case, for each complex root with Im(�) 6= 0 the complex conjugate is a root as well.
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For n = 3 the criterion gives a1 > 0, det
�
a1 1
a3 a2

�
> 0 and det

24 a1 1 0
a3 a2 a1
0 0 a3

35 > 0, equivalent

to a1 > 0, a3 > 0 and a1a2 > a3.

For n = 4, a1 > 0, det
�
a1 1
a3 a2

�
> 0, det

24 a1 1 0
a3 a2 a1
0 a4 a3

35 > 0 and det
2664
a1 1 0 0
a3 a2 a1 1
0 a4 a3 a2
0 0 0 a4

3775 > 0,
equivalent to a1 > 0, a2 > 0, a3 > 0, a4 > 0 and a1a2a3 � a23 � a4a21 > 0.

And so on for higher n.

As an example, let us consider the fourth degree equation z4 + 5z3 + 13z2 + 9z + 10 = 0. We are
not able to solve it, however as the coe¢ cients are all positive and 5 � 13 � 9 � 92 � 10 � 52 = 254 > 0
we can deduce that all its 4 roots have negative real part (they may be all real, or two real and two
complex conjugate, or two pairs of complex conjugate).

So, again, the problem of stability of the equilibrium of a linear dynamical system is reduced to
a set of algebraic conditions, even if these conditions are, of course, more an more complicated as
the dimension of the dynamical system increases. If the coe¢ cients of the dynamical systems, and
consequently of the characteristic equation, depend on one or more parameters, the stability conditions
can be used to detect changes of stability as the parameters are varied. In the case of linear systems a
transition from stability to instability means a transition from global asymptotic stability to divergent
trajectories.

Another interesting result about localization of eigenvalues in the complex plane is expressed by
the following

Gerschgorin Circle Theorem. Let A = [aij ] be a square matrix with complex entries aij 2 C.
Let

Dk =

8<:z 2 C such that jz � akkj �
nX

j=1;j 6=k
jakj j

9=; , k = 1; :::; n
be the set of n disks with centered in the kth diagonal entry and radius given by the sum of the absolute
values of the non-diagonal entries of the same row. Then all the eigenvalues of A must be contained
in the union of the n disks.

Corollary. As the eigenvalues of a matrix and its transpose are the same, the disks may be de�ned
with reference to columns

D
0
k =

8<:z 2 C such that jz � akkj �
nX

j=1;j 6=k
jajkj

9=; , k = 1; :::; n
hence the region of the complex plane allowed to eigenvalues is given by the intersection of the two
unions, i.e.  

n[
k=1

Dk

!
\
 

n[
k=1

D
0
k

!

Figure 56 gives an example of the application of the Gerschgorin Theorem.
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Figure 56: Application of the Gerschgorin Circle Theorem.

The Gerschgorin Theorem provides an useful application to the study of stability in the case of
negative diagonal dominant matrices.

De�nition A matrix is diagonal dominant if for each row (or each column) the following inequality
holds

jakkj >
nX

j=1;j 6=k
jakj j

0@jakkj > nX
j=1;j 6=k

jajkj

1A
Moreover, if akk < 0 for each k then the matrix is called negative diagonal dominant.

An immediate corollary of the Gerschgorin Theorem is the following

Corollary If a matrix is negative diagonal dominant then all its eigenvalues have negative real
part.

From the point of view of dynamical systems, this stability statement can be expressed by saying
that if self-control (i.e. the inhibitory e¤ect that a dynamic variable exerts on itself) is stronger than
joint in�uence of all other variables, then the system is stable. As and example, let us consider the
following linear dynamical system

�
x1 = �3x1 + x2 + x3
�
x2 = 2x1 � 5x2 + 2x3
�
x3 = x1 + 2x2 � 4x3

whose Gerschgorin disks are shown in �g.57 here below.

5.2 Nonlinear systems

Let us consider an n-dimensional dynamical system in the form

�
x = f(x;�), x 2Rn, � 2 R. (40)

and let x�(�) be an equilibrium point, implicitly de�ned as a solution of the nonlinear system f(x;�) =
0 of n equations with n unknowns. In order to study the local stability and to have an idea of the
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Figure 57: Another example.

kind of local phase portrait in a neighborhood of each equilibrium point, the linear approximation
�
X = J(x�(�))X can be considered, where J(x�(�)) =

h
@fi
@xi
jx�
i
is the n�n Jacobian matrix computed

at the equilibrium point considered, and X = x� x� is the displacement from the equilibrium. If the
equilibrium point is hyperbolic, i.e. all the eigenvalues of J(x�) have non vanishing real part, then
the study of the local stability of the equilibrium is reduced to the study of the stability of the linear
approximation, and even the local qualitative behaviour of the dynamical system can be deduced from
the study of the linear approximation, according to the Hartman-Grobman Theorem. In particular,
we have the result that if all the eigenvalues have negative real part then the equilibrium is locally
asymptotically stable. Moreover, the dominant eigenvalue (or dominant couple, in the case of complex
conjugate dominant eigenvalues) provides information about the kind of equilibrium we are dealing
with and the speed of convergence to the equilibrium.

In analogy with what we have seen for the two-dimensional nonlinear dynamical systems, if the
dominant eigenvalue (or couple of dominant eigenvalues) moves from negative to positive real part (i.e.
cross the imaginary axis) as some parameter is varied, i.e. if some of the Routh-Hurwitz conditions
change sign, then a bifurcation occurs at which the equilibrium considered becomes unstable. This
is generally associated with some other change in phase portrait, such as creation/destruction of
equilibrium points or closed invariant curves, or merging of equilibria with stability exchange. In
particular, if the eigenvalue crossing the imaginary axis is real, then we have the usual one-dimensional
bifurcations along the invariant direction tangent to the corresponding eigenvector (i.e. fold, or saddle-
node, or pitchfork or transcritical), whereas if a couple of complex conjugate eigenvalues crosses the
imaginary axis with imaginary part di¤erent from zero, then an Andronov-Hopf bifurcation occurs
leading to the creation of a closed invariant curve in the plane of the two independent real eigenvectors
associated (also called center manifold). These bifurcations lead to scenarios similar to the ones already
seen for two-dimensional systems, but with a richer variety related to the presence of other dimensions,
see e.g. the qualitative sketches in three dimensions shown in �g. 58).

As it can be noticed, the Jordan curve lemma no longer holds, as trajectories can jump from
inside to outside a closed invariant curve in the center manifold by moving outside their plane. This
allows the formation of more complicated attractors that cannot exist in two dimensions, which are
sometimes called "strange attractors" along which aperiodic motions can be observed with some fea-
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Figure 58: Saddle-focus in 3 dimensions.

tures that opened a remarkable �eld of studies under the name of "deterministic chaos", an apparent
oxymoron. In fact, the two words "deterministic" and "chaos" express two quite counterpoised mean-
ings. Deterministic means without uncertainty, predictable, regular, where any cause implies clear
e¤ects or consequences. Chaos is generally referred to confused, unpredictable, irregular systems,
where consequences of a given cause are not clear. Indeed, what we are considering in this course on
dynamical systems is completely and perfectly deterministic, because given an initial condition and
the knowledge of the dynamic equations, a unique time evolution (i.e. a trajectory) of the dynamical
system is obtained. This allows one to compute the future state of the system for any time without
any uncertainty, as it was expresses by the French mathematician Pierre Simon Laplace in 1776 in
the following famous statement13 "We may regard the present state of the universe as the e¤ect of its
past and the cause of its future. An intellect which at a certain moment would know all forces that set
nature in motion, and all positions of all items of which nature is composed, if this intellect were also
vast enough to submit these data to analysis, it would embrace in a single formula the movements of
the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be
uncertain and the future just like the past would be present before its eyes". This statement, that was
mainly motivated by the usage of dynamical systems to describe the motion of rigid bodies (included
astronomical motions) is now known as the Laplacian determinism, and the intellect which is assumed
to know the equations of motion of the Universe and the its exact state at a given time is sometimes
called Laplace�s demon.

The concept of deterministic chaos14 in the theory of dynamical systems was �rst glimpsed by
Henri Poincaré during his attempt to �nd the trajectories of a three-body system in the presence
of the gravitational force. This problem was considered by Poincaré in order to participate to a
contest sponsored in 1887 by the king of Sweden Oscar II in honour of his 60th birthday, where some
mathematical questions were proposed. One of the questions in this contest was to show rigorously
that the solar system as modeled by Newton�s di¤erential equations is dynamically stable. Poincaré
reduced this question to the famous three-body problem, which revealed itself to be very di¢ cult. In
essence, the three body problem consists of nine simultaneous di¤erential equations. While Poincaré

13See Pierre Simon Laplace, Théorie analytique des probabilitiés. Paris: V. Courcier, 1820.
14However the term "chaos" in this context was �rst introduced in the paper "Period three implies chaos" by Tien-Yien

Li and James A. Yorke, The American Mathematical Monthly, December 1975.
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did not succeed in giving a complete solution, his work was so impressive that he was awarded the prize
anyway. As remarked by Weierstrass, who was one of the judges "the work of Poincaré cannot indeed
be considered as furnishing the complete solution of the question proposed, but that it is nevertheless of
such importance that its publication will inaugurate a new era in the history of celestial mechanics." In
practice, in his work Poincaré started the study of dynamical systems by using topological methods or
qualitative theory. In other words, he was the inventor of the "qualitative" methods to study dynamical
systems that we also are using in this lecture notes. One striking feature of the nonlinear dynamical
system studied by Poincaré was described by Poincaré himself as an extraordinary sensitivity of
trajectories with respect to arbitrarily small, even negligible, variations of the initial conditions. Even
without the possibility to visualize numerical computations of the trajectories, Poincaré described the
extreme irregularity of time paths obtained, and the intricacy of highly intermingled trajectories ("I
can imagine them in my mind but I cannot describe how complicated they are"). His description
of the phenomenon of sensitive dependence on initial conditions is one of the most famous pages of
mathematical literature15:

"If we knew exactly the laws of nature and the situation of the universe at the initial moment,
we could predict exactly the situation of that same universe at a succeeding moment. But even if
it were the case that the natural laws had no longer any secret for us, we could still only know the
initial situation approximately. If that enabled us to predict the succeeding situation with the same
approximation, that is all we require, and we should say that the phenomenon had been predicted, that
it is governed by laws. But it is not always so; it may happen that small di¤erences in the initial
conditions produce very great ones in the �nal phenomena. A small error in the former will produce
an enormous error in the latter. Prediction becomes impossible, and we have an apparently fortuitous
phenomenon."

In this sense systems that are deterministic exhibit a behaviour so irregular that appear to be
similar to chaotic motions, governed by stochastic in�uences.

The discovery of such irregularities, and related di¢ culties to make reliable predictions in some
nonlinear dynamical systems, initially had not a strong impact. The question was stressed, and
became quite popular and pervasive in the Sixties of 20th century, after the work by the American
mathematician and meteorologist Edward Lorenz, who noticed this di¢ culties in making predictions
in some dynamic models used in weather forecasting. The dynamic equations used by Lorenz are
quite simple, even if they are not linear. They can be expressed by the following three-dimensional
dynamical system 8><>:

�
x1 = � (x2 � x1)
�
x2 = �x1 � x2 � x1x3
�
x3 = x1x2 � �x3

(41)

where the dynamic variables xi(t), i = 1; 2; 3, as well as the parameters, represent quantities used
to describe weather conditions. For a given set of parameters, namely � = 10, � = 2:666, � = 20,
and initial conditions x1(0) = 10, x2(0) = 10, x3(0) = 10, �gure (59) shows x1(t) obtained by a
numerical simulation of (41). It is quite evident how the trajectory is irregular. However, the most
striking phenomenon lies in the fact that a modi�cation of the initial condition x3(0) of a very negligible
quantity, e.g. subtracting 10�6 so that we start the numerical simulation from x3(0) = 9:99999 instead
of x3(0) = 10, a time series x3(0) is obtained that, even if at the early time steps is quite similar to the
previous one, becomes very di¤erent from the other as time goes on. This phenomenon of sensitivity
to initial conditions, already described by Poincaré in 1903, became widely known after the paper by

15From the book: H. Poincaré "Science and Method", 1903.
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E. Lorenz (1963) "Deterministic non-periodic �ow" in the Journal of the Atmospheric Sciences, and
is now popularly known as the "butter�y e¤ect", so called because of the title of a paper given by
Edward Lorenz in 1972 to the American Association for the Advancement of Science in Washington,
D.C., entitled "Predictability: Does the Flap of a Butter�y�s Wings in Brazil set o¤ a Tornado in
Texas?" The �apping wing represents a small change in the initial condition of the system, which
causes a chain of events leading to large-scale phenomena. Had the butter�y not �apped its wings,
the trajectory of the system might have been vastly di¤erent.

Figure 59: Versus time representation of x1(t) along a trajectory of the Lorenz model (41) obtained
with parameters � = 10, � = 2:666, � = 20 and initial conditions x1(0) = 10, x2(0) = 10, x3(0) = 10
(upper panel); x1(0) = 10, x2(0) = 10, x3(0) = 9:99999. (lower panel)

The phenomenon of sensitive dependence on initial conditions (or butter�y e¤ect) evidenced how
di¢ cult may be to make forecasting even if a dynamic phenomenon is represented by deterministic
equations (when they are even slightly nonlinear). Small di¤erences in initial conditions (such as those
due to rounding errors in numerical computation) yield widely diverging outcomes for such dynamical
systems, rendering long-term prediction impossible in general. This happens even though these systems
are deterministic, meaning that their future behavior is fully determined by their initial conditions,
with no random elements involved. This was summarized by Edward Lorenz by the sentence: "When
the present determines the future, but the approximate present does not approximately determine the
future".

So, the statement "if one knows the equations of motion then one can reliably forecast the future
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states of a system starting from the knowledge of its state at a given time", is not true in general. This
had a strong impact in economics as well. In fact, the paradigm of the rational agent in economics,
on which is based the mainstream economic theory after the Sixties of the 20th century, is based on
the assumption that economic agents have correct expectations about future states of the economy
because they know the equations of motion of the economic systems. The existence of deterministic
chaos in economic models based on rational expectations leads to an evident contradiction.

Of course, the same nonlinear model can behave regularly (converging to an equilibrium or to a
periodic orbit) for some sets of parameters and exhibit chaotic dynamics for di¤erent parameters�val-
ues, and a goal of the qualitative study of a continuous time nonlinear dynamical system of dimension
greater than two is the detection of the parameters�changes leading to such irregular behaviour.

The discovery (or, better, the re-discovery after the clear statement of Poincaré in 1903) of this
kind of trajectories in deterministic models opened in the Sixties and Seventies of 20th century a huge
stream of literature in the �eld of the theory of dynamical system, and this caused a sort of revolution
in several disciplines, including physics, chemistry, sociology, engineering, economics, biology. The so
called "chaos theory" even entered �ction, cinema and philosophical debates.16

However, even in the presence of chaotic behaviour some regularities can be detected. For example,
if the trajectories are represented in the phase space one can see that the shape of the attracting set
where the chaotic trajectories are con�ned may be characterized by interesting topological properties.
For example, if a chaotic trajectory of the Lorenz model is represented in the phase space (x1; x2; x3)
a structure like the one shown in �g. 60 is obtained. If a trajectory starts from an initial condition
inside that set then it remains there and covers any point of it as time goes on, i.e. it is an invariant
set. Moreover, if a trajectory starts outside it (not too far) then in moves towards the set, where it
exhibits irregular (i.e. non-periodic) time paths and sensitive dependence on initial conditions. For
this reason such invariant set is denoted as "chaotic attractor" or "strange attractor". The shape and
extension of this attracting compact set may give useful information about the long-run dynamics of
the dynamical system, even if it exhibits deterministic chaos. In fact one can obtain upper and lower
bounds (ceiling and �oor) for the dynamics of each dynamic variable, even if its time series is quite
irregular.

So, even if from one side the discovery of deterministic chaos weakens the predictive capacity
of nonlinear dynamical systems, it gives some hope that apparently random phenomena may be
generated by a deterministic model (even with a few dynamic variables and with a simple mathematical
expression).

Another famous three-dimensional dynamical system that, for given sets of parameters, gives rise
to chaotic attractors is the following 8><>:

�
x1 = �x2 � x3
�
x2 = x1 + ax2
�
x3 = bx1 � cx3 + x1x3

known as Rössler model, see below a chaotic attractor obtained with parameters a = 0:32, b = 0:30,
c = 4:50.

The only equilibrium of this model is O = (0; 0; 0), where the Jacobian matrix becomes

J(0; 0; 0) =

24 0 �1 �1
1 a 0
b 0 �c

35
16See e.g. the popularization book by James Gleick "Chaos: Making a New Science", Viking Penguin, 1987 .
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Figure 60: Lorenz attractor.

and the characteristic equation

�3 + (c� a)�2 + (1 + b� ac)�+ c� ab = 0

from which the Routh-Hurwitz stability conditions are obtained:

c > a; c > ab; (c� a) (1 + b� ac) > c� ab

For example, if we �x b = 1 the stability conditions in the plane (c; a) are given by

a < min

�
c;
1

c

�
i.e. a < 1 for c � 1; a < 1

c for c > 1, and correspond to the grey shaded stability region represented in
�g. 62. It is easy to see that with b = 1 and a = c (with c < 1) the characteristic equation becomes
�
�
�2 �

�
a2 � 2

��
= 0, from which we get �1 = 0 (non-hyperbolic case) and �2;2 = �i

p
a2 � 2; instead

for b = 1 and a = 1=c (with c < 1) we get �3+ c2�1
c �2+�+ c2�1

c = 0 that has the two purely imaginary

roots �1;2 = �i (non-hyperbolic case) and �3 = 1�c2
c .

An interesting dynamic scenario is obtained for a = 0:38. b = 0:30, c = 4:82, given by a saddle-
focus with the one shown in �g. 63, where a homoclinic orbit is represented. This orbit has the
particular feature that it �rstly goes far from the equilibrium along its unstable manifold and then it
is folded back by nonlinearities and approaches the equilibrium through converging spirals, related to
two complex conjugate eigenvalues with negative real part. A similar situation, known as homoclinic
Shilnikov scenario, is a typical prelude to chaotic behaviour.

We do not enter into more details about deterministic chaos, and in particular we avoid to give
here a more rigorous de�nition of it, because we prefer to postpone such a discussion when dealing
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Figure 61: Rosser chaotic attractor.

with discrete-time dynamical systems, for which deterministic chaos can even be obtained with one-
dimensional dynamic models and with very mild nonlinearities.

We end this section by an example leading to a three-dimensional economic model

An economic model expressed by Lorenz equations. We consider a dynamic model proposed
by Malliaris and Stein (1995) in the paper "Financial modelling from stochastics to chaotics and back to
stochastics" in Modeling techniques for �nancial markets and bank management. The model assumes
the form of the Lorenz system 8><>:

�
x = s (�x+ y)
�
y = x (r � z)� y
�
z = �bz + xy

(42)

where x(t) represents the volatility excess of the price of a �nancial asset, y(t) the volatility of the
average Bayesian errors by traders, where this error is measured as the di¤erence between the subjective
estimate of the price today and the objective price at the expiration of the future price. The third
dynamic variable z(t) is a measure of the excess speculation. The �rst equation states that the rate of
change of the price volatility of an asset is proportional to the di¤erence between errors and volatility
itself. The second equation describes the dynamics of the Bayesian error, which depends upon the
noisiness of the system and the average cost of sampling by the market participants, in�uenced by the
type of people attracted to the market. The second equation involves all three dynamic variables and
the parameter r compared with z(t). The Bayesian error, which is self-controlled by itself, is increased
by a component due to speculation x (r � z). The rationale of the process is the following: if there are
a few speculators (r > z), the noiseness of the system prevails. This happens for two reasons: 1) when
there are few speculators even small variations in the necessity to make hedging of risks produce large
variations of future prices 2) when there are a few speculators then their information set is reduced.
Instead, when there are many speculators (r < z), the information set increases, the variance around
the average decreases and the market is in general more informed. The basic idea is that speculation
tends to stabilize the market.
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Figure 62: Bifurcation curves in the parameters�plane.

The third dynamic equation gives the rate of change of speculation excess. The motivation of it is
that for higher volatility there are several ways to make pro�ts, hence greater volatility is associated
with more speculators.

The model is characterized by three parameters: r indicates the critical amount of speculation
beyond which speculation have a stabilizing e¤ect; b indicates the speed of decrease of excess of
speculation; s measures the speed of convergence of volatility.

From equilibrium conditions
�
x =

�
y =

�
z = 0 we get

E0 = (0; 0; 0) ; E1 =
�p

b (r � 1);
p
b (r � 1); r � 1

�
;E2 =

�
�
p
b (r � 1);�

p
b (r � 1); r � 1

�
The Jacobian matrix of (42)

J =

24 �s s 0
r � z �1 �x
y x �b

35
computed at each equilibrium gives:

J (E0) =

24�s s 0
r �1 0
0 0 �b

35
J (E1) =

24 �s s 0

1 �1 �
p
b (r � 1)p

b (r � 1)
p
b (r � 1) �b

35
J (E2) =

24 �s s 0

1 �1
p
b (r � 1)

�
p
b (r � 1) �

p
b (r � 1) �b

35
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Figure 63: Shilnikov scenario.

The characteristic equation for the equilibrium E0 is

det

0@24�s� � s 0
r �1� � 0
0 0 �b� �

351A = 0

i.e.
P (�) = �3 + (s+ 1 + b)�2 + (b+ sb+ s� sr)�+ sb (1� r) = 0

and from the Routh-Hurwitz conditions E0 is stable if

s+ 1 + b > 0

(s+ 1 + b) (b+ sb+ s� sr)� sb (1� r) > 0

sb (1� r) [(b+ sb+ s� sr) (s+ 1 + b)� sb (1� r)] > 0

The �rst stability condition is always true. The second becomes

(s+ 1 + b) (1 + s) b+ (1 + s) s� (1 + s) sr > 0

and is satis�ed if and only if

r <
b (s+ 1 + b)

s
+ 1

while the third condition becomes
r < 1:

As the third condition implies the second one, it follows that E0 is locally asymptotically stable if
r < 1. This means that it is stable whenever it is the unique equilibrium. In fact, the other two
equilibrium points only exist for r > 1, and for r = 1 the three equilibria coincide. So, we expect a
pitchfork bifurcation at r = 1.
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The characteristic equation of E1;2, given by

det

0@24 �s� � s 0

1 �1� � �
p
b (r � 1)p

b (r � 1)
p
b (r � 1) �b� �

351A = 0

becomes
P (�) = �3 + (1 + b+ s)�2 + b (r + s)�+ 2sb (r � 1) = 0

and the Routh-Hurwitz stability conditions are

1 + b+ s > 0

(1 + b+ s) b (r + s)� 2sb (r � 1) > 0

2sb (r � 1) [(1 + b+ s) b (r + s)� 2sb (r � 1)] > 0

From the second condition follows

b (1 + b� s) r + b (3 + b+ s) s > 0

where, assuming (1 + b� s) < 0 (i.e. a high speed of convergence of volatility) we obtain that the
equilibrium points E1;2 exist and are stable for 1 < r < r�, where r� = (3+b+s)s

(s�1�b) > 1, and they become
unstable for r > r�.

This stability result has the following economic interpretation: if r, the critical amount of specu-
lation requited to reduce the volatility related to Bayesian errors in forecastings, is less than 1 then
the system converges to a situation of total absence of volatility. If r > 1 but less that the threshold
value r� then the system will be characterized by a constant characteristic volatility in the long run.
Instead if r > r� then we have oscillations, that may be periodic or chaotic.
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Figure 64: Lorenz attractor again.
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Figure 65: Time patterns along the Lorenz attarctor.

In �g.64 two chaotic trajectories are represented in the phase subspace x; z, obtained with para-
meters s = 5, r = 15, b = 1 with the two initial conditions x(0) = 0:25, y(0) = 0:2, z(0) = 0:4 (blue
trajectory); x(0) = 0:25, y(0) = 0:2, z(0) = 0:4 (red trajectory).

In �g.65, with the same set of parameters, the time series (versus time representation) of x(t) is
shown with two initial conditions almost identical, x(0) = 0:25, y(0) = 0:2, z(0) = 0:41 (blue series);
x(0) = 0:25, y(0) = 0:2, z(0) = 0:4 (red series) thus showing the sensitive dependence on initial
conditions (butter�y e¤ect).

6 Discrete-time dynamical systems

Dynamical systems (5) with discrete time t 2 N, naturally arise in economic and social modelling,
where changes in the state of a system occur as a consequence of decisions that cannot be contin-
uously revised (event-driven time). Given a characteristic time interval �t, taken as a unit of time
advancement �t = 1, if x(t) 2 Rn represents the state of the system at a given time t, then the state
at the next time t + 1 is obtained by the application of a map, i.e. a transformation or a function
T :M !M de�ned in the phase space M � Rn into itself

x(t+ 1) = T (x(t)) (43)

So, a single application of the transformation T represents a "unit time advancement" of the state
of the dynamical system

and the repeatedly application (or iteration) inductively de�nes a trajectory
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In other terms, a trajectory is obtained by the composition of a map with itself

x(1) = T(x(0)); x(2) = T(x(1)) = T(T(x(0)) = T2(x(0); ... ; x(n) = Tn(x(0))

or, more brie�y, it can be written as the sequence

�(x(0)) = fx(t) 2M : x(t) = Tn(x(0)), ... t 2 Ng :

Discrete-time dynamical systems can be obtained through a discretization of continuous-time dy-
namical system by replacing time derivative with the corresponding incremental ratio, that is,

from
�
xi = fi(x) with

�
xi =

dxi
J
� xi(t+�t)� xi(t)

�t
and �t = 1

we get
xi(t+ 1) = xi(t) + fi(x(t)) = Ti(x(t))

However many economic dynamic models are directly obtained under a discrete time framework. For
example let us consider the well known Cobweb Model.17 A given good is sold in the market at a unit
price p(t). The quantity demanded by consumers is a function of the price Qd(t) = D(p(t)) denoted
as demand function, usually a continuous and decreasing function (hence invertible). The supply
function expresses the output decided by producers as a function of the price Qs(t) = S(pe(t)), where
pe(t) represents the price expected by producers at time t on the basis of the information they have
when that decide the quantity to be produced. Let �t = 1 be the amount of time necessary to realize
the production process (i.e. the production lag from production decision to product realization. e.g.
maturation period for agricultural products or production time for an industrial process). Then the
economic equilibrium condition Qd(t) = Qs(t) becomes

D(p(t)) = S(pe(t)) (44)

Under the assumption of naïve expectations pe(t) = p(t � 1), i.e. without reliable information the
producers expects that the price at the end of production will be the same prevailing at the beginning,
the model becomes

D(p(t)) = S(p(t� 1))

and by applying the inverse of demand function p = D�1(q) and after a simple time translation it
assumes the standard explicit form

p(t+ 1) = D�1(S(p(t))) = T (p(t)) (45)

For example, with linear demand and linear supply functions D(p) = a� bp and S(p) = �c+ dp the
model becomes

p(t+ 1) = T (p(t)) = �d
b
p(t) +

a+ c

b
(46)

17Ezekiel, M. (1938), The cobweb theorem, Quaterly Journal of Economics, 52(2), 255-280.
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This dynamic model is known as the "cobweb model".

Another example is the Cournot duopoly model, where two �rms produce at time t the quantities
q1(t) and q2(t) of the same good (or homogeneous goods) and sell it in the same market characterized
by an inverse demand function p = D�1(Q), where Q = q1 + q2 is the total quantity produced. If
Ci(qi), i = 1; 2, are the respective cost functions, then the pro�ts of the two �rms are given by

�1(q1; q2) = pq1 � C1(q1) = D�1(q1 + q2)q1 � C1(q1)
�2(q1; q2) = pq2 � C2(q2) = D�1(q1 + q2)q2 � C2(q1)

hence the pro�t function of each �rm also depends on the production of the other one, the source of
interdependence being the demand function.

At each time t each �rm decides its next period production qi(t + 1) (to be realized after the
production lag �t = 1) in order to maximize its own pro�t. However, at time t each �rm does
not know the production decision of the other �rm, so an expected value must be considered in the
maximization problems

qi(t+ 1) = arg max
qi(t+1)

�i (t+ 1) = argmax
qi
[D�1 �qi + qe�i (t+ 1)� qi � Ci (qi)] (47)

For example, if we consider linear demand and linear cost functions, p = a�b(q1+q2) and Ci(qi) = ciqi,
then producer 1 faces the optimization problem

max
qi(t+1)

�i (t+ 1) = max
q1
[(a� c1)q1 � bq1qe2(t+ 1)� bq21]

From the �rst order condition (necessary condition for a maximum) @�1
@q1

= 0, we get (a� c1) �
bqe2(t + 1) � 2bq1 = 0 from which it is q1(t + 1) = �1

2q
e
2(t + 1) +

a�c1
2b . The second order condition

@2�1
@q21

= �2b < 0 ensures that it is indeed a maximum. If we solve the same problem for the second �rm
and we assume naïve expectations, i.e. that qej (t+1) = qj(t), we obtain the following two-dimensional
linear discrete time dynamical system8<:

q1(t+ 1) = B1(q2(t)) = �1
2q2(t) +

a�c1
2b

q2(t+ 1) = B2(q1(t)) = �1
2q1(t) +

a�c2
2b

(48)

Instead, if the (inverse) demand function is assumed to be isoelastic (in particular with unitary elastic-
ity) with the form p = 1

Q , then the same arguments lead to the following nonlinear discrete dynamical
system 8<:

q1(t+ 1) = R1(q2(t)) =
p
q2(t)=c1 � q2(t)

q2(t+ 1) = R2(q1(t)) =
p
q1(t)=c2 � q1(t)

(49)

6.1 The simplest one: 1-dimensional linear homogeneous

The simplest discrete time recurrence is the linear homogeneous iterated map

x(t+ 1) = ax(t) (50)
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with initial condition x(0) = x0. The general solution of (50) can be obtained inductively, being
x(1) = ax0, x(2) = ax(1) = a2x0, x(3) = ax(2) = a3x0...

x(t) = x0a
t t 2 N (51)

The sequence (51) converges to the unique asymptotic equilibrium x� = 0 if jaj < 1, i.e. �1 < a < 1. In
this case we say that (50) is a contraction mapping, as at each iteration the distance of x(t) from x� = 0
is reduced of the factor jaj. For example, if a = 1

2 then x(1) = 1
2x0, x(2) =

1
4x0 etc. The same holds

for a = �1
2 , even if this occurs through oscillations of decreasing amplitude: x(1) = �

1
2x0, x(2) =

1
4x0,

x(3) = �1
8x0 etc. So, for negative values of a the sequence (51) oscillates around x

� = 0, as it assumes
the same sign of x0 at even iterations and opposite sign at odd iterations. It is worth to stress that
oscillations can be obtained with a one-dimensional discrete-time dynamical system, whereas this was
impossible in the case of one-dimensional smooth systems in continuous time. Of course this is due
to the fact that the points generated by (50) can jump between di¤erent points without touching the
intermediate points. Diverging sequences are obtained for jaj > 1, monotonically diverging if a > 1,
diverging through oscillations if a < �1. For example a = 2 give x(1) = 2x0, x(2) = 4x0 etc., whereas
a = �2 gives x(1) = �2x0, x(2) = 4x0, x(3) = �8x0 etc. Finally, for a = 1 the identity map is
obtained, whose iteration gives a constant sequence x(t) = x0 for each t 2 N, whereas a = �1 gives
the oscillating sequence x(t) = (�1)t x0. All these cases are summarized in �g. 66.

We can see the map x0 = ax as a transformation of the real line into itself, i.e. a function that
transforms each point x 2 R into its unique image x0 2 R. If we consider a segment AB, i.e. the closed
interval AB = fx 2 R, A � x � Bg, and we apply the transformation x0 = ax to all the points of the
segment, then a new segment A0B0 whose length will be A0B0 = jajAB, i.e. it will be contracted of the
factor a if jaj < 1, expanded if jaj > 1, and with the same length if jaj = 1. Moreover, its orientation
will remain the same, i.e. A < B implies A0 < B0, if a > 0, whereas its orientation will be reversed,
i.e. A < B implies A0 > B0, whenever a < 0.

From the general solution (51) of the linear recurrence (50), the solution of nonhomogeneous linear
map can be easily obtained. In fact, given

x(t+ 1) = ax(t) + b (52)

it can be noticed that if it converges, then it converges to the unique steady state (or �xed point) x�

characterized by the condition x(t+1) = x(t). Thus, x� is the solution of the equation x = ax+ b, i.e.
it is x� = b

1�a , provided that a 6= 1. The change of coordinates X(t) = x(t) � x� = x(t) � b
1�a that

translates the �xed point into in origin, transforms the a¢ ne (or linear non homogeneous) recurrence
into a linear homogeneous one. In fact, by replacing x(t) = X(t) + b

1�a into (52) we get X(t + 1) =
aX(t), i.e. in the form (50), and consequently the general solution is X(t) = X(0)at, from which going
back to the originary variable

x(t) =

�
x0 �

b

1� a

�
at +

b

1� a. (53)

Such solution converges to x� = b
1�a for jaj < 1, oscillates between �x0 and x0 for a = �1; �nally, in

the particular case a = 1, (52) becomes the arithmetic sequence x(t+ 1) = x(t) + b, whose solution is
x(t) = x0 + bt, which is increasing or decreasing according to the sign of b.

This completely solves, for example, the linear cobweb model with naïve expectations (46) whose
equilibrium is p� = a+c

b+b , located at the intersection of the demand and supply curves, and the solution
starting from the initial price p(0) = p0 is

p(t) =

�
p0 �

a+ c

b+ d

��
�d
b

�t
+
a+ c

b+ d
: (54)
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Figure 66:

The corresponding time series exhibit oscillatory behaviour, being �d
b < 0: they are convergent to

p� when b > d, i.e. the decreasing demand function is steeper than the increasing supply, diverging
otherwise (see �gure 67)

Systems evolving in discrete time are quite common in economics and �nance. A very basic example
is the law for computing the time value of money if a compound interest is added at given time periods.
If r is the e¤ective interest rate per period �t = 1, then the following di¤erence equation allows one
to compute the one-period interest starting from the initial capital

M(t+ 1) =M(t) + rM(t) = (1 + r)M(t) with M(0) = C0 (55)

from which the general law that directly gives the future value after n periods, given the initial value
of the capital C0, is

M(n) = C0(1 + r)
n (56)

Another example is obtained by considering the equation of motion of the price p(t) of an asset with
price p0 at time t0 and constant dividends y

Rp(t)� p(t� 1) = y

with R = 1 + r, where r > 0 is the risk-free interest, 0 < r < 1. The general solution is

p(t) = p+ (p0 � p)
Rt0

Rt
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Figure 67:

where p = y
R�1 is the constant fundamental price (given by the discounted sum of all future dividends

starting from t0 at which p(t0) = p0), and (p0 � p) is a �nancial bubble. In order to avoid the explosion
of the bubble as t!1 a "non-bubble condition" must be introduced

lim
t!1

(p0 � p)
Rt

= 0

which is true provided that R > 1 as stated above. This implies that a displacement from the
fundamental value can only be a transitory phenomenon, and consequently the rational economic
agents believe that the fundamental value will prevail in the long run.

6.2 Qualitative analysis of 1-dimensional nonlinear models in discrete time

Let us consider now a general discrete-time dynamical system with one dynamic variable

x(t+ 1) = f(x(t)) (57)

with initial condition x(0) = x0. The equilibrium points (or �xed points) are de�ned by the equilibrium
condition x(t+ 1)) = x(t), i.e. are the solutions of the equation

f(x) = x (58)

Let x� be a solution of (58). Then a linear approximation of (57) in a neighborhood of x� can be
obtained as f(x) = f(x�) + f 0(x�) (x� x�) + o(x� x�) = x� + f 0(x�) (x� x�) + o(x� x�), leading to
the linear approximation

x(t+ 1) = x� + f 0(x�) (x� x�)

that reduces to the linear homogeneous case X(t+ 1) = aX(t) after the translation X(t) = x(t)� x�
that measures the displacement from the equilibrium point. From the discussion about the linear case
of the previous section the following result immediately follows

Proposition (1-dim. local asymptotic stability in discrete time). Let x� be an equilibrium
point of (57), i.e. f(x�) = x�. If jf 0(x�)j < 1 then x� is a locally asymptotically stable equilibrium; if
jf 0(x�)j > 1 then x� is unstable.
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Indeed, if x� is hyperbolic, which in the case of discrete dynamical systems means that jf 0(x�)j
6= 1, the Hartman-Grobman theorem (1959-1960) can be stated as follows: Let x� be a hyperbolic
�xed point of (57), with f di¤erentiable. Then there exists a neighborhood of x� where map (57) is
topologically conjugate to its linear approximation.

Notice that in the case of discrete time the stability condition �1 < f 0(x�) < 1 includes both an
upper and a lower threshold for the slope of the function f at the equilibrium point, and the two limiting
values �1 and +1 constitute two di¤erent conditions of nonhyperbolicity of the equilibrium point.
The condition of nonhyperbolicity f 0(x�) = 1 corresponds to the analogous condition f 0(x�) = 0 for
continuous time one-dimensional models. We will see in the following that if such condition is crossed
as a parameter varies then the bifurcations that occur are similar to those detected in continuous-time
models. Instead, the other nonhyperbolicity condition f 0(x�) = �1 has no analogue in continuous time
models, as it is characterized by oscillatory behaviour. Indeed, the presence of negative derivative is
often related to phenomena of overshooting (or over-reaction). This means that even if we have a
decreasing map around x�, i.e. f(x) > x� in a left neighborhood of x� and f(x) < x� in a right
neighborhood of x�, so that x(t+ 1) > x(t) if x(t) is on the left of x� and x(t+ 1) < x(t) if x(t) is on
the right of x�, a trajectory starting from a neighborhood of x� will jump from one side to another
of x�; thus, either convergence does not occur or, if convergence is obtained, being �1 < f 0(x�) < 0,
then it takes place through oscillations.

Before discussing the possible bifurcations of 1-dimensional nonlinear models, we describe a useful
graphical method that is widely used to obtain the trajectories of a one-dimensional discrete dynamical
system (57), even in a nonlinear case, without any analytic computation. This method is based on
the knowledge of the graph of the function y = f(x). It consists in drawing such graph on a cartesian
plane together with the diagonal y = x. Starting from the initial condition x0 on the horizontal axis,
the successive value of the recurrence x(1) is obtained by moving upward up to the graph and then
to the left, on the vertical axis (the codomain) where the values (images) are represented. Then, in
order to continue the iteration of the function, this value must be brought back to the horizontal axis,
i.e. from the codomain to the domain, in order to apply the function again. This can be done by
using the diagonal, locus of point such that y = x: the point x(1) is moved horizontally towards the
diagonal and then vertically towards the horizontal axis (see �g. 68). Then the process is repeated
again to get x(2) etc.

Notice that some portions of the horizontal and vertical movements have been travelled back and
forth, so that they can be deleted and the movements reduced to the following: starting from x0 on the
diagonal, vertical to the graph, horizontal to the diagonal where x(1) = f(x0) is placed, then vertical
to the graph, horizontal to the diagonal where x(2) = f(x(1)) is placed and so on... This graphical
construction, called staircase diagram allows us to get the whole trajectory as a set of points along
the diagonal. See the other examples in �g.68, in particular the oscillatory trajectory shown in the
right panel, obtained with a decreasing map.

In �g.69 this method is applied to the map f(x) =
p
x, whose iteration can be simply obtained by a

pocket calculator, starting from any initial condition x(0) > 0 and repeatedly pressing the square-root
key. It will be easily realized that it always converges to the globally stable �xed point x� = 1.

From these preliminary arguments it is evident that in the case of decreasing one-dimensional
discrete time dynamical systems, whose trajectories are obtained by iterated maps, oscillations and
even periodic cycles are obtained. Consider, for example, the map f(x) = 1

x , i.e. the recurrence

x(t + 1) = 1
x(t) that leads to a cycle of period two

�
x0;

1
x0

�
for each initial condition x0 6= 0. Or
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Figure 68: Staircase diagram

the map f(x) = x2 � 1 that, starting from x0 = 0 gives the cycle x(1) = �1, x(2) = 0, x(3) = �1.
Moreover, starting from another initial condition such as x0 = 3

2 , it generates x(1) =
5
4 = 1:25,

x(2) = 0:5625, x(3) = �0:6836, x(4) = �0:5327, x(5) = �0:7162, x(6) = �0:4870, x(7) = �0:7628,
x(8) = �0:4181, and then slowly approaches the 2-cycle (�1; 0).

In other words, not only periodic sequences exist where after a given number of iterations the same
value is reached and then the same set of numbers repeats inde�nitely, but also there are sequences
that approach asymptotically such periodic sets. Several situations of this kind are obtained with the
iterated quadratic18 map

f(x) = x2 � � (59)

with parameter�s values in the range � 2 (0; 2). This map can be iterated very easily even with a
pocket calculator and many di¤erent situations, from convergence to a �xed point to convergence to a
periodic sequence or even aperiodic and very irregular sequences are obtained. Try, for example with
� = 1:3 and with � = 2, starting e.g. from x(0) = 0:5. Some staircase diagrams of this quadratic map
are shown in �gures 70 and 71.

We end this section by giving a de�nition of periodic cycle as well as the conditions for its stability.
A periodic cycle of period k is a set of points Ck = fc1; c2; :::; ckg such that ci 6= c1, i = 2; :::; k,

f(ci) = ci+1, i = 1; :::; k � 1, and f(ck) = c1. So, the periodic points can be obtained as Ck =�
c1; f(c1); f

2(c1):::; f
k�1(c1)

	
with fk(c1) = c1. This last equality states that c1 is a �xed point of the

composite function fk(x). Indeed, as the initial periodic point of the cycle is arbitrary, any periodic
point of a k cycle is a �xed point of fk, i.e. fk(ci) = ci for each i = 1; :::; k. This is quite intuitive,
because, after k iterations of f , all the points of the k-cycle are obtained and the initial point is reached
again. In other words, if the map f is applied iteratively starting from a k-periodic point and we look
at the result at intervals of k iterations, then we see always the same point.

18Quadratic means polynomial of degree two.
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Figure 69: Square root map: staircase diagram (above) and versus time (below).

Notice that every periodic point ci of a k-cycle Ck is a �xed point of fk(x) but it is not a �xed
point of any f j(x) with j < k. Indeed, a �xed point x� of f(x) is also a �xed point of any composite
function f j(x) for any j > 1, as f(x�) = x� implies f2(x�) = f(f(x�)) = f(x�) = x� and so on. So,
the k-periodic points are all and only the �xed points of fk(x) which are not �xed points of f j(x) for
any j < k.

The stability of a k-cycle Ck can be determined by the study of the stability of one of its periodic

points ci as a �xed point of fk(x), i.e. by the condition
���dfkdx (ci)��� < 1. By using the chain rule for the

derivation of composite functions, the derivative of the composite function fk(x) can be reduced to the
product of the derivatives of the simpler function f(x) along the k-periodic points

dfk

dx
(ci) = f

0
(c1) � f

0
(c2) � ::: � f

0
(ck) =

kY
i=1

f
0
(ci)

This can be easily proved inductively. In fact, for k = 2 from f(c1) = c2 and f(c2) = c1 we obtain

df2

dx (c1) = f 0(f(c1))f 0(c1) = f 0(c2)f 0(c1) and analogously for
df2

dx (c2). So, if
dfk�1

dx (c1) =
k�1Y
i=1

f
0
(ci)

then for the derivative in c1 of fk(x) = f(fk�1(x)) we get f 0(fk�1(c1))
dfk�1

dx (c1) = f 0(ck)
k�1Y
i=1

f
0
(ci) =

kY
i=1

f
0
(ci).
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Figure 70: Myrberg map with � = 0 (left) and � = 1 (right).

6.3 Local bifurcations of one-dimensional discrete dynamical systems

Let us consider a one-dimensional discrete dynamical system whose structure depends on a parameter
� 2 R

x(t+ 1) = f(x(t);�)

and let x�(�) be a �xed point de�ned implicitly by the equilibrium equation f(x;�) = x. The stability
condition jf 0(x�(�))j < 1 indicates that as the parameter � varies the �xed point can lose stability
through two bifurcation conditions, at which the �xed point is non-hyperbolic, f 0(x�(�)) = +1 and
f 0(x�(�)) = �1. As one of these two bifurcation conditions is crossed a local bifurcation occurs at
which the �xed point changes its stability property and something else happens, as shown in the
pictures here below where some canonical maps are given, as well as their graphs and bifurcation
diagrams. Notice that the three local bifurcations occurring with multiplier f 0(x�(�)) = +1 are
essentially the same as those occurring in dynamical system in continuous time, the only di¤erence
being that in this case the tangency occurs along the diagonal, where the �xed points are located, and
consequently involve slope 1.
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Figure 71: Myrberg map with � = 2
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What is new is the bifurcation occurring with multiplier f 0(x�(�)) = �1, denoted as �ip bifurcation,
at which the �xed point changes its oscillatory stability (i.e. convergence through damped oscillations)
into oscillatory instability (i.e. trajectories starting very close to x� exhibit oscillatory expansion).

95



However, di¤erently from the linear case where the oscillatory expansion has no limits, leading to
oscillatory divergence, in the nonlinear case a creation of a 2-periodic cycle occurs at the bifurcation
value. This 2-periodic cycle may be stable if it is created around the unstable �xed point (supercritical
case) thus attracting the trajectories escaping from a neighborhood of x�, or unstable if it exists around
the stable �xed point (subcritical case) thus bounding its basin of attraction.

It is worth to notice that this bifurcation, leading to the creation of two periodic points of a 2-cycle,
causes the creation of two new �xed points of the map f2(x) = f(f(x)), besides the previously existing
x� as any �xed point of f(x) is also a �xed point of f2(x). So, the �ip bifurcation of f is associated
with a pitchfork bifurcation of f2(x). Indeed, if f 0(x�) = �1 then df2

dx (x
�) = f 0(f(x�))f 0(x�) =

f 0(x�)f 0(x�) = (�1)(�1) = +1, a bifurcation condition of f2 corresponding to a pitchfork bifurcation.

All the local bifurcations described above can be observed in periodic cycles as well. In fact, when

a periodic cycle Ck = fc1; c2; :::; ckg with associated multiplier �(Ck) =
kY
i=1

f
0
(ci) changes its stability

properties due to a variation of a parameter, if the multiplier exits the stability range �1 < �(Ck) < 1
through the value +1 then a bifurcation of the cycle is observed, that may be of fold type (a couple of
k-cycle, one stable and one unstable, are created or destroyed through their merging) of transcritical
type (two k-periodic cycles of opposite stability merge and exchange their stability) or of pitchfork
type (two further k-periodic cycles are created at the bifurcation). Instead if the multiplier exits the
stability range �1 < �(Ck) < 1 through the value �1 then a �ip bifurcation of the k-cycle is observed
at which a cycle of double period 2k is created.

6.4 The logistic map

In this section we consider the quadratic map

x(t+ 1) = �x(t)(1� x(t)), � > 0 (60)

whose graph is represented by a concave parabola that intersects the diagonal in the two �xed points

x�0 = 0 and x
�
1 = 1�

1

�
(61)
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Its expression is quite similar to the logistic model in continuous time (10), hence it has been called
logistic map. Indeed, it can be obtained by a discretization of (10) that gives

x(t+ 1) = (1 + �)x(t)� sx(t)2 (62)

which is topologically conjugate (hence dynamically equivalent) to (60). In fact, by the linear (hence
invertible) change of variable y = s

1+�x, i.e. by replacing x(t) =
1+�
s y(t) and x(t + 1) = 1+�

s y(t + 1)
in (62), we get y(t+ 1) = (1 + �)y(t)� (1 + �)y(t), identical to (60) with � = 1 + �.

The map (62) is indeed used to model the time evolution of a population reproducing at non-
overlapping breeding seasons.

The same map (62) can be obtained from (55) if we imagine to impose a tax proportional to the
square of the money

M(t+ 1) = (1 + r)M(t)� sM(t)2 (63)

Let us notice that, in this case, if we ask, given an initial capital M(0) = C0, what will be the
accumulated future value after n years according to (63), it is quite di¢ cult to give an answer by
an analytical expression that gives M(n) as a function of C0 like in (56). In fact we have M(1) =
(1 + r)C0� sC20 , M(2) = (1 + r)M(1)� sM(1)2 = (1 + r)

�
(1 + r)C0 � sC20

�
� s
�
(1 + r)C0 � sC20

�2,
i.e. a 4th degree polynomial, M(3) = (1 + r)M(2)� sM(2)2 is a 8th degree polynomial in C0 and so
on... M(10) is a complete polynomial in C0 of degree 210 = 1024, a computation impossible for any
practical purpose.

This just to show that, even if the analytical computation of the solution of a di¤erence equation
is always possible in principle by composing the iterate map with itself, this is practically impossible
when it is nonlinear.

Moreover, the sequences generated by the recurrence (60) may become quite complicated, as we
will see in the following. We stress that the same holds for any quadratic map, as all second degree
polynomials are topologically conjugate. For example, (60) is conjugate with the map (59) through
the coordinate change y = � 1

�x+
1
2 with � =

�2

4 �
�
2 .

What makes famous the logistic map (60) is the article "Simple mathematical models with very
complicated dynamics", published in 1976 by Robert M. May in Nature, from which many other papers
followed where the same model was used in several �elds, included economics and �nance. The paper of
May ends with the "evangelical plea for the introduction of these di¤erence equations into elementary
mathematics courses, so that students�intuition may be enriched by seeing the wild things that simple
nonlinear equations can do. [...] The elegant body of mathematical theory pertaining to linear systems,
and its successful application to many fundamentally linear problems in the physical sciences, tends to
dominate even moderately advanced University courses in mathematics and theoretical physics. The
mathematical intuition so developed ill equips the student to confront the bizarre behaviour exhibited
by the simplest of discrete nonlinear systems, such as equation (60). Yet such nonlinear systems are
surely the rule, not the exception, outside the physical sciences. Simple mathematical models with very
complicated dynamics. I would therefore urge that people be introduced to, say, equation (60) early
in their mathematical education. This equation can be studied phenomenologically by iterating it on
a calculator, or even by hand. Its study does not involve as much conceptual sophistication as does
elementary calculus. Such study would greatly enrich the student�s intuition about nonlinear systems.
Not only in research, but also in the everyday world of politics and economics, we would all be better
o¤ if more people realised that simple nonlinear systems do not necessarily possess simple dynamical
properties".

We now follow May�s invitation and propose a qualitative study of some properties of the map (60),
and this study will lead us to encounter the phenomenon of deterministic chaos in a much simpler
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Figure 72: Left: Staircase diagram of a trajectory obtained with � = 2:7. Right: Trajectory obtained
with � = 3:2.

model than the one we have seen when dealing with systems of at least three ordinary di¤erential
equations.

The stability of the two �xed points (61) is readily determined through the computation of the
derivative f 0(x) = �(1 � 2x) at the �xed points, f 0(x�0) = � and f 0(x�1) = 2 � �. From the stability
conditions jf 0(x�i )j < 1, i = 0; 1, we have that x�0 = 0 is locally asymptotically stable for � < 1 and
x�1(�) = 1� 1

� is locally asymptotically stable for 1 < � < 3. At � = 1 a transcritical bifurcation occurs
at which the two �xed points merge and exchange their stability properties: in fact x�1(�) < 0 and
unstable for 0 < � < 1, whereas x�1(�) > 0 and stable as � increase across the bifurcation value � = 1
at which x�0 = x�1 = 0. Notice that at � = 2 f 0(x�1) = 0 (x�1 is said to be superstable) and then the
slope f 0(x�1) of the tangent at x

�
1 becomes negative for � > 2 (hence we have oscillatory convergence,

see �g. 72, left panel). At � = 3 a �ip bifurcation of x�1 occurs at which a stable cycle of period two,
say C2 = f�; �g, is created around the unstable �xed point see �g. 72, right panel.

The periodic points � and � can be computed as �xed points of F (x) = f2(x) = f(�x(1 � x))
given by the fourth degree map F (x) = �(�x(1 � x)(1 � �x(1 � x)). Its �xed points, solutions of
F (x) = x, are solutions of the equation x

�
�2(1� x)(1� �x(1� x))� 1

�
= 0. We already know

that x�0 = 0 and x�1 =
��1
� are �xed points of F (x). Hence the equation can be factorized as

x
�
x� ��1

�

� h
x2 +

�
�+1
�

�
x+

�
�+1
�2

�i
= 0 from which the two �xed points of F (x) that are not �xed

points of f(x), i.e. the 2-periodic points � and �, are
�+1�

p
(��3)(�+1)
2� , existing for � � 3 (at � = 3

they coincide with the bifurcating equilibrium x�1). As shown in �g. 73, at � = 3 a pitchfork bifurca-
tion for F (x) occurs, leading to the creation of two new stable �xed points of F (x) corresponding to
the periodic points of a stable cycle of period 2.

The stability of this cycle can be checked by the computation of the derivative of F (x) in one of
them, given by F 0(�) = F 0(�) = f 0(�)f 0(�). Just after the bifurcation this derivative is slightly less
than 1, then it decreases as � increases beyond the bifurcation value � = 3 until it becomes �1 at
� = 1+

p
6 ' 3:449. This correspond to a second �ip bifurcation, this time of F (x), at which the cycle

C2 loses stability and a stable cycle of period 4 of f(x) is created. If � is further increased then also
the cycle of period 4 becomes unstable and a stable cycle of period 8 is created, and so on. Indeed,
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Figure 73: Flip bifurcation.

in�nitely many stable cycles of period 2n are created, which become unstable as � is increased. All
this sequence of period doubling bifurcations (also called period doubling cascade) occurs in a �nite
range of the parameter �. In fact, if we denote by �1 = 3 the �rst bifurcation value, �2 = 1 +

p
6

the second one and so on, the distance between two successive bifurcation points �n = �n+1 � �n
decreases and tends to 0, i.e. as � increases the bifurcations become more and more frequent and
accumulate at the limit point �1 = 3:56994571869::::

Figure 74: Schematic picture of early steps of period doubling sequence

After this limit point all cycles of period 2n, n 2 N have been created and have become unstable,
periodic trajectories of any period can appear as well as aperiodic trajectories, i.e. bounded trajectories
generated by the in�nite iteration of (60) and that never hit an already visited point. Such trajectories
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are called chaotic, their points �ll an invariant interval (or set of intervals) in which the following
properties hold (used sometimes as a de�nition of existence of deterministic chaos)

1) in�nitely many unstable periodic points exist, which are dense in the invariant set;
2) an aperiodic trajectory exists that is dense in the set;
An an invariant set for which these two properties hold is said to be chaotic.
As a consequence of the these two conditions we have that the sensitivity with respect to the initial

conditions (or butter�y e¤ect) also exists, that is often added as the third (and most famous) property
3) Sensitivity to initial conditions. Two trajectories starting from di¤erent, although arbitrarily

close, initial conditions remains bounded but their reciprocal distance exponentially increases and, in
a �nite time, becomes as large as the state variables.

The �rst property, about the existence of dense and repelling periodic points inside the invariant
set where chaotic dynamics occur, is the key to understand the "microscopic reason" for the occurrence
of chaotic dynamics In fact, it is quite intuitive that the motion inside a trapping bounded set where
in�nitely many and dense repellors are nested, will be quite irregular, like the motion of a bouncing
ball inside a �ipper where elastic repellors are present, or like a man walking inside a overcrowded
place. The second property, also called "mixing" property, states that a trajectory exists that moves
erratically inside the invariant set �lling it completely, see �g. 75 where the initial portion of a
trajectory is shown by a staircase diagram that, if continued, will cover completely the interval [f(c); c]
where c is the maximum value (vertex of the parabola). Trajectories starting outside this interval will
enter it and never escape (hence it is an attractor) and will cover completely all the points of it in the
long run. In fact, as the dense trajectory is aperiodic, according to property 2, it will never reach an
already visited point (say after k iterations) after which the countable set of k points will be repeated
periodically. This means that in the long run (after in�nitely many iterations) it densely �lls all the
space available for the motion inside the invariant set.

Figure 75:

Finally, the third property, which is a consequence of the other two, is given by the extreme
sensitivity of trajectories with respect to small, even negligible, changes of the initial condition. This
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is illustrated in �g. 76, where two trajectory, say x(t) and y(t), are shown both generated for � = 4
but starting from initial conditions that di¤er by 10�6, namely x(0) = 0:1 and y(0) = 0:100001. As it
can be seen (by a direct comparison of the two time series or by looking at versus-time representation
of the distance between their points jx(t)� y(t)j), the di¤erence between the two time series remains
negligible during the early iterations, then this di¤erence grows up until the distance between the
two trajectories becomes of the same order of magnitude as the single values, i.e. an error of 100%
is obtained by this negligible di¤erence in the initial conditions. Of course, the property of sensitive
dependence on initial conditions makes any long-term prediction quite meaningless, even if based
on the knowledge of the deterministic law of motion that governs the time evolution of the system.
Remember the clear description of this phenomenon given by Poincaré at the beginning of 20th century.

One the other side, the discovery of the phenomenon of deterministic chaos may be used to give
the hope that at the basis of time evolutions that appear to be quite irregular (erratic, random) a
deterministic law of motion exists, of course nonlinear and in a condition of deterministic chaos. In
other words, even at the basis of very irregular and disordered phenomena may be worth to look for
(even simple) deterministic law of motion.

Figure 76: Two trajectories obtained form � = 4 are represented versus time: x(t), obtained starting
from initial condition x0 = 0:1 (panel (a)) and y(t) starting from y0 = 0:100001 (panel (b)). In panel
(c) the di¤erence jx(t)� y(t)j is represented.

Another signal of regularity in the realm of chaos is worth to be noticed. In fact, let us remark
that, as stressed while looking at �g. 75, the trapping interval inside which periodic or aperiodic
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dynamics occur has an obvious upper bound, given by the maximum value c, and a lower bound given
by its image c1 = f(c). So, even if the motion inside this trapping interval may be chaotic, in any case
upper and lower bounds can be given. This may give useful information, for example, when a model
that shows deterministic chaos is used to simulate the irregular paths of prices in a stock market.
Natural upper and lower bounds may be a useful information. The same holds in the case of model
for weather forecastings, as these models cannot be used to obtain daily weather forecastings in the
long run, however the boundaries of the invariant attracting set inside which asymptotic dynamics are
bounded can give information on the long-run evolution of climate.

Moreover, the knowledge of maximum and minimum values (i.e. the foldings of the graph of
the iterated function) as well as their images, may show more complex structures of allowed and
forbidden regions for asymptotic dynamics, as shown in �g.77, where the vertex of the parabola c and
its images ci = f i(c), i = 1; :::3 bound a trapping region with a hole inside (i.e. the union of two
disjoint intervals) and even if the dynamics is chaotic, no iterated points are allowed to enter the hole
between the two intervals. This important property, that will be stressed even in the case of higher
dimensional discrete dynamical systems, is related with the shape of chaotic attractors (see e.g. the
Lorenz or Rossler attractors in continuous time) and can put some order in the topological properties
of chaotic systems.

Figure 77: Attracting invariant intervals bounded by critical points (maximum and its images) for
� = 3:61

A summary of these dynamic scenarios is given in �g.78, where for di¤erent values of the parameter
� the corresponding staircase diagrams are shown in the left column, and the same is shown in the
central column after the early 50 iterations have been removes (the so called "transient portion" of
the trajectory, before it reaches the asymptotic attractor) and in the column in the right the same
trajectory is represented versus time, i.e. as a time series.

A di¤erent kind of "summary" of the di¤erent dynamic scenarios, obtained as the bifurcation
parameter � is increased, is given by the bifurcation diagram (see �g.79) obtained measuring the
di¤erent values of � in the horizontal axis while along the vertical axis the points of a trajectory
are reported (after a given transient portion has been discarded). This means that, starting from a
given initial condition, the attractor reached by the trajectory is represented for each value of �. The
complete bifurcation diagram for � 2 [0; 4] is given in �g.79, and a restricted portion of it is the �g.80,
where the period doubling sequence, the transition to chaos, as well as the cyclic chaotic intervals (or
chaotic bands) bounded by the critical point and its images are more visible.

Another evident feature that can be seen in the bifurcation diagram is the presence, for certain
ranges of the bifurcation parameter, of white strips where chaos seems to disappear for a while and
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Figure 78: Summary of di¤erent dynamic scenarios of the logistic map.

the overall dynamics are captured by an attracting periodic cycle. These strips are called "periodic
windows". Quite evident is the periodic window of a 3-cycle obtained for values of � around 3:85.
Indeed, enlargements of the bifurcation diagram show that such periodic windows are in�nitely many,
for example a stable cycle of period 5 is visible in a narrow white strip around � = 3:74 etc. A
periodic window of period k is created through a fold bifurcation of fk(x), see for example in �g. 81
the graph of f3(x) leading to the sudden creation of three couples of �xed points (each couple formed
by one stable and one unstable �xed point) due to a tangency between the graph of f3(x) and the
diagonal. Notice that the number of relative maximum and minimum points of fk(x) increases as
k increases, and the simultaneous tangencies are k. Each couple of �xed points, created at the fold
bifurcation, corresponds to a couple of periodic points of f , one stable and one unstable, belonging to
a stable and unstable k-cycle respectively. As � is further increased then each fold behaves as a small
quadratic map characterized by one maximum or one minimum (called a unimodal map) hence the
stable cycle will loose stability via a �ip bifurcation followed by the period doubling cascade. So, from
each periodic point inside a periodic window a small bifurcation diagram with the same structure of
the whole bifurcation diagram can be observed (see the enlargement in �g. 81), thus giving rise to an
inner self-similarity structure typical of fractal structures.

We end this section by giving a geometric interpretation of the observed phenomena.
First of all, let us notice that the logistic map is a noninvertible map. In fact, the map x0 = f(x) =

�x(1�x) is such that a unique image x0 is associated at each x in the function domain, whereas given
a value x0 in the codomain we obtain two preimages, computed as

x1 = f�11 (x0) =
1

2
�
p
� (�� 4x0)
2�

; x2 = f�12 (x0) =
1

2
+

p
� (�� 4x0)
2�

: (64)

Of course, if x0 > �
4 , i.e. taking x

0 above the maximum value, no real preimages are obtained. We
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Figure 79: Complete bi�rcation diagram of the logistic map.

say that the logistic map is a Z0 �Z2 noninvertible map, and the critical point c = �=4 separates the
real line into the two subsets: Z0 = (c;+1), where no inverses are de�ned, and Z2 = (�1; c), whose
points have two rank-1 preimages (see �g. 82). If x0 2 Z2, its two rank-1 preimages (64) are located
symmetrically with respect to the point c�1 = 1=2 = f�11 (�=4) = f�12 (�=4). Hence, c�1 is the point
where the two merging preimages of c are located. As the logistic map is di¤erentiable, at c�1 the
�rst derivative vanishes. Geometrically, the action of a noninvertible map can be expressed by saying
that it �folds and pleats�its domain, so that distinct points are mapped into the same point. This is
equivalently stated by saying that several inverses are de�ned, and these inverses �unfold�S (see �g.
83).

It can be noticed that, as the map is partially increasing (for x < c�1 where f 0(x) > 0) and
partially decreasing (for x > c�1 where f 0(x) < 0), it is orientation preserving for x < c�1 and
orientation reversing for x > c�1. So, a nonlinear map with a relative maximum or minimum, will
"fold" any segment that includes c�1. In fact, as it can be seen in �g. 82, as the point x in the domain
varies from 0 to 1 the corresponding image moves up and down and the sum of the two segments is
greater than 1. This can be expressed by saying that the map folds and stretches. So, the repeated
application of the map consists in the repeated geometric application of stretching and folding actions
(see e.g. the action of f2(x) = f(f(x)) in �g. 82). This implies that a small initial segments (i.e. a
set of points initially very close) after many applications of stretching and folding actions will be quite
dispersed. This is another way to state sensitivity dependence on initial conditions.

6.5 Basins of attraction in one-dimensional discrete dynamical systems

Given the discrete dynamical system x(t + 1) = T (x(t)), x 2 R, whose trajectories are generated by
the iteration of the map x0 = T (x), let us consider an invariant attracting set A � R (recall that A is
trapping, i.e. if x 2 A then Tn(x) 2 A for any n > 0). The Basin of attraction of A is the set of all
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Figure 80: Bifurcation diagram of the logistic map.

the points that generate trajectories converging to A

B (A) = fxjTn(x)! A as n! +1g : (65)

Starting from the de�nition of attracting set, let U(A) be a neighborhood of A whose points converge
to A. Of course U(A) � B (A), but note that also the points of the phase space which are mapped
inside U after a �nite number of iterations belong to B (A). Hence, the total basin of A (or brie�y
the basin of A) is given by

B (A) =
1[
n=0

T�n(U(A)); (66)

where T�1(x) represents the preimages of x (remember that the preimages of x may not exist or may
be more than one if the map T is noninvertible, i.e. if it has several distinct inverses) and T�n(x)
represents the set of points that are mapped into x after n iterations of the map T .

Let us �rst consider one-dimensional, continuous and invertible maps. If f : I ! I is a continuous
and increasing function, then the only possible invariant sets are the �xed points. When many �xed
points exist, say x�1 < x�2 < ::: < x�k, they are alternatingly stable and unstable: the unstable �xed
points are the boundaries that separate the basins of the stable ones. Starting from an initial condition
where the graph of f is above the diagonal, i.e. f(x0) > x0, the generated trajectory is an increasing
sequence converging to the stable �xed point on the right, or it is diverging to +1. On the other
hand, starting from an initial condition such that f(x0) < x0, the trajectory is a decreasing sequence
converging to the �xed point on the left, or it is diverging to �1 (see �g. 84, where p� is a stable
�xed point, and its basin is bounded by two unstable �xed points q� and r�).

An example is shown in �g. 85 where the increasing function f(x) = � �arctan(x�1) is considered
for increasing values of �. For � < 1 a unique �xed point exists which is globally asymptotically
stable. At � = 1 a fold bifurcation occurs at which a pair of �xed points is created, one stable and
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Figure 81: Periodic windows and related fold bifurcations of the logistic map.

one unstable, leading to a situation of bistability where the unstable equilibrium is the boundary that
separates the two basins of attraction.

If f : I ! I is a continuous and decreasing map, the only possible invariant sets are one �xed point
(unique) and cycles of period 2. In fact, if f(x) is a decreasing map then f2(x) is increasing, hence it
can only have �xed points one of which, say x�, is the (unique) �xed point of f(x) and the other ones
(if any) always appear in pairs at opposite sides with respect to x� and represent couples of periodic
points of cycles of period 2. Such periodic points of the cycles of period 2 are alternatingly stable and
unstable, the unstable ones being boundaries of the basins of the stable ones (see Fig. 86, where the
basin of the unique �xed point x� of the map f(x) = 1 � ax3 is bounded by the periodic points �1,
�2 of an unstable cycle of period 2, and when x� becomes unstable through a �ip bifurcation as the
parameter a increases, a stable 2-cycle f�1; �2g is created around it, whose basin is still bounded by
the unstable cycle f�1; �2g. Initial conditions outside the interval (�1; �2) diverge, i.e. belong to the
"basin of in�nity".

In general, in the case of one-dimensional invertible maps the only kinds of attractors are �xed
points and cycles of period two. In the �rst case, the basin is an open interval which includes the
�xed point, and in the second case, the basin is the union of two open intervals, each one including
an attracting periodic point.

If the map is invertible, then the basins of the attracting sets are always intervals that include
the attractors. This may be no longer true if the map is noninvertible, as in this case non connected
portions of the basins may exist that are far from the attractor to which their points converge. This
is due to the "unfolding action" of the inverses that may create preimages of a neighborhood of an
attractor far from the related attractor. As a �rst example, let us consider the logistic map (60) whose
graph is represented again in Fig. 87. As far as � < 4, every initial condition x0 2 (0; 1) generates
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Figure 82: Stretching and folding.

Figure 83: Unfolding

bounded sequences, converging to a unique attractor A (which may be the �xed point x�1 =
��1
� or

a more complex attractor, periodic or chaotic). Initial conditions out of the interval [0; 1] generate
sequences diverging to �1.

The boundary that separates the basin of attraction B (A) of the attractor A, from the basin
B (1) is formed by the unstable �xed point x�0 = 0 and its rank-1 preimage (di¤erent from itself),
0�1 = 1. Observe that, of course, a �xed point is always preimage of itself, but in this case also
another preimage exists because x�0 2 Z2. If � < 4, as in the left panel of �g. 87, then the maximum
value (vertex) c = �=4 < 0�1 = 1, where c is the critical point (maximum) that separates Z0 and Z2.
Hence the basin�s boundary 0�1 = 1 2 Z0. When we increase �, at � = 4 we have 0�1 = c = 1, i.e. a
contact between the critical point and the basin boundary occurs. This is a global bifurcation, which
changes the structure of the basin (really it destroys the basin). In fact, for � > 4 (right panel of �g.
87) we have 0�1 < c, and the portion (0�1; c) of B (1) enters Z2. This implies that new preimages of
that portion are created, which belong to B (1) according to (66). Now almost every point belongs
to the basin of divergent trajectories, the only points which are left on the interval I are the points
belonging to a chaotic invariant set �, a subset of zero measure on which the restriction of the map is
still chaotic, a chaotic repellor.

A similar situation occurs for a unimodal Z0 � Z2 map where the attractor at in�nity is replaced

107



Figure 84: Basins for an increasing map.

by an attracting �xed point, as the one shown in the left panel of �g. 88. As in the previous example,
we have an attractor A, which may be the �xed point p (or some other invariant set around it) with
a simply connected basin bounded by the unstable �xed point q and its rank-1 preimage q�1. This
example di¤ers with respect to the previous one because in this case initial conditions taken in the
complementary set generate trajectories converging to the stable �xed point r. This means that the
basin B (r) is formed by the union of two non-connected portions: B0 = (�1; q) � Z2, which contains
r (called immediate basin, the largest connected component of the basin which contains the attractor)
and B1 = (q�1;+1) = f�1 (B0) � Z0. In the �gure the two non-connected portions of the basin
B (r) are marked by green bold lines. A global basin bifurcation occurs, if a parameter variation
causes an increase of the critical point c (maximum value) until it crosses the basin boundary q��1. If
this happens, the interval (q�1; c), which is part of B1, enters Z2, and in�nitely many non-connected
portions of B (r) emerge, nested inside in the interval (q; q�1): After this bifurcation the total basin
can still be expressed as the union of all the preimages of any rank of the immediate basin B0:

Another interesting situation is obtained if we change the right branch of the map by folding it
upwards such that another critical point, a minimum, is created. Such a situation is shown in the
central panel of �g. 88. This is a noninvertible Z1 � Z3 � Z1 map, where Z3 is the portion of the
codomain bounded by the relative minimum value cmin and relative maximum value cmax. In the
situation shown in the central panel we have three attractors: the �xed point r, with B (r) = (�1; q)
represented by green color along the diagonal, the attractor A around p, with basin B (A) = (q; z),
represented by orange color, bounded by two unstable �xed points, and +1 (i.e. positively diverging
trajectories) with basin B (+1) = (z;+1). In this case all the basins are immediate basins, each
being given by an open interval that includes the attractor. In the situation shown in the central panel,
both basin boundaries q and z are in Z1, so they have only themselves as unique preimages (like for an
invertible map). However, the situation drastically changes if, for example, some parameter variation
causes the minimum value cmin to move downwards, until it goes below q (as in the right panel). After
the contact cmin = q that marks the occurrence of a global bifurcation, the portion (cmin; q) enters Z3,
so new preimages f�k (cmin; q) appear. These preimages constitute non-connected portions of B (r)
nested inside B (A), and are represented by the thick green portions of the diagonal intermingled with
orange portions that belong to B (A).
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Figure 85: Fold bifurcation and creation of a new basin of attraction.

6.6 Some economic examples

6.6.1 Nonlinear Cobweb with adaptive expectations

Let us consider again the cobweb model (44), D(p(t)) = S(pe(t)), that with naïve expectations and
linear demand and supply functions gives the linear discrete-time model (46) showing oscillatory
convergence to p� = a+c

b+b when b > d and divergence otherwise (see �g. 89, where the shape of the
staircase diagram justi�es the name of the model).

We now introduce a nonlinear supply function that represents a production saturation e¤ect

S(p) = arctan (�(p� 1))

where � represents the slope of the supply at the reference price p = 1.
With the same linear demand function, the cobweb model with naïve expectations D(p(t)) =

S(p(t� 1)) gives rise to the following nonlinear discrete dynamic model

p(t) = f(p(t� 1)) = 1

b
[a� arctan (�(p(t� 1)� 1)] :

The map f(x) is decreasing, and by using the supply slope � as a bifurcation parameter the equilib-
rium price p� (located at the intersection between demand and supply, see �g. 90) undergoes a �ip
bifurcation for increasing values of � as shown in the bifurcation diagram of �g. 91, where two staircase
diagrams, before and after the bifurcation, are shown. So, di¤erently from the linear model, after the
stability loss of the equilibrium price a bounded oscillatory dynamics is obtained, which converges to
a cycle of period 2.

A further modi�cation of the model consists in the introduction of adaptive expectations

pe(t+ 1) = pe(t) + �(p(t)� pe(t)) 0 � � � 1 (67)
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Figure 86: Basins in a decreasing map.

in the model
p(t) = f(pe(t)) =

1

b
[a� arctan (�(pe(t)� 1)] (68)

The equation of price expectations dynamics (67) can be describes as follows. At any time t producers
observe the discrepancy between the realized price p(t) and the expected price for the same period
(p(t) � pe(t)) and according to such observed "estimation error" correct the previous price estimate
pe(t) in order to obtain the next one: if the expected price was underestimated, i.e. pe(t) reveals to be
less than the observed one p(t), then they increase the current estimation in order to form the next
expected price pe(t+1); if the expected price pe(t) was overestimated, i.e. it reveals to be greater than
the one observed by producers, then they decrease it to form the next expected price. The value of
the parameter � modulates the entity of the correction: notice that for � = 1 adaptive expectations
(67) reduce to naïve expectations pe(t + 1) = p(t). In this sense (67) is a generalization of naïve
expectations as these are included as a particular case. Instead in the other limiting case � = 0 we
obtain a complete inertia pe(t+ 1) = pe(t), as producers never change their initial guess pe(0) on the
basis of observed prices.

By inserting p(t) = f(pe) inside (67) we get a law of motion in the space of expected prices

pe(t+ 1) = F (pe(t)) = pe(t) + �(f(pe)� pe(t)) = (1� �) pe(t) + �f(pe) (69)

From the dynamics of expected prices (69) the corresponding dynamics of realized prices (i.e. prices
really observed in the market) is obtained by the transformation p(t) = f(pe(t)) in (68), a transfor-
mation from beliefs to realizations.

In order to analyze the dynamic behaviour of (69) let us notice that the function F (p) is a convex
combination (i.e. a weighted average) of the identity function (whose graph is the diagonal) and the
decreasing function f , so its graph is placed between the two graphs (see the left panel of �g. 92),
being closer to the diagonal as �! 0 and closer to the graph of f as �! 1.

From the derivative F 0(p) = 1� �+ �f 0(p) = 1� �� �
b

�
1+�2(p�1)2 we can see that for � >

b
b+� it

vanishes in two points p = 1� 1
�

q
�(�+b)�b
b(1��) , relative minimum and maximum (see �g. 92). Moreover,

110



Figure 87: Logistic map at the �nal bifurcation.

it is always stable for su¢ ciently small values of �, whereas for a given value of � the equilibrium
becomes unstable through a �ip bifurcation for increasing values of �. Di¤erently from the model
with naïve expectations, where the decreasing map (even if nonlinear) could not have attractors more
complex than a cycle of period 2, in this case, being the map noninvertible (i.e. characterized by the
presence of turning points, relative maximum and minimum in this case) the �rst period doubling
bifurcation is followed by a sequence of successive period doublings (the period doubling route to
chaos) as shown in the bifurcation diagram of �g. 92.

6.6.2 Financial market with heterogeneous agents

Let p(t) be the logarithm of the price of a risky asset at time t in a stock market. If we denote by
�D(t) the excess of demand at time t of the asset considered, the discrete time dynamics of p(t) is
governed by the law

p(t+ 1) = p(t) + 
�D(t) (70)

expressing the fact that if �D > 0, i.e. in the presence of a positive excess of demand, the asset price
increases, whereas with �D < 0 (selling excess) the asset price decreases. The positive constant 

is a measure of the market reactivity (or speed of adjustment). We assume that in the market two
kinds of economic agents operate, denoted as fundamentalists and chartists (or technical traders).
The fundamentalists are assumed to have a reasonable estimate of the fundamental value F of the
asset and they believe that, whenever the price is di¤erent from F , it will go back towards it; in
other words, if p(t) < F , then fundamentalists believe that the stock is currently underestimated
and its price will increase in the next period. In this case, they buy the asset; on the other hand,
if p(t) > F , then fundamentalists believe that the stock is currently overestimated and its price will
decrease. Consequently, they sell it in the market. This mechanism can be modelled through the
following linear relation

�DF (t) = � (F � p(t))
where the positive constant � gives a measure of the weight of the fundamentalists in the market. In
contrast, the technical traders (or chartists, as they do not believe in the fundamental price F but
prefer to look at the trend observed in the charts, i.e. in the �nancial newspapers) believe in the
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Figure 88: Contact bigurcations of basins in noninvertible maps.

persistence of bull and bear markets: If p(t) > F then they believe that bull market will prevail by
imitation and the price will continue to increase in the next period (hence they buy the asset), whereas
if p(t) < F then they believe it is a bear phase and then it will further decrease (hence they sell it).
This can be expressed as

�DC(t) = � (p(t)� F )

where � > 0 gives a measure of the weight of the chartists in the market. Plugging these two
expressions of the demand excess into (70) we get

p(t+ 1) = p(t) + 
(�DF (t) + �DC(t)) = p(t) + 
(� (F � p(t)) + � (p(t)� F ))

which can be written as the following linear one-dimensional dynamic model in discrete time

p(t+ 1) = f(p(t)) = (1 + 
(� � �))p(t)� 
F (� � �) (71)

For this model, we can easily write the analytic solution. For our purposes, it is su¢ cient to state that
from the equilibrium equation p(t + 1) = p(t) we get the equilibrium price p� = F , which is stable if
�1 < 1 + 
(� � �) < 1, i.e. 0 < �� � < 2


 .
The asset market positively diverges if 1 + 
(� � �) > 1, i.e. if � > �, which means a prevalence

of chartists with respect to fundamentalists. Moreover, the price diverges through oscillations if
1+
(���) < �1, which is equivalent to � > �+ 2


 . This condition can be interpreted by saying that
fundamentalists are too many and too reactive as well. The �rst instability result is somehow expected,
as the presence of chartists typically destabilized the emergence of the fundamental price. Instead, the
second instability result due to the prevalence of fundamentalists may appear as a surprising result, as
fundamentalists�demand function tends to bring the price back to its fundamental value. However, if
this "stabilizing tendency" is too strong it causes a typical overshooting phenomenon, as a too strong
return to the fundamental equilibrium in discrete time may imply to jump over it up to leading to
diverging oscillations.

An evident shortcoming of the linear model described above is that whenever the equilibrium
price loses stability we obtain divergence (as always occurs in linear models). So, we introduce now
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Figure 89: Oscillations of price in a Cobweb model.

a nonlinearity by assuming "prudent chartists" in the sense that if the price p(t) is too far from
the fundamental price F then their extrapolative reaction of following the trend saturates. This is
represented by the following modi�cation of the chartists�demand excess

�DC(t) = � arctan (p(t)� F )

As usual the arctan (�) function is a sign-preserving function, in the sense that sign (�) = sign (arctan (�)),
but di¤erently from a linear function it saturates approaching horizontal asymptotes. With this mod-
i�cation the model becomes

p(t+ 1) = f(p(t)) = p(t) + 
(� (F � p(t)) + � arctan (p(t)� F ))

We still have the equilibrium point p� = F but now we can have, for su¢ ciently high values of �, two
further �xed points (see �g. 93)

In fact, from the stability condition jf 0(p)j < 1, that becomes �1 < 1 + 
(�� + �
1�(p�F )2 ) < 1,

equivalent to

�� 2



= �f < � < �p = �

we can see that a stability loss of p� = F occurs for � increasing beyond �p = �. This is a pitchfork
bifurcation for f(p). As � decreases below �f = �� 2


 , a �ip bifurcation occurs.
Some numerical computations are now shown in order to con�rm and better understand the con-

sequences of the local bifurcations detected. We will consider the set of �xed parameters F = 10,

 = 2:5, � = 1:2, and use � (the weight of chartists in the composition of asset demand) as bifurcation
parameter. For this set of parameters we have �f = 1:2� 2

2:5 = 0:4 and �p = 1:2.
The bifurcation diagram shown in �g. 94 illustrates what happens when the bifurcation parameter

� increases beyond �p: a supercritical pitchfork bifurcation occurs at which the stable equilibria are
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Figure 90: Nonlinear supply function and linear demand function.

Figure 91: Flip bifurcation for the nonlinear cobweb model.

created, one above and one below the fundamental price F (represented by black and blue colors
respectively). The fundamental price becomes unstable after the bifurcation and constitutes the
boundary that separates the two basins of the coexisting equilibrium points. If � is further increased
, then both the symmetric stable �xed points lose stability through a supercritical �ip bifurcation,
at which two coexisting stable cycles of period 2 are created, whose basins are still separated by the
intermediate fundamental price F . This �ip bifurcation opens the usual period doubling cascade (or
period doubling route to chaos) leading to two coexisting chaotic attractors.

A remarkable global bifurcations occurs when the two separated and coexisting chaotic attractors
have a contact with the common basin boundary (i.e. the fundamental price). In fact, after this
contact the two separated chaotic attractors merge and form a unique chaotic set, which is a global
attractor. The kind of trajectories occurring after this global bifurcation is shown in �g. 95, where a
typical time series generated with � = 5 is shown. As it can be seen the kind of motion exhibit some
chaotic oscillations in the upper part, then a transition in the lower and so on, and no regularity can
be detected about the transition times between upper and lower oscillations or vice-versa.

The bifurcation at which the two chaotic attractors merge is denoted as "global" because it cannot
be detected by the study of the local approximation of the iterated map around the equilibrium point,
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Figure 92: Nonlinear cobweb with adaptive expectations.

but it is related with contacts between critical points (i.e. maximum and minimum values or their
images) and basin boundaries, i.e. unstable equilibrium points or their preimages. In fact, as shown in
the previous sections, the points that bound the chaotic intervals are given by maximum or minimum
values and their images, whereas the basin boundaries are separated by unstable equilibrium points
or their preimages.

We now investigate what happens on the left side of the stability range of p� = F , i.e. when �
decreases below the �ip bifurcation value �f . We may expect the creation of a stable cycle of period 2,
but numerical iterations show only oscillating and diverging trajectories for � values below �f . This
is due to the fact that the �ip bifurcation occurring at �f is of subcritical type, as it can be seen
in the left panel of �g. 96, where both the graph of f(x) (bold curve) and f2(x) (thin curve) are
shown. From this picture it is evident that for � > �f , i.e. in the range of stability of F , an unstable
2-cycle exists (indicated by the intersections of f2(x) with the diagonal) that bounds the basin of the
stable �xed point p� = F and shrinks as � is decreased. When � reaches the bifurcation value �f
the unstable 2-cycle collapses into the �xed point which becomes unstable thus giving a hard stability
loss. Fig.96 summarizes the local bifurcations observed in the model.

7 Two dimensional discrete dynamical systems

A discrete dynamical system (43) with two dynamic variables, say x1(t) and x2(t) with t 2 N, assumes
the form

x1(t+ 1) = T1(x1(t); x2(t)) (72)

x2(t+ 1) = T2(x1(t); x2(t))

and needs an initial condition (x1(0) ; x2(0)) in order to generate a trajectory in the two-dimensional
phase space. The equilibrium points of the dynamical system (72) are the �xed points of the map
T : R2 ! R2, de�ned by the system of two equations with two unknowns�

T1(x1; x2) = x1
T2(x1; x2) = x2

(73)
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Figure 93: One-dimensional model of �nancial market with heterogeneous agents: fundamentalists and
chartists.

Periodic cycles can be de�ned like in the case of one-dimensional iterated maps, just replacing x0 = f(x)
with x0 = T(x) with x 2R2 and T(x) = (T1(x); T2(x)). The stability of �xed points as well as the
stability of k-periodic cycles (each periodic point being a �xed point of Tk), as well as the kind of
motion in a neighborhood of the �xed point or the periodic cycle, can be determined through the
linearization of the map T in a neighborhood of the �xed point (or of any periodic point of the cycle).
So, let us �rst analyze the dynamic properties of iterated linear maps.

7.1 Linear systems

Let us consider the following linear (homogeneous) system of two di¤erence equations in the (normal)
form: �

x1(t+ 1) = a11x1 (t) + a12x2 (t)
x2(t+ 1) = a21x1 (t) + a22x2 (t)

(74)

that can be written in the matrix form

x(t+ 1) = Ax(t) (75)

where A =

�
a11 a12
a21 a22

�
; x(t)=

�
x1(t)
x2(t)

�
.

Like in the case of linear dynamical systems in continuous time, the general solution, i.e. set of all
the solutions of (74), is obtained from the linear combinations of two independent solution. Moreover,
also in this case, these two solutions are searched by proposing a "trial solution" in the same form as
the one obtained for the one-dimensional linear di¤erence equation, i.e.

xi(t) = vi�
t, i = 1; 2 (76)
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Figure 94: Bifurcauion diagram with coexisting attractors after the pitchfork bifurcation.

After replacing this trial solution into (74) we get�
�t+1v1 = a11�

tv1 + a12�
tv2

�t+1v2 = a21�
tv1 + a22�

tv2

and dividing for �t we get the usual eigenvalue problem�
(a11 � �)v1 + a12v2 = 0
a21v1 + (a22 � �)v2 = 0

that has non-trivial solutions if � is a solution of the "characteristic equation"

P (�) = �2 � Tr(A)�+Det(A) = 0

where Tr(A) = a11 + a22 and Det(A) = a11a22 � a12a21
So again, like in the case of linear dynamical systems in continuous time, the problem of �nding

the solutions is reduced to a problem of linear algebra, the only di¤erence being that the solutions are
now in the form (76) instead of (23). In particular, if we denote by � = Tr (A)2 � 4 det (A) we have
that

(i) If � > 0 then we have two real and distinct eigenvalues and the general solution has the form

x(t) = c1v1�
t
1 + c2v2�

t
2

where v1 and v2 are the corresponding eigenvectors and c1, c2 are real constants that are uniquely
determined by imposing the initial conditions xi(0) = xi0, i = 1; 2

(ii) If � = 0 then we have real and coincident eigenvalues �1 = �2 = � and the general solution has
the form

x(t) = c1v�
t + c2vt�

t
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Figure 95: Chaotic patterns with a unique chaotic attractor obtained from the merging of the two
attractors.

Figure 96: Subcritical �ip and supercritical pitchfork in the nonlinear fundamentalists-chartists model.

(iii) If� < 0 then we have two complex conjugate eigenvalues �1;2 = �Tr(A)
2 �i

p
��
2 = j�j (cos � � i sin �)

where j�j =
q
Re (�)2 + Im (�)2 =

p
Det(A) and � = arctan

�
Im(�)
Re(�)

�
or equivalently cos � =

� Tr(A)

2
p
Det(A)

. The general real solution is obtained as

x(t) = j�jt [(c1v1 � c2v2) sin (�t) + (c1v1 + c2v2) cos (�t)]

where v = v1 + iv2 is a complex eigenvector associated with �1 2 C.

In any case, we can see that the general solution converges asymptotically to the equilibrium x = 0
if and only if j�ij < 1, i = 1; 2, i.e. both the eigenvalues are inside the unit circle of the complex plane
de�ned by Re (�)2 + Im (�)2 < 1 (see �g.97).

The phase portraits associated to the di¤erent positions of the eigenvalues in the complex plane
with respect to the unit circle are shown in the �g.98. The phase line represented in this qualitative
picture looks quite similar to those shown for the phase portraits of linear dynamical systems in
continuous time. Of course, the phase point along trajectories moves at discrete time pulses, i.e. it
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Figure 97: Stability region in the complex plane.

jumps from one point to another. However such discrete motion occurs along phase curves quite
similar to those of continuous time dynamical systems, see �g.99).

The stability criterion, i.e. the necessary and su¢ cient conditions to have all the eigenvalues less
than 1 in modulus, are given by

P (1) = 1� Tr(A) +Det(A) > 0
P (�1) = 1 + Tr(A) +Det(A) > 0 (77)

Det(A) < 1

In the plane (Tr(A); Det(A)) these three conditions de�ne the interior of a triangle (known as stability
triangle, see �g.100 bounded by the three straight lines whose equations are given by P (1) = 0,
P (�1) = 0 and Det(A) = 1. When the point (Tr(A); Det(A)) is inside the triangle then the �xed
point x = 0 is globally asymptotically stable, whereas when the point (Tr(A); Det(A)) is outside the
triangle, the equilibrium x = 0 is unstable and the trajectories diverge. Along the triangle we have
non generic (structurally unstable) situations of marginal stability. If the point (Tr(A); Det(A)) exits
the stability triangle along the side of equation P (1) = 1 � Tr(A) +Det(A) = 0 then an eigenvalue
exits the unit circle along the real axis in the point � = 1; if the point (Tr(A); Det(A)) exits the
stability triangle along the side of equation P (�1) = 1 + Tr(A) + Det(A) = 0 then an eigenvalue
exits the unit circle along the real axis in the point � = �1; if the point (Tr(A); Det(A)) exits the
stability triangle along the side of equation Det = 1 then a pair of complex conjugate eigenvalues
exit the unit circle of the complex plane. In the case of linear approximation of a nonlinear system in
a neighborhood of a �xed point, such situations will represent bifurcations leading to the contact of
�xed points and the creation of new kind of attractors, as we will see in the next section

7.2 Nonlinear discrete dynamical systems in 2 dimensions

Let us consider a nonlinear discrete dynamical system in two dimensions (72) and let x� = (x�1; x
�
2) be

a �xed point, solution of (73). The linear approximation around the �xed point is given by

x(t+ 1)� x� = JT (x�)(x(t)� x�)

where JT is the jacobian matrix
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Figure 98: Eigenvalues in the complex plane and corresponding phase portrait in a neighborhood of
the equilibrium.

JT (x) = [Jij ] =

�
@T1=@x1 @T1=@x2
@T2=@x1 @T2=@x2

�
The necessary and su¢ cient conditions for asymptotic stability of 2-dimensional linear systems in
(77) can be used as su¢ cient conditions for local asymptotic stability of an equilibrium point x� of
a 2-dimensional nonlinear discrete dynamical system by using the Jacobian matrix evaluated at the
�xed point JT (x�) as coe¢ cient matrix.

When all the eigenvalues are less than one in absolute values (i.e. inside the unit circle of the
complex plane) then the �xed point is locally attracting. When at least one eigenvalue is greater than
one in absolute value then the �xed point is unstable.

If the structure of the discrete dynamical system (72) depends on a parameter, say � 2 R, and
consequently any �xed point x� = x�(�) as well as JT (x�) depend on �, then as � varies a real
eigenvalue, say �1(�) may exit the unit circle, or a pair of complex conjugate eigenvalues, say �1;2(�),

with �2(�) =
_
�1(�), may exit the unit circle (see �g. 101). In the former case, i.e. for real eigenvalues,

we have properties similar to those already described in the one-dimensional case. That is, when one
eigenvalue crosses through � = �1 then a �ip bifurcation may occur, while when one eigenvalue �
crosses through � = +1 then we may have a saddle-node or a transcritical or a pitchfork bifurcation.

However, as in the analogue situation for continuous-time dynamical systems of dimension greater
than one, in the case of complex conjugate eigenvalues that exit the stability region of the complex
plane (in this case the unit circle, whereas in the case of continuous time was the half plane char-
acterized by negative real part) a new kind of bifurcation occurs which is the discrete-time analogue
of the Hopf bifurcation for dynamical systems in continuous time. In the case of discrete time it
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Figure 99: Phase portraits and trajectories in discrete time.

is called Neimark-Sacker bifurcation. Also in this case the presence of complex eigenvalues implies
oscillatory dynamics along spiralling phase curves, hence oscillations around the equilibrium, and at
the Neimark-Sacker bifurcation a closed invariant curve around the �xed point is created (or around
the periodic point of a cycle, because as usual any k-periodic point of a map T corresponds to a �xed
point of the map T k). Here we give a simpli�ed description of the Neimark-Sacker bifurcation theorem,
see more specialized books for a more rigorous statement.

Neimark-Sacker bifurcation Theorem. Let T (x; �) : R2 ! R2 be a one-parameter family
of 2-dimensional maps which has a family of �xed points x�(�) at which the eigenvalues are complex
conjugate, say �(�); �(�): Assume that for � = �0 :

(1) j�(�0)j = 1; but �j(�0) 6= 1 for j = 1; 2; 3; 4;
(2) dj�(�)j

d� (�0) = d 6= 0: (transversality condition).
Then in a neighborhood of x�(�0) the map T is topologically conjugate to the map given by (in

polar coordinates) Te(r; �) = (r(1+d(���0)+ar2); �+ c+ br2)+ higher-order terms. If, in addition,
(3) a 6= 0;
then there is a simple closed invariant curve in a neighborhood of x�(�0).

The signs of the coe¢ cients d and a determine the direction and stability of the bifurcating orbits.
The Neimark-Sacker bifurcation is called supercritical (when a < 0) or subcritical (when a > 0) (�g.
102). We remark that numerically one can deduce the type of the bifurcation just from the stability
of the �xed point at the bifurcation value: If the �xed point is locally attracting (resp. repelling),
then the Neimark-Sacker bifurcation is supercritical (resp. subcritical). Let us notice that for linear
maps the condition a 6= 0 is never satis�ed, not only at the �xed point, but in the whole region of
de�nition of the map. And, indeed, considering a linear map, say with complex conjugate eigenvalues
�(�); �(�), if j�(�0)j = 1 then the �xed point is a center, so that the trajectory of any point di¤erent
from the �xed point belongs to a di¤erent invariant ellipse and the motion is either periodic or quasi-
periodic, depending on the parameters. For � 6= �0 the �xed point is either a globally attracting focus
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Figure 100: Stability region in the Trace-Determinant plane.

or a repelling focus (in which case the trajectories go to in�nity). Thus the bifurcation which occurs
in a linear map, when its complex-conjugate eigenvalues cross the unit circle, is also called center
bifurcation. A similar bifurcation can be observed in nonlinear maps with a = 0 as well.

The coe¢ cients c and b give information on the rotation of the jumping phase point along the
bifurcating closed invariant curve. In fact, the discrete time motion of the phase point along the
closed invariant curve may be such that the jumping point completely �lls the closed curve by a non-
periodic trajectory (which is denoted as quasi-periodic trajectory because it oscillates with a given
period and amplitude but never hits an already visited point) or after n iterations (and m revolutions
along the closed curve) it may hit an already visited point and consequently it enters a n-cycle (a
phenomenon called frequency locking).

As an example, let us consider the map

x(t+ 1) = y(t)
y(t+ 1) = y(t)� �x(t) + x(t)2 (78)

It has two �xed points: O = (0; 0) and P = (�; �). The Jacobian matrix

J(x; y) =

�
0 1

2x� � 1

�
computed at the �xed point O is such that Tr(J(O)) = 1 and Det(J(O)) = �. According to the
stability conditions in (77), O is a stable �xed point for 0 < � < 1: at � = 0 a transcritical bifurcation
occurs at which O takes the stability of P ; at � = 1

4 the eigenvalues become complex conjugate, so that
O is transformed from a stable node to a stable focus (but this is not a bifurcation as the phase portrait
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Figure 101: Bifurcations in the complex plane and in the Trace-Determinant plane.

Figure 102: Neimark-Sacker bifurcation,

of a stable node is topologically conjugate to that of a stable focus). Then at � = 1, O loses stability
and for � > 1 it becomes an unstable focus, with a stable invariant curve around it (supercritical
Neimark-Sacker bifurcation). As � is further increased the stable closed orbit enlarges and the motion
is quasi-periodic on it (see �g. 103, where the development of the asymptotic trajectories is shown
for increasing values of �). Just after the bifurcation the stable invariant curve is completely �lled by
the trajectories, and the amplitude increases as � is increased. The for � = 1:4 a frequency locking
occurs and the trajectories converge at a periodic cycle of period 7 with periodic points located along
the invariant curve. Then for higher values of � the closed invariant curve is broken and a more
complex attracting set can be observed (see in �g. 103 the enlarged portion of the attractor obtained
for � = 1:505) whose shape depends on the nonlinearities of the map prevailing far from the �xed
point.

This is even more evident in �g. 104, obtained for � = 1:54, where the points of the trajectories
starting from initial conditions in the white region around the �xed point O asymptotically form the
chaotic attractor clearly visible in the left panel. The trajectories starting from the grey region diverge,
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Figure 103: The attractors of the map (78) for increasing values of the parameter �.

and the boundary that separates the two basins of attraction is the stable set of the saddle point P .
The right panel of the picture shows the points x(t) and y(t) versus time, joined by segments (just a
visual trick to give more emphasis to the chaotic oscillatory pattern).

7.3 Some economic examples

7.3.1 A model of �nancial markets with heterogeneous traders

Let us consider again the dynamics of price of a risky asset (70) with fundamentalists and chartists,
and let us assume that the fundamental price F is only in the information set of fundamentalists, i.e.
the chartists ignore F and they compute the price expected at time t+ 1 by extrapolating the trend
observed in the last two observed prices p(t� 1) and p(t):

�DC(t) = � (p(t)� p(t� 1)) � > 0

where � gives a measure of the weight of the chartists in the market. Plugging this expression of
chartists�excess demand and the usual one of fundamentalists �DF (t) = � (F � p(t)) into (70), we
get

p(t+ 1) = [1 + 
(� � �)] p(t)� 
�p(t� 1) + 
�F: (79)

This is a second order di¤erence equation, as it involves the values of the dynamic variable p at three
successive time periods (and, consequently, it needs two prices to get a trajectory, say p(�1) = p�1 and
p(0) = p0). By introducing the auxiliary dynamic variable z(t) = p(t� 1) the second order di¤erence
equation (79) can be written in the equivalent system of two di¤erence equation of order one, i.e. the
standard form of a two-dimensional dynamical system�

z(t+ 1) = p(t)
p(t+ 1) = �
�z(t) + [1 + 
(� � �)] p(t) + 
�F
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Figure 104: Chaotic attractor of the map (78) for � = 1:54, its basin of attraction (white region) and
a typical trajectory represented versus time.

with initial conditions z(0) = p�1 and p(0) = p0. This is an a¢ ne (i.e. linear non homogeneous)
model with the unique equilibrium (F; F ) and jacobian matrix

J =

�
0 1
�
� 1 + 
(� � �)

�
hence Tr(J) = 1 + 
(� � �) and Det(J) = 
�. The conditions for the asymptotic stability are

1� Tr(J) +Det(J) = 
� > 0

1 + Tr(J) +Det(J) = 2 + 2
� � 
� > 0

� < 1

The �rst condition is always satis�ed the second condition is equivalent to � > �
2 �

1

 , hence the

stability range can be written as
�

2
� 1



< � <

1




In �g. 105 the stability region is represented in the plane of parameters (�; �). Increasing �, i.e. an
increased weight of chartists, leads to diverging sinusoidal oscillations, whereas increasing � values, i.e.
increasing fundamentalists reaction, instability with �ip-type oscillations (or improper oscillations) is
reached, due to overshooting.

The same model with prudent chartists, i.e.

�DC(t) = � arctan (p(t)� p(t� 1))

leads to a nonlinear model�
z(t+ 1) = p(t)
p(t+ 1) = (1� 
�)p(t) + 
� arctan (p(t)� z(t)) + 
�F
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Figure 105: Stability region in the plane of parameters �, � for the linear model.

with the same unique �xed point (F; F ) and the same Jacobian matrix computed in it. So the
same stability conditions are obtained, and consequently the same stability region in the space of the
parameters. However, when the parameters vary so that the boundaries of the stability region are
crossed, �ip and Neimark-Sacker bifurcations occur, as shown in �g. 106.

Figure 106: Stability region and bifurcation curves in the plane of parameters �, � for the nonlinear
model.

Another possible modi�cation of the model consists in the assumption that also fundamentalists
are prudent, i.e.

�DF (t) = � arctan (F � p(t))

leading to the following model�
z(t+ 1) = p(t)
p(t+ 1) = p(t) + 
D(t) = p(t) + 
 [� arctan (F � p(t)) + � arctan (p(t)� z(t))]
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Even in this case, the unique �xed point (F; F ) is obtained, with same Jacobian matrix computed in it,
hence the same stability conditions as well as the same stability region in the space of the parameters.
However, when the parameters vary so that the boundaries of the stability region are crossed some
di¤erent dynamic scenarios arise, especially along the �ip bifurcation side.

A good exercise consists in the numerical investigation of the dynamic scenarios prevailing in the
regions of the parameters�space (�; �) outside the stability region, starting from the bifurcation lines.

7.3.2 A duopoly game with linear demand and gradient dynamics

We consider a Cournot duopoly, i.e. an industry consisting of two quantity-setting �rms, labelled by
i = 1; 2, producing the same good for sale on the market. Production decisions of both �rms occur
at discrete time periods t = 0; 1; 2; :::. Let qi(t) represent the output of the ith �rm during period
t, at a production cost Ci(qi). The price prevailing in period t is determined by the total supply
Q(t) = q1(t) + q2(t) through a demand function

p = f(Q) (80)

from which the single-period pro�t of the ith �rm is given by

�i(q1; q2) = qif(Q)� Ci(qi) : (81)

We assume that each duopolist does not have a complete knowledge of the demand function, and
tries to infer how the market will respond to its production changes by an empirical estimate of the
marginal pro�t. This estimate may be obtained by a market research or by brief experiments of
small (or local) production or price variations performed at the beginning of period t, and we assume
that even if the �rms are quite ignorant about the market demand, they are able to obtain a correct

empirical estimate of the marginal pro�ts
�
@�i
@qi

�(e)
= @�i

@qi
(q1; q2) i = 1; 2 . This local estimate of

expected marginal pro�ts is much easier to obtain than a global knowledge of the demand function
(involving values of Q that may be very di¤erent from the current ones). With this kind of information
the producers behave as local pro�t maximizers, the local adjustment process being one where a �rm
increases its output if it perceives a positive marginal pro�t and decreases its production if it is
negative:

qi(t+ 1) = qi(t) + �i(qi)
@�i
@qi

(q1; q2) ; i = 1; 2 (82)

where �i(qi) is a positive function which gives the extent of production variation of �rm i following a
given pro�t signal. An adjustment mechanism similar to (82) has been proposed by some authors with
constant �i. Instead we assume �i proportional to qi, �i(qi) = viqi ; i = 1; 2, where vi is a positive
constant which will be called speed of adjustment, equivalent to the assumption that the "relative
production change" is proportional to the estimated marginal pro�t:

qi(t+ 1)� qi(t)
qi(t)

= vi
@�i
@qi

(q1; q2):

We also assume a linear demand function

f(Q) = a� bQ (83)

with a; b positive constants, and linear cost functions

Ci(qi) = ciqi ; i = 1; 2 ; (84)
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where the positive constants ci are the marginal costs. With these assumptions

�i(q1; q2) = qi [a� b(q1 + q2)� ci] ; i = 1; 2 ; (85)

and the marginal pro�t for �rm i is

@�i
@qi

= a� ci � 2bqi � bqj ; i; j = 1; 2; j 6= i: (86)

With the above assumptions, the dynamic model is expressed by the iteration of the following two-
dimensional nonlinear map T (q1; q2)! (q01; q

0
2) de�ned as

T :

8<:
q
0
1 = (1 + v1(a� c1))q1 � 2bv1q21 � bv1q1q2

q
0
2 = (1 + v2(a� c2))q2 � 2bv2q22 � bv2q1q2

(87)

where 0 denotes the unit-time advancement operator, that is, if the right-hand side variables are
productions of period t then the left-hand ones represent productions of period (t+ 1).

The �xed points of the map (87) are the solutions of the algebraic system�
q1(a� c1 � 2bq1 � bq2) = 0
q2(a� c2 � bq1 � 2bq2) = 0

obtained by setting q
0
i = qi , i = 1; 2 , in (87). We can have at most four �xed points: E0 = (0; 0),

E1 = (
a�c1
2b ; 0) if c1 < a, E2 = (0; a�c22b ) if c2 < a , which will be called boundary equilibria, and the

�xed point E� = (q�1; q
�
2), with

q�1 =
a+ c2 � 2c1

3b
; q�2 =

a+ c1 � 2c2
3b

; (88)

which is positive (i.e. it belongs to the strategy space of the duopoly model) provided that�
2c1 � c2 < a
2c2 � c1 < a :

(89)

The equilibrium point E�, when it exists, is the unique Nash equilibrium, located at the intersection of
the two reaction curves given by the two straight lines which represent the locus of points of vanishing
marginal pro�ts (86).

The study of the local stability of the �xed points is based on the localization, on the complex
plane, of the eigenvalues of the Jacobian matrix of (87)

J(q1; q2) =

�
1 + v1(a� c1 � 4bq1 � bq2) �v1bq1

�v2bq2 1 + v2(a� c2 � bq1 � 4bq2)

�
(90)

It is easy to prove that whenever the equilibrium E� exists (i.e. (89) are satis�ed), the boundary �xed
points Ei ; i = 0; 1; 2, are unstable. In fact at E0 the Jacobian matrix becomes a diagonal matrix

J(0; 0) =

�
1 + v1(a� c1) 0

0 1 + v2(a� c2)

�
(91)
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whose eigenvalues, given by the diagonal entries, are greater than 1 if c1 < a and c2 < a. Thus E0 is
a repelling node with eigendirections along the coordinate axes. At E1 the Jacobian matrix becomes
a triangular matrix

J(
a� c1
2b

; 0) =

�
1� v1(a� c1) �v1

2 (a� c1)
0 1 + v2

2 (a� 2c2 + c1)

�
(92)

whose eigenvalues, given by the diagonal entries, are �1 = 1� v1(a� c1), with eigenvector r(1)1 = (1; 0)

along the q1 axis, and �2 = 1 + v2
2 (a � 2c2 + c1), with eigenvector r

(2)
1 = (1; 21�v1(a�c1)v1(a�c1) ). When (89)

are satis�ed E1 is a saddle point, with local stable manifold along q1 axis and the unstable one tangent
to r(2)1 , if

v1 <
2

a� c1
; (93)

otherwise E1 is an unstable node. The bifurcation occurring at v1 = 2
a�c1 is a �ip bifurcation at which

E1 from attracting becomes repelling along the q1 axis, on which a saddle cycle of period 2 appears.
The same arguments hold for the other boundary �xed point E2. It is a saddle, with local stable

manifold along the q2 axis and the unstable one tangent to r
(2)
2 = (1; 21�v2(a�c2)v2(a�c2) ), if

v2 <
2

a� c2
; (94)

otherwise it is an unstable node. Also in this case the bifurcation that transforms the saddle into the
repelling node is a �ip bifurcation creating a 2-cycle saddle on the q2 axis.

To study the local stability of the Nash equilibrium we consider the Jacobian matrix at E�

J(q�1; q
�
2) =

�
1� 2v1bq�1 �v1bq�1
�v2bq�2 1� 2v2bq�2

�
: (95)

Its eigenvalues are real because the characteristic equation �2 � Tr�+Det = 0, where Tr represents
the trace and Det the determinant of (95), has positive discriminant

Tr2 � 4Det = 4b2
h
(v1q

�
1 � v2q�2)

2 + v1v2q
�
1q
�
2

i
> 0:

It is easy to realize that �i < 1; i = 1; 2 ; since 1 � Tr + Det > 0 when (89) hold, thus a su¢ cient
condition for the local asymptotic stability of E� is 1+Tr+Det > 0, which ensures �i > �1; i = 1; 2.
This condition, which becomes

3b2q�1q
�
2v1v2 � 4bq�1v1 � 4bq�2v2 + 4 < 0 ; (96)

de�nes a region of stability in the plane of the speeds of adjustment (v1; v2) whose shape is like the
shaded area of �g. 107. This stability region is bounded by the portion of hyperbola, with positive
v1 and v2, whose equation is given by the vanishing of the left hand side of (96). For values of (v1; v2)
inside the stability region the Nash equilibrium E� is a stable node, and the hyperbola represents a
bifurcation curve at which E� looses its stability through a period doubling (or �ip) bifurcation. This
bifurcation curve intersects the axes v1 and v2 in the points A1 and A2 respectively, whose coordinates
are given by

A1 =

�
3

a+ c2 � 2c1
; 0

�
and A2 =

�
0;

3

a+ c1 � 2c2

�
: (97)
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Figure 107: The shaded area represents, in the plane of speeds of adjustment (v1; v2), the region of
local asymptotic stability of the Nash equilibrium. The values of the other parameters are c1 = 3; c2 =
5; a = 10.

From these results we can obtain information on the e¤ects of the model�s parameters on the local
stability of E�. For example, an increase of the speeds of adjustment, with the other parameters held
�xed, has a destabilizing e¤ect. In fact, an increase of v1 and/or v2, starting from a set of parameters
which ensures the local stability of the Nash equilibrium, can bring the point (v1; v2) out of the stability
region, crossing the �ip bifurcation curve.

Similar arguments apply if the parameters v1; v2; c1; c2 are �xed and the parameter a, which repre-
sents the maximum price of the good produced, is increased. In this case the stability region becomes
smaller, as can be easily deduced from (97), and this can cause a loss of stability of E� when the
moving boundary is crossed by the point (v1; v2). An increase of the marginal cost c1, with c2 held
�xed, causes a displacement of the point A1 to the right and of A2 downwards. Instead, an increase
of c2, with c1 held �xed, causes a displacement of A1 to the left and of A2 upwards. In both cases
the e¤ect on the local stability of E� depends on the position of the point (v1; v2). In fact, if v1 < v2,
i.e. the point (v1; v2) is above the diagonal v1 = v2, an increase of c1 can destabilize E�, whereas an
increase of c2 reinforces its stability. The situation is reversed if v1 > v2.

From these arguments the combined e¤ects due to simultaneous changes of more parameters can be
deduced. For example if E� becomes unstable because of a price increase (due to a shift of the demand
curve), its stability can be regained by a reduction of the speeds of reaction, whereas an increase of a
marginal cost ci can be compensated by a decrease of the corresponding vi: in the presence of an high
marginal cost, stability is favored by a more prudent behavior (i.e. lower reactivity to pro�t signals).
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7.3.3 A duopoly game with isoelastic demand and gradient dynamics

We consider now the same duopoly model (82) but with a di¤erent demand function (often used in
economics as an alternative of linear demand) called isoelastic

p =
1

Q
(98)

In this case the one-period pro�t of �rm i is given by

�i(q1; q2) =
qi

q1 + q2
� ciqi ; i = 1; 2 : (99)

hence the estimated marginal pro�ts are

@�1
@q1

=
q2

(q1 + q2)
2 � c1 and

@�2
@q2

=
q1

(q1 + q2)
2 � c2 :

With these assumptions, model (82) becomes

T :

8>><>>:
q
0
1 = q1

�
1� c1v1 + v1 q2

(q1+q2)
2

�
q
0
2 = q2

�
1� c2v2 + v2 q1

(q1+q2)
2

� (100)

The �xed points of (100) are de�ned as the nonnegative solutions of the algebraic system8<: q1

�
q2

(q1+q2)
2 � c1

�
= 0

q2

�
q1

(q1+q2)
2 � c2

�
= 0

obtained by setting q
0
i = qi , i = 1; 2 , in (100). As the map (100) is not de�ned in (0; 0), the unique

equilibrium point is

E� = (q�1; q
�
2) =

�
c2

(c1 + c2)
2 ;

c1

(c1 + c2)
2

�
(101)

which is also the unique Nash equilibrium of the classical Cournot duopoly game, as E� is located
at the intersection of the two reaction curves @�i

@qi
= 0; i = 1; 2; (�rst order conditions) and also the

second order su¢ cient conditions are satis�ed at E�, since @
2�i
@q2i

(E�) = �2(c1+ c2)ci < 0; i = 1; 2. At
E� the optimal pro�ts of the two �rms are

��1 = c2 and ��2 = c1: (102)

The study of the local stability of the Nash equilibrium is based on the localization, on the complex
plane, of the eigenvalues of the Jacobian matrix of (100)

J(q1; q2) =

"
1� v1c1 + v1 q2(q2�q1)(q1+q2)3

v1
q1(q1�q2)
(q1+q2)3

v2
q2(q2�q1)
(q1+q2)3

1� v2c2 + v2 q1(q1�q2)(q1+q2)3

#
computed at E�

J� =

24 1 + v1c1 � c1�c2c1+c2
� 1
�

v1c2
c2�c1
c1+c2

v2c1
c1�c2
c1+c2

1 + v2c2

�
c2�c1
c1+c2

� 1
� 35
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The characteristic equation �2 � Tr(J�)�+Det(J�) = 0, where

Tr(J�) = 2

�
1� (v1 + v2)

c1c2
c1 + c2

�
and Det(J�) = 1 + v1v2c1c2 � 2(v1 + v2)

c1c2
c1 + c2

has complex conjugate roots if

(c2v2 � c1v1) (c1v2 � c2v1) < 0 : (103)

This condition can be easily visualized in the space V = fv1; v2 j v1 � 0; v2 � 0g of the speeds of
adjustment shown in �g. 108, where (103) is satis�ed in the region, which we call region F , between
the two lines of equation

v2 =
c1
c2
v1 and v2 =

c2
c1
v1 : (104)

The Nash equilibrium E� is locally asymptotically stable if the usual stability conditions hold8>>>><>>>>:
1� Tr(J�) +Det(J�) = v1v2c1c2 > 0

1 + Tr(J�) +Det(J�) = c1c2v1v2 � 4 c1c2
c1+c2

(v1 + v2) + 4 > 0

Det(J�)� 1 = c1c2v1v2 � 2 c1c2
c1+c2

(v1 + v2) < 0

(105)

The �rst of (105) is always satis�ed (which means that loss of stability through the critical value � = 1
cannot occur (in fact a unique equilibrium always exists, and no fold, nor transcritical nor pitchfork
bifurcation can be obtained with a unique equilibrium). The other two conditions de�ne a bounded
region of stability in the parameters�space, that can be represented in the plane V of the speeds of
adjustment by the region S = OB1A1A2B2, shaded in �g. 108. This region, which is symmetric with
respect to the diagonal v1 = v2, is bounded by the positive branches of two equilateral hyperbolae
whose equations are obtained from the second and the third of (105) taken as equalities. From these
equations the coordinates of the points Ai and Bi, i = 1; 2 , can be easily obtained

A1 =

�
2

c1
;
2

c2

�
A2 =

�
2

c2
;
2

c1

�
B1 =

�
c1 + c2
c1c2

; 0

�
B2 =

�
0;
c1 + c2
c1c2

�
: (106)

If the marginal costs c1 and c2 are �xed the shape of the stability region S remains the same, and
by increasing v1 and/or v2 the point P = (v1; v2) can move out of it. If P crosses the boundary of
S along the arc A1A2 (belonging to the hyperbola of equation Det(J�) = 1) then the �xed point
E� changes from a stable focus to an unstable focus via a Neimark-Sacker bifurcation. If P exits the
region S by crossing one of the arcs B1A1 or B2A2 (both belonging to the other hyperbola, of equation
1 + Tr(J�) +Det(J�) = 0) the �xed point E� is changed from an attracting node to a saddle point
through a period doubling (or �ip) bifurcation.

Similar arguments apply if the marginal costs (c1; c2) are varied. For example, if c1 and c2 are
increased the stability region S becomes smaller, as can be easily deduced from (106), and this can
cause the exit of P from S even if the speeds of adjustment v1 and v2 are held constant. Also in
this case the loss of stability can occur via a Neimark-Sacker or a �ip bifurcation depending on the
boundary arc which is crossed by the point P .
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Figure 108: Stability region for the model (100) in the plane of speeds of reaction v1 and v2.

We observe that if c1 > c2 the positions of the vertices A1 and A2 are swapped, and if c1 = c2 these
vertices merge, and the region S becomes a square, like in the central panel of �g. 108, bounded by the
branches of a degenerate hyperbola. In this particular case the region F disappears, and the possibility
of Neimark-Sacker bifurcations is lost. On the contrary, if the di¤erence between the marginal costs
of the two �rms is increased, the region F enlarges and the arc A1A2, representing the curve where
Neimark-Sacker bifurcations occur, becomes larger (see right panel of �g. 108).

The fact that an increase of the speeds of adjustment has a destabilizing role in a oligopoly dynamic
model is a typical result, well known in the literature. However our stability analysis reveals a new
phenomenon: starting from a set of parameters for which the Nash equilibrium E� is unstable, stability
of E� can be obtained by increasing one (or both) vi. This happens when the point P = (v1; v2) belongs
to one of the regions denoted by R1 or R2 in the left panel of �g. 108. Furthermore, if the parameters
of the model are varied in such a way that the point P moves from region R1(or R2) to the region
Fu by increasing v1 (or v2) we obtain two bifurcations, which cause a transition from two instability
situations separated by a �window�of stability.

This particular bifurcation sequence is characterized by two di¤erent local bifurcations: a period
halving (or backward �ip) bifurcation followed by a supercritical Neimark-Sacker bifurcation, as shown
in �g. 109, where the left panel, obtained with parameters v1 = 0:61, v2 = 0:1, c1 = 3, c2 = 5,
numerically shows a dynamic scenario where the �xed point E� is unstable and the initial conditions
in the white region generate trajectories converging to a periodic cycle of period 4, represented by
the 4 black dots in the picture, whereas the initial conditions in the grey region generate diverging
trajectories. In the central panel, obtained with the same set of parameters except an increased value
of v2 = 0:4, the �xed point E� is stable. In the right panel, obtained with v2 = 0:5, E� is unstable
again, due to a supercritical Neimark-Sacker bifurcation at which a stable closed invariant curve is
created on which quasi-periodic motion takes place.

A rich variety of other dynamic scenarios can be numerically shown, see e.g. the sequences of
pictures in the �gures 110, 111, 112. In the �rst sequence a phenomenon of frequency locking is
observed for a set of parameters very close to the one used in �g. 109, namely v1 = 0:61, v2 = 0:443,
c1 = 3, c2 = 5. At this stage the motion along the stable closed invariant curve is locked at the
periodic cycle of period 7 whose periodic points are shown in the upper-left panel. Then, starting
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Figure 109: Some dynamic scenarios with attractors and basins for the map (100)

from this situation, the speed of adjustment v1 is increased and the 7-cycle undergoes a period-
doubling bifurcation leading to an attracting 14-cycle, then a 7-pieces (or 7-cyclic) chaotic attractor
and �nally a unique large annular chaotic attractor.

The next sequence, starting from v1 = 0:501, v2 = 0:501, c1 = 3, c2 = 5, shows what happens
just after the Neimark-Sacker bifurcation of the �xed point E� occurred. An increase of the speeds of
adjustment cause an enlargement of the stable closed orbit and then it is transformed into an annular
chaotic attractor.

The �nal sequence is obtained starting from the set of parameters v1 = 0:2, v2 = 0:405, c1 = 3,
c2 = 5, at which E� is stable. An increase of v2 causes the occurrence of a �ip bifurcation at which the
equilibrium E� becomes a saddle point and a stable cycle of period 2 is created (see the upper-right
panel of �g. 112). As v2 is further increased a period-doubling cascade is observed leading to chaotic
motion along a two-pieces chaotic attractor (lower-left panel) and then a unique big attractor.

It is worth to notice that in the sequences of dynamic scenarios shown above, leading to the creation
of chaotic attractors starting from sequences of local bifurcations, an attractor is eventually obtained
whose points are very close to the boundary of its own basin, see last picture in �g. 112. Indeed, when
a chaotic attractor has a contact with its basin�s boundary it is destroyed, at a global (or contact)
bifurcation denoted as "�nal bifurcation" or "boundary crisis". After this contact the generic initial
condition in the basin of the "died attractor" belong to the basin that was "on the other side" of the
basin boundary where the contact occurred. However, the skeleton of the former attractor, formed by
the dense set on in�nitely many repelling periodic points that where nested inside it, still exists. It
is called the "ghost" of the "just died" chaotic attractor, and it implies that many trajectories spend
a long number of steps (i.e. a long transients) in the region occupied by the former attractor before
converging to the other attractor (that may be an attractor at �nite distance or at in�nity, i.e. with
trajectories that diverge).

7.4 Discrete dynamical system represented by noninvertible maps

As we have seen through the examples of nonlinear dynamical systems discussed in the previous sec-
tions, an analysis of their global properties is necessary to understand the structure of the attractors
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Figure 110: Attractors and basins of attraction.

and their basins of attraction, as well as their qualitative changes. Global properties and bifurca-
tions are such that they cannot be deduced from the linearization procedure, based on the study of
eigenvalues and eigenvectors of the Jacobian matrix.

In the case of discrete-time dynamical systems, the two kinds of complexities observed in the
previous sections, given by the complex structures of the attracting sets and the complex structures
of the basins of attraction, can be often characterized by the global folding properties of maps whose
iteration inductively de�ne the trajectories. In particular, as we have already discussed in the sections
6.4 and 6.5, a delimitation of the trapping sets (including chaotic sets) as well as a study of the
complex topological structure of basins of attraction (including the case of non-connected basins), can
be characterized through the analysis of noninvertible maps and their properties. The de�nition of
critical sets, that are generalizations of local maximum and minimum values of one-dimensional maps
to maps de�ned in higher dimensional spaces, will give us a very useful tool to detect the global (or
contact) bifurcations giving rise to qualitative changes of the invariant sets and their basins.

7.4.1 Critical sets. De�nitions and simple examples

A map T : S ! S, S � Rn, de�ned by x0 = T (x), transforms a point x 2 S into a unique point
x0 2 S. The point x0 is called the rank-1 image of x, and a point x such that T (x) = x0 is a rank-1
preimage of x0.

If x 6= y implies T (x) 6= T (y) for each x, y in S, then T is an invertible map in S, because the
inverse mapping x = T�1 (x0) is uniquely de�ned; otherwise T is a said to be a noninvertible map,
because points x exist that have several rank-1 preimages, i.e. the inverse relation x = T�1 (x0) is
multivalued. So, noninvertible means �many-to-one�, that is, distinct points x 6= y may have the
same image, T (x) = T (y) = x0.

A one-dimensional example has been given by the logistic map (60) where points symmetric with
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Figure 111: Attractors and basins of attraction.

respect to its symmetry axis x = 1
2 have the same image (see �g. 82). The corresponding two inverses

have been computed in (64).
To give an example in two dimensions, let us again consider a quadratic map T : (x; y)! (x0; y0)

de�ned by

T :

�
x0 = ax+ y
y0 = x2 + b

(107)

It can map distinct points into the same point. For example if we consider the map with parameters
a = 1

2 and b = �2, then the two points P1 = (�2; 2) and P2 = (2; 0) are mapped into the same point
P = (1; 2). This means that at least two inverses must be de�ned in P , one mapping it into the rank-q
preimage P1 and the other one into the other preimage P2 (see �g. 113). Indeed, like in the case of
the logistic map, also for this two-dimensional map we can explicitly compute the two inverses: given
x0 and y0, if we solve the algebraic system (107) with respect to the unknowns x and y we get two
solutions, given by

T�11 :

�
x = �

p
y0 � b

y = x0 + a
p
y0 � b ; T�12 :

�
x =

p
y0 � b

y = x0 � a
p
y0 � b (108)

Geometrically, the action of a noninvertible map can be expressed by saying that it �folds and
pleats� the space S, so that distinct points are mapped into the same point. This is equivalently
stated by saying that several inverses are de�ned in some points of S, and these inverses �unfold�S.

For a noninvertible map, S can be subdivided into regions Zk, k � 0, whose points have k distinct
rank-1 preimages. Generally, for a continuous map, as the point x0 varies in Rn, pairs of preimages
appear or disappear as it crosses the boundaries separating di¤erent regions. Hence, such boundaries
are characterized by the presence of at least two coincident (merging) preimages. This leads us to the
de�nition of the critical sets, one of the distinguishing features of noninvertible maps
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Figure 112: Attractors and basins of attraction.

De�nition (Gumowski and Mira, 1980). The critical set CS of a continuous map T is de�ned
as the locus of points having at least two coincident rank�1 preimages, located on a set CS�1, called
set of merging preimages.

The critical set CS is generally formed by (n� 1)-dimensional hypersurfaces of Rn, and portions of
CS separate regions Zk of the phase space characterized by a di¤erent number of rank� 1 preimages,
for example Zk and Zk+2 (this is the standard occurrence for continuous maps). The critical set CS
is the n-dimensional generalization of the notion of local minimum or local maximum value of a one-
dimensional map, and of the notion of critical curve LC of a noninvertible two-dimensional map19.
The set CS�1 is the generalization of local extremum point of a one-dimensional map, and of the
fold curve LC�1 of a two-dimensional noninvertible map. In a di¤erentiable one-dimensional map the
critical points c�1 can be searched among the points where the derivative vanishes, as we have seen
for the logistic map (see also �g. 114).

However, we remark that in general the condition of vanishing derivative is not su¢ cient to de�ne
the critical points of rank-0 since such condition may be also satis�ed by points which are not local
extrema (e.g. the in�ection points with horizontal tangent). Moreover, for continuous and piecewise
di¤erentiable maps, as well as for discontinuous maps, the condition of vanishing derivative is not
necessary as well, because such maps may have the property that the images of points where the map
is not di¤erentiable are critical points, according to the de�nition given above. This occurs whenever
such points are local maxima or minima, like in the cases shown in �g.115.

In the case of piecewise continuous maps, a point of discontinuity may behave as a critical point
19The terminology and notation originate from the notion of critical point as it is used in the classical works of Julia

and Fatou.
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Figure 113:

Figure 114: Folding and unfolding action of the logistic map

of T , even if the de�nition in terms of merging preimages cannot be applied. This happens when the
ranges of the map on the two sides of the discontinuity have an overlapping zone, so that at least
one of the two limiting values of the function at the discontinuity separates regions having a di¤erent
number of rank-1 preimages (see e.g. the right panel of �g. 115). The di¤erence with respect to the
case of a continuous map is that now the number of distinct rank-1 preimages through a critical point
di¤ers generally by one (instead of two), that is, a critical value c (in general the critical set CS)
separates regions Zk and Zk+1.

In order to explain the geometric action of a critical point in a continuous map, let us consider,
again, the logistic map in �g. 114, and as already stressed in section 6.4 let us notice that as x moves
from 0 to 1 the corresponding image f(x) spans the interval [0; c] twice, the critical point c being the
turning point. In other words, if we consider how the segment 
 = [0; 1] is transformed by the map f ,
we can say that it is folded and pleated to obtain the image 
0 = [0; c]. Such folding gives a geometric
reason why two distinct points of 
, say x1 and x2, located symmetrically with respect to the point
c�1 = 1=2, are mapped into the same point x0 2 
0 due to the folding action of f (see �g.114b). The
same arguments can be explained by looking at the two inverse mappings f�11 and f�12 de�ned in
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Figure 115: Folding it piecewise di¤erentiable and piecewise continuous maps.

(�1; �=4] according to (64). We can consider the range of the map f formed by the superposition
of two half-lines (�1; �=4], joined at the critical point c = �=4, and on each of these half-lines a
di¤erent inverse is de�ned. In other words, instead of saying that two distinct maps are de�ned on
the same half-line we say that the range is formed by two distinct half lines on each of which a unique
inverse map is de�ned. This point of view gives a geometric visualization of the critical point c as the
point in which two distinct inverses merge. The action of the inverses, say f�1 = f�11 [ f�12 , causes
an unfolding of the range by mapping c into c�1 and by opening the two half-lines one on the right
and one on the left of c�1, so that the whole real line R is covered. So, the map f folds the real line,
the two inverses unfold it.

Another interpretation of the folding action of a critical point is the following. Since f(x) is
increasing for x 2 [0; 1=2) and decreasing for x 2 (1=2; 1], its application to a segment 
1 � [0; 1=2) is
orientation preserving, whereas its application to a segment 
2 � (1=2; 1] is orientation reversing. This
suggests that an application of f to a segment 
3 = [a; b] including the point c�1 = 1=2 preserves the
orientation of the portion [a; c�1], i.e. f([a; c�1]) = [f(a); c], whereas it reverses the portion [c�1; b],
i.e. f([c�1; b]) = [f(b); c], so that 


0
3 = f (
3) is folded, the folding point being the critical point c.

Let us now consider the case of a continuous two-dimensional map T : S ! S, S � R2, de�ned by

T :

�
x01 = T1(x1; x2)
x02 = T2(x1; x2) ;

(109)

If we solve the system of the two equations (109) with respect to the unknowns x1 and x2, then, for a
given (x01; x

0
2), we may have several solutions, representing rank-1 preimages (or backward iterates) of

(x01; x
0
2), say (x1; x2) = T�1 (x01; x

0
2), where T

�1 is in general a multivalued relation. In this case we say
that T is noninvertible, and the critical set (formed by critical curves, denoted by LC from the French
�Ligne Critique�) constitutes the set of boundaries that separate regions of the plane characterized by
a di¤erent number of rank-1 preimages. According to the de�nition, along LC at least two inverses
give merging preimages, located on LC�1.

For a continuous and (at least piecewise) di¤erentiable noninvertible map of the plane, the set LC�1
is included in the set where det J(x1; x2) changes sign, since T is locally an orientation preserving
map near points (x1; x2) such that det J(x1; x2) > 0 and orientation reversing if det J(x1; x2) < 0.
In order to explain this point, let us recall that when an a¢ ne transformation x0 = Ax+ b, where
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A = faijg is a 2� 2 matrix and b 2R2, is applied to a plane �gure, then the area of the transformed
�gure grows, or shrinks, by a factor � = jdetAj, and if detA > 0 then the orientation of the �gure
is preserved, whereas if detA < 0 then the orientation is reversed. This property also holds for the
linear approximation of (109) in a neighborhood of a point p = (x1; x2), given by an a¢ ne map with
A = J, J being the Jacobian matrix evaluated at the point p

J (p) =

�
@T1=@x1 @T1=@x2
@T2=@x1 @T2=@x2

�
(110)

A qualitative visualization is given in �g. 116. Of course, if the map is continuously di¤erentiable
then the change of the sign of J occurs along points where J vanishes, thus giving the characterization
of the fold line LC�1 as the locus where the jacobian vanishes.

Figure 116: Folding and unfording for a two-dimensional map.

In order to give a geometrical interpretation of the action of a multi-valued inverse relation T�1, it is
useful to consider a region Zk as the superposition of k sheets, each associated with a di¤erent inverse.
Such a representation is known as Riemann foliation of the plane. Di¤erent sheets are connected by
folds joining two sheets, and the projections of such folds on the phase plane are arcs of LC. This is
shown in the qualitative sketch of �g.116, where the case of a Z0�Z2 noninvertible map is considered.
This graphical representation of the unfolding action of the inverses also gives an intuitive idea of the
mechanism which causes the creation of non-connected basins for noninvertible maps of the plane.

Let us consider again the map (107) as a canonical example of a two-dimensional noninvertible
map. Given a point (x0; y0), according to (108) it has two rank-one preimages if y0 � b, and no
preimages if y0 < b. So, (107) is a Z0 � Z2 noninvertible map, where Z0 (region whose points have
no preimages) is the half plane Z0 = f(x; y) jy < bg and Z2 (region whose points have two distinct
rank-1 preimages) is the half plane Z2 = f(x; y) jy > bg. The line y = b, which separates these two
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regions, is LC, i.e. the locus of points having two merging rank-1 preimages, located on the line x = 0,
that represents LC�1. Being (107) a continuously di¤erentiable map, the points of LC�1 necessarily
belong to the set of points at which the Jacobian determinant vanishes, i.e. LC�1 � J0, where
J0 = f(x; y) jdet J(x; y) = �2x = 0g. In this case LC�1 coincides with J0 (the vertical axis x = 0) and
the critical curve LC is the image by T of LC�1, i.e. LC = T (LC�1) = T (fx = 0g) = f(x; y) jy = bg.

In order to show the folding action related to the presence of the critical lines fact, we consider a
planar shape U separated by LC�1 into two portions, say U1 2 R1 and U2 2 R2 and we apply the map
(107) to the points of U (�g.117, left panel). The image T (U1) \ T (U2) is a nonempty set included
in the region Zk+2, which is the region whose points p0 have rank-1 preimages p1 = T�11 (p0) 2 U1
and p2 = T�12 (p0) 2 U2. This means that two points p1 2 U1 and p2 2 U2, located at opposite sides
with respect to LC�1, are mapped in the same side with respect to LC, in the region Zk+2. This is
also expressed by saying that the ball U is �folded�by T along LC on the side with more preimages
(see �g.117, left panel). The same concept can be equivalently expressed by stressing the �unfolding�
action of T�1, obtained by the application of the two distinct inverses in Zk+2 which merge along LC.
Indeed, if we consider a ball V � Zk+2; then the set of its rank � 1 preimages T�11 (V ) and T�12 (V )
is made up of two balls T�11 (V ) 2 R1 and T�12 (V ) 2 R2. These balls are disjoint if V \ LC = ; (�g.
117, right panel)

Figure 117: Folding (left) and unfolding (right).

Many of the considerations made above, for 1-dimensional and 2-dimensional noninvertible maps,
can be generalized to n-dimensional ones, even if their visualization becomes more di¢ cult. First of
all, from the de�nition of critical set it is clear that the relation CS = T (CS�1) holds in any case.
Moreover, the points of CS�1 where the map is continuously di¤erentiable are necessarily points where
the Jacobian determinant vanishes:

CS�1 � J0 = fp 2 RnjdetJ(p) = 0g (111)

In fact, in any neighborhood of a point of CS�1 there are at least two distinct points which are mapped
by T in the same point. Accordingly, the map is not locally invertible in points of CS�1, and (111)
follows from the implicit function theorem. This property provides an easy method to compute the
critical set for continuously di¤erentiable maps: from the expression of the jacobian determinant one
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computes the locus of points at which it vanishes, then the set obtained after an application of the
map to these points is the critical set CS.

7.4.2 Trajectories, attractors and basins

A discrete-time dynamical system, de�ned by the di¤erence equation

x (t+ 1) = T (x (t)) (112)

can be seen as the result of the repeated application (or iteration) of a map T . Indeed, the point x
represents the state of a system, and T represents the �unit time advancement operator�T : x (t)!
x (t+ 1). Starting from an initial condition x0 2 S, the iteration of T inductively de�nes a unique
trajectory

�(x0) =
�
x(t) = T t(x0); t = 0; 1; 2; :::

	
;

where T 0 is the identity map and T t = T (T t�1). As t ! +1, a trajectory may diverge, or it may
converge to a �xed point of the map T , i.e. a point x such that T (x) = x, or it may asymptotically
approach another kind of invariant set, such as a periodic cycle, or a closed invariant curve or a more
complex attractor, for example a so called chaotic attractor. We recall that a set A � Rn is invariant
for the map T if it is mapped onto itself, T (A) = A. This means that if x 2 A then T (x) 2 A, i.e. A
is trapping, and every point of A is image of some point of A. A closed invariant set A is an attractor
if (i) it is Lyapunov stable, i.e. for every neighborhood W of A there exists a neighborhood V of A
such that T t(V ) � W 8t � 0; (ii) a neighborhood U of A exists such that T t(x)! A as t! +1 for
each x 2 U . The basin of an attractor A is the set of all points that generate trajectories converging
to A

B (A) =
�
xjT t(x)! A as t! +1

	
Let U(A) be a neighborhood of an attractor A whose points converge to A. Of course U(A) � B (A),
and also the points that are mapped into U after a �nite number of iterations belong to B (A). Hence,
the basin of A is given by

B (A) =
1[
n=0

T�n(U(A)) (113)

where T�1(x) represents the set of the rank-1 preimages of x (i.e. the points mapped into x by T ),
and T�n(x) represents the set of the rank-n preimages of x (i.e. the points mapped into x after n
applications of T ).

Let B be a basin of attraction and @B its boundary. From the de�nition it follows that B is trapping
with respect to the forward iteration of the map T and invariant with respect to the backward iteration
of all the inverses T�1. Points belonging to @B are mapped into @B both under forward and backward
iteration of T . This implies that if an unstable �xed point or cycle belongs to @B then @B must also
contain all of its preimages of any rank. Moreover, if a saddle-point, or a saddle-cycle, belongs to @B,
then @B must also contain the whole stable set.

A problem that often arises in the study of nonlinear dynamical systems concerns the existence
of several attracting sets, each with its own basin of attraction. In this case the dynamic process
becomes path-dependent, i.e. which kind of long run dynamics characterizes the system depends on
the starting condition. Another important problems in the study of applied dynamical systems is
the delimitation of a bounded region of the state space where the system dynamics are ultimately
trapped, despite of the complexity of the long-run time patterns. This is an useful information, even
more useful than a detailed description of step by step time evolution.
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Both these questions require an analysis of the global dynamical properties of the dynamical
system, that is, an analysis which is not based on the linear approximation of the map. When the
map T is noninvertible, its global dynamical properties can be usefully characterized by using the
formalism of critical sets, by which the folding action associated with the application of the map, as
well as the �unfolding�associated with the action of the inverses, can be described. Loosely speaking,
the repeated application of a noninvertible map repeatedly folds the state space along the critical sets
and their images, and often this allows one to de�ne a bounded region where asymptotic dynamics
are trapped. As some parameter is varied, global bifurcations that cause sudden qualitative changes
in the properties of the attracting sets can be detected by observing contacts of critical curves with
invariant sets. Instead, the repeated application of the inverses �repeatedly unfold�the state space,
so that a neighborhood of an attractor may have preimages far from it, thus giving rise to complicated
topological structures of the basins, that may be formed by the union of several (even in�nitely many)
non connected portions. In fact, from (113) it follows that in order to study the extension of a basin
and the structure of its boundaries one has to consider the properties of the inverse relation T�1. The
route to more and more complex basin boundaries, as some parameter is varied, is characterized by
global bifurcations, also called contact bifurcations, due to contacts between the critical set and the
invariant sets that form the basins�boundaries.

7.4.3 Critical sets and the delimitation of trapping regions.

Portions of the critical set CS and its images CSk = T k(CS) can be used to obtain the boundaries
of trapping regions where the asymptotic dynamics of the iterated points of a noninvertible map are
con�ned. This has already been explained for the logistic map in section 6.4, where we have shown
that, for 3 < � < 4, starting from an initial condition inside the interval [c1; c], with c1 = f(c), no
images can be obtained out of this interval, i.e. the interval formed by the critical point c and its
rank-1 image c1 is trapping. Moreover, any trajectory generated from an initial condition in (0; 1),
enters [c1; c] after a �nite number of iterations. This is expressed by saying that the interval [c1; c] is
absorbing. Examples have been shown in �gures 75 and 77.

In general, for an n-dimensional map, an absorbing region A (intervals in R, areas in R2, volumes
in R3; :::) is de�ned as a bounded set whose boundary is given by portions of the critical set CS and
its images of increasing order CSk = T k (CS), such that a neighborhood U � A exists whose point
enter A after a �nite number of iterations and then never escape it, since T (A) � A, i.e. A is trapping.
Loosely speaking, we can say that the iterated application of a noninvertible map, folding and folding
again the space, de�nes trapping regions bounded by critical sets of increasing order.

Sometimes, smaller absorbing regions are nested inside a bigger one, as it was illustrated for the
logistic map (138), as shown in �g. 77, where inside the absorbing interval [c1; c] a trapping subset is
obtained by higher rank images of the critical point, given by A = [c1; c3] [ [c2; c].

Inside an absorbing region one or more attractors may exist. However, if a chaotic attractor exists
which �lls up a whole absorbing region then the boundary of the chaotic attractor is formed by portions
of critical sets. To better illustrate this point, we also give a two-dimensional example, obtained by
using the map (107). In Fig. 118a, a chaotic trajectory is shown, and in �g. 118b its outer boundary
is obtained by the union of a segment of LC and three iterates LCi = T i(LC), i = 1; 2; 3.

A practical procedure can be outlined in order to obtain the boundary of an absorbing area
(although it is di¢ cult to give a general method). Starting from a portion of LC�1, approximately
taken in the region occupied by the area of interest, its images by T of increasing rank are computed
until a closed region is obtained. When such a region is mapped into itself, then it is an absorbing area
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Figure 118: Boundary of chaotic attractor obtained by segments of critical curves.

A. The length of the initial segment is to be taken, in general, by a trial and error method, although
several suggestions are given in the books in the bibliography. Once an absorbing area A is found, in
order to see if it is invariant or not the same procedure must be repeated by taking only the portion


 = A \ LC�1 (114)

as the starting segment. Then one of the following two cases occurs:

(case I) the union of m iterates of 
 (for a suitable m) covers the whole boundary of A; in which
case A is an invariant absorbing area, and

@A �
m[
k=1

T k(
) (115)

(case II) no natural m exists such that
Sm
i=1 T

i(
) covers the whole boundary of A; in which
case A is not invariant but strictly mapped into itself. An invariant absorbing area is obtained by
\n>0Tn(A) (and may be obtained by a �nite number of images of A).

The application of this procedure to the problem of the delimitation of the chaotic area of �g. 118a
by portions of critical curves suggests us, on the basis of Fig.118b, to take a smaller segment 
 and
to take an higher number of iterates in order to obtain also the inner boundary. The result is shown
in �g.118c, where by four iterates we get the outer boundary. By a few more iterates also the inner
boundary of the chaotic area is get, as shown in Fig.118d. As it can be clearly seen, and as clearly
expressed by the strict inclusion in (115), the union of the images also include several arcs internal to
the invariant area A. Indeed, the images of the critical arcs which are mapped inside the area play a
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particular role, because these curves represent the �foldings�of the plane under forward iterations of
the map, and this is the reason why these inner curves often denote the portions of the region which
are more frequently visited by a generic trajectory inside it (compare �g. 118a and �g. 118d). This is
due to the fact that points close to a critical arc LCi, i � 0; are more frequently visited, because there
are several distinct parts of the invariant area which are mapped in the same region (close to LCi).

7.4.4 Critical sets and the creation of non connected basins

From (113) it is clear that the properties of the inverses are important in order to understand the
structure of the basins and the main bifurcations which change their qualitative properties. In the
case of noninvertible maps, the multiplicity of preimages may lead to basins with complex structures,
such as multiply connected or non connected sets, sometimes formed by in�nitely many non connected
portions. As already stressed in section 6.5, in the context of noninvertible maps it is useful to de�ne
the immediate basin B0(A), of an attracting set A, as the widest connected component of the basin
which contains A. Then the total basin can be expressed as

B (A) =
1[
n=0

T�n(B0(A))

where T�n(x) represents the set of all the rank-n preimages of x, i.e. the set of points which are mapped
in x after n iterations of the map T . The backward iteration of a noninvertible map repeatedly unfolds
the phase space, and this implies that the basins may be non-connected, i.e. formed by several disjoint
portions.

Also in this case, we have already given an example of this property for by using a one-dimensional
map, where in �g.88 the graph of a Z1�Z3�Z1 noninvertible map is shown, Z3 being the portion of
the codomain bounded by the relative minimum value cmin and relative maximum value cmax. In the
situation shown in �g. 88 there are three attractors, and after the global bifurcation where cmin = q,
the portion (cmin; q) enters Z3, so new preimages f�k (cmin; q) appear with k � 1. These preimages
constitute an in�nite (countable) set of non-connected portions of B (r) nested inside B (A), represented
by the thick portions of the diagonal in �g. 88, bounded by the in�nitely many preimages of any rank,
say q�k, k 2 N, of q, that accumulate in a left neighborhood of the �xed point z. In fact, as z is a
repelling �xed point for the forward iteration of f , it is an attracting �xed point for the backward
iteration of the same map. So, the contact between the critical point cmin and the basin boundary q
marks the transition from simple connected to non connected basins. Similar global bifurcations, due
to contacts between critical sets and basin boundaries, also occur in higher dimensional maps. In fact,
if a parameter variation causes a crossing between a basin boundary and a critical set which separates
di¤erent regions Zk so that a portion of a basin enters a region where an higher number of inverses is
de�ned, then new components of the basin may suddenly appear at the contact. However, for maps of
dimension greater than 1, such kinds of bifurcations can be very rarely studied by analytical methods,
since the analytical equations of such singularities are not known in general. Hence such studies are
mainly performed by geometric and numerical methods.

7.5 Some economic examples

In this section we show how the global properties of noninvertible two-dimensional maps can be used
in the study of discrete dynamic models in economics. In particular we will see the practical usage
of critical curves to detect global bifurcations that change the qualitative structure of the basins of
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attraction and how critical curves and their images are employed to bound trapping regions where
asymptotic dynamics are con�ned.

7.5.1 Global properties of the Cournot duopoly model with linear demand and gradient
dynamics

We re-consider the duopoly model described in section 7.3.2. The map (87) is a noninvertible map of
the plane, that is, starting from some nonnegative initial production strategy (q10; q20) the iteration
of (87) uniquely de�nes the trajectory (q1(t); q2(t)) = T t(q10; q20); t = 1; 2; :::, whereas the backward
iteration of (87) is not uniquely de�ned. In fact a point (q01; q

0
2) of the plane may have several preimages,

obtained by solving the fourth degree algebraic system (87) with respect to q1 and q2. In order to
understand the structure of the critical curves LC and consequently the subdivision of the phase plane
into zones Zk with k preimages, we start from LC�1, that for a di¤erentiable map like (87), according
to (111), is given by the locus of points where the Jacobian determinant vanishes. From the expression
of J given in (90), the condition det J = 0 becomes

q21 + q
2
2 + 4q1q2 � �1q1 � �2q2 + � = 0

where

�i =
4(1 + vj(a� cj)bvi) + 1 + vi(a� ci)bvj

4b2v1v2
; i = 1; 2 ; j 6= i

and

� =
(1 + v1(a� c1)bv1)(1 + v2(a� c2)bv2)

4b2v1v2
:

This is an hyperbola in the plane (q1; q2) with symmetry centre in the point
�
2�2��1

3 ; 2�1��23

�
and

asymptotes of angular coe¢ cients
�
�2�

p
3
�
. Thus LC�1 is formed by two branches, denoted by

LC
(a)
�1 and LC

(b)
�1 in �g. 119. This implies that also LC is the union of two branches, denoted by

LC(a) = T (LC
(a)
�1 ) and LC

(b) = T (LC
(b)
�1). Each branch of the critical curve LC separates the phase

plane of T into regions whose points possess the same number of distinct rank-1 preimages. In the
case of the map (87) LC(b) separates the region Z0, whose points have no preimages, from the region
Z2, whose points have two distinct rank-1 preimages, and LC(a) separates the region Z2 from Z4,
whose points have four distinct preimages. In fact, it is possible to show (see below) that the point
(q01; q

0
2) = (0; 0) has four preimages obtained by solving the algebraic system (87) with respect to the

unknowns (q1; q2), hence (0; 0) 2 Z4. The other zones are classi�ed by remembering that any branch
of LC is characterized by the merging (and disappearance) of two preimages.

In order to study the action of the multivalued inverse relation T�1 it is useful to consider a region
Zk of the phase plane as the superposition of k sheets, each associated with a di¤erent inverse. Such
a representation is known as foliation of the plane. Di¤erent sheets are connected by folds joining two
sheets, and the projections of such folds on the phase plane are arcs of LC. The foliation associated
with the map (87) is qualitatively represented in �g. 119. It can be noticed that the cusp point of LC
is characterized by three merging preimages at the junction of two folds.

An important property of the map (87) is that each coordinate axis qi = 0; i = 1; 2; is trapping,
that is, mapped into itself, since qi = 0 gives q

0
i = 0 in (87). This means that starting from an initial

condition on a coordinate axis (monopoly case) the dynamics is con�ned in the same axis for each t,
governed by the restriction of the map T to that axis. Such a restriction is given by the following
one-dimensional map, obtained from (87) with qi = 0

qj = (1 + vj(a� cj))qj � 2bvjq2j j 6= i : (116)
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Figure 119: Riemann foliation.

This map is conjugate to the standard logistic map x
0
= �x (1� x) through the linear transformation

qj =
1 + vj(a� cj)

2bvj
x (117)

from which we obtain the relation
� = 1 + vj(a� cj) : (118)

This means that the dynamics of (116) can be obtained from the well known dynamics of (138).
Another important feature of the map (87) is that it can generate unbounded (i.e. divergent)

trajectories (this can be also expressed by saying that (87) has an attracting set at in�nite distance).
In fact, unbounded (and negative) trajectories are obtained if the initial condition is taken su¢ ciently
far from the origin, i.e. in a suitable neighborhood of in�nity, since if qi0 > 1+a�ci

bvi
; i = 1; 2; then the

�rst iterate of (87) gives negative values q
0
i < 0; i = 1; 2, so that the successive iterates give negative

and decreasing values because q
0
i = qi + viqi (a� ci � 2bqi � bqj) < qi being (a� ci) > 0 if (89) hold.

This implies that any attractor at �nite distance cannot be globally attracting in R2+, since its basin
of attraction cannot extend out of the rectangle

h
0; 1+a�c1bv1

i
�
h
0; 1+a�c2bv2

i
.

In the following we call attractor at �nite distance, denoted by A, a bounded attracting sets
(which may be the Nash equilibrium E�, a periodic cycle or some more complex attractor around
E�) in order to distinguish it from the limit sets at in�nite distance, i.e. the unbounded trajectories,
which represent exploding (or collapsing) evolutions of the duopoly system. We denote by B(A) the
basin of attraction of an attractor A, de�ned as the open set of points (q1; q2) of the phase plane
whose trajectories T t(q1; q2) have limit sets belonging to A as t! +1. We also denote by B (1) the
basin of in�nity, de�ned as the set of points which generate unbounded trajectories. Let F be the
boundary (or frontier) separating B (A) from B (1). An exact determination of F is the main goal
of this section. Indeed, this boundary may be rather complex, as evidenced by the numerical results
shown in �g.120
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Figure 120: Numerical representation of the basins of attraction for the duopoly map. The two
�gures are obtained by taking a grid of initial conditions (q10; q20) and generating, for each of them a
numerically computed trajectory of the duopoly map. If the trajectory is diverging (i.e. if it reaches
large negative values) then a grey dot is painted in the point corresponding to the initial condition,
otherwise a white dot is painted. (a) the white region represents the basin of attraction of the Nash
equilibrium, which is the only attractor at �nite distance for that set of parameters; (b) the attractor
at �nite distance is given by a chaotic attractor surrounding the unstable Nash equilibrium.

In �g. 120a the attractor at �nite distance is the Nash equilibrium E�, and its basin of attraction is
represented by the white area, whereas the grey-shaded area represents the basin of in�nity. In the
situation shown in �g. 120a the boundary separating B(A) from B(1) has a fractal structure, as will
be explained below. In �g. 120b the bounded attractor A is a chaotic set, with a multiply connected
(or connected with holes) basin of attraction. The same property can be expressed by saying that
B(1) is a non connected set, with non connected regions given by the holes inside B(A). In this
situation there is a great uncertainty about the long-run behavior of a given adjustment process, since
a small change in the initial strategy of the game may cause a crossing of F .

The frontier F = @ B(A) = @ B(1) behaves as a repelling line for the points near it, since it acts
as a watershed for the trajectories of the map T . Points belonging to F are mapped into F both under
forward and backward iteration of T, that is, the frontier is invariant for application of T and T�1.
More exactly T (F) � F , T�1 (F) = F . This implies that if a saddle-point, or a saddle-cycle, belongs
to F , then F must also contain all the preimages of such singularities, and it must also contain the
whole stable manifold W s. In order to understand how complex basin boundaries, like those shown
in �g. 120, are obtained, we start from a situation in which F has a simple shape, and then we
study the sequence of bifurcations that cause the main qualitative changes in the structure of the
basin boundaries as some parameter is varied. Such bifurcations, typical of noninvertible maps, can
be characterized by contacts of the basin boundaries with the critical curves.

Indeed, for the parameters�values used to obtain �g. 121, an exact determination of the boundaries
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separating the basin of E� from that of in�nity can be obtained. In fact the saddle �xed points (or the
saddle-cycles, if (93) or (94) no longer hold) located on the coordinate axes belong to F , and also the
invariant coordinate axes !1 and !2, which form the local stable manifold (or inset) of the saddles,
are part of F . These axes behave as repelling lines because the unstable manifolds (or outsets) of
the saddles are transverse to the axes, each of them having a branch pointing toward E� and the
opposite branch going to in�nity (see �g. 121). The other parts of F can be obtained by taking all
the preimages of these invariant axes, in order to obtain the whole stable sets of the saddles

F =
�
[1n=0T�n (!1)

�[�
[1n=0T�n (!2)

�
(119)

The map T , de�ned in (87), is a noninvertible map. In fact, if we consider a generic point P = (0; p)
of the q2 axis, its preimages are the real solutions of the algebraic system obtained from (87) with
(q

0
1; q

0
2) = (0; p): 8<:

q1 [1 + v1(a� c1)� 2bv1q1 � bv1q2] = 0

(1 + v2(a� c2)) q2 � 2bv2q22 � bv2q1q2 = p
(120)

From the �rst of (120) we obtain q1 = 0 or

1 + v1(a� c1)� 2bv1q1 � bv1q2 = 0 (121)

which means that if the point P has preimages, then they must be located either on the same invariant
axis or on the line of equation (121). With q1 = 0 the second equation becomes a second degree
algebraic equation which has two distinct, coincident or no real solutions if the discriminant

(1 + v2 (a� c2))2 � 8bv2p (122)

is positive, zero or negative respectively. A similar conclusion holds if (121) is used to eliminate a
state variable in the �rst equation of (120). From this we can deduce that the generic point P of the
q2 axis can have no preimages or two preimages on the same axis (which are the same obtained by
the restriction (116) of T to the axis q2) or four preimages, two on the same axis and two on the line
of equation (121). This implies that the set of the rank-one preimages of the q2 axis belongs to the
same axis and to the line (121). Following the same arguments we can state that the other invariant
axis, q1, has preimages on itself and on the line of equation

1 + v2(a� c2)� bv2q1 � 2bv2q2 = 0 : (123)

It is straightforward to see that the origin O = (0; 0) has always 4 preimages: O(0)�1 = (0; 0); O
(1)
�1 =

(q
o�1
1 ; 0); O

(2)
�1 = (0; q

o�1
2 ), where qo�1j ; j = 1; 2; are given by qo�1j =

1+vj(a�cj)
2bvj

(conjugate to the point

x = 1 of the standard logistic) and O(3)�1 = (q�1 +
2v2�v1
3bv1v2

; q�2 +
2v1�v2
3bv1v2

), located at the intersection of
the lines (121) and (123) (see �g. 121). In the situation, shown in �g. 121, the lines (121) and
(123), labelled by !�12 and !�11 respectively, together with the coordinate axes, labelled by !2 and !1,
delimitate a bounded region of the strategy space (q1; q2) which is exactly the basin of attraction of
E�.

These four sides, given by the segments OO(1)�1 and OO
(2)
�1 of the coordinate axes and their rank-one

preimages, constitute the whole boundary F because no preimages of higher rank exist, since !1�1 and
!2�1 belong to the region Z0 of the plane whose points (q

0
1; q

0
2) have no preimages, i.e. the fourth degree
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Figure 121: With c1 = 3 c2 = 5 a = 10, b = 0:5, v1 = 0:24, v2 = 0:48, the boundary of the basin
of attraction of the Nash equilibrium E� is formed by the invariant axes, denoted by !1 and !2, and
their rank-1 preimages !�11 and !�12 . For this set of parameters the boundary �xed point E1 is a
saddle point with local stable manifold along the q1 axis, E2 is a repelling node with a saddle cycle of
period two around it, since v2 > 2

a�c2

algebraic system has no real solutions. This fact can be characterized through the study of the critical
curves of the noninvertible map (87). As we have seen, since the map T is continuously di¤erentiable,
the critical curve LC�1 is the locus of points in which the determinant of J(q1; q2), given in (90),
vanishes, and the critical curve LC, locus of points having two coincident rank-one preimages, can be
obtained as the image, under T , of LC�1. For the map (87) LC�1 is formed by the two branches of an
hyperbola, denoted by LC(a)�1 and LC

(b)
�1 in �g.122, thus also LC = T (LC�1) consists of two branches,

LC(a) = T (LC
(a)
�1 ) and LC

(b) = T (LC
(b)
�1), represented by the thicker curves of �g.122a. These two

branches of LC separate the phase plane into 3 regions, denoted by Z0, Z2 and Z4, whose points have
0, 2 and 4 distinct rank-1 preimages respectively. It can be noticed that, as already stressed above,
the origin always belongs to the region Z4. It can also be noticed that the line LC�1 intersects the
axis qj ; j = 1; 2; in correspondence of the critical point c�1 of the restriction (116) of T to that axis.

The simple shape that the frontier F assumes for values of the parameters like those used in �g.122a,
where the basin of attraction of E� is a simply connected set, is due to the fact that the preimages of
the invariant axes, denoted in �g.122a by !�1i , i = 1; 2, are entirely included inside the region Z0, so
that no preimages of higher rank exist. The situation is di¤erent when the values of the parameters
are such that some portions of these lines belong to the regions Z2 or Z4. In this case preimages of
higher order of the invariant coordinate axes are obtained, which form new arcs of the frontier F , so
that its shape becomes more complex. The switch between these two qualitatively di¤erent situations
can be obtained by a continuous variation of some parameters of the model, and determines a global
(or contact) bifurcation. The occurrence of these global bifurcations can be revealed by the study of
critical curves. In order to illustrate this, in the following of this section we �x the marginal costs and
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Figure 122: Graphical representation of the basin of attraction of the Nash equilibrium (white region)
and the basin B (1) of unbounded trajectories (grey region) together with the basic critical curve
LC�1, formed by the two branches of an equilateral hyperbola, and of critical curve LC (represented
by heavy lines). The values of parameters c1; c2; a; b are the same as in �g.120, with (a) v1 = 0:24
and v2 = 0:55 ; (b) v1 = 0:24 and v2 = 0:596 (just after the contact of LC with !�11 ).

the parameters of the demand function at the parameters�values c1 = 3; c2 = 5; a = 10; b = 1
2 , and

we vary the values of the speeds of adjustment v1 and v2. If, starting from the parameters�values
used to obtain the simple basin structure of �g. 122a, the parameter v2 is increased, the two branches
of the critical curve LC move upwards. The �rst global bifurcation of the basin occurs when the
branch of LC which separates the regions Z0 and Z2 becomes tangent to F , that is, to one of the lines
(123) or (121). In �g.122b it can be seen that just after the bifurcation value of v2, at which LC(b)

is tangent to the line !�11 of equation (123), a portion of B (1), say H0 (bounded by the segment h
of !�11 and LC) that before the bifurcation was in region Z0, enters inside Z2. The points belonging
to H0 have two distinct preimages, located at opposite sides with respect to the line LC�1, with the
exception of the points of the curve LC(b) inside B (1) whose preimages, according to the de�nition
of LC, merge on LC(b)�1. Since H0 is part of B (1) also its preimages belong to B (1). The locus of the
rank-1 preimages of H0, bounded by the two preimages of h, is composed by two areas joining along
LC�1 and forms a hole (or lake) of B (1) nested inside B (E�). This is the largest hole appearing in
�g.122b, and is called the main hole. It lies entirely inside region Z2, hence it has 2 preimages, which
are smaller holes bounded by preimages of rank 3 of the q1 axis. Even these are both inside Z2. So
each of them has two further preimages inside Z2, and so on. Now the boundary F is given by the
union of an external part, formed by the coordinate axes and their rank-1 preimages (123) and (121),
and the boundaries of the holes, which are sets of preimages of higher rank of the q1 axis. Thus the
global bifurcation just described transforms a simply connected basin into a multiply connected one,
with a countable in�nity of holes, called arborescent sequence of holes, inside it.

As v2 is further increased LC continues to move upwards and the holes become larger. This fact
causes a sort of predictability loss, since a greater uncertainty is obtained with respect to the destiny
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of games starting from an initial strategy falling in zone of the holes. If v2 is further increased a second
global bifurcation occurs when LC crosses the q2 axis at O

(2)
�1. This happens when the condition (??)

holds, that is v2 = 3
a�c2 , as in �g.123a. After this bifurcation all the holes reach the coordinate axis q2,

and the in�nite contact zones are the intervals of divergence of the restriction (116), which are located
around the critical point and all its preimages under (116) (compare �g. 123a with �g.87). After this
bifurcation the basin B (E�) becomes simply connected again, but its boundary F has now a fractal
structure, since its shape, formed by in�nitely many peninsulas, has the self-similarity property.

The sequence of pictures shown in �g.123 is obtained with v1 = 0:24 (as in �g.122) and increasing
values of v2. Along this sequence the point (v1; v2) reaches, in the plane of adjustment speeds, the
line of �ip bifurcations. When this line is crossed the Nash equilibrium E� becomes a repelling saddle
point, and an attracting cycle of period 2, say C2, is created near it (as in �g.123b). The �ip bifurcation
opens a cascade of period doublings, which creates a sequence of attracting cycles of period 2n followed
by the creation of chaotic attractors, which may be cyclic chaotic areas, like the 2-cyclic one shown in
�g.123c, or a unique chaotic area like that of �g.123d.

If v2 is further increased, new holes appear, like the one denoted by K in �g.123c. These are
formed by the rank-1 preimages of portions of B (1) which cross LC(a) passing from Z2 to Z4, like
those evidenced in �gures 123c,d. Even in this case the holes are created after a contact between LC
and F , but, di¤erently from the hole H�1, the hole K does not generate an arborescent sequence of
holes since it has no preimages, belonging entirely to the region Z0.

In �g.123d the chaotic area collides with the boundary of B (1) causing the �nal bifurcation,
leading to the destruction of the attractor. After this contact bifurcation the generic initial strategy
generates an unbounded trajectory, that is, the adjustment process is not able to approach the Nash
equilibrium, independently of the initial strategy of the duopoly game
It is worth to note that in general there are no relations between the bifurcations which change the
qualitative properties of the basins and those which change the qualitative properties of the attractor
at �nite distance. In other words, we may have a simple attractor, like a �xed point or a cycle, with
a very complex basin structure, or a complex attractor with a simple basin. Both these sequences of
bifurcations, obtained by increasing the speeds of adjustment vi, cause a loss of predictability. After
the local bifurcations the myopic duopoly game no longer converges to the global optimal strategy,
represented by the Nash equilibrium E�, and even if the game starts from an initial strategy very
close to E� the duopoly system goes towards a di¤erent attractor, which may be periodic or aperiodic.
These bifurcations cause in general a loss of predictability about the asymptotic behavior of the
duopoly system: for example, in the sequence shown in �g.123 the situation of convergence to the
unique Nash equilibrium, like in the static Cournot game, is replaced by asymptotic convergence to a
periodic cycle, with predictable output levels, and then by a cyclic behavior with output levels which
are not well predictable since fall inside cyclic chaotic areas, and, �nally, a situation of erratic behavior,
inside a large area of the strategy space, with no apparent periodicity. Instead, the global bifurcations
of the basin boundaries cause an increasing uncertainty with respect to the destiny of a duopoly game
starting from a given initial strategy, since a small change in the initial condition of the duopoly, or
a small exogenous shock during the adjustment process, may cause a great modi�cation about the
long-run behavior of the system. Similar bifurcation sequences can also be obtained by increasing the
parameter v1 with a �xed value of v2. In this case a contact between LC and !�12 , rank-one preimage
of the q2 axis, gives the �rst bifurcation that transforms the basin B (A) from a simply connected into
a multiply connected set, with holes near the q1 axis. Situations with values of v1 and v2 both near the
critical values vi = 3

a�ci ; i = 1; 2; can give complex basin boundaries near both the coordinate axes,
with two arborescent sequences of holes, generated by contacts of LC with the lines (121) and (123).
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Figure 123: Sequence of numerical simulations of the duopoly map, obtained with �xed parameters
c1 = 3, c2 = 5, a = 10, b = 0:5, v1 = 0:24, and increasing values of v2

In any case, the computation of the preimages of the coordinate axes allows us to obtain, according
to (119), the exact delimitation of the basin boundary also in these complex situations. For example,
in �g. 124 the preimages of the q1 axis, up to rank-six, are represented for the same set of parameters
as that used in �g. 120b. It can be noticed that some preimages of rank �ve and six bound holes that
enter the region Z4, thus giving a faster exponential growth of the number of higher order preimages.
This is the cause for the greater complexity of the basin boundary which is clearly visible in �g. 120b.

7.5.2 Global analysis of a marketing Model

Let us consider n �rms that sell homogeneous goods in a market with sales potential B in terms of
customers�market expenditures, and let Ai(t), i = 1; :::; n, denote the attraction of customers to �rm
i at time period t, where t 2 N represents an event-driven discrete time variable. The key assumption
in marketing literature is that the market share for �rm i at time t is given by

si(t) =
Ai(t)Pn
j=1Aj(t)

(124)

If xi denotes marketing spending of �rm i, we assume that attraction is given by

Ai = aix
�i
i

where the positive constants ai denote the relative e¤ectiveness of e¤ort expended by �rm i and the
parameters �i denote the elasticity of the attraction of �rm (or brand) i with regard to the marketing
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Figure 124: Preimages of the q1 axis, up to rank 6, obtained with the same set of parameters as those
used in �g. 120b

e¤ort, as dAidxi
xi
Ai
= �i. On the basis of these assumptions, the one-period net pro�t of �rm i is given

by

�i(t) = Bsi(t)� xi(t) = B
aix

�i
i (t)

aix
�i
i (t) +

P
j 6=i ajx

�j
j (t)

� xi(t) (125)

The dynamic marketing model is based on the assumption that the two competitors change their
marketing e¤orts adaptively in response to the pro�ts achieved in the previous period. In particular,
the marketing e¤orts in period t+ 1 are determined by

xi(t+ 1) = xi(t) + �ixi(t)�i(t) = xi(t) + �ixi(t)

0@B aix
�i
i (t)Pn

j=i ajx
�j
j (t)

� xi(t)

1A (126)

where (125) has been used. In this model the decision of the �rms is driven by pro�ts obtained in
the previous period with a type of anchoring and adjustment heuristic widely used in decision theory.
The parameters �i > 0 measure the speed of adjustment. Also in this case a wide spectrum of rich
dynamic scenarios is obtained, even in the case with n = 2.

Two exemplary cases are shown in Figure 125.
So, let us consider the model with two �rms, i.e. for n = 2, given by

T :

8>>>>>><>>>>>>:
x01 = x1 + �1x1

 
B

a1x
�1
1

a1x
�1
1 + a2x

�2
2

� x1

!

x02 = x2 + �2x2

 
B

a2x
�2
2

a1x
�1
1 + a2x

�2
2

� x2

! (127)
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Figure 125: Two dynamic scenarios for the model (126) with n = 2 identical �rms with di¤erent initial
conditions. The parameter values are B = 10, �1 = �2 = 0:514961, a1 = a2 = 1. Left: �1 = �2 = 0:05,
a two-cyclic chaotic attractor coexists with a stable cycle of period 2. Right: �1 = �2 = 1:136 two
chaotic attractors coexist in symmetric positions. The di¤erent colors represent the basins of attraction
of the coexisting attractors, represented by black dots, and the dark grey region represents the set of
initial conditions that generate diverging trajectories.

Its �xed points are the solutions of the system8>>>><>>>>:
x1

 
B

a1x
�1
1

a1x
�1
1 + a2x

�2
2

� x1

!
= 0

x2

 
B

a2x
�2
2

a1x
�1
1 + a2x

�2
2

� x2

!
= 0

(128)

There are three evident �boundary solutions�:

O = (0; 0) ; E1 = (B; 0) ; E2 = (0; B)

but O is not a �xed point because the map is not de�ned in it. There is also a positive �xed point,
given by the solution of the system8>>>><>>>>:

B
a1x

�1
1

a1x
�1
1 + a2x

�2
2

� x1 = 0

B
a2x

�2
2

a1x
�1
1 + a2x

�2
2

� x2 = 0
(130)

It is possible to see that one and only one solution exists given by

E� = (x�; B � x�) (131)
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with x� 2 (0; B) unique solution of the equation

F (x) =

�
a2
a1

�1=(1��2)

x
(1��1)=(1��2)

+ x�B = 0

obtained from (130) after some algebraic manipulations. In fact, F is a continuous function with
F (0) < 0, F (B) > 0 and F 0(x) > 0 for each x > 0. An analytic expression of the solution is obtained
in the case �1 = �2 = �, given by

x� =
B

1 +

�
a2
a1

� 1
(1��)

Moreover, under the further assumption a2=a1 = 1, i.e. in the case of identical �rms, we get

E� =

�
B

2
;
B

2

�
(133)

With a given set of parameters B, �1 and �2 the positive �xed point E
� is locally asymptotically stable

for su¢ ciently small values of the adjustment speeds �1 and �2 and, as usual in dynamic models with
adaptive adjustment, the �xed point E� loses stability as one or both of the adjustment speeds are
increased, after which more complex attractors are created around the unstable �xed point.

In the symmetric case of identical �rms, �1 = �2 and a1 = a2, the Jacobian matrix of (127)
computed at E� becomes

J(E�) =

0B@ 1� �B

2
(1� �=2) ��B�

4

��B�
4

1� �B

2
(1� �=2)

1CA (134)

hence the eigenvalues at the positive �xed point are �jj = 1�
1

2
�B, with eigendirection along � and

�? = 1�
1

2
�B(1� �) with eigendirection orthogonal to �. It is easy to see that the steady state E�

is locally asymptotically stable for �B < 4 and 0 < �B (1� �) < 4, however only the �rst condition
is important as only values of �i 2 (0; 1] are meaningful in applications

The map (127) is noninvertible, because computing the points (x; y) in terms of a given (x0; y0) in
(127) by solving the system 8>><>>:

x
�
1 + �1B

x�1

x�1+ky�2
� �1x

�
= x0

y
�
1 + �2B

ky�2

x�1+ky�2
� �2y

�
= y0

(135)

we can have more than one solution. In fact, if we compute the preimages of the origin, by solving the
system (135) with x0 = 0 and y0 = 0, we obtain: 0(1)�1 = (

1+�1B
�1

; 0); 0(2)�1 = (0;
1+�2B
�2

) and 0(3)�1 located
at the intersection of the two curves !�11 and !�12 , which we will introduce later (see �g. 4b).

On the other hand, there are no preimages for points that are su¢ ciently far from the origin. In

fact, if x0 > (1+�1B)
2

4�1
or y0 > (1+�2B)

2

4�2
then the system (135) has no real solutions, because from

the inequality x�1

x�1+ky�2
< 1 it follows that x

�
1 + �1B

x�1

x�1+ky�2
� �1x

�
< x (1 + �1(B � x)). This is
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a concave quadratic function with maximum value (1+�1B)
2

4�1
. Hence the left hand side of the �rst

of (135) is always less than or equal to (1+�1B)
2

4�1
. Analogously from ky�2

x�1+ky�2
< 1 it follows that

y
�
1 + �2B

ky�2

x�1+ky�2
� �2y

�
< y (1 + �2(B � y)) � (1+�2B)

2

4�2
.

The critical curves, given by the locus of points for which det J(x; y) = 0 according to (111), is
given by the union of two branches, denoted by LC(a)�1 and LC

(b)
�1 in �g. 126a. Also LC is the union

of two branches, denoted by LC(a) = T (LC
(a)
�1 ) and LC

(b) = T (LC
(b)
�1) (�g.126b): LC

(b) separates the
region Z0, whose points have no preimages, from the region Z2, whose points have two distinct rank-1
preimages; LC(a) separates the region Z2 from Z4, whose points have four distinct preimages.

Figure 126: (a) LC�1, obtained as the locus of points such that detJ(x; y)) = 0. (b) Critical curves
LC = T (LC�1). These curves separate the plane into three regions, denoted by Z4, Z2 and Z0 whose
points have four, two or no rank-1 preimages respectively.

An important feature of the map (127) is that the two coordinate axes are invariant lines, since
T (x; 0) = (x0; 0) and T (0; y) = (0; y0). The dynamics of (127) along the x axis are governed by the
one-dimensional map x0 = f1(x), where f1 is the restriction of T to the x axis, given by

f1(x) = (1 + �1B)x� �1x2: (136)

Since the situation is symmetric, the dynamics along the y axis are governed by the one-dimensional
map y0 = f2(y), where f2 is obtained from (136) simply by replacing x with y and swapping index 1
with index 2. The maps fi, i = 1; 2, are conjugated to the standard logistic maps z0 = �iz(1 � z),
i = 1; 2, where the parameters �i are given by

�i = 1 + �iB i = 1; 2 (137)

the homeomorphisms being given by x = 1+�1B
�1

z and y = 1+�2B
�2

z respectively. Thus, the properties of
the trajectories embedded in the invariant axes can be easily deduced from the well-known properties
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of the standard logistic map
z0 = f(z) = �z(1� z); (138)

In the following we denote by B the feasible set, de�ned as the set of points which generate feasible
trajectories. A feasible trajectory may converge to the positive steady state E�, to other more complex
attractors inside B or to a one-dimensional invariant set embedded inside a coordinate axis (the last
occurrence means that one of the two brands disappears). Trajectories starting outside of the set B
represent exploding (or collapsing) evolutions of the economic system. This can be interpreted by
saying that the adjustment mechanism is not suitable to model the time evolution of a system starting
outside of the set B.

The invariant coordinate axes are transversely repelling, i.e. they act as repelling sets with respect
to trajectories approaching them from the interior of the nonnegative orthant. Moreover, for the
parameters used in our simulations, we have observed only one attractor inside B, although more
than one coexisting attractors may exist, each with its own basin of attraction. On the basis of such
numerical evidence, in what follows we will often speak of a unique bounded and positive attracting
set, denoted by A, which attracts the generic feasible trajectory, even if its existence and uniqueness
are not rigorously proved.

Let @B be the boundary of B. Such a boundary can have a simple shape, as in the situation shown
in �g. 127a, where the attractor A is the �xed point E� and B is represented by the white region, or
a more complex structure, as in �g. 127d.

To understand the global bifurcations leading to more and more complex boundaries of the basins,
let us �rst consider the dynamics of T restricted to the invariant axes. From the one-dimensional
restriction f1 de�ned in (136), conjugated to the logistic map (138), we can deduce that bounded
trajectories along the invariant x axis are obtained when �1B � 3 (corresponding to �1 � 4 in (137)),
provided that the initial conditions are taken inside the segment !1 = OO

(1)
�1, where O

(1)
�1 is the rank-1

preimage of the origin O computed according to the restriction f1 (see �g.127b), i.e.

O
(1)
�1 =

�
1 + �1B

�1
; 0

�
: (139)

Divergent trajectories along the x axis are obtained starting from an initial condition out of the
segment !1. Analogously, when �2B � 3, bounded trajectories along the invariant y axis are obtained
provided that the initial conditions are taken inside the segment !2 = OO

(2)
�1, where O

(2)
�1 is the rank-1

preimage of the origin computed according to the restriction f2, i.e.

O
(2)
�1 =

�
0;
1 + �2B

�2

�
: (140)

Also in this case, divergent trajectories along the y axis are obtained starting from an initial condition
out of the segment !2.

Consider now the region bounded by the segments !1 and !2 and their rank-1 preimages !�11 =
T�1 (!1) and !�12 = T�1 (!2). Such preimages can be analytically computed as follows. Let X = (p; 0)
be a point of !1, i.e. 0 < p < 1+�1B

�1
. Its preimages are the real solutions of the algebraic system

obtained from (135) with (x0; y0) = (p; 0):8>><>>:
x
�
1 + �1B

x�1

x�1+ky�2
� �1x

�
= p

y
�
1 + �2B

ky�2

x�1+ky�2
� �2y

�
= 0

(141)
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It is easy to see that the preimages of the point X are either located on the same invariant axis
y = 0 (in the points whose coordinates are the solutions of the equation f1(x) = p) or on the curve of
equation

x =

�
ky�2

�
�2B � �2y + 1

�2y � 1

�� 1
�1

: (142)

Analogously, the preimages of a point Y = (0; q) of !2, i.e. 0 < q < 1+�2B
�2

, belong to the same
invariant axis x = 0, in the points whose coordinates are the solutions of the equation f2(y) = q, or
lie on the curve of equation

y =

�
x�1

k

�
�1B � �1x+ 1

�1x� 1

�� 1
�2

: (143)

It is straightforward to see that the curve (142) intersects the y axis in the point O(2)�1 given in (140),

the curve (143) intersects the x axis in the point O(1)�1 given in (139), and the two curves (142) and (143)

intersect at a point O(3)�1 interior to the positive orthant (see �g. 4b). As noted before, O
(3)
�1 is another

rank-1 preimage of the origin. These four preimages of the origin are the vertexes of a �quadrilateral�
OO

(1)
�1O

(3)
�1O

(2)
�1, whose sides are !1, !2 and their rank-1 preimages located on the curves of equation

(142) and (143), denoted by !�11 and !�12 in �g.127b. All the points outside this quadrilateral cannot
generate feasible trajectories. In fact the points located on the right of !�12 are mapped into points
with negative x coordinate after one iteration, as can be easily deduced from the �rst line of (112), and
the points located above !�11 are mapped into points with negative y coordinate after one iteration,
as can be deduced from the second line of (135).
The boundary of B is given, in general, by the union of all the preimages, of any rank, of the segments
!1 and !2:

@B(1) =
� 1S
n=0

T�n (!1)

�[� 1S
n=0

T�n (!2)

�
: (144)

As long as �1B � 3 and �2B � 3 the boundary of B has the simple shape shown in �g. 127b. In this
situation (obtained with the same parameter values as in �g.127a) the quadrilateral OO(1)�1O

(3)
�1O

(2)
�1

constitutes the whole boundary @B, because no preimages of higher rank of !1 and !2 exist. This is
due to the fact that !�11 and !�12 are entirely included inside the region Z0 of the plane whose points
have no preimages.

The situation is di¤erent when the values of the parameters are such that some portions of these
curves belong to the regions Z2 or Z4 whose points have two or four preimages respectively. In this
case preimages of higher order of !1 and !2 exist, say !�k1 and !�k2 , which form new portions of @B.
Such preimages of !1 and !2 of rank k > 1 bound regions whose points are mapped out of the region
B after k iterations, just as we have shown for the standard logistic map (138) with parameter � > 4,
i.e. after the contact between the critical point c = �=4 and the boundary of the basin of in�nity at
O�1 = 1. This implies that the shape of the boundary of B becomes more complex.

In analogy with the one-dimensional case, also in the two-dimensional case the bifurcations of the
basins are characterized by contacts between the basins boundaries and the critical curve LC. If �1
or �2 are increased so that the bifurcation value �b = 3=B (which coincides with � = 4 in (138)) is
crossed by at least one of them, then @B is changed from smooth to fractal. This transition between
qualitatively di¤erent structures of the boundaries of the region B, as some parameters are varied,
constitutes a global bifurcation, occurring at �i = �b, i = 1; 2, that can be characterized by a contact
between @B and arcs of the critical curves, as described below.
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Figure 127: Contact bifurcations leading to the creation of fractal basins�boundaries.

We �x the parameters B, k, �1, �2 and �1 and vary the speed of adjustment �2. As �2 is increased,
the branch LC(b) of the critical curve that separates Z0 from Z2 moves upwards, and at �2 = 3=B it
has a contact with !�11 at the point O(2)�1. After this contact the sides !2 and !

�1
2 of @B are transformed

from smooth to fractal. In fact, for �2 > 3=B, just after the bifurcation, a segment of !�11 enters the
region Z2, so that a portion S1 of the complement of B, bounded by LC(b) and !�11 (see �g.127c), now

has two preimages. These two preimages, say S(1)0 and S(2)0 , merge in points of LC(b)�1 (as the points

of LC(b) have two merging preimages belonging to LC(b)�1) and form a �grey tongue�issuing from the

y axis (denoted by S0 in �g. 6b, being S0 = S
(1)
0 [ S(2)0 ). S0 belongs to the �grey set�of points that

generate non feasible trajectories because the points of S0 are mapped into S1, so that negative values
are obtained after two iterations. The intersection of this �main tongue�S0 with the y axis is given
by the neighborhood I0 of the critical point of the restriction f2, i.e. the �main hole�of the logistic
with � > 4 (see �g.87).

This is only the �rst of in�nitely many preimages of S1. Preimages of S1 of higher rank form a
sequence of smaller and smaller grey tongues issuing from the y axis, whose intersection with the y
axis correspond to the in�nitely many preimages I�k of the main hole I0 (see again �g.87). Only some
of them are visible in �g.127c, but smaller tongues become numerically visible by enlargements, as it
usually happens with fractal curves.
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In the situation shown in �g.127c the main tongue S0 has a wide portion in the region Z4, hence,
besides the two preimages along the y axis (denoted by S(1)�1 and S

(2)
�1 in �g.127c) issuing from the

intervals I(1)�1 and I
(2)
�1 , two more preimages exist (denoted by S

(3)
�1 and S

(4)
�1 in �g.127c) issuing from

!�12 and located at opposite sides with respect to LC(a)�1 . The tongues S
(3)
�1 and S

(4)
�1 belong to Z0,

hence they do not give rise to new sequences of tongues, whereas S(1)�1 and S
(2)
�1 have further preimages,

being located inside Z4 and Z2 respectively. If the preimages are two, as in the case of S
(2)
�1 , they form

two tongues issuing from the y axis, whereas in the case of four preimages, as in the case of S(1)�1 , two
of them are tongues issuing from the y axis and two are tongues issuing from the opposite side, i.e.
!�12 .

As �2 is further increased, LC(b) moves upwards, the portion S1 enlarges and, consequently, all its
preimages (i.e. the in�nitely many tongues) enlarge and become more pronounced. This causes the
occurrence of another global bifurcation, that changes the set B from simply connected to multiply
connected (or connected with holes). This bifurcation occurs whenever a tongue, belonging to Z2, has
a contact with LC(a) and enters the region Z4. If the contact occurs out of the y axis, it causes the
creation of a pair of new preimages, merging along LC(a)�1 , whose union is a hole (or lake) inside B,
i.e. a set of points that generate non feasible trajectories surrounded by points of B. This can be seen
in �g.127d, where the hole H0 is the preimage of the portion H1, inside Z4, of a tongue that crossed
LC(a).

To sum up, the transformation of the set B from a simply connected region with smooth boundaries
into a multiply connected set with fractal boundaries occurs through two types of global bifurcations,
both due to contacts between @B and branches of the critical set LC.

As it can be noticed from the sequence of �gures127, obtained with increasing values of the pa-
rameter �2, also the attractor A existing inside B changes its structure. For low values of �2, as in
�g.127a, the attractor is the �xed point E�, to which all the trajectories starting inside the set B
converge. As �2 increases, E� loses stability through a �ip (or period doubling) bifurcation at which
E� becomes a saddle point, and an attracting cycle of period 2 is created near it. As �2 is further
increased, also the cycle of period two undergoes a �ip bifurcation at which an attracting cycle of
period 4 is created, which becomes the unique attractor inside B, as in �g. 4c. In this case the
generic20 trajectory starting inside B converges to the 4-cycle, so that B can be identi�ed with its
basin of attraction for any practical purpose. These �ip bifurcations are followed by a sequence of
period doublings which creates a sequence of attracting cycles of period 2n followed by the creation of
chaotic attractors, which may be cyclic chaotic sets or a connected chaotic set.

Of course, the same sequence of local and global bifurcations occurs if the other speed of adjust-
ment, �1, is increased. The only di¤erence is that at the bifurcation value �1 = �b = 3=B the contact
between @B and LC occurs at the point O(1)�1 and consequently the in�nitely many tongues with fractal
structure are created along the segment !1 of the x axis. Preimages of some of these tongues, those
belonging to Z4, appear along the opposite side !�11 of the quadrilateral.

If both the speeds of adjustment �1 and �2 are greater than the bifurcation value �b = 3=B,
tongues appear along all the four sides of the quadrilateral OO(1)�1O

(3)
�1O

(2)
�1, as it can be seen in the

numerical simulation shown in �g.128.

20Not all the points of B generate trajectories converging to the 4-cycle because we must exclude the invariant sets, like
the repelling �xed point E� as well as the points of the repelling 2-cycle whose �ip bifurcation generated the attracting
4-cycle, and their stable sets. However, the subset of points in B which do not converge to the 4-cycle is a set of measure
zero, and this justi�es the term �generic�.
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In �g.128 the attractor A inside the set B is a 2-cyclic chaotic attractor. In this situation the long
run behavior of the system is characterized by cyclical behavior of order two, but at each time period
the exact state cannot be predicted.

As we have described in section 7.4.3, even in the analysis of the boundaries of the chaotic attractors
the critical curves are quite helpful. In fact, in analogy to the critical points of the one-dimensional
maps, that together with their images determine the boundaries of the chaotic intervals (as recalled in
section 6.4 for the logistic map) the critical curve LC and its images can be used to bound invariant
absorbing areas, which include the two-dimensional chaotic attractors of noninvertible maps. In two-
dimensional maps the notion of chaotic area generalizes that of chaotic intervals, and the critical curves,
that constitute the generalization of the concept of critical points (local minimum and maximum
points), are expected to play a similar role in determining the boundaries of the chaotic areas. We
recall that a chaotic area A of the map T is an invariant set of T , i.e. T (A) � A, which includes a
chaotic set (a set that includes in�nitely many and dense repelling periodic points and an aperiodic
trajectory that densely covers the set). Numerically computed trajectories seem to cover the area, as
shown in �g.128. Often the boundaries of A can be obtained by following the procedure, described in
7.4.3, that starts from the portion 
 = A \ LC�1 and then for a suitable integer m

@A �
m[
k=1

T k(
) (145)

An example is shown in the right panel of �g.128, where the boundary of the 2-cyclic chaotic area
shown in the left panel is obtained by the images, up to rank 7, of the portion 
 of LC�1. In other
words, the exact boundary of the chaotic attractor can be obtained by (145) with m = 7. It is worth
noticing that the critical curves of increasing rank not only give the boundary of a chaotic attractor,
but also the regions of greater density of points, i.e. the regions that are more frequently visited by
the points of the generic trajectory in the invariant area A.

8 Repeated and evolutionary games as dynamical systems

Games played by rational players with complete information sets are typically one-shot games: each
player knows the complete payo¤s�structure of the game and that other players are rational as well so
that, having complete information, each player is able to forecast the choices of other players. Thus,
the game is studied identifying the so-called "solution concepts", such as Nash equilibria. In fact, if
each player is assumed to have all such information and computational skills to solve the optimization
problem obtained by means of the rationality assumption (expressed as maximization of individual
utility) then everybody will choose a Nash equilibrium. However, agents are sometimes not so astute
nor informed, and they behave following adaptive methods, such as learning-by-doing or trial-and-
error practices. Sometimes agents do not optimize at all, just following rough rules of thumb. This
leads players to replace one-shot optimal decisions with repeated myopic or adaptive decisions, in
other words to a dynamic process that may or may not converge to a Nash equilibrium, provided it
is an equilibrium point of the dynamical system as well. Moreover, when a game has several Nash
equilibrium points represented by equilibrium points of the dynamical system, then the step-by-step
dynamic process may act as a selection device, i.e. the stability of the equilibria suggests which of
them will prevail in the long-run. And if several equilibrium points are stable, then the study of their
basins of attraction will give information about the path dependence, i.e. how the convergence will
depend on historical accidents (represented by exogenous shifts of initial conditions).
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Figure 128: Left: A 2-cyclic chaotic attractor to which the generic feasible trajectory converges. Right:
Boundary of the attractor obtained by arcs of critical curves LC, LC1, ..., LC6, according to (145)
with m = 7.

However, a very remarkable result regards whether a repeated boundedly rational (or trial-and-
error) decision leads to an adaptive (or myopic) process that converges, in the long run, to the same
�optimal� equilibrium chosen in one shot by rational and informed players, who know the methods
of game theory and possess high computational abilities. In fact, such boundedly rational players,
whose behaviour is much more similar to real (imperfect) people, play the game repeatedly over time
until they reach a situation where there is no further room for improvement. Their �nal behaviour
will be as though they perfectly know any game theory book. An external observer may conclude
that some invisible hand led them to the �optimal�outcome. But nobody suggested them how reach
it. It just emerged spontaneously, as a result emerged by itself from repeated trial-and-error steps.
Sometimes economists call myopic or short sighted these agents, as they decide according to what is
under their noses. To sum up, this may be seen as an evolutionary explanation of the outcome of a
Nash equilibrium.

However, sometimes such repeated adaptive processes never converge, and continue to move around
an equilibrium point following some periodic or chaotic time patterns. Or they may even irreversibly
depart from it and even diverge. Such evolutions can be expressed by saying that players are not able
to learn how to play a Nash equilibrium, and some global analysis may be required to understand the
kind of time evolutions that characterize the long run behaviour of the repeated game.

Two examples have been considered in sections 7.3.2 and 7.3.3, where the two players (�rms in
a duopoly) are not aware of the global demand function that characterizes the market where they
operate, and repeatedly play the game following a pro�t increasing myopic "rule of thumb" based
on the local knowledge of pro�t gradient. Any Nash equilibrium of the game is a �xed point of the
dynamical system, so that the repeated game becomes a dynamic process that may converge or not
to a Nash equilibrium (see sections 7.3.2 and 7.3.3).
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Some other examples are shown in the following, starting from the Cournot duopoly game intro-
duced in section 6.

8.1 Cournot games with rational players

Let us consider again the classical Cournot oligopoly model (47). A market with N �rms, producing
homogeneous goods with outputs qi, i = 1:::N , is characterized by an inverse demand p = D�1(Q) =

f(Q), where Q =
NX
i=1

qi. Let Ci(qi), i = 1; :::; N , be the cost functions. At time t each �rm i chooses

its next period production qi(t+ 1) according to the optimization problem

qi(t+ 1) = arg max
qi(t+1)

�i (t+ 1) = argmax
qi
[f
�
qi + q

e
�i (t+ 1)

�
qi � Ci (qi)]:

where by q�i =
P
j 6=i qj we indicate the aggregate production of �rms other than i, so that Q = qi+q�i.

Accordingly, by the notation qe�i (t+ 1) we denote the aggregate production of other players that player
i expects at time t+1 according to the information that she has at time t. So, the computation of an
optimal production choice in one-shot requires that each �rm has:

(i) Knowledge of the demand function p = f(Q);

(ii) Knowledge of its own cost function Ci(qi);

(iii) Perfect foresight about competitors�production choices qe�i(t+ 1) = q�i(t+ 1);

(iv) Computational skill to solve the optimization problem.

With this information set, each �rm will compute its Best Reply, implicitly de�ned by the �rst
order (necessary) conditions @�i@qi

= 0, that give

@�i
@qi

= qif
0
(qi +Qi(t+ 1)) + f (qi +Qi(t+ 1)) +

@Ci (qi; q�i(t+ 1))

@qi
= 0 i = 1; :::; n (146)

together with (su¢ cient) second order conditions @2�i
@q2i

> 0. In some cases, a unique and explicit

solution of (146) can be obtained, expressed by the reaction functions

qi(t+ 1) = Ri (q�i(t+ 1)) i = 1; :::; n (147)

The solutions of the n equations with n unknowns qi = Ri (q�i), i = 1; :::; n, give the Nash Equilibrium
points, located (according to the usual de�nition) at the intersections of the reaction functions (where
each �rm plays its best response to the other players�best response strategies).

Some examples of reaction curves and Nash equilibria at their intersections have been given in
section 6, see (48) and (49). The corresponding graphs are shown in �g. 129.

If linear demand f(Q) = a� bQ and quadratic costs Ci(qi) = ciqi + eiq
2
i are considered, the pro�t

function of �rm i becomes �i(t) = (a � b(q1 + q2))qi(t) � (ciqi + eiq
2
i ) and the �rst order conditions

@�i
@qi

= 0 become a� 2(b+ e1)qi � bqj � ci = 0, from which the reaction functions:

q1 = R1(q2) = max

�
� b

2 (b+ e1)
q2 +

a� c1
2 (b+ e1)

; 0

�
(148)

q2 = R2(q1) = max

�
� b

2 (b+ e2)
q1 +

a� c2
2 (b+ e2)

; 0

�
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Figure 129: Schematic representation of Best Reply (or Reaction) curves

where the max operator is inserted to avoid meaningless negative output decisions (negative optimal
values are interpreted as no-production decision). As it can be seen in �g.131, where the two reaction
functions are represented, besides the positive Nash equilibrium

E =

�
2 (b+ e2) (a� c1)� b (a� c2)

4 (b+ e1) (b+ e2)� b2
;
2 (b+ e1) (a� c2)� b (a� c1)

4 (b+ e1) (b+ e2)� b2

�
(149)

in the case b2 > 4 (b+ e1) (b+ e2), i.e. slope of R2 more negative than slope of R1, two further Nash
equilibria exist at the three intersections of the reaction curves located along the coordinate axes, that
can be denoted as "monopoly" Nash equilibria

E1 =

�
a� c1
2 (b+ e1)

; 0

�
, E2 =

�
0;

a� c2
2 (b+ e2)

�
(150)

8.2 Bounded rationality and incomplete information

In this section we weaken the degree of rationality (or, better, the information degree) of players in
the Cournot game. Let us �rst relax the assumption of perfect foresight about the expected aggregate
production choice of other players, and replace it by assuming naive expectations

qe�i(t+ 1) = q�i(t) (151)

that is, in the absence of information about competitors�production decisions, each player assumes
that competitors will produce in the next time period the same output as in the current period. Best
Reply dynamics with naive expectations becomes a discrete dynamical system

qi(t+ 1) = Ri (q�i(t)) (152)
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Figure 130: Left: Reaction curves (48). Rigth: Reaction curves (49)

In the case of linear demand and linear cost functions the dynamical system assumes the form of the
linear dynamical system (48) 8<:

q1(t+ 1) = �1
2q2(t) +

a�c1
2b

q2(t+ 1) = �1
2q1(t) +

a�c2
2b

where the unique equilibrium

E =

�
a+ c2 � 2c1

3b
;
a+ c1 � 2c2

3b

�
is positive provided that a+ c2�2c1 > 0 and a+ c1�2c2 > 0, two inequalities that de�ne a nonempty
set in the space of marginal costs (c1; c2) provided that c1 < a and c2 < a, the usual condition of
unitary production costs less that unitary price.

The equilibrium E is always globally asymptotically stable, as the eigenvalues of the linear model
are �1;2 = �1

2 . The eigenvector associated to �1 =
1
2 is v1 = (�1; 1) and with �2 = �

1
2 is v1 = (1; 1),

hence we have an oscillatory convergence with oscillations along (1; 1) direction (see �g.132).
Let us now consider the Cournot duopoly with isoelastic demand and naive expectations (49)8<: q1(t+ 1) = �q2(t) +

q
q2(t)
c1

q2(t+ 1) = �q1(t) +
q

q1(t)
c2

.
(153)

A unique Nash equilibrium exists, given by

E =

�
c2

(c1 + c2)2
;

c1
(c1 + c2)2

�
, (154)

whose local stability properties are given in terms of the ratio between the marginal costs c1=c2. First
of all, feasible (i.e. bounded and non negative) trajectories of the best reply dynamics are obtained
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Figure 131: Linear reaction functions for the Cournot duopoly model with linear demand and quadratic
cost.

provided that c1=c2 2 [4=25; 25=4] = [0:16; 6:25]. Moreover, the Nash equilibrium (154) is stable if
and only if c1=c2 2 (3 � 2

p
2; 3 + 2

p
2) ' (0:17; 5:83). See the left panel of �g. 133, where the white

region represents the basin of attraction of the stable Nash equilibrium and the grey region the set of
points that generate unfeasible trajectories. If c1=c2 exits this interval then the Nash equilibrium loses
stability via a period doubling bifurcation. Indeed, if c1=c2 falls outside the interval (3�2

p
2; 3+2

p
2)

then the asymptotic dynamics may converge at periodic cycles or even exhibit chaotic motion around
the Nash equilibrium, as shown in the right panel of �g. 133, where a chaotic trajectory is shown,
together with the reaction curves, obtained with c1 = 1 and c2 = 0:161.

In the former case we can say that Nash equilibrium is reached as a long run outcome of the
repeated game. This may be seen as an evolutionary explanation of the outcome of a NE. Instead, in
the latter case (characterized by a greater di¤erence between production costs) Nash equilibrium is
not reached in the long run, and players will never "learn to play" the Nash equilibrium.

In the case of several coexisting Nash equilibria, the repeated game may act as an equilibrium
selection device. For example, in the case of a Cournot duopoly game with linear demand, quadratic
costs and best reply dynamics with naive expectations, where the reaction functions (148) have been
obtained, the corresponding dynamical system is again linear

q1(t+ 1) = R1(q2(t)) = �
b

2 (b+ e1)
q2(t) +

a� c1
2 (b+ e1)

q2(t+ 1) = R2(q1(t)) = �
b

2 (b+ e2)
q1(t) +

a� c2
2 (b+ e2)

and the positive equilibrium (149) is stable if b2 < 4 (b+ e1) (b+ e2). Instead, if the opposite inequality
holds the positive equilibrium E is transformed from a stable to an unstable node, and the locally
diverging dynamics can converge to one of the monopoly equilibria (150) or to a stable cycle of period
2, characterized by alternating periods where both �rms produce monopoly quantities and both �rms
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Figure 132: Trajectories for the Cournot model with linear demand and linear cost.

stop producing. So, we get a situation of multistability, with three attractors each with its own basin
of attraction, as represented in �g.134 by di¤erent colors. In this case we have path dependence, as
the repeated adjustment process converges to di¤erent asymptotic behaviours according to the initial
conditions or, equivalently, according to possible �historical accidents�.

Naive expectation and adaptive adjustment towards Best Reply An interesting kind of
dynamic adjustment process, known as adaptive adjustment towards best reply, is obtained if an
anchoring attitude, or inertia, is added to the oligopoly model with best reply and naive expectations
(152)

qi(t+ 1) = (1� �i) qi(t) + �iRi (q�i(t)) ; 0 � � � 1 (155)

where i = 1; :::; n and the constants �i 2 [0; 1] represent the attitude of �rm i to adopt the best reply,
whereas (1� �i) is the anchoring attitude to maintain previous production decisions, i.e. a measure
of inertia. The model (155) is a generalization of (152) because it reduces to it for �i = 1, i = 1; :::; n,
whereas complete inertia of �rm i occurs if �i = 0, i.e. xi(t + 1) = xi(t). Moreover, the model (155)
has the same equilibria as the best reply model (153): in fact, from the condition qi(t+1) = qi(t) = q�

the equilibrium equation �i
�
q�i �Ri

�
q��i
��
= 0 is obtained.

For example, in the case of isoelastic demand and linear cost the dynamical system becomes

q01 = (1� �1) q1 + �1
�r

q2
c1
� q2

�
y0 = (1� �2) q2 + �2

�r
q1
c2
� q1

�
and from the study of the Jacobian matrix it can be see that even if the inertia parameters �i do not
have any in�uence on the localization of Nash equilibria, they have an important role in the stability
properties of the equilibrium points. In particular, it is easy to check that stability is always obtained
if both �i are su¢ ciently small.
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Figure 133: Reaction curves and Nash equlibrium for the Cournot duopoly model wit isoelastic de-
mand.

As a further Cournot duopoly model let us consider a case where the reaction curves are second
degree functions, in the form of standard logistic maps Ri(qj) = �iqj (1� qj). They can be obtained
by assuming a linear demand p = a�b(q1+q2) and cost functions with externalities: Ci = Ci(qi; qj) =
d+ aqi � b(1 + 2�)qiqj + 2b�qiq2j .21

The adaptive adjustment with inertia becomes:

q1(t+ 1) = (1� �1) q1(t) + �1�1q2(t) (1� q2(t)) (156)

q2(t+ 1) = (1� �2) q2(t) + �2�2q1(t) (1� q1(t))

As noticed above, this model reduces to the repeated game with best reply and naive expectations
if �1 = �2 = 1

q1(t+ 1) = �1q2(t) (1� q2(t))
q2(t+ 1) = �2q1(t) (1� q1(t))

and, due to the unimodal shape of the "logistic reaction curves", several coexisting stable Nash
equilibria can be obtained for certain sets of parameters, as well as other more complicated coexisting
attractors, such as stable cycles of chaotic attractors. An exemplary case is shown in �g. 135, where

21 see: Kopel, M., Simple and complex adjustment dynamics in Cournot duopoly models, Chaos, Solitons & Fractals
7 (12), 2031-2048.
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Figure 134: Nash equilibrium points and basins of attraction for the Cournot duopoly model with
linear demand and quadratic cost.

two stable Nash equilibria coexist with a stable cycle of period 2, each with its own basin of attraction.
The basins are multiply connected, i.e. besides the immediate basin several (really in�nitely many)
non connected portions exist that accumulate along the outer boundary of the phase space. As stressed
in section 7.4, such a situation can only occur in the case of noninvertible maps.

In order to reduce the number of parameters in our model, we will assume that �1 = �2 = �.
Under this assumption the �xed points can be analytically computed as follows. Two �xed points

always exist, given by O = (0; 0) and S =
�
1� 1

� ; 1�
1
�

�
. For � > 1, S represents a Nash equilibrium

of the duopoly game, at which the two �rms produce the same quantities. Moreover, two further Nash
equilibria, given by

E1 =

 
�+ 1 +

p
(�+ 1) (�� 3)
2�

;
�+ 1�

p
(�+ 1) (�� 3)
2�

!
(157)

and

E2 =

 
�+ 1�

p
(�+ 1) (�� 3)
2�

;
�+ 1 +

p
(�+ 1) (�� 3)
2�

!
; (158)

are created at � = 3, and for � > 3 they are located in symmetric positions with respect to the
diagonal � of equation q1 = q2. Each of them represents a Nash equilibrium, characterized by
di¤erent quantities produced by two �rms. In the presence of multiple Nash equilibria the problem of
equilibrium selection arises. The following result holds (see also �g.136)

Proposition (Local stability and bifurcations with homogeneous players). Let �1 =
�2 = � and �1 = �2 = �. Then
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Figure 135: Nash equilibrium points and basins of attraction for the Cournot duopoly model with
unimodal reaction functions.

(i) for 0 < � < 1 the �xed point O = (0; 0) is a stable node, for 1 < � < 2=� � 1 it is a saddle
point, with unstable set along � and local stable set which crosses through O perpendicular to �, and
for � > 2=�� 1 it is an unstable node;

(ii) for 1 < � < 3 the �xed point S = (1� 1=�; 1� 1=�) is a stable node, for 3 < � < 1 + 2=� it
is a saddle point, with local stable set along � and unstable set which crosses through S perpendicular
to �, and for � > 1 + 2=� it is an unstable node;

(iii) The �xed points Ei, i = 1; 2, given in (157) and (158), are created at � = 3 through a pitchfork

bifurcation of S, and are stable nodes for 3 < � < 1 +
p
5, stable foci for 1 +

p
5 < � < 1 +

q
4 + 2

�

and at � = 1 +
q
4 + 2

� they become unstable foci through a Neimark-Sacker bifurcation.

Proof. The Jacobian matrix of (156) is

J (q1; q2;�; �) =

�
1� � �� (1� 2q2)

�� (1� 2q1) 1� �

�
(159)

In the points of the diagonal � of equation q1 = q2 on which both O and S are located, the matrix
(159) assumes the structure

DT (x; x;�; �) =

�
1� � �� (1� 2x)

�� (1� 2x) 1� �

�
(160)

Such a matrix has real eigenvalues. In particular, in O the eigenvalues are:

zk (O) = 1 + � (�� 1) with eigenvector rk = (1; 1) along � (161)
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and
z?(O) = 1� � (�+ 1) with eigenvector r? = (1;�1) perpendicular to � (162)

In the �xed point S we have

zk (S) = 1 + � (1� �) and z?(S) = 1 + � (�� 3)

So, the �xed point O is locally asymptotically stable (a stable node) in the region


2(O) = f(�; �) 2 
2j� < 1g (163)

Analogously, since zk (S) 2 (�1; 1) for 0 < � (�� 1) < 2 and z? (S) 2 (�1; 1) for �2 < � (�� 3) < 0,
the �xed point S is locally asymptotically stable (a stable node) in the region


2(S) = f(�; �) 2 
2j1 < � < 3g (164)

At � = 1, O � S and a transcritical (or stability exchange) bifurcation occurs at which the two �xed
points exchange their stability property along �: for � < 1, just before the bifurcation, O is a stable
node and S is a saddle, with local stable set along �, and for � > 1, just after the bifurcation, O is a
saddle, with unstable set along �, and S is a stable node.

At � (�+ 1) = 2 a period doubling (or �ip) bifurcation of O occurs which creates a cycle of period
2 along the invariant manifold associated with z?(O). For � 2 (0; 1) this bifurcation occurs for � > 1,
i.e. when O is a saddle, hence at the �ip bifurcation O becomes an unstable node and a saddle cycle
of period two is created, with stable set along the direction associated with z?(O).

At � = 3 a pitchfork bifurcation occurs at which the �xed point S becomes a saddle point with
unstable set in the direction transverse to�, and the �xed points E1 and E2 are created. At � (�� 1) =
2 a �ip bifurcation along � occurs at which S becomes a repelling node and a saddle cycle of period
2 is created along �, with stable set along � and unstable set transverse to it.

The Jacobian matrix (159) computed at the two �xed points E1 and E2 which exist for � > 3,
respectively assume the forms,

J (E1;�; �) =

�
1� � ��(1�

p
(�+ 1) (�� 3))

��(1 +
p
(�+ 1) (�� 3)) 1� �

�
J (E2;�; �) =

�
1� � ��(1 +

p
(�+ 1) (�� 3))

��(1�
p
(�+ 1) (�� 3)) 1� �

�
Hence E1 and E2 have the same characteristic equation with Tr = 2 (1� �) and Det = (1� �)2 �
�2
�
4 + 2�� �2

�
. Being Tr2 � 4Det = 4�2

�
4 + 2�� �2

�
the eigenvalues are real for � � 1 +

p
5, and

are given by
z1 = 1� �� �

p
4 + 2�� �2 and z2 = 1� �+ �

p
4 + 2�� �2

For � > 1 +
p
5 the eigenvalues are complex, and are given by

z1 = 1� �� i�
p
�2 � 2�� 4 and z2 = 1� �+ i�

p
�2 � 2�� 4

In the parameters space 
2 the region of stability of Ei is


2(Ei) =
�
(�; �) 2 
2j� > 3 and �

�
�2 � 2�� 3

�
< 2
	

(165)

At �
�
�2 � 2�� 3

�
= 2 the eigenvalues exit the unit circle, so that the �xed points are transformed from

stable to unstable foci through a supercritical Neimark-Sacker bifurcation at which two stable closed
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orbits are created around the two Nash equilibria E1 and E2. The rigorous proof of the occurrence of
a supercritical Hopf bifurcation requires the evaluation of some long expressions involving derivatives
of the map up to order three. We claim numerical evidence for the existence of a stable closed orbit
around the unstable focus after the bifurcation (see �g.137).�

Figure 136: Stability region (grey shaded) and bifurcation curves in the parameters�plane (�,�)

In �g. 136, the red line of equation � = 1
�+1 represents a global bifurcation curve at which the

basins change their topological structure from simply to multiply connected, i.e. connected with holes,
according to the following proposition (that we give without a proof)

Proposition (Global bifurcation of the basing with homogeneous players). If �1 = �2 =
�, �1 = �2 = � and (�; �) 2 e
2(Ei), the bounded trajectories of (156) converge to one of the stable
Nash equilibria E1 or E2, given by (157) and (158) respectively, and the common boundary which
separates the basin B (E1) from the basin B (E2) is given by the stable set W s(S) of the saddle point
S. If � (�+ 1) < 1 then the two basins are simply connected sets; if � (�+ 1) > 1 then the two basins
are non connected sets, formed by in�nitely many simply connected components.

We would like to emphasize that the bifurcation occurring at � (�+ 1) = 1 is a global bifurcation,
i.e. it cannot be revealed by a study of the linear approximation of the dynamical system. The
occurrence of such a bifurcation has been characterized by a contact between the stable set of S and
a critical curve LC. i.e. a contact (or global) bifurcation.

The occurrence of the bifurcation, which transforms the basins from simply connected to non-
connected, causes a loss of predictability about the long-run evolution of this Cournot game starting
from given initial quantities of the two players. In fact, in contrast to what happens in the case of
simply connected basins, when the basins are no longer simply connected, the adjustment dynamic
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Figure 137: After Neimark-Sacker bifurcation (left) and after global basin bifurcation (right).

starting with q1(0) > q2(0) may lead to convergence to either of the Nash equilibria. Furthermore, if
the initial quantities are su¢ ciently far away from a Nash equilibrium, for example near the boundary
@B of B, then the presence of the in�nitely many components of both basins causes a sort of sensitivity
with respect to these initial conditions. Even a very small perturbation of the starting point of the
Cournot game may lead to a crossing of the boundary that separates the two basins, with consequent
convergence to a di¤erent Nash equilibrium.

We now turn to the case of heterogeneous behavior, and assume that �1 6= �2 holds. Although
we get the same Nash equilibria since the �xed points do not depend on the speeds of adjust-
ment, the eigenvalues of the Jacobian matrix of the map (156) depend on both of the parameters
�1 and �2. Furthermore, note that the diagonal � is no longer trapping. The following proposi-
tion de�nes the stability regions for each Nash equilibrium in the three-dimensional parameters space

3 =

�
(�; �1; �2) 2 R3j� > 0; 0 � �1 � 1; 0 � �2 � 1

	
.

Proposition (Local stability for heterogeneous behaviour). Let �1 = �2. Then

(i) for 0 < � < 1 the �xed point O = (0; 0) is a stable node , for 1 < � <
q
1 + 4�2(�1+�2)

�1�2
it is a

saddle point, for � >
q
1 + 4�2(�1+�2)

�1�2
it is an unstable node;

(ii) for 1 < � < 3 the �xed point S = (1� 1=�; 1� 1=�) is a stable node , for 3 < � < 2 +q
1 + 4�2(�1+�2)

�1�2
it is a saddle point, for � > 2 +

q
1 + 4�2(�1+�2)

�1�2
it is an unstable node;

(iii) The �xed points Ei, i = 1; 2, given in (157) and (158) are created at � = 3 through a pitchfork

bifurcation of S, are stable nodes for 3 < � < 1+
q

9
2 +

�1
4�2

+ �2
4�1
, stable foci for 1+

q
9
2 +

�1
4�2

+ �2
4�1

<

� < 1 +
q
4 + 1

�2
+ 1

�1
and at � = 1 +

q
4 + 1

�2
+ 1

�1
they become unstable foci through a Neimark-

Sacker bifurcation.

Proof. The analysis of the local stability of a �xed point is obtained through the localization of
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Figure 138: Coexisting Nash equilibria and corresponding basins.

the eigenvalues of the Jacobian matrix in the complex plane, where the Jacobian

(q1; q2) =

�
1� �1 �1� (1� 2q2)
�2� (1� 2q1) 1� �2

�
computed at the corresponding �xed point has to be considered. The stability conditions

P (1) = 1� Tr +Det > 0; P (�1) = 1 + Tr +Det > 0; 1�Det > 0

at the �xed point O = (0; 0) become

Tr2 � 4Det = (�1 � �2)2 + 4�1�2�2 > 0 8 (�; �) 2 
3

P (1) = �1�2 (1 + �) (1� �) > 0 for � < 1

P (�1) = 4� 2 (�1 + �2) + �1�2
�
1� �2

�
> 0 for � <

s
1 + 2

2� (�1 + �2)
�1�2

At the �xed point S = (1� 1=�; 1� 1=�) we have

Tr2 � 4Det = �21 + �
2
2 + 14�1�2 + 4�1�2� (�� 4) � (�1 � �2)

2 � 0;

being � (�� 4) � �4. So the eigenvalues are always real at the �xed point S, and the stability
conditions reduce to

P (1) = �1�2
�
��2 + 4�� 3

�
> 0 for 1 < � < 3

P (�1) = �1�2�
2 � 4�1�2�+ 3�1�2 + 2 (�1 + �2)� 4 > 0 for � < 2 +

s
1 + 2

2� (�1 + �2)
�1�2
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Hence O is locally asymptotically stable (a stable node) in the region


3(O) = f(�; �1; �2) 2 
3j� < 1g

and S is locally asymptotically stable (a stable node) in the region


3(S) = f(�; �1; �2) 2 
3j1 < � < 3g

At � = 1 a transcritical bifurcation occurs at which O and S exchange stability, at � = 3 a pitchfork
bifurcation of S occurs at which the �xed points E1 and E2 are created. The main di¤erence with
respect to the homogeneous case lies in the fact that the eigendirections associated with the �xed
points are no longer parallel and perpendicular to �, and � is no longer invariant.

At � =
q
1 + 22�(�1+�2)�1�2

> 1 a �ip bifurcation of O occurs at which O is transformed from saddle
to unstable node, and a saddle cycle of period 2 is created with stable set through O.

At � = 2 +
q
1 + 22�(�1+�2)�1�2

> 3 a �ip bifurcation of S occurs at which S is transformed from
saddle to unstable node, and a saddle cycle of period 2 is created with stable set through S.

The Jacobian matrix computed at the two �xed points E1 and E2 assumes, respectively, the forms,

J (E1;�; �1; �2) =

24 1� �1 ��1
�
1�

p
(�+ 1) (�� 3)

�
��2

�
1 +

p
(�+ 1) (�� 3)

�
1� �2

35
and

J (E2;�; �1; �2) =

24 1� �1 ��1
�
1 +

p
(�+ 1) (�� 3)

�
��2

�
1�

p
(�+ 1) (�� 3)

�
1� �2

35
It is easy to see that, like in the homogeneous case, E1 and E2 have the same characteristic equation,
with Tr = 2� �1 � �2 and Det = 1� �1 � �2 + �1�2 (�+ 1) (�� 3).

The �xed points Ei are transformed from stable nodes into stable foci when

Tr2 � 4Det = �4�1�2�2 + 8�1�2�+ 14�1�2 + �21 + �22 = 0

i.e. at � = 1 +
q

9
2 +

�1
4�2

+ �2
4�1
.

Since
P (1) = �1�2 (�+ 1) (�� 3) > 0 for � > 3

P (�1) = 4� 2 (�1 + �2) + �1�2 (�+ 1) (�� 3) > 0 for � > 3

the stability conditions for Ei, i = 1; 2, reduce to

Det� 1 = �1�2�
2 � 2�1�2�� 3�1�2 � �1 � �2 < 0:

Hence in the parameters space 
3 the region of stability of Ei is


3(Ei) =

(
(�; �1; �2) 2 
3j� > 3 and � < 1 +

r
4 +

�1 + �2
�1�2

)
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The equation � = 1 +
q
4 + �1+�2

�1�2
de�nes a bifurcation surface in 
3 through which a supercritical

Neimark-Sacker bifurcation occurs at which the �xed points E1 and E2 are transformed from stable
to unstable foci and a stable closed invariant curve is created around them.�

From a comparison of the two propositions on local stability given above, it appears that the
in�uence of heterogeneous behavior on the stability of the Nash equilibria is not too strong. However,
in the case of coexisting stable Nash equilibria, an important question concerns the delimitation of
their basins of attraction and the global bifurcations that cause qualitative modi�cations of their
boundaries. In fact, due to the heterogeneous behavior of the two competing �rms, the symmetry
properties of the dynamical system which allowed us to obtain a simple analytical expression of the
global bifurcation given in the proposition stated above no longer hold. Hence, the occurrence of
contact bifurcations can only be revealed numerically. This is illustrated in �g.139, where in the left
panel a contact between the boundary of the basin of E1 (formed by the stable set of the saddle point
S) and the critical curve LC that separates Z2 from Z4. The portion of the basin of E1 that enters Z4
after the contact generates new preimages that give rise to a sequence of non-connected portion of the
basin, as shown in the central panel of �g.139. However, as the equation of the boundary is not known
in this case, an analytic computation of the values of the parameters at which the contact occurs is not
possible. This is an usual occurrence, as the analytical expressions of the stable sets (that bound the
basins) as well as the analytic expressions of the critical curves, are very rarely known. So, in order to
study global bifurcations which are typical of two-dimensional noninvertible maps, numerical methods
have to be employed. The delimitation of the basins of attraction of coexisting Nash equilibria requires
a study of the global dynamical properties of the dynamical system, i.e. a study which is not based
on the linear approximation of the map. Hence, the occurrence of contact bifurcations can only be
revealed numerically. This happens frequently, since nonlinear dynamical systems are quite di¢ cult to
be analyzed mathematically. In order to study global bifurcations that are typical of two-dimensional
noninvertible maps, numerical methods must be usually employed.

Figure 139: Basins, equilibrium points and attractors for the adaptive Cournot duopoly model with
logistic reaction functions.
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8.2.1 Adaptive expectations

Let us assume that, instead of using naive expectations, �rms revise their beliefs according to the
adaptive expectations rules

qe1 (t+ 1) = qe1 (t) + �1 (q1 (t)� qe1 (t)) = (1� �1)qe1 (t) + �1R1 (qe2(t))
qe2 (t+ 1) = qe2 (t) + �2 (q2 (t)� qe2 (t)) = (1� �1)qe1 (t) + �2R1 (qe2(t))

(166)

where �i 2 [0; 1] are referred to as the adjustment coe¢ cients. This is a more enhanced way to form
expectations, which takes into account the observed outputs and use them to correct the previous
forecasting (a form of learning process). The rule of revision of adaptive expectations (166) de�nes a
mapping in the beliefs space, and the real outputs at each step are obtained by the following mapping
from beliefs to realizations

q1 (t) = R1 (q
e
2(t))

q2 (t) = R2 (q
e
1(t))

Adaptive expectations have been proposed in many contexts as a more sophisticated kind of learning
rule with respect to naive expectations.

If we insert this assumption in the duopoly models considered above we can easily see that the
map in the belief space has the same form as in the case of adaptive adjustment with best reply and
naive expectations. For example let us consider the case of logistic reaction functions. To simplify the
notations let x(t) = qe1 (t) and y(t) = qe2 (t). Inserting the reaction functions speci�ed in (166), the
time evolution of the competitors�beliefs is obtained by the iteration of the two-dimensional map

x(t+ 1) = (1� �1)x(t) + �1�1y(t) (1� y(t))
y(t+ 1) = (1� �2) y(t) + �2�2x(t) (1� x(t))

that has the same form as the map (156).

8.3 Evolutionary games

Evolutionary game theory studies the behaviour of large populations of agents who repeatedly engage
in strategic interactions. The individuals of each population i can choose among ni alternative actions
(or behaviors) whose payo¤s (or utility) depends on the choices of others. At each time t the individuals
of any population of players are classi�ed according to the action they play. Thus, each population is
subdivided into ni classes of individuals playing the same strategy. The basic idea is that actions (or
behaviors) which are more "�t" (i.e. give higher payo¤ or higher utility) given the current distribution
of behaviors, tend over time to displace less �t behaviors. In other words, the distribution of behaviors
in a population evolves, and �tter strategies (i.e. strategies that give higher payo¤s) become more
prevalent, that is, the classes of individuals playing more successful strategies grow up. The change
over time of the numerosity of these classes, driven by payo¤s�di¤erences, generally in�uence payo¤s,
so that also growth rates of classes characterized by given behaviours will change. In this models,
dynamics can indeed become quite complex. One can ask which behaviors will go extinct and which
one will survive over time, whether the system approaches some stable steady-state, and so forth.

The birth of evolutionary game theory is marked by the publication of a series of papers by the
mathematical biologist John Maynard Smith, in particular his book "Evolution and the Theory of
Games" published in 1982. Maynard Smith adapted the methods of traditional game theory, which
were created to model the behavior of rational economic agents, to the context of biological natural
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selection. He also introduced some adaptive rules that govern the time evolution of strategies�distri-
butions over a given population of players, so that the usual concepts of dynamical systems can be
introduced, �rst of all the concepts of equilibrium points and their stability. After the book by Richard
Dawkins "The sel�sh gene" in 1976 and the paper by Peter D. Taylor and Leo Jonker "Evolutionarily
stable strategies and game dynamics" in 1978, the mainly adopted dynamic foundation of evolution-
ary dynamics is the one known as "replicator dynamics", explicitly expressed through di¤erential or
di¤erence equations, thus recognizing the close links between this game-theoretic approach and the
theory of dynamical systems. Replicator dynamics basically states that the number of individuals
adopting a given strategy grows up if their expected payo¤ is greater than the average payo¤ of the
whole population, whereas their number decreases if the payo¤ of their strategy is below the average.

In the biological interpretation, a population consists of animals each of which are genetically
programmed to use some strategy that is inherited by its o¤spring. Initially, the population may
consist of animals using di¤erent strategies (e.g. more or less aggressive, using di¤erent methods to
get food etc.). In this context the payo¤ to an individual adopting a given strategy is called �tness, and
this is generally compared with the average �tness in the population. Animals with higher �tness leave
more o¤spring (by de�nition) so in the next generation the composition of the population will change.
In the economic interpretation, the population changes because people play the game many times and
consciously switch strategies. People are likely to switch to those strategies that give better payo¤s
and away from those that give poor payo¤s. So, economists realized the value of the evolutionary
approach to game theory in social science contexts, both as a method of providing foundations for
the equilibrium concepts of traditional game theory, and as a tool for selecting among equilibria in
games that admit more than one. Indeed, the two approaches sometimes lead to identical models: the
replicator dynamic itself can be understood not only as a model of natural selection, but also as one
of imitation of successful opponents.

While the majority of works in evolutionary game theory has been �rst undertaken by biologists to
describe animal con�icts and genetic natural selection, and then by economists (competition among
di¤erent marketing strategies, externalities and macroeconomic spillovers, heterogeneous agents in cen-
tralized markets), closely related models have been applied to questions in a variety of �elds, including
transportation science (trade-o¤between private and public transportation, network congestion), com-
puter science (sel�sh routing of internet tra¢ c), sociology. Some paradigms from evolutionary game
theory are close relatives of certain models from physics, and so evolutionary game theory provides a
common ground for scholars and practitioners from a wide range of disciplines.

8.3.1 Replicator dynamics with one population of players

At any time t, let us consider a large but �nite population of N(t) agents, and assume that each
agent chooses (each player plays) one and only one pure strategy taken from a �nite set of k available
strategies (or actions) S = fs1; :::; skg. Let Ni(t) be the number of agents that play strategy si at time
t, and let xi(t) =

Ni(t)
N(t) be the corresponding fraction. The vector x =(x1(t); :::; xk(t)) represents the

state of the system at time t. As any agent is assumed to choose one and only one strategy at each
time, then

Pk
i=1Ni(t) = N and consequently

kX
i=1

xi(t) = 1

holds. Hence the dimension (degrees of freedom) of the system described is k � 1.
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In general an evolutionary process provides a selection mechanism that favors some population
fraction xi over others. This selection mechanism is expressed in terms of di¤erential or di¤erence
equations (according to the continuous or discrete time scale considered) so that the usual methods
for the study of stability, bifurcations and di¤erent kinds of attractors can be applied. A second
important element is a mutation mechanism, i.e. how an invariant set is robust against perturbations
of the state x. This is indirectly taken into account through dynamic stability arguments. In a social
or economic system, stability of an equilibrium may be thought as a convention. In fact, if a small
displacement from an equilibrium is recovered so that the same equilibrium will prevail again in the
long run despite the mutation, then this can be expressed by saying that the mutants will agree about
the same convention.

A well known (and quite standard) dynamic evolutionary selection process is given by the so
called "replicator dynamics". It is based on the assumption that individuals of a large population,
that are programmed to play pure strategies, randomly pairwise match to play a two-person game
with given payo¤s. Of course the probability of matching with an agent playing a given strategy si is
proportional to the fraction xi. This implies that in the computation of the expected payo¤ associated
to a given strategy, as well as in the computation of the average payo¤ in the whole population, one
can interpret the fractions xi(t) as probabilities, like in a game with mixed strategies. So, if A = faijg
is the symmetric payo¤s matrix whose aij entry represents the payo¤ obtained by an agent playing
pure strategy si in two-person match with an agent of the same population and playing pure strategy
sj , then the expected payo¤ by an agent programmed to play strategy si is

�i =
kX
j=1

aijxj (167)

and the average payo¤ in the whole population is

_
� =

kX
i=1

�ixi =

kX
i=1

kX
j=1

aijxixj . (168)

The replicator dynamics state that the rate of change of a given population share associated to strategy
si is proportional to its relative �tness, measured as the di¤erence between the expected �tness for
strategy si and the average �tness of the population

�
xi =

�
�i(x)�

_
�(x)

�
xi . (169)

The derivation of this dynamic equation can be outlined as follows.
Suppose that payo¤s represent the incremental e¤ects from playing the game measured as the

number of o¤spring per unit time, and suppose that each o¤spring inherits its single parent�s strategy
(a true breeding of strategy, i.e. an agent always passes down a certain attitude in playing the game
to its o¤springs) If reproduction takes place continuously over time, then birthrate at any time t of
individuals programmed to play pure strategy si is r+�i(x), where r = ��� is the background growth
rate of individuals in the population (birth rate � minus death rate � independent of the outcomes in
the game). Then the population dynamics becomes

�
N i = (r + �i(x))Ni .
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As Ni(t) = N(t)xi(t) it follows that
�
N i =

�
Nxi + N

�
xi, hence N

�
xi =

�
N i �

�
Nxi. Now, from N(t) =Pk

i=1Ni(t) follows that
�
N =

Pk
i=1

�
N i =

Pk
i=1 (r + �i(x))Ni = r

Pk
i=1Ni(t)+

Pk
i=1 �i(x)xi(t)N(t) =

rN(t) +
_
�(x)N(t) =

�
r +

_
�(x)

�
N(t), so

N
�
xi =

�
N i �

�
Nxi = (r + �i(x))Ni �

�
r +

_
�(x)

�
N(t)xi

and dividing both sides by N(t) (169) is get.

Notice that the growth rate is independent of the background birthrate and deathrate. Moreover
if the payo¤ matrix is replaced by a positive a¢ ne transformation

�
A = �A + �

with � > 0, i.e. all the entries of the payo¤ matrix are multiplied by the same positive factor and/or
all increased or decreased by the same quantity, then the e¤ect of such a payo¤ transformation is
equivalent to a change of time scale by the factor � > 0. In this case, the invariance and stability
properties are not changed, the only di¤erence being that the population state moves along the phase
curves with a di¤erent velocity.

As an example, let us consider a binary evolutionary game, i.e. a game played by the individuals
of a population where each agent can choose between two di¤erent actions (or strategies): at time t a
fraction x(t) 2 [0; 1] of individuals play strategy s1 and the complementary fraction (1� x(t)) plays
s2. Let aij be the payo¤ obtained by an individual playing si against an individual playing sj . Of
course the game is symmetric, hence only one entry is su¢ cient to describe it (a simple matrix instead
of a bimatrix)

A =

�
a11 a12
a21 a22

�
(170)

or in the following (more informative) strategic form where the strategies are explicitly represented
together with the respective population shares

x (1� x)
s1 s2

x s1 a11 a12
(1� x) s2 a21 a22

The expected payo¤s associated to strategies s1 and s2 are �1 = a11x+a12(1�x) = (a11 � a12)x+a12
and �2 = a21x+ a22(1� x) = (a21 � a22)x+ a22 respectively, or in matrix form:�

�1
�2

�
= Ax =

�
a11 a12
a21 a22

� �
x1
x2

�
=

�
a11 a12
a21 a22

� �
x

1� x

�
and the average population payo¤� = �1x+�2(1�x) = [(a11 � a12)x+ a12]x+[(a21 � a22)x+ a22] (1� x),
or in matrix form

xTAx =(x1; x2)

�
a11 a12
a21 a22

� �
x1
x2

�
with x1 = x and x2 = 1� x.

All in all, the replicator dynamics (169) of x1(t) = x(t) becomes

�
x = [�1 (x)� � (x)]x = [�1(x)� (�1(x)x+ �2(x)(1� x))]x = x(1� x)[�1(x)� �2(x)] (171)
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hence
�
x = x (1� x) [(a11 � a21)x� (a22 � a12) (1� x)] (172)

from which it is evident that equilibrium points are x� = 0 (all agents play strategy s2), x� = 1 (all
agents play strategy s1) and, if any, points x� 2 (0; 1) such that the �tness associated to the two
strategies is the same, i.e. expected payo¤s satisfy the equation �1 (x�) = �2 (x

�). This equilibrium
fraction x� is equal to the Nash equilibrium in mixed strategies of the game (where x is interpreted as
a probability to play s1), with x� = a22�a12

a11+a22�a12�a21 . However under the evolutionary interpretation
we can also study the stability of these equilibrium points, on the basis of the 1-dimensional nonlinear
dynamic equation (172). Indeed, a complete classi�cation of existence and stability of equilibrium
points in a one-population evolutionary game with two strategies is possible.

Let us consider the 2x2 payo¤ matrix (170). In order to reduce the number of parameters we can
obtain an equivalent game by subtracting a21 from column 1 and a12 from column 2, to obtain the
equivalent matrix

A =

�
a1 0
0 a2

�
where a1 = a11 � a21 and a2 = a22 � a12: The following classi�cation holds:

1. If a1 < 0 and a2 < 0 then x� = a2
a1�a2 is a stable Nash equilibrium, where x

� = 0 and x� = 1 are
unstable equilibrium points (and are not Nash equilibria). An example is the chicken game.

2. If a1 > 0 and a2 > 0 then x� = a2
a1�a2 is an unstable Nash equilibrium and the boundary

equilibria (where all the population plays the same strategy) are asymptotically stable Nash
equilibria. These are coordination games, like the battle of sexes. In this case the intermediate
equilibrium x� 2 (0; 1) separates the two basins of attraction.

3. If a1a2 � 0, a dominant strategy exists and one of the boundary equilibria is the global asymp-
totic attractor. If a1 > 0 (hence a2 � 0), this equilibrium is x = 1, and if a1 < 0 it is x = 0.
This is the case of prisoner dilemma with, for instance,

A =

�
1 �1
2 0

�
for which a1 = �a2 = �1:

These cases are summarized in �g. 140, where the 1-dimensional phase diagrams are shown.
Another famous example is the Hawk-Dove game, represented by the following payo¤ matrix.

x (1� x)
s1(Hawk) s2(Dove)

x s1(Hawk)
v
2 � c;

v
2 � c v; 0

(1� x) s2(Dove) 0; v v
2 ;
v
2

(173)

Individuals of a large population have two strategies: behave aggressively (s1) or remissively (s2).
A given resource v is available (for example food in an ecologic model, or customers in a marketing
model). At any random match between two individuals of the population, if both behave remissively,
a cooperation agreement is reached and the resource is shared (50-50), v2 each; if one is aggressive and
the other one remissive, then the aggressive takes all the resource and the remissive one takes nothing;
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Figure 140: One-dimensional phase portraits of di¤erent cases of 2x2 population game endowed with
replicator dynamics.

if both are aggressive then they �ght to conquest the resource, and this �ght has a cost c, and at the
end of the �ght they get v2 each, so the payo¤ is

v
2 � c each.

The classical Hawk-Dove game is obtained when injuries due to �ghting are higher than the resource
gained, c > v

2 . Instead, when c <
v
2 a prisoner dilemma is obtained.

As an example of Hawk-Dove Game we consider the following bimatrix of payo¤s (notice that due
to the symmetry of the game double entries may be omitted as the payo¤ matrix of Doves is the
transpose of the payo¤ matrix of Hawks) obtained for v = c = 2.

x (1� x)
s1(Hawk) s2(Dove)

x s1(Hawk) �1;�1 2; 0
(1� x) s2(Dove) 0; 2 1; 1

The payo¤s of strategies s1 and s2 are given by�
�s1
�s2

�
=

�
�x+ 2 (1� x)

(1� x)

�
and the average payo¤ of the population is:

� = xTAp =
�
x (1� x)

� ��1 2
0 1

� �
x

(1� x)

�
= �x2 + 2 (1� x)x+ (1� x)2

and the replicator dynamics are given by

�
x = x (1� x) (�s1 (x)� �s2 (x)) = x (1� x) (1� 2x)
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It is straightforward to see that three equilibrium points exist in [0; 1]: x1 = 0, x2 = 1 and x3 = 1
2 .

Moreover,
�
x > 0 for x < x3 and

�
x < 0 per x > x3. Hence x3 is the only evolutionary stable equilibrium.

In other words, this evolutionary game states that populations formed by all aggressive individuals
and all remissive individuals are unstable, so any mutation in the composition of the population (i.e.
the entrance of some remissive individuals in a population of all aggressive ones, or the entrance of
some aggressive individuals in a population of all remissive ones) spreads out destroying the pure
composition, and a mix of aggressive and remissive individuals is reached in the long run, which is
stable with respect to population mutations.

Let us consider now the case of prisoner dilemma obtained from (173) with c < v
2 , for example

v = 2; c = 1
2

x (1� x)
s1 s2

x s1
1
2 ;
1
2 2; 0

(1� x) s2 0; 2 1; 1

In this case s1 is the dominant strategy, and the replicator equation is given by

�
x = x (1� x) (�s1 (x)� �s2 (x)) = x (1� x)

�
1� 1

2
x

�
with the only feasible equilibria x1 = 0 and x2 = 1 (of course the further equilibrium point x3 = 2 is
not feasible).

As expected, in the long run the only possible evolution is towards the globally stable equilibrium
x = 1, i.e. the whole population playing the dominant strategy s1.

Up to now, we only considered examples where the individuals of a population have two available
strategies, and the replicator dynamics is a one-dimensional continuous time dynamical system in
the interval [0; 1]. Of course, an arbitrary �nite number of strategies can be considered, say k > 1
strategies, and the replicator dynamics becomes a k � 1 dimensional system in the space de�ned byPk
i=1 xi.
As an example, let us consider the following game with three strategies characterized by the payo¤

matrix

A =

2664
s1 s2 s3

s1 1 2 + a 0
s2 0 1 2 + a
s3 2 + a 0 1

3775
that, for a = 0, gives the famous Rock-Scissors-Paper game (Rock loses against Paper, Scissors loses
against Rock, Paper loses against Scissors) equivalent to the game represented by the following payo¤
matrix (subtract 1 from any entry to get the classical representation)

A =

2664
R S P

R 1 2 0
S 0 1 2
P 2 0 1

3775
The equations of replicator dynamics are

�
x1 =

�
x1 + (2 + a)x2 � xTAx

�
x1

�
x2 =

�
x2 + (2 + a)x3 � xTAx

�
x2

�
x3 =

�
x3 + (2 + a)x1 � xTAx

�
x3
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which is a two-dimensional dynamical system as from x1+ x2+ x3 = 1 one can consider, for example,
only the dynamics of x1 and x2 as x3 = 1 � x1 � x2. Without entering the details, we state that
besides the usual three corner equilibria where all players play the same strategy,i.e. (1; 0; 0), (0; 1; 0)
and (0; 0; 1), a unique interior equilibrium exists, given by x� =

�
1
3 ;
1
3 ;
1
3

�
. This interior equilibrium is

stable (a stable focus) under the replicator dynamics if a > 0, unstable (unstable focus) if a < 0 and
it is a center in the case of classical R-S-P game a = 0. A graphical depiction is shown in �g. 141,
where the triangular representation of the simplex is used, see also �g. 142.

Figure 141: Phase portraits on the symplex for the modi�ed R-S-P game with parameter a.

In this graphical representation the three vertexes correspond to the cases where all players use
the same strategy (the corner equilibria). Notice that all the sides of the triangle, where the players
play two of the three strategies, are invariant lines.

8.3.2 Replicator dynamics with two populations of players

So far the studied interactions have all been modelled as symmetric and pairwise random matches
between individuals of the same population. We now consider two di¤erent populations, each with
its own possible strategies and related payo¤ matrix, that describes the gains when an individual of
a population only interacts with individuals of the other population. Let us consider the case of two
populations, say Pa and Pb, each with two possible strategies, say fa1; a2g for Pa and fb1; b2g for Pb.
Let x1(t), x2(t) be the fractions of the population Pa playing strategies a1 and a2 respectively, with
x1(t) + x2(t) = 1 for each t, y1(t), y2(t) the fractions of the population Pb playing strategies b1 and
b2, with y1(t) + y2(t) = 1 for each t, with the following payo¤ bimatrix giving the respective payo¤s
gained in pairwise matchings between individuals of di¤erent populations

Pb y1 = y y2 = (1� y)
Pa b1 b2

x1 = x a1 a11; b11 a12; b12
x2 = (1� x) a2 a21; b21 a22; b22

where A = faijg and B = fbijg are the payo¤ matrix of population Pa and Pb respectively.
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Figure 142: Symplex x1 + x2 + x3 = 1 in the 3-dim space R3

The expected payo¤s of a player of population Pa associated to its strategies are

�a1 (y) = a11y1 + a12y2 = a11y + a12 (1� y)
�a2 (y) = a21y1 + a22y2 = a21y + a22 (1� y)

Average payo¤ of population Pa is

�a (x; y) = x1�a1 + x2�a2 = x�a1(y) + (1� x)�a2(y) = xTAy

where y =
�

y
1� y

�
and x =

�
x

(1� x)

�
:

Analogously for the other population Pb we get:

�b1 (x) = b11x1 + b21x2 = b11x+ b21 (1� x)
�b2 (x) = b12x1 + b22x2 = b12x+ b22 (1� x)

and the average payo¤ of population Pb is

�b (x; y) = y1�b1 + y2�b2 = y�b1(x) + (1� y)�b2(x) = yBTx

Following the same arguments as in the previous section, the equations of replicator dynamics assume
the form ( �

x = [�a1 (y)� �a (x; y)]x
�
y = [�b1 (x)� �b (x; y)] y

)
)

( �
x = x (1� x) (�a1 (y)� �a2 (y))
�
y = y (1� y) (�b1 (x)� �b2 (x))

(174)

)
( �
x =

�
eT1Ay � xTAy

�
x

�
y =

�
eT1B

Tx� yTBTx
�
y

(175)
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where eT1 =
�
1 0

�
.

Also in this case a complete classi�cation of replicator dynamics for 2-population games with 2
strategies for each population can be given. First of all, notice that these are nonlinear 2-dimensional
dynamical systems in continuous time with phase space given by the unit square [0; 1] � [0; 1]. It is
also important to notice that the edges of this square, located along the lines x = 0, y = 0, x = 1,
y = 1 are invariant segments. Moreover the four vertexes (0; 0), (1; 0), (0; 1), (1; 1) of the unit square
are always equilibrium points under the replicator dynamics.

After replacing the expressions of expected payo¤s into the dynamic model (174) we get

�
x = x (1� x) [(a11 � a21) y + (a12 � a22) (1� y)]
�
y = y (1� y) [(b11 � b12)x+ (b21 � b22) (1� x)]

Like in the symmetric case with one population, an equivalent game can be obtained with the bimatrix

Pb y1 = y y2 = (1� y)
Pa b1 b2

x1 = x a1 �1;�1 0; 0
x2 = (1� x) a2 0; 0 �2;�2

where

�1 = a11 � a21
�2 = a22 � a12
�1 = b11 � b12
�2 = b22 � b21

The dynamical system obtained through the replicator equations becomes( �
x = x (1� x) (�1y � �2 (1� y))
�
y = y (1� y) (�1x� �2 (1� x))

The following cases are obtained:

1. (Corner case) If �1�2 < 0, i.e. they have opposite signs, then a dominant strategy exists. If
�1 < 0 < �2 players of the population Pa have a dominant strategy, x = 0, and the players
of population Pb play best reply to this strategy and the unique stable equilibrium is (0; 0). If
�1 > 0 > �2, then (1; 1) is the unique global attractor.

2. (Saddle) If �1; �2; �1; �2 > 0, then an interior Nash equilibrium exists given by S = (x
�; y�) with

x� = �2
�1+�2

and y� = �2
�1+�2

, which is a saddle point. Two stable Nash equilibria exist in the
corners E1 = (1; 1) and E0 = (0; 0), whose basins are bounded by the stable set of the saddle S.
If �1; �2; �1; �2 < 0, the stable Nash equilibria are (1; 0) and (0; 1).

3. (Center) If �1; �2 < 0 and �1; �2 > 0, then S = (x
�; y�) with x� = �2

�1+�2
and y� = �2

�1+�2
is the

unique interior Nash equilibrium and its stability depends of the speci�cation of the game. We
can also get closed orbits on which periodic motion occurs, see the example of matching pennies
given below.
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Figure 143: The di¤erent phase portraits for 2x2 population games with two-populations endowed
with replicator dynamics.

In the case of symmetric payo¤s, i.e. bij = aji, so that �1 = �1 and �2 = �2, the classi�cation is
summarized in �g.

A famous example is the Matching Penny game. It is a zero-sum game between two players, say
Player A and Player B, such that each player has a penny and must secretly turn the penny to heads
or tails. The two players then reveal their choices simultaneously. If the pennies match (both heads
or both tails) Player B keeps both pennies, so wins one from Player A (+1 for B, -1 for A). If the
pennies do not match (one heads and one tails) Player A keeps both pennies, so receives one from
Player B (-1 for B, +1 for A). It is the two strategy equivalent of Rock, Scissors, Paper game, and the
payo¤ matrix is given by

B y (1� y)
A
x �1; 1 1;�1

(1� x) 1;�1 �1; 1
The replicator dynamic equation becomes

�
x = x (1� x) (�A;1 (y)� �A;2 (y)) = x (1� x) (�4y + 2)
�
y = y (1� y) (�B;1 (x)� �B;2 (x)) = y (1� y) (4x� 2)

The equilibrium points are (0; 0) ; (1; 1) ; (0; 1) ; (1; 0) ;
�
1
2 ;
1
2

�
To study their stability we consider the Jacobian matrix

J (x; y) =

�
(1� 2x) (�4y + 2) �4x (1� x)

4y (1� y) (1� 2y) (4x� 2)

�
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from which

J (0; 0) =

�
2 0
0 �2

�
has eigenvalues �1 = 2, �2 = �2 hence the equilibrium (0; 0) is a saddle.

J (1; 1) =

�
2 0
0 �2

�
has eigenvalues �1 = 2, �2 = �2 hence the equilibrium (1; 1) is a saddle.

J (0; 1) =

�
�2 0
0 2

�
has eigenvalues �1 = �2 and �2 = 2 hence (0; 1) is a saddle too.

J (1; 0) =

�
�2 0
0 2

�
has eigenvalues �1 = �2 and �2 = 2 hence (1; 0) is a saddle as well. Finally,

J

�
1

2
;
1

2

�
=

�
0 �1
1 0

�
and the characteristic equation is

� (�) = �2 + 1 = 0

from which �1 = +i, �2 = �i. So, the inner equilibrium in a centre (see �g.144).

Figure 144: Phase portrait for the matching penny population game endowed with replicator dynamics.

As a �nal exercise let us consider the following Buyer-Seller game, characterized by the payo¤s
matrix

B y (1� y)
A H D
x I 3; 2 2; 1

(1� x) T 4; 3 1; 4

189



that describes a population A of buyers and a population B of sellers. Sellers have two possible
strategies: H (be honest) and D (be dishonest). Buyers have two strategies: I (inspect the good they
buy) and T (trust in honesty of sellers, hence do not inspect).

Let x(t) be the fraction of buyers that inspect in time period t and y(t) the fraction of honest
sellers in the same period.

The replicator dynamics is

�
x = x (1� x) (1� 2y)
�
y = y (1� y) (2x� 1)

The study of equilibria and their stability properties is an easy exercise.
Of course, the example becomes more interesting if payo¤s are expressed with parameters that

give a measure of how much is the damage a buyer incurs by purchasing a product from a dishonest
seller without inspecting, or how much a honest seller is irritated by the inspection of the buyer, or
how much is the cost for inspecting and so on.

8.3.3 Replicator dynamics in discrete time

A discrete time version of the replicator equation is often used, both in biological applications where
populations with non overlapping generations are considered and in economic applications where
strategy switching decisions are taken at discrete time periods. As usual, discrete time dynamics
imply an attitude to oscillatory time paths due to overshooting in the dynamic adjustment.

The derivation of the discrete time replicator is quite similar, and even simpler, than the one
described in continuous time. Let r be the background growth rate of the population, independent of
the game played inside the population, and let Ni(t) be the number of individuals playing strategy si,
i = 1; :::; k, at time t. The total number of individuals is N(t) =

Pk
i=1Ni(t). The state of the system

is identi�ed by the fractions xi(t) =
Ni(t)
N(t) , i = 1; :::; k, such that

Pk
i=1 xi(t) = 1.

The growth rate of the portion of population playing strategy si is proportional to the average (or
expected) payo¤ obtained by a player of that population class in random pairwise matches with other
individuals of the same population

Ni(t+ 1) = [r + �i(x(t))]Ni(t)

where �i(x) is given by (167). Summing up over classes i = 1; :::; k we have

N(t+ 1) =
�
r +

_
�(x)

�
N(t)

as Ni(t) = N(t)xi(t) and
P
xi(t)�i(x(t)) =

_
�(x). Dividing both sides of these two expressions we get

xi(t+ 1) =
r + �i(x(t))

r +
_
�(x)

xi(t) (176)

provided that r + �i(x(t)) � 0 for each i = 1; :::; k and for each t. This is the discrete-time replicator
dynamics with one population of players.

However another version can be proposed, which is more convenient in many cases because it
avoids the positivity condition that may become problematic in economic applications. For example,
in economic models where payo¤s are given by pro�ts, r + �i(x(t)) may be negative for some periods
even it it is positive in the long run. Nevertheless, values of xi(t) outside the interval [0; 1] are
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meaningless and even if such unfeasible values are obtained just at one time period then all the
successive states are meaningless.

So, an interesting and useful alternative to (176) is obtained by considering a monotone transfor-
mation of payo¤s given by u(�i) = exp(��i), with � > 0, and consequently

_
u =

Pk
i=1 xi exp(��i).

The growth equation of the portion of population playing strategy si becomes

Ni(t+ 1) = exp [r + ��i(x(t))]Ni(t) = ere��i(x(t))Ni(t) .

Summing up over classes i = 1; :::; k we have

N(t+ 1) =

kX
i=1

Ni(t) = er
kX
i=1

e��i(x(t))Ni(t) = erN(t)

kX
i=1

e��i(x(t))xi(t) .

Dividing both sides of these two expressions we get

xi(t+ 1) =
e��i(x(t))Pk

i=1 xie
��i(x(t))

xi(t) (177)

which guarantees that xi(t) 2 [0; 1] for each t without further conditions.

As an example we propose a minority game, i.e. a population game characterized by the property
that the players who select the option chosen by the minority are more rewarded. It is well known
in the literature, and quite intuitive as well, that in a population of agents that repeatedly play a
minority game in discrete time periods, oscillations between the two strategies are common. In fact,
players that choose the majority strategy are oriented to revise their decision towards the option
that has been chosen by the minority, so that oscillatory behaviours are typically observed. Such
oscillations may be dumped and lead to convergence in the long run to an equilibrium, generally
a Nash equilibrium characterized by identical payo¤s associated to the two choices; in other cases,
oscillations may continue inde�nitely, through endogenous and self-sustained overshooting, so that the
generic trajectory does not settle to any stationary equilibrium in the long run.

Let us consider a population of N players, each facing a binary choice between strategies R and L.
At time t let x(t) 2 [0; 1] be the fraction of agents playing R and, consequently, the share 1�x(t) plays
L at the same time. Assume that the individual payo¤ of an agent employing a given strategy at time
t depends only on the numbers of agents making the same choice or the other, say R(t) = R(x(t))
and L(t) = L(x(t)). We now introduce a discrete-time evolutionary process to describe the number of
agents that at each time period t = 0; 1; 2; : : :update their choice, under the assumption that payo¤
obtained by both fractions of players at time t, i.e. R (x(t)) and L (x(t)), are common knowledge. The
time evolution of the fraction x(t) of players choosing R is assumed to be monotonically in�uenced by
the "gain" function

g(x) = R(x)� L(x) : [0; 1]! R (178)

in the sense that higher gains cause an increase of the fraction of agents choosing R. The evolutionary
selection dynamics in discrete time is expressed in the form of Exponential Replicator dynamics

x(t+ 1) = f(x(t)) =
x(t) exp (�R(x(t)))

x(t) exp (�R(x(t))) + (1� x(t)) exp (�L(x(t))) = (179)

=
x(t)

x(t) + (1� x(t)) exp (��g(x))
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where � � 0 is the speed of reaction, a parameter that expresses the propensity to switch to the
opposite choice as a consequence of a payo¤ gain observed in the current time period. It is worth to
remark that if x(0) 2 [0; 1] then x(t) 2 [0; 1] for each t � 0, as it follows from the evident inequality
0 � x

x+(1�x) exp(��g(x)) � 1. Moreover, it is straightforward to see that x� = 0 and x� = 1, which
correspond to "pure strategies" where "all players play L" and "all players play R" respectively,
are boundary equilibrium points. Interior equilibria exist at any x� such that g (x�) = 0, i.e. are
characterized by identical payo¤s.

Minority games are characterized by the property that players gain higher payo¤when they choose
the strategy which is chosen by the minority, i.e. R(x) is higher than L(x) when x is small, whereas
R(x) is less than L(x) for values of x close to 1. A typical example is shown in �g. 145, where the
payo¤ functions are linear, expressed by

R(x) = ax+ b ; L(x) = cx+ d with b > d and c > a (180)

A �rst consequence of these assumption is that g0(x�) < 0. When the evolutionary mechanism (179) is
applied under these assumptions, a dynamic behaviour characterized by oscillations around the unique
Nash equilibrium x� is obtained, with oscillations that may converge or not to the Nash equilibrium
in the long run according to its stability properties, as stated by the following proposition

Proposition. If R : [0; 1]! R and L : [0; 1]! R are di¤erentiable functions such R(0) > L(0),
R(1) < L(1) and they intersect in only one interior point x� 2 (0; 1), then the Nash equilibrium x� is
locally asymptotically stable, with oscillatory converge, provided that

� < �f = �
2

x�(1� x�)g0(x�) (181)

where the derivative g0(x�) = R0(x) � L0(x) < 0 is the relative slope of the two payo¤ curves at their
unique intersection x�. As the parameter � increases across the threshold value �f then a �ip (or
period doubling) bifurcation occurs.

Proof. The local stability condition immediately follows from the condition for local asymptotic
stability �1 < f 0(x�) < 1 that, from (179) becomes

�1 < 1 + �x� (1� x�) g0(x�) < 1:

Being g0(x�) < 0 the right inequality is always satis�ed, whereas the left one gives (181).�

A typical graph of the one-dimensional map (179) with payo¤ functions (180) is shown in �g.
145, obtained with parameters a = �0:5, b = 0:5, c = 0:8, d = 0 and � = 7. In this case the
Nash equilibrium x� = d�b

a�c =
5
13 is unstable (being � > �f = 6:5) and the long run dynamics of

the minority game settles on a stable cycle of period 2 (shown in the �gure) starting from any initial
condition x(0) 2 (0; 1).

As the speed of reaction � is further increased the well known period-doubling route to chaos
is observed, as shown in the bifurcation diagram of �g. 145. This is a quite expected and well
known dynamic behavior in repeated minority games, characterized by contrarians�switches of choices
associated with overshooting e¤ects (represented by high values of the speed of reaction �).
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Figure 145: Left: Payo¤ curves for R choice and L choice as functions of fraction x od players choosing
R. Center: iterated map with exponential replicator. Right: bifurcation diagram with bifurcation
parameter � (speed of reaction).

9 An introduction to optimal control in continuous time

Here we provide a very brief introduction to optimal control problems in continuous time. The
following part does not aim at giving a complete nor mathematically detailed analysis of the topic,
but just a non rigorous discussion on the theory of optimal control, some connections to the qualitative
theory of dynamical systems and an overview on some applications in economics. We refer the reader
to a more complete treatment in the bibliography.

In many economic application, it is necessary to solve a so-called optimal control problem, which
assumes, in the easiest case, the form:

max
u(t)2A(t)

TZ
0

f(x(t); u(t); t)dt+ F (x(T ); T ) (182)

such that:(
�
x = g(x(t); u(t); t)

x(0) = x0

and with one of the following terminal conditions: (183)

(a) x(T ) free (b) x(T ) = xT (c) x(T ) � xT (184)

where:

� 0 is the initial time;

� T 2 (0;+1] is the terminal time;

� x(t) is the state variable of the system, whose dynamics is determined by the following di¤erential
equation:

� �
x = g(x(t); u(t); t) (is) called the state equation or the dynamics;
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� u(t) is the control, to be determined to maximize the previous integral;

� f(x(t); u(t); t) is the instantaneous payo¤ ;

� A(t) is the constraint set on the control, specifying that at each time t the control u(t) must
belong to the set A(t);

� F (x(T ); T ) is the terminal payo¤ (or scrap value or salvage value).

When T = +1, no condition is usually imposed on the state x(t). In some cases, however, it is
required that

lim
t!+1

x(t) � x .

Functions f(:; :; :), g(:; :; :) and F (:; :) are assumed continuously di¤erentiable.
Often in economic applications, in the problem (182) it is f(x(t); u(t); t) = f(x(t); u(t)) and

g(x(t); u(t)), i.e. the performance criterion and the di¤erential equations do not depend directly
on time.22 In this case, the optimal control problem (182) is called autonomous. In many economic
application it is also T = +1 so that no scrap value is included in the problem, i.e. F (x(T ); T ) = 0.
We will brie�y review some other formulations of the basic problem, such as the formulation of the
problem with discount, which is of primary importance in economics.

The control u(t) represents a choice variable that the agent can set continuously as long it is in
the constraint set A(t). Often this constraint on the control is imposed for reasons of feasibility. For
instance, if the control u(t) represents the consumption of a good, this can not be negative, so that
u(t) � 0 for all t. In addition, some upper bound of consumption can be given, for instance through
a budget constraint at time t; denoting by B(t) the total budget of the agent, the constraint set A(t)
becomes 0 � u(t) � B(t), 8t 2 [0; T ].

Any function u(t), with u(t) 2 A(t) for all t 2 [0; T ], such that u(t) is (piecewise) continuous
represents an admissible control. Consider that we �x a particular admissible control, for instance
u(t) = u(t). Then, for this choice of the control,

�
x = g(x(t); u(t); t) is a (�rst order) di¤erential

equation that, together with the initial condition x(0) = x0, determines entirely the trajectory of the
state, i.e. the value of x(t) for all t 2 [0; T ], which is called an admissible path provided that the
constraints on the �nal state are met (e.g. x(T ) = xT or x(T ) � xT ). Thus, with this choice of
u(t), the state and, consequently, the value of the performance criterion f(x(t); u(t); t) is univocally
determined. Since we are interested in maximizing the de�nite integral of the performance criterion
over the interval [0; T ], the optimal control problem (182) consists in selecting, among all admissible
controls u(t) 2 A(t), the control u�(t) that maximizes the value of this de�nite integral plus, if present,
the terminal payo¤. Such an admissible control is called an �optimal control�. The corresponding state
x�(t) obtained as the solution of the Cauchy problem (di¤erential equation with an initial condition)(

�
x = g(x(t); u�(t); t)
x(0) = x0

is called an optimal trajectory or optimal path.
Here we state the main results to �nd a candidate solution to the optimal control problem (182),

i.e. an optimal control and the corresponding optimal path. The most important necessary conditions

22More precisely, in economic applications usually the performance criterion is given in the form f(x(t); u(t); t) =
e��th(x(t); u(t)), i.e. it depends directly on time but only through a discount term. This point is more extensively
discussed below.
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are Bellman�s Optimality principle (or Dynamic Programming principle) and Pontryagin�s maximum
principle. In the following Section we provide a simpli�ed derivation of these results.

For de�ning Bellman�s optimality principle, de�ne the following function V (x; t) : R� R! R

V (x; t) = max
u(t)2A(t)

TZ
t

f(x(s); u(s); s)ds+ F (x(T ); T ) (185)

called the value function. V (x; t) represents the maximum (more precisely the sup) possible value
attainable starting at time t with initial state x, as also explained below.

Proposition (Bellman�s Optimality Principle). If V (x; t) is di¤erentiable in t and x then it
solves the following (Partial) Di¤erential Equation

�@V
@t

= max
u(t)2A(t)

�
f(x(t); u(t); t) +

@V

@x
g(x(t); u(t); t)

�
with terminal condition V (x(T ); T ) = F (x(T ); T ).

For stating Pontryagin�s maximum principle, de�ne the Hamiltonian function

H := H(x; u; �; t) = f(x; u; t) + �g(x; u; t) (186)

where � = �(t) is called the costate variable.
Proposition (Pontryagin�s Maximum Principle). If u�(t) = u� is an optimal control and

x�(t) = x� is the corresponding optimal path for the problem (182), then there exists a costate variable
��(t) = �� such that x�; ��; u� are the solution in [0; T ] of the following problem:8>>>>>>>>><>>>>>>>>>:

�
x = g(x�; u�; t) = H� (state equation)
�
� = � [fx(x�; u�; t) + �gx(x�; u�; t)] = �Hx (costate equation)
u� = argmaxH(x�; u; ��; t) (maximum principle)
x�(0) = x0 (initial condition)
(a) ��(T ) = @

@xF (xT ; T ) (transversality condition when x(T ) free)
or
(b) ��(T ) � @

@xF (xT ; T ) (transversality condition when x(T ) � xT )

Notice that when x(T ) = xT no transversality condition is imposed. Moreover, when F (xT ; T ) =
0, i.e. without scrap value, the transversality condition when x(T ) is free reduces to ��(T ) = 0.
Analogously, when F (xT ; T ) = 0 and x(T ) � xT , the transversality condition is ��(T ) � 0. Before
closing this Section, we would like to provide some important remarks.

The �rst remark concerns admissible controls. In particular, notice that continuity of the control
u(t) is not assumed, as we de�ned an admissible control as a piecewise continuous function that belongs
to the constraint set A(t) for all t. In some cases, such as when the Hamiltonian is linear in the control,
it turns out that the optimal control can be (jump) discontinuous. The times at which a jump in the
control occurs are called switching points. Whenever this happens, the state equation

�
x may have a

di¤erent RHS (right hand side), and, consequently, the state can have a kink point. Nevertheless, the
Maximum Principle continues to hold for all the points where the control u(t) is continuous and the
costate equation holds whenever the control is continuous. It can be shown that the Hamiltonian is
continuous even at the switching points. Also in dynamic programming, an admissible control is a
function with a �nite number of jump discontinuities. We provide some examples below.
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The second remark is related to the formulation of the problem we presented. In some cases, the
terminal time T is unspeci�ed, but it is a variable of the problem. A typical example is the so-called
time-optimal control, for which one wants to �nd the smallest time such that the state of the system
reaches a given point starting from a given initial condition. This problem can be written in standard
form and analyzed with the principles that we described above.

Another remark concerns the possible constraints that can be part of the problem. The most
common kinds are the mixed inequality constraints, where it is required that for each t 2 [0; T ]
inequalities of the form q(x(t); u(t); t) � 0 or the more involved "pure-state" constraints of the form
s(x(t); t) � 0 hold. The maximum principle can be reformulated to deal with these cases. Given the
introductory aim of this section, we do not enter the details here but we refer to [22] for a comprehensive
overview.

In the next two Sections, which can be skipped for the �rst reading, we provide a justi�cation for
these results.

9.1 Bellman�s optimality principle: the Hamilton-Jacobi-Bellman equation

The main tools at hand for solving an optimal control problem are Bellman�s optimality principle and
Pontryagin�s maximum principle.

Let us �rst try to �nd a necessary condition for an optimal control. In other words, we try to
answer the following questions: How does an optimal control look like? What are the main properties
that an optimal control should possess?

A very clear answer is given in the famous optimality principle, which Bellman himself describes
with these words in his book:23

"An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the �rst
decision".24

For an everyday life example, suppose that a marathon runner has to run 42km. If the marathon
runner divided into two (not necessarily equals) parts the run and used her energies to take the �rst
part of the race at full speed, then she would no longer have necessary energy for the second part of
the run. Clearly it does not make sense to divide the entire path into two parts and maximize over
the �rst part: the �nal outcome would not be the optimal one and she probably would not �nish the
race. However, if the runner divided the way into two parts, then she would run the second part of
the journey at best, given the energy left over from the �rst part of the route. In other words, the
second part of an optimal path must be optimal.

Now let us try to describe the optimality principle in mathematical terms, without providing
rigorous proofs. Suppose that an optimal control exists and it is used in solving (182). Then the
objective in (182) becomes a number, since it is the sum of the de�nite integral (an area) in (182)
and the terminal payo¤. Let us denote this number by V (x0; 0), emphasizing that the value of the
de�nite integral in (182) plus the scrap value depends only on the initial state of the system x (0) = x0,
and not on the control if it has been chosen to be an optimal one. Assume that the value function
(185) is well de�nite (e.g. the integral converges). The value function (185) returns the value of the
integral plus the terminal payo¤, for a generic initial time t and initial state x in the optimal path,
i.e. x = x�(t). The optimality principle implies that the value function must satisfy the following
condition: if at time t the state is x�(t) (a point of the optimal path) and the interval [t; T ] is split

23Bellman, R.E. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ. Republished 2003: Dover.
24The word "policy" is nowadays substituted with the most common "control".
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in two parts, say [t; t+�t] and [t+�t; T ], then the optimal control must maximize the integral of
the instantaneous payo¤ in the period [t; t+�t] and then, from t + �t onwards to T , it must hold
that the value function gives the maximum attainable starting at time t+�t with the updated state
x + �x, reached through the optimal control during the interval [t; t+�t]. In practice, the value
function solves a functional equation of the form:

V (x; t) = max
u(s)2A(s)

24t+�tZ
t

f(x(s); u(s); s)ds+ V (x+�x; t+�t)

35 (187)

where V (x+�x; t+�t) is the value of the "second part" of the optimal path that must be optimal.
The functional equation (187) can be written as a di¤erential equation, as follows.

By the fundamental theorem of the integral calculus, for a �small��t increment it is

t+�tZ
t

f(x(s); u(s); s)ds � f(x(t); u(t); t)�t (188)

If the value function V (x; t) is continuously di¤erentiable, we can approximate it through a Taylor
expansion about the point (x; t)

V (x+�x; t+�t) � V (x; t) +
@V

@x
�x+

@V

@t
�t (189)

By substituting (188) and (189) into (187), we get

V (x; t) � max
u(t)2A(t)

�
f(x(t); u(t); t)�t+ V (x; t) +

@V

@x
�x+

@V

@t
�t

�
which can be written as

0 � max
u(t)2A(t)

�
f(x(t); u(t); t)�t+

@V

@x
�x+

@V

@t
�t

�
since V (x; t) does not depend on u(t) and the V (x; t) terms on the LHS and on the RHS cancel

out.
Now if we divide both terms of the last expression by �t we get

0 � max
u(t)2A(t)

�
f(x(t); u(t); t) +

@V

@x

�x

�t
+
@V

@t

�
which, taking the limit as �t! 0, becomes

0 = max
u(t)2A(t)

�
f(x(t); u(t); t) +

@V

@x
g(x(t); u(t); t) +

@V

@t

�
(190)

where we use the fact that lim�t!0 �x�t =
�
x, which is the state equation. Moreover, for (190) it must

hold the boundary condition that

V (x(T ); T ) = F (x(T ); T ) (191)

197



In words, if the problem starts at the terminal time, then the integral in (185) is zero and the
value function coincides with the scrap value.

Since in (190) @V@t =
@V (x;t)
@t does not depend on u(t), we can rewrite (190) as

�@V
@t

= max
u(t)2A(t)

�
f(x(t); u(t); t) +

@V

@x
g(x(t); u(t); t)

�
(192)

Technically, (190) known as the Hamilton-Jacobi-Bellman (HJB) equation, is a (�rst order) Partial
Di¤erential Equation for the value function. This problem, in general, is very di¢ cult to tackle. In
the following, we will provide some examples for which the HJB equation can be written as an ODE
or for which the value function can be found starting from some trial functions.

9.2 From HJB to Pontryagin�s Maximum Principle

Consider the derivative @V
@x in (190), where x = x�(t). De�ne the costate variable �(t) as follows

�(t) :=
@V

@x
=
@V (x�; t)

@x
=
@V (x�(t); t)

@x
(193)

Notice that �(t) represents the derivative of the value function with respect to the state variable at
each time.

From (192) and the de�nition of costate variable, it follows that an optimal control maximizes
the Hamiltonian function H in (186) with respect to u. This important fact is referred to as the
"Maximum principle". Observe that (190) can be written in terms of the Hamiltonian function (186)
as follows

0 = max
u(t)2A

�
H(x; u; �; t) +

@V

@t

�
= H(x�; u�;

@V (x�; t)

@x
; t) +

@V (x�; t)

@t
(194)

Note that in the RHS of (194) the max disappears since we are considering optimal control and optimal
state.

Now imagine that the control remains u� but the state is "perturbed": instead of the optimal state
x� consider the "perturbed" state

x = x� + hv

where v = v(t) is an arbitrary function, which we assume continuous and h 2 R. Obviously, for h = 0,
the perturbed state coincides with the optimal state. For any �xed t 2 [0; T ] and a �xed v(t), de�ne
the function R(h)

R(h) = H(x; u�;
@V (x; t)

@x
; t) +

@V (x; t)

@t

Notice that R(h) is a di¤erentiable function of one variable (v is �xed as well as u�) and it has a
maximum point at h = 0, being from (194)

R(0) = H(x�; u�;
@V (x�; t)

@x
; t) +

@V (x�; t)

@t
� H(x; u�;

@V (x; t)

@x
; t) +

@V (x; t)

@t
= R(h)

Since R(h) is di¤erentiable, it must be that R0(0) = 0. By the chain rule:

R0(h) =
d

dh

�
H(x; u�;

@V (x; t)

@x
; t) +

@V (x; t)

@t

�
=

d

dh

�
f(x; u�; t) + Vx(x; t)g(x; u

�; t) +
@V (x; t)

@t

�
(195)

= fx(x; u
�; t)v + Vx(x; t)gx(x; u

�; t)v + Vxx(x; t)g(x; u
�; t)v + Vtx(x; t)v =

= [fx(x; u
�; t) + Vx(x; t)gx(x; u

�; t) + Vxx(x; t)g(x; u
�; t) + Vtx(x; t)] v
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from which

R0(0) = [fx(x
�; u�; t) + Vx(x

�; t)gx(x
�; u�; t) + Vxx(x

�; t)g(x�; u�; t) + Vtx(x
�; t)] v = 0 (196)

Since v is an arbitrary function, in (196) the term in square brackets must be zero.
Now derive @V (x�(t);t)

@x in (193) with respect to t. Using again the chain rule one obtains

dVx
dt

= Vxx (x
�(t); t)

�
x+ Vxt (x

�(t); t) = Vxx (x
�; t) g(x�; u�; t) + Vtx (x

�; t) (197)

Substitute (197) in the square bracket term in (196) to obtain

fx(x
�; u�; t) + Vx(x

�; t)gx(x
�; u�; t) +

dVx
dt

= 0

which, recalling the de�nitions of costate in (193) and Hamiltonian in (186), can be rewritten as

�
� = �@H

@x
(198)

Now consider the terminal condition on the costate, which is referred to as the transversality
condition. In the simplest case, there is no constraint on the value that the optimal state must assume
in T , i.e. x(T ) is free. In this case, the scrap value F (x(T ); T ) in (182) is independent on x(T ) so that
@
@xF (x(T ); T ) = 0. From (191) and from the de�nition of (193) it is

0 =
@

@x
F (x(T ); T ) =

@

@x
V (x(T ); T ) = �(T )

More generally, if x(T ) = xT is given, then from the same reasoning we obtain the transversality
condition

�(T ) =
@

@x
F (xT ; T )

Summing up, we obtain the Maximum principle already recalled.

The di¤erential equations for the state and costate variables, together with the boundary conditions
x�(0) and ��(T ), constitute a two-point boundary value problem, where it is speci�ed the initial value
of the state and the �nal value of the costate.

Necessary conditions are important to select possible candidates for the optimal control. In ad-
dition, the following su¢ cient conditions are useful to con�rm that a solution candidate is indeed an
optimum. We recall below the most important su¢ cient conditions.

Proposition (Mangasarian su¢ cient condition). Consider a candidate solution of the optimal
control problem (182), i.e. an admissible control u�, the corresponding admissible path x� and the
costate variable ��, obtained through Pontryagin�s maximum principle.

� If the Hamiltonian H in (186) is concave in x and u for all t 2 [0; T ] then u� is an optimal
control and x� is an optimal path;

� If the Hamiltonian H in (186) is strictly concave in x and u for all t 2 [0; T ] then u� is the
unique optimal control and x� is the unique optimal path.
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An immediate corollary of the previous proposition is the following.
Corollary (Mangasarian su¢ cient condition). Consider a candidate solution of the optimal

control problem (182), i.e. an admissible control u�, the corresponding admissible path x� and the
costate variable ��, obtained through Pontryagin�s maximum principle. Assume that the instantaneous
payo¤ f(x; u; t) is concave in x and u for all t 2 [0; T ] and that one of the following conditions holds:

� for all t 2 [0; T ], g(x; u; t) is concave in x and u and �� � 0;

� for all t 2 [0; T ], g(x; u; t) is convex in x and u and �� � 0;

� g(x; u; t) is linear in x and u.

Then u� is an optimal control and x� is an optimal path.

Another useful su¢ cient condition is based on the concavity of the maximized Hamiltonian HM ,
de�ned as

HM (x; �; t) = max
u
H(x; u; �; t) = max

u
[f(x; u; t) + �g(x; u; t)] (199)

Proposition (Arrow su¢ cient condition). Consider a candidate solution of the optimal control
problem (182), i.e. an admissible control u�, the corresponding admissible path x� and the costate
variable ��, obtained through Pontryagin�s maximum principle. If the maximized Hamiltonian HM in
(199) is concave in x for all t 2 [0; T ] then u� is an optimal control and x� is an optimal path.

These su¢ cient conditions are employed in the examples below.

9.3 Some basic examples

Example (Basic)
Consider the problem

max
u

2Z
0

�
x� 2u2

�
dt (200)

such that:(
�
x = 3 + u
x(0) = 5

The Hamiltonian function is
H = x� 2u2 + � (3 + u)

Notice that the Hamiltonian is concave in state x and control u, so the necessary conditions are also
su¢ cient. We apply the maximum principle to �nd the optimal control. In this particular case, being
the Hamiltonian strictly concave in u and since no constraints on u are imposed, the maximizer can
be found through the �rst order condition:

@H

@u
= �4u+ � = 0! u� =

�

4
(201)

The costate equation is
�
� = �@H

@x
= �1! �(t) = �t+ c (202)
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where c is a constant to be determined through the transversality condition, i.e. the value of the
costate at terminal time T = 2.

Since the �nal state x(2) is free, the transversality condition becomes �(2) = 0. Therefore, the
costate is �(t) = �t + 2, and the optimal control is u�(t) = �(t)

4 = � t
4 +

1
2 . Now, the optimal state

path can be obtained by integrating the state equation with the obtained optimal control:

�
x = 3 + u� = � t

4
+
7

2
! x(t) = � t

2

8
+
7

2
t+ 5

The constant (5) in the optimal path has been obtained by the initial condition on the state, see (200).
Let us slightly modify problem (200) by including a scrap value, for instance consider the objective

max
u

2Z
0

�
x� 2u2

�
dt+ 4x(2) (203)

such that(
�
x = 3 + u
x(0) = 5

Clearly, the Hamiltonian is unchanged as well as conditions (201) and (202). Now the right
transversality condition is �(T ) = �(2) = d(4x)

dx = 4. Through analogous calculations as before we

obtain, ��(t) = �t+ 6, u�(t) = � t
4 +

3
2 and x

�(t) = � t2

8 +
9
2 t+ 5.

Let us now try to solve problem (200) by dynamic programming. HJB equation for problem (200)
implies that V (x; t) must solve

Vt +max
u

�
x� 2u2 + Vx (3 + u)

�
= 0!

Vt + x+ 3Vx +max
u

�
�2u2 + uVx

�
= 0

maximizing �2u2+uVx with respect to u by setting
@(�2u2+uVx)

@u = 0, we get that the optimal control
satis�es u = Vx

4 . The HJB equation then becomes

Vt + x+ 3Vx +
1

8
(Vx)

2 = 0 (204)

Usually, it is extremely hard if not impossible to solve in closed form the HJB equation. In this
case, we try to obtain a solution starting by a trial function. Consider a function of the form

V (x; t) = ax+ bxt+ ct3 + dt2 + et+ f

where a; b; c; d; e; f are constant to be determined. Inserting the trial solution in (204) it is

V (x; t) = (b+ 1)x+ t2
�
b2

8
+ 3c

�
+ t

�
ab

4
+ 3b+ 2d

�
+
a2

8
+ 3a+ e

Moreover, the transversality condition V (x; 2) = 0 implies that (a+ 2b)x+ 8c+ 4d+ 2e+ f = 0. At
this point, the HJB equation is satis�ed for all x and t if and only if the following system of equations
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is satis�ed 8>>>>>>><>>>>>>>:

b+ 1 = 0
b2

8 + 3c = 0
ab
4 + 3b+ 2d = 0
a2

8 + 3a+ e = 0
8c+ 4d+ 2e+ f = 0
a+ 2b = 0

(205)

which gives the solution

a = 2; b = �1; c = � 1

24
; d =

7

4
; e = �13

2
; f =

19

3

that determines the value function

V (x; t) = 2x� xt� 1

24
t3 +

7

4
t2 � 13

2
t+

19

3

Notice that u�(t) = Vx
4 =

2�t
4 coincides with the solution previously obtained through the maximum

principle.
In the case of scrap value, the transversality condition requires that V (x; 2) = 4x. In that case,

the last equation of system (205) is replaced by a + 2b � 4 = 0. We left to the reader to verify that
the value function in this case has coe¢ cients

a = 6; b = �1; c = � 1

24
; d =

9

4
; e = �45

2
; f =

109

3
:

Example (Bang-bang control)
Consider the problem

min
u2[�1;1]

2Z
0

x2dt (206)

such that:(
�
x = u
x(0) = �2

Since the integrand x2 is the quadrate of the distance between a point x and the origin, the problem
can be interpreted as follows: start from x(0) = �2 and try to steer x as near to zero as possible. To
write the problem as a maximization one, we rewrite the objective as

max
u2[�1;1]

2Z
0

�x2dt

The Hamiltonian function is
H = �x2 + �u

so that, applying the Maximum Principle, we obtain
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8>>>>>>><>>>>>>>:

�
x = u (state equation)
�
� = �Hx = 2x (costate equation)
u� = argmax

u2[�1;1]
H (maximum principle)

x�(0) = �2 (initial condition)
��(2) = 0 (transversality condition when x(T ) is free)

Notice that Mangasarian�s su¢ cient condition holds, as the instantaneous payo¤ is strictly concave
and the state equation is linear.

H is linear in u, so we must adopt a control of the type

u� =

8<:
1 if � > 0
? if � = 0
�1 if � < 0

(207)

In our example, since x�(0) = �2 < 0, it is clear that, in order to steer the system towards zero,
we must select u = 1. The state-costate system becomes( �

x = 1
�
� = 2x

with the previously reminded initial conditions. Integrating the �rst equation with the initial condition
x�(0) = �2 we get x(t) = t� 2, which then gives the following equation for the costate

�
� = 2x = 2t� 4!

�(t) = t2 � 4t+ 4 = (t� 2)2

Notice that �(t) > 0 for all t 2 [0; 2), con�rming that the initial choice of u = 1 was correct. This
control is called bang-bang, since, of all the possible values of u in the interval [�1; 1], we were only
interested in the terminal points, see (207), at least for � 6= 0. Next example clari�es the presence of
the "?" in (207).

Example (Singular control)
Consider the problem

max
u2[�1;1]

3Z
0

�x2dt (208)

such that:(
�
x = u
x(0) = �2

The problem is formally identical to the previous one, with the exception that the terminal time
is now T = 3. Employing the same principle as before, it is clear that it is optimal to steer the system
towards the origin. Thus we get that in the interval [0; 2] the optimal trajectory is x(t) = t � 2 and
�(t) = (t� 2)2. At T = 2, it is x(2) = 0 and also �(2) = 0. In (207) we observed that when � = 0
the control is unde�ned. In this example, it is obvious that in the interval (2; 3] the control must be
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u = 0: at t = 2 the system has reached the value x = 0 and any other control u 6= 0 would bring the
state away from the origin (remember that the interpretation of the problem is that of minimizing an

area). Since in the interval (2; 3] it is
�
x = 0 it is also

�
� = 2x = 0, so that �(t) is constant in (2; 3]. In

order to guarantee that �(3) = 0 it must be �(t) = 0, for all (2; 3], with also x(t) = 0, for all (2; 3].
We have thus established that the "?" in (207) is indeed u = 0. This is a typical example of a singular
control, since there exists an interval where the Hamiltonian is independent on the control u.

9.4 Current value formulations

In economics, the typical problem of optimal control assumes the following form

max
u(t)2A

TZ
0

e��tf(x(t); u(t))dt+ F (x(T ); T ) (209)

such that:8>><>>:
�
x = g(x(t); u(t))
x(0) = x0

and with one of the following terminal conditions:
(a) x(T ) free (b) x(T ) = xT (c) x(T ) � xT

where � > 0 is the discount factor. Remember that in most economic applications it is T = +1 and,
clearly F (x(t); t) = 0. In the following, we reformulate the HJB equation and the maximum principle
for this speci�c problem.

First consider the HJB equation in (192) for problem (209)

�@V
@t

= max
u(t)2A(t)

�
e��tf(x(t); u(t)) +

@V

@x
g(x(t); u(t))

�
and assume that the value function can be written as the product of a function in x times e��t:

V (x; t) = J(x)e��t

from which it is @V@t = ��J(x)e
��t and @V

@x = J 0(x)e��t. Thus, the HJB equation becomes

�J(x)e��t = max
u(t)2A(t)

h
e��tf(x(t); u(t)) + J 0(x)e��tg(x(t); u(t))

i
:

Multiplying both sides by e�t, we obtain the following ODE in the unknown function J(x):

�J(x) = max
u(t)2A(t)

�
f(x(t); u(t)) + J 0(x)g(x(t); u(t))

�
(210)

It is easily veri�able that the transversality condition F (x(T ); T ) = V (x(T ); T ) now becomes

J(x(T )) = e�TF (x(T ); T )

Now we restate the maximum principle for problem (209). Consider the corresponding Hamiltonian
in (186)

H(x; u; �; t) = e��tf(x; u) + �g(x; u)

204



and multiply it by e�t to obtain the so-called Current-value Hamiltonian Hc:

Hc(x; u; �; t) = f(x; u) + �g(x; u) (211)

where � = �(t) = �(t)e�t. From �(t) = �(t)e��t we obtain that

�
� =

�
�e��t � ��e��t

and thus
�
�e�t =

�
�� �� (212)

Since the current value Hamiltonian is given by the Hamiltonian times a constant, the optimal
control u� maximizes the current-value Hamiltonian as well as the Hamiltonian; moreover Hc

� = H�

so that the state equation can be written as
�
x = Hc

�. Now consider the costate equation

�
� = �Hx = � [fx(x�; u�) + �gx(x�; u�)] = (213)

= �
h
e��tfx(x

�; u�) + �gx(x
�; u�)

i
=

= �
h
e��tfx(x

�; u�) + �e��tgx(x
�; u�)

i
(214)

Multiply (213) by e�t and, considering (212), we can write

�
�� �� = � [fx(x�; u�) + �gx(x�; u�)] = �Hc

x

It is now possible to restate Pontryagin�s maximum principle for problem (209)
Proposition (Maximum Principle with current-value formulation). If u� is an optimal

control and x� is the corresponding optimal path for the problem (209), then there exists a costate
variable �� such that x�; ��; u� are the solution in [0; T ] of the following problem:8>>>>>>>>><>>>>>>>>>:

�
x = g(x�; u�) = Hc

� (state equation)
�
� = � [fx(x�; u�) + ��gx(x�; u�)] + �� = �Hc

x + �� (costate equation)
u� = argmaxHc(x�; u; ��) (maximum principle)
x�(0) = x0 (initial condition)
(a) ��(T ) = @

@xF (xT ; T ) (transversality condition when x(T ) free)
or
(b) ��(T ) � @

@xF (xT ; T ) (transversality condition when x(T ) � xT )

Obviously, when the scrap value is zero, in the transversality conditions it is @
@xF (xT ; T ) = 0.

When T = +1, the following transversality condition is necessary

lim
t!+1

e��tHc(x�; u�; ��) (215)

= lim
t!+1

e��tf(x�; u�) + e��t��g(x�; u�) = 0.

In economic applications, the following "simpli�ed" transversality condition is often employed:

lim
t!+1

��e��t = 0. (216)
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Notice that condition (216) is not necessary, as it can be shown by counterexamples, see [24].
Clearly, if in the considered optimal control problem with in�nite time horizon the optimal state
converges to an equilibrium value (x�; u�), then lim

t!+1
e��tf(x�; u�) = 0 and lim

t!+1
g(x�; u�) = 0 so that

(216) implies (215). We refer to [2] for details on this point.
We conclude by recalling that Mangasarian as well as Arrow su¢ cient conditions hold. These

conditions can be applied, respectively, to the current-value Hamiltonian and to the current-value
maximized Hamiltonian Hc

M . In the following example, these two theorems are useful to provide
su¢ cient conditions for optimality.

9.4.1 Economic Examples

Example (Optimal use of a machine). Suppose that you possess a machine whose value at time t
is denoted by x(t). For each unit of capital invested in the machine, you obtain a unit of a good, which
is then sold in the market at constant price p. The machine depreciates over time at the rate �, but it
is possible to reduce depreciation by investing in maintenance. Denote by u = u(t) the instantaneous
maintenance activity (or repair e¤ort), which is our control variable. The cost of maintenance is
c(u) = 
u2. Instantaneous pro�t is then px� 
u2 (revenues less costs). Assume that the total life of
the machine is T > 0. Indicating by � the discount factor, the objective is

max
u�0

TZ
0

e��t
�
px� 
u2

�
dt (217)

such that:8<:
�
x = ��x+ u
x(0) = x0
x(T ) free

The current-value Hamiltonian is

Hc = px� 
u2 + � (��x+ u)

Hc is concave in x and u , so by the Mangasarian theorem the necessary conditions are also su¢ cient
for an optimal control. Moreover, since Hc is strictly concave in u, we can deduce that, under the
assumption that the optimal control is strictly positive, i.e. u� > 0 (see below), the optimal control
must satisfy the usual necessary condition for a max: @H

c

@u = �2
u� + � = 0. Thus, Hc is maximized
at

u� =
�

2

(218)

The costate equation is
�
� = �@H

c

@x
+ �� = �p+ � (� + �) (219)

with terminal condition (transversality) �(T ) = 0. Equation (219) is a linear ODE with constant
coe¢ cients, whose general solution can be easily calculated (see Appendix):

�(t) = Ke(�+�)t +
p

� + �

Imposing the boundary condition �(T ) = 0, we specify the value of the constant K. The required
solution is �(t) = �p e(�+�)(t�T )�+� + p

�+� .
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By (218), the optimal control is therefore

u�(t) =
1

2


"
�pe

(�+�)(t�T )

� + �
+

p

� + �

#
(220)

Observe from (220) that, being t < T it is u�(t) > 0 as conjectured above. Finally, the ODE
�
x = ��x + u� is linear (but with nonconstant coe¢ cients) and can be solved through the technique
explained in the appendix. Fig.146(a) shows the time evolution of the optimal path x�(t) (blue),
optimal control u�(t) (black) and costate �(t) (red) with parameters � = 0:8; � = 0:8; p = 1; 
 = 0:9;
T = 5; x0 = 1.

Figure 146: Time evolution of the optimal path x�(t) (blue), optimal control u�(t) (black) and costate
�(t) (red) with parameters � = 0:8; � = 0:8; p = 1; 
 = 0:9; T = 5; x0 = 1.

In �g.147, typical solutions of the state-costate ODE system are depicted, in the (x; �) plane.( �
x = ��x+ �

2

�
� = �p+ � (� + �)

(221)

The nullclines are the red lines (obviously
�
� = 0 is the horizontal line). Observe that the equilibrium

of the system, obtained by solving the system
�
x =

�
� = 0.

(x�; ��) =

�
p

2
�(� + �)
;

p

� + �

�
is a saddle point, as the Jacobian J =

�
�� 1

2


0 � + �

�
has Tr(J) = � > 0 and Det(J) = �� (� + �) < 0.

Below the nullcline
�
� = 0, the optimal combination of state and control is a blue trajectory with the

property that it ends exactly in the x-axis at time T . Above the nullcline
�
� = 0, the generic trajectory

diverges and can not satisfy the transversality condition �(T ) = 0.
Before ending the example, let us modify it slightly and suppose that at time T the machine has

a scrap value, i.e. it can be sold in a second-hand market at price S(x) = ax. The problem can be
stated as

max
u�0

24 TZ
0

e��t
�
px� 
u2

�
dt+ e��tax(T )

35
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Figure 147: Typical solutions of the state-costate ODE system.

In this case, the ODE (221) remains unchanged, whereas only the transversality condition changes
and becomes �(T ) = @S(x)

@x = a. Fig. 146(b) shows the relevant quantities with the parameters as in
Fig. 146(a) and with scrap value S(x) = x

2 .
Example (Linear-Quadratic optimal control). Suppose that we want to solve the following

problem

min
u=u(t)

+1Z
0

e��t
�
ax2 + bu2

�
dt (222)

such that:(
�
x = u
x(0) = x0

where a; b > 0. No constraints on the control are imposed. Being the integrand a quadratic function
of state and control and the state equation linear in control, such a problem is often referred to as a
linear-quadratic (LQ) optimal control problem.

Notice that, since we want to minimize the integral, we can restate the problem in equivalent form
by considering the following objective:

max
u

+1Z
0

�e��t
�
ax2 + bu2

�
dt

Let us start the analysis by characterizing the solution through the maximum principle. The
current-value Hamiltonian is given by

Hc(x; u; �) = �ax2 � bu2 + �u
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Clearly Mangasarian�s su¢ cient conditions are veri�ed. Moreover, being Hc strictly concave in u, we
can �nd the optimal control u� = u by solving the equation of the �rst order condition

@Hc

@u
= �2bu+ � = 0! u� =

�

2b

Now consider the costate equation

�
� = �Hc

x + �� = 2ax+ ��

Summing up, a solution of the problem is given by x�; u�; �� that solve the following system of linear
di¤erential equations ( �

x = �
2b�

� = 2ax+ ��
(223)

with initial condition on the state x(0) = x0 and such that the following transversality condition holds:

lim
t!+1

e��tHc(x�; u�; ��) = lim
t!+1

� e��t
"
a (x�)2 + b

�
��

2b

�2#
+ e��t

(��)2

2b
= 0: (224)

One particular solution of (223) is the �xed point, obtained by solving the system
�
x =

�
� = 0.

Being a 2 � 2 system of linear equations with nonzero determinant, this solution is unique and it is
the equilibrium (x; �) = (0; 0). The Jacobian matrix is given by

J =

�
0 1

2b
2a �

�
whose eigenvalues are

z1;2 =
� �

p
�2 + 4ab

2

Since it is z1 =
��
p
�2+4ab
2 < 0 < �+

p
�2+4ab
2 = z2, the origin (0; 0) is a saddle point. The

equilibrium solution satis�es the transversality condition (224) because there �� is constant. Thus,
when x(0) = 0 it is optimal to set u = 0 for all t. This is elementary considering again the meaning
of problem (222).

The interesting question is then the following: what happens when x(0) 6= 0? To answer the
question, one has to �nd out how the optimal path looks like in general. Deriving the maximum

principle condition with respect to t, we obtain that the following relationship must hold:
�
u =

�
�
2b .

Deriving
�
x with respect to t, and using the state equation

�
x = u, we obtain the following second-order

di¤erential equation in x:

��
x =

�
u =

�
�

2b
=
2ax+ ��

2b
=
2ax+ 2b�u

2b
=

=
a

b
x+ �

�
x

The general solution of this equation is

x(t) = c1e
r1t + c2e

r2t (225)

209



where r1 =
��
p
�2+4a=b
2 and r2 =

�+
p
�2+4a=b
2 . The constants c1 and c2 can be determined through the

boundary conditions, i.e. the initial condition on the state x(0) = x0 and the transversality condition
on the costate. From the latter we get that condition (224) can be satis�ed only if lim

t!+1
�(t)e��t = 0.

Thus, the transversality condition requires that

0 = lim
t!+1

�(t)e��t = lim
t!+1

2bu(t)e��t = lim
t!+1

2b
�
x(t)e��t = c21

which tells us that the trasversality condition can be satis�ed only for c2 = 0. Thus, from (225) the
optimal path is

x�(t) = x0e
t
��
p
�2+4a=b
2 (226)

with corresponding optimal control

u� =
�
x
�
= x0

� �
q
�2 + 4a=b

2
et

��
p
�2+4a=b
2 (227)

Consider now the same problem with Dynamic Programming. Maximizing the right hand side of
the HJB in (210), the optimal control must satisfy the condition

u� = argmax
�
�ax2 � bu2 + J 0(x)u

�
from which it is u� = J 0(x)

2b , which coincides, if one recall the de�nition of the costate variable, with
the optimal control obtained through Pontryagin�s principle. The HJB equation (210) thus becomes

�J(x) = �ax2 � b
�
J 0(x)

2b

�2
+
[J 0(x)]2

2b
= (228)

= �ax2 + [J
0(x)]2

4b

which is a nonlinear ODE in the unknown function J(x). In this case, a way to tackle the problem is
to "guess" a possible value function. For instance, consider a quadratic "trial" function of the form

J(x) = Ax2

where A is a constant to be determined. With this choice of J(x), the HJB equation (228) becomes

�Ax2 = �ax2 + A2x2

b

which is equivalent to �
A2

b
� �A� a

�
x2 = 0

Thus, the trial solution works if the quantity in parenthesis is zero, i.e. if A solves the quadratic
equation A2

b � �A� a = 0. The required values of A are

A =
b� �

q
b
�
4a+ b�2

�
2
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At this point we have two possible values of A that do the trick. However, notice that the integrand
function is negative, as it is the sum of two quadratic terms multiplied by �1. Thus, the value function,
which gives the maximum value of this integral, can only assume nonpositive values. Thus, only the
negative solution (A < 0) is meaningful for our problem. In this way, the following value function has
been found:

J(x) =
b� �

q
b
�
4a+ b�2

�
2

x2

Now consider the optimal control, which is, as shown before,

u� =
J 0(x)

2b
=
1

2

 
� �

r
4a

b
+ �2

!
x (229)

Now from condition
�
x = u we have that x solves the ODE

�
x =

1

2

 
� �

r
4a

b
+ �2

!
x

whose solution coincides with (226). The optimal control as a function of time is obviously (227).
Notice that, although both (227) and (229) represent the optimal control, this control is given in (227)
as a function of time of the form u� = u(t; x0) (open-loop control), whereas in (229) the optimal control
is a function of the current state u� = u(t; x(t)) (closed-loop or feedback control).

Following similar steps, one can study a more general linear-quadratic problem of the form:

max
u(t)

+1Z
0

�e��t
�
ax2 + bu2

�
dt (230)

such that:(
�
x = cx+ du
x(0) = x0

Example (A simpli�ed Capital Accumulation Model). Consider now the optimal control
problem

max
0<u(t)�x�

+1Z
0

e��t log u(t)dt (231)

such that:(
�
x = x� � 
x� u
x(0) = x0

where x = x(t) � 0 can be interpreted as a physical capital that naturally grows through the tech-
nological coe¢ cient � 2 (0; 1], depreciates itself by an obsolescence factor 
 > 0 and is reduced by
current consumption u. Capital x is the state variable and consumption u is the control variable.
The objective of the problem is to maximize the discounted stream of utility of consumption, as-
sumed logarithmic. The constraint on the consumption is introduced on the one hand to impose some
consumption (u > 0) and on the other hand to avoid that the capital is consumed (u(t) � x�).
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The current value Hamiltonian is

Hc = log u+ � [x� � 
x� u]

which is maximized, from condition @Hc

@u = 0, at u = 1
� . The current-value Hamiltonian (211) is

Hc
x = �

�
�x��1 � 


�
. Through these quantities, the state-costate system of ODE that a candidate to

be an optimal solution solves becomes8>>>><>>>>:
�
x = x� � 
x� 1

�
�
� = �

�
(
 + �)� �x��1

�
x(0) = x0
lim
t!+1

e��t [log u+ � (x� � 
x� u)] = 0

Notice that Mangasarian�s su¢ cient conditions are satis�ed, so the necessary conditions are also
su¢ cient.25

Instead of considering the previous system of ODE, it is instructive to translate it in a ODE system
in the state-control variables. First, derive the maximum condition u = 1

� with respect to time:

�
u = �

�
�

�2
=
�x��1 � (
 + �)

�
= u

�
�x��1 � (
 + �)

�
so that the previous system in the state-control space is translated as8>>><>>>:

�
x = x� � 
x� u
�
u = u

�
�x��1 � (
 + �)

�
x(0) = x0
lim
t!+1

e��t [log u+ � (x� � 
x� u)] = 0

(232)

Let us study the nullclines of system (232). Obviously,
�
x = 0, u = f(x) = x�� 
x. In the plane

(x; u), f(x) is a strictly concave function. Observe that below this curve, it is
�
x > 0. Now consider

�
u = 0, u

�
�x��1 � (
 + �)

�
= 0 i.e. when u = 0 or x = x =

�

+�
�

� 1
��1
: in the plane (x; u) the set of

points such that
�
u = 0 are the x-axis and the vertical line x = x. Moreover, on the left of x = x it

is
�
u > 0. The positive orthant of the plane (x; u) can thus be subdivided into four regions according

to the signs of the regions between nullclines, as represented in �g.148, where we depicted the locus
of points such that

�
x > 0 and

�
u > 0 (light yellow region),

�
x > 0 and

�
u < 0 (white region),

�
x < 0 and

�
u > 0 (gray region),

�
x < 0 and

�
u < 0 (light gray region).

System (232) admits three equilibrium points (x; u), obtained as points where
�
x =

�
u = 0: (0; 0),

(

1

��1 ; 0) and (x; u) = (x; x� � 
x). By the constraint on the control (u > 0), we disregard the �rst
two equilibrium points, as they involve zero consumption. The analysis with the nullclines suggests
that (x; x� � 
x) is a saddle point. The same conclusions can be drawn by studying the linearization
of the system about this �xed point. We perform this stability analysis in the next example in a more
general setting.

25This can be veri�ed by Sylvester�s criterion, being Hc
xx < 0 and

���� Hc
xx Hc

xu

Hc
ux Hc

uu

���� > 0.
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Figure 148: The positive orthant of the plane (x; u) subdivided into four regions bounded by nullclines.

The point (x; u) is the optimal equilibrium. In fact, it is a solution of (232), being the simpli�ed
transversality condition lim

t!+1
e��t

u = 0 trivially satis�ed, as u is constant. When x(0) = x, it is optimal

to use the control u for all t to stay at x.
What happens when the initial condition on the capital is out-of-equilibrium, i.e. if x(0) 6= x? As

(x; u) is a saddle, every trajectory starting in the gray or in the white regions departs from (x; u). For
a given initial state, it can not be optimal to take a control such that the trajectory belongs to these
regions, as the trajectory would not satisfy the transversality condition in (232).

Thus, given an initial condition x(0) < x [x(0) > x], the control should be chosen in the light
yellow region [light gray region] such that the path belongs to the stable manifold of the saddle point,
in order to guarantee the convergence to the optimal equilibrium (x; u). If we express the optimal
control as a function of the state, u = u(x) such that the trajectory of the system belongs to the stable
manifold of the saddle point (x; u), then u(x) is the feedback optimal control for problem (231).

We brie�y study this model with the dynamic programming approach. To simplify the problem,
consider the case � = 1, so that the state equation becomes

�
x = �x� u

where � = (1� 
). The HJB equation assumes the form

�J(x) = max
u

�
log u+ J 0(x)(�x� u)

�
(233)

where J(x) is an unknown function. The RHS of (233) is maximized for u = 1
J 0(x) > 0, so that (233)

can be written as
�J(x) = � log J 0(x) + �xJ 0(x)� 1

Given the logarithmic form of utility, we search for a solution candidate of the form J(x) = A [log(x) +B],
where A and B are constant to be determined. Substituting this trial function in the HJB and sim-
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plifying, we obtain the equation

1�A� +AB� + logA+ log x (A� � 1) = 0

which leads to the system �
A� � 1 = 0
1�A� +AB� + logA = 0

so that A = 1
� and B =

�
� � 1 + log �. It is easy to check that function J(x) =

1
�

�
log(x+ �) + �

� � 1
�

satis�es (233). The optimal control is then u� = 1
J 0(x) = �x, which gives the optimal quantity to

consume as a function of the current stock of capital (feedback control).
Example (A more general Capital Accumulation Model). Consider a generalization of the

previous example.26 The production function Y depends on total capital X and on total labour force
L, i.e. Y = Y (X;L). De�ne per-capita production and capital as follows: y = Y

L and x =
X
L . Assume

that Y = Y (X;L) is linear homogeneous of degree 1, i.e.

Y = Y (X;L) = Y (Lx;L) = LY (x; 1)

from which the individual production function is y = f(x) = Y (x; 1). f(x) is assumed twice di¤eren-
tiable with f 0(x) > 0 and f 00(x) < 0 and such that it satis�es the so-called Inada conditions:

lim
x!0+

f 0(x) = +1 and lim
x!+1

f 0(x) = 0+ (234)

Total production is split between total consumptions C and total investments I, i.e. Y = C + I.
The variation of the capital stock in time is

�
X = I � �X = Y � C � �X

where � > 0 indicates capital depreciation over time. In per-capita terms the variation of capital stock
is

�
X

L
= y � c� �x

where c = C
L denotes individual consumption, i.e. the consumption of a representative agent in the

economy.
On the other hand, the derivative of capital X is

�
X =

d

dt
(Lx) =

�
Lx+ L

�
x

that gives
�
X
L =

�
L
Lx +

�
x. Denoting the growth rate of labour force

�
L
L = n (assumed constant) and

recalling that y = f(x), we obtain the equation of capital growth:

�
x = f(x)� c� (n+ �)x

The utility of a representative agent in the economy is denoted by u(c), which is assumed three
times di¤erentiable with u0(c) > 0 and u00(c) < 0 and such that it satis�es the Inada conditions (234).

26Cass, David (1965). "Optimum Growth in an Aggregative Model of Capital Accumulation". Review of Economic
Studies 32 (3): 233�240.
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Assume that a social planner aims at maximizing the discounted value of the utility of consumers
weighted by labour force over an in�nite time horizon. Denoting by � > 0, the discount factor, the
problem of the social planner is

+1Z
0

e��tu (c)Ldt = L0

+1Z
0

e(n��)tu (c) dt

where it is assumed that the population grows exponentially, with L = L(t) = L0e
nt and with

initial population L(0) = L0. Without loss of generality, one can normalize the initial population to
1, i.e. L0 = 1. The objective of the social planner becomes

max
0�u�f(x)

+1Z
0

e��tu (c) dt (235)

such that:(
�
x = f(x)� 
x� c
x(0) = x0

where � = � � n > 0 (by assumption) and 
 = n+ �. Notice that the previous example in (231) is a
particular case of the one considered here.

Let us study the model with the maximum principle. The current-value Hamiltonian is

Hc = u (c) + � [f(x)� c� 
x]

which is maximized at @H
c

@u = u0(c)� � = 0, i.e. for � = u0(c). The state-costate system of ODE that
a candidate optimal solution must satisfy is8>>><>>>:

�
x = f(x)� c� 
x
�
� = �� [f 0(x)� (
 + �)]
x(0) = x0
lim
t!+1

e��t [u (c) + �(f(x)� c� 
x)] = 0

(236)

where also the control c appear. Notice again that Mangasarian�s su¢ cient conditions are satis�ed,
so that the necessary conditions are also su¢ cient.27 To get rid of the costate variable, we transform
system (236) in an ODE system in the state-control space. Deriving the maximization condition
� = u0(c) with respect to t we get

�
� =

d

dt
u0(c(t)) = u00(c)

�
c

so that from the second di¤erential equation in (236) we get

�
c = � u

0(c)

u00(c)

�
f 0(x)� (
 + �)

�
(237)

27 It can be veri�ed by Sylvester�s criterion, being Hc
xx = �f 00(x) = u0(c)f 00(x) < 0 and

���� Hc
xx Hc

xu

Hc
ux Hc

uu

���� =
u0(c)u00(c)f 00(x) > 0.
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with the transversality condition

lim
t!+1

e��t
�
u (c) + u0(c)(f(x)� c� 
x)

�
= 0: (238)

Notice that by assumption it is u00(c) 6= 0 and � u0(c)
u00(c) > 0. Thus, the nullcline

�
c = 0 is the locus of

points x such that
f 0(x) = (
 + �) (239)

From the Inada conditions, for any �xed (
 + �) > 0 there exists a unique root x to equation (239).
Equation (239) is often referred to as the Modi�ed Golden rule in capital accumulation models. This
nullcline is a vertical line in the (x; c) plane.

By (237),
�
c > 0 for f 0(x) > (
 + �), which occurs, being f 0(x) decreasing, for x < x.

Now consider the nullcline
�
x = 0, which represents the set of points such that c = f(x) � 
x.

Consider the function
c(x) = f(x)� 
x

It is c(0) = 0 for x = 0 and for c(ex) = 0 such that f(ex) � 
ex. Moreover, c(x) has a maximum point
at the point bx (golden rule state) such that c0(bx) = 0, i.e. such that f 0(bx) = 
. In other words, the
nullcline

�
x = 0 is, in the plane (x; c) an unimodal function. It is interesting to observe that bx > x, see

discussion below.
Moreover,

�
x > 0 for c < f(x)� 
x i.e. below the curve c(x). Through the condition �

x =
�
c = 0 we

identify the following equilibrium of the system of ODE:

E = (x; c) = (x; c(x)) = (x; f(x)� 
x) (240)

By graphical analysis, this equilibrium is a saddle point. The qualitative graph of the nullclines
is identical to the one presented in the previous example. Notice that at the equilibrium (x; c(x)) the
transversality condition is satis�ed, since c(x) is constant and condition lim

t!+1
u0(c(x))e��t = 0 implies

(238).
The stability analysis of equilibrium (240) can be carried out as always considering the eigenvalues

of the Jacobian matrix at equilibrium. It is

J(E) =

"
@
�
x
@x

@
�
x
@c

@
�
c
@x

@
�
c
@c

#
=

"
f 0(x)� 
 �1
� u0(c)
u00(c)f

00(x) � [u00(c)]2�u000(c)u0(c)
[u00(c)]2

[f 0(x)� (
 + �)]

#
=

=

"
� �1

� u0(c)
u00(c)f

00(x) 0

#

By (239), the element J11 = � and J22 = 0. Clearly, Tr (J) = � > 0 and Det (J) = � u0(c)
u00(c)f

00(x) < 0
so that E is indeed a saddle point. The eigenvalues are solutions of the characteristic equation in the
unknown �:

�2 � ��� u0(c)

u00(c)
f 00(x) = 0

i.e.

�1;2 =
� �

q
�2 + 4 u

0(c)
u00(c)f

00(x)

2
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As for the previous example, any trajectory belonging to the stable manifold of E ensures the conver-
gence to the optimal long-run stationary equilibrium E in (240).

In the economic literature, an equilibrium such as E is often called a turnpike and is obtained
through the modi�ed golden rule (239). Why modi�ed? The reason is the following. In general the
turnpike is di¤erent from the equilibrium that maximizes the integrand function (see (235)). In fact,
from the state equation

�
x = f(x)� c� 
x we know that an equilibrium must satisfy condition

�
x = 0,

i.e. c = f(x) � 
x. If we substitute this c in the integrand in (235) we get u (f(x)� 
x), which is
maximized at the bx such that u0 (f(bx)� 
bx) (f 0(bx)� 
) = 0, i.e. for the bx such that f 0(bx) = 
. Statebx is called golden rule. Notice that the golden rule coincides with the modi�ed golden rule in (239)
only for � = 0.

Example - Optimal �shery with constant price. Another important optimal growth problem
is the �shery model proposed by Clark and Munro,28 which can be stated as follows

max
u(t)�0

+1Z
0

e��tR(u; x)dt (241)

such that:(
�
x = f(x)� u
x(0) = x0

The interpretation of this problem is that a monopolist can harvest a renewable resource (�sh)
from a lake, whose time t stock is denoted by x = x(t). The (instantaneous) pro�t from selling u
units of �sh in the market is given by the function R(u; x). Clearly, this is a growth model and it is
very similar to the one previously considered. However, two important di¤erences are present in the
optimal �shery model. First, the type of resource suggests a "production" function that is di¤erent
from the one considered before, which was assumed to satisfy the Inada conditions (234). Second, the
pro�t function depends, in general, not only on the harvesting u, but also on the level of the resource
x.

With respect to the �rst point, if one considers the logistic "growth" function f(x) = �x � �x2,
then the state ODE in (241) becomes

�
x = f(x)� u = �x� �x2 + 
x� 
x� u =
= (�+ 
)x� �x2 � 
x� u

Thus, if R(u; x) = R(u), that is pro�t does not depend on the level of biomass, model (241) has the
same formulation of model (235). Notice, however, that the �shery "production" function g(x) =
(�+ 
)x� �x2 does not satisfy the Inada conditions (234).

With respect to the second point, in the �shery model the "utility" (pro�t) does not depend only
on consumption (harvesting) but also on the level of the stock. A simple motivation for this is related
to the cost of harvesting: if �sh is abundant, then harvesting should be cheaper and vice-versa when
the �sh stock is low. For instance, assume that the instantaneous pro�t is

R(u; x) = [p� c (x)]u (242)

28Clark, C.W., Munro, G.R. (1975) The economics of �shing and modern capital theory: A simpli�ed approach,
Journal of Environmental Economics and Management, 2,92, 92-106.
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where p is the (constant) selling price of �sh, c(x) is the marginal cost of harvesting, which depends
on the level of the resource, and u is the harvesting. Usually it is assumed that the harvesting u is
given by

u = Ex

where E is the �shing e¤ort (e.g. days �shed). If the cost of an unit of e¤ort is constant and equal to
�, then the total cost of �shing is

�E = �
u

x

i.e. in (242) it is c (x) = �
x . Since it is realistic to assume that �shing e¤ort is nonnegative and below

an upper bound (due to capacity constraints of the �eets), the control E must be taken such that
0 � E � Emax. Summing up, the optimal �shery model with constant price and stock-dependent
marginal costs can be formulated as follows

max
0�E�Emax

+1Z
0

e��tEx [p� c (x)] dt (243)

such that:(
�
x = f(x)� Ex
x(0) = x0

where Ex [p� c (x)] in the integral represents instantaneous pro�ts.
The current-value Hamiltonian (211) for this problem is

Hc = Ex [p� c (x)] + � (f(x)� Ex) = (244)

= Ex [p� c (x)� �] + �f(x) (245)

Notice that (244) is linear in the control variable E: to maximize the current-value Hamiltonian (244)
one requires to set E = 0 whenever p � c (x) � � < 0 and E = Emax whenever p � c (x) � � > 0.
De�ning the switching function s(x) = p� c (x)� �, the optimal control then looks like this

E =

8<:
0 if s(x) < 0
? if s(x) = 0
Emax if s(x) > 0

(246)

What happens when the switching function s(x) is zero? Assume that over an interval it is s(x) = 0,
i.e. � = p� c (x). Then, calculating from this relationship the derivative of the costate � with respect
to time, one gets

�
� = �c0 (x) �x = �c0 (x) (f(x)� Ex)

Since an optimal � must also satisfy the costate ODE, in this interval is:

�
� = �@H

c

@x
+ �� = �E

24p� c (x)� �| {z }
=0

35+ Exc0(x)� �f 0(x) + ��
= Exc0(x)� �

�
f 0(x)� �

�
= Exc0(x)� (p� c (x))

�
f 0(x)� �

�
where the last line follows from p� c (x)� � = 0 in the interval. The two expressions for �

� are equal
when

�c0 (x) (f(x)� Ex) = Exc0(x)� (p� c (x))
�
f 0(x)� �

�
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which is satis�ed for a stock level x� such that

f 0(x�)� c0(x�)f(x�)

p� c(x�) = � (247)

Equation (247) is called the Modi�ed Golden Rule of �shery (with constant price). The particular
level of resource x� in (247) is called singular solution and is obtained when the switching function
s(x) is zero over an interval. Being x� constant, it is

�
x = f(x�) � Ex� = 0, from which we get that

the optimal e¤ort when s(x) = 0 is exactly E� = f(x�)
x� , which is the "?" in (246), called the singular

control. Summing up, the optimal control (246) is obtained combining bang-bang controls, i.e. no
�shing (E = 0) when �shing is not remunerative or maximum harvesting (E = Emax) when �shing is
high pro�table, with the singular control when the state is singular. This optimal control constitutes
the so-called Most Rapid Approach harvest strategy: when the resource is abundant, i.e. x(t) > x�,
then it is optimal to harvest as much as possible, i.e. E = Emax, until the resource converges to x� and
then apply always the singular control. Analogously, when the resource is scarce, i.e. x(t) < x�, then
it is optimal not to harvest, i.e. E = 0, until the resource grows to the level x�, to which it remains
by employing the singular control. Thus, if we want to express the optimal control E� as a function
of the state of the system (stock of resource), we can write it in feedback form as follows

E� =

8<:
0 if x(t) < x�
f(x�)
x� if x(t) = x�

Emax if x(t) > x�

Example (Optimal �shery with nonconstant price). We revisit the previous example and
allow for nonconstant prices.29 We state the problem as follows

max
h�0

+1Z
0

e��th [p(h)� c (x)] dt (248)

such that:(
�
x = f(x)� h
x(0) = x0

where the control variable is the harvesting rate h.30 In this example, the instantaneous pro�t is
�(h) = h [p(h)� c (x)].

The current-value Hamiltonian (211) for this problem is

Hc = h [p(h)� c (x)] + � (f(x)� h) (249)

With positive harvesting h > 0, the optimal control must satisfy the condition

@Hc

@h
= p(h) + hp0(h)� c(x)� � = 0

from which it is
� = p(h) + hp0(h)� c(x) = �0(h) (250)

29Clark, C.W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources. 1990, John Wiley &
Sons.
30 In the previous example it was h = Ex. Here we reason directly in terms of harvesting h for the sake of simplicity.
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The costate equation is
�
� = �@H

c

@x
+ �� = hc0(x) + �

�
� � f 0(x)

�
(251)

Deriving (250) with respect to time, one gets
�
� = �00(h)

�
h that equated with (251) gives

hc0(x) + �
�
� � f 0(x)

�
= �00(h)

�
h

so that, using again (250), the dynamics of optimal harvesting must satisfy the condition

�
h =

hc0(x) + �0(h) (� � f 0(x))
�00(h)

(252)

This last ODE, the stock dynamics
�
x = f(x)�h and the proper transversality condition constitute

the necessary conditions that the optimal solution couple (harvesting and resource dynamics) must

satisfy. From conditions
�
h =

�
x = 0, it is possible to obtain an optimal steady state of the system x�,

which satisfy the "modi�ed golden rule" condition

f(x�)c0(x�) + �0(f(x�)) (� � f 0(x�))
�00(f(x�))

= 0

that can be rewritten as

f 0(x�)� c0(x�)f(x�)

�0(f(x�))
= � (253)

which is the analogous of (247) with nonlinear demand.
For instance assume that �sh is sold with linear inverse demand

p(h) = a� bh

and that the cost of harvesting is independent on the stock, c(x) = c. As for f(x), assume logistic
growth

f(x) = x (�� �x) (254)

The optimal control problem (248) particularizes to

max
h�0

+1Z
0

e��t
�
mh� bh2

�
dt (255)

such that:(
�
x = x (�� �x)� h
x(0) = x0

where we denoted m = a� c, which represents the unitary markup. Clearly, �(h) = mh� bh2 is the
instantaneous pro�t. We already established that � = �0(h). Through the previous reasoning, applied
to the current-value Hamiltonian

Hc = mh� bh2 + � (x (�� �x)� h)
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we obtain the following nonlinear system of ODE that the solution candidate must satisfy:( �
x = x (�� �x)� h
�
h = �0(h)(��f 0(x))

�00(h) = � (m�2bh)(���+2�x)
2b

(256)

Notice, in particular that, Hc is concave with respect to x and h. In the (x; h) plane, the nullcline
�
x = 0 is represented by the parabola f(x) in (254); the nullcline

�
h = 0 is represented by two lines:

one horizontal line of equation h = m
2b , which maximizes instantaneous pro�ts being there �

0(h) = 0,
and one vertical line of equation x = ���

2� , which corresponds to the modi�ed golden rule stock, since
in this case (253) reduces to f 0(x�) = � being c0(x) = 0.

Equilibria of the ODE system (256) solve the system of equations (256) with
�
x =

�
h = 0. To easy

the algebra without loosing generality, assume, from now on, that the demand is normalized so that
b = 1

2 .

When x = ���
2� (vertical nullcline

�
h = 0), a unique equilibrium exists

E1 = (x1; h1) =

�
�� �
2�

;
(�� �) (�+ �)

4�

�
which is meaningful provided that � � �. As already observed, x1 in E1 is exactly the (modi�ed)
golden rule level (253).

When h = m
2b = m (horizontal nullcline

�
h = 0) from the �rst equation in (256) we get the following

two equilibrium values (x; h):

E2 =

 
��

p
�2 � 4m�
2�

;m

!

E3 =

 
�+

p
�2 � 4m�
2�

;m

!

The x components in E2 and E3 are real numbers provided that �2�4m� � 0. When �2�4m� < 0,
i.e. when

m >
�2

4�
(257)

E2 and E3 are not meaningful equilibria. From an economic point of view, the harvesting that would
maximize instantaneous pro�ts (h = m) is "out-of-reach", as it is greater than the vertex of the

parabola (254), f
�
�
2�

�
= �2

4� , which is called the maximum sustainable yield (MSY ) in resource

economics.31 Thus, the model has di¤erent number of equilibria and di¤erent dynamic properties, as
explained below.

31Notice that �
2�
is indeed the golden rule level of the stock. To be more precise, from

�
x = 0, we get that at equilibrium

it is
h = x (�� �x)

so that instantaneous pro�t is

� = mh� bh2 =
= m [x (�� �x)]� b [x (�� �x)]2

221



Consider �rst the case �2 � 4m� < 0, i.e. the case where condition (257) holds, where the unique
equilibrium of the ODE (256) is E1. The Jacobian of (256) is

J =

24 @
�
x
@x

@
�
x
@h

@
�
h
@x

@
�
h
@h

35 = � �� 2�x �1
2� (h�m) ��+ 2�x+ �

�
from which we calculate

J(E1) =

"
� �1

�2�4m���2
2 0

#
Clearly Tr(J) = � > 0 and Det(J) = �2�4m���2

2 . Notice that Det(J) < 0 () m > �2��2
4� . Since

we are assuming (257), we can conclude that when system (256) admits the unique equilibrium E1
then E1 is a saddle point. This equilibrium is a solution of system (256) and, being constant, satis�es
a transverality condition of the form lim

t!+1
�0(h1)e��t = 0, which implies lim

t!+1
Hce��t = 0. This is

exactly as in the capital accumulation model example. For any initial condition x(0) 6= ���
2� , the

optimal trajectory belongs to the stable manifold of the saddle E1, to which the solution converges in
the long run. Notice also that in this case, the optimal path is analogous to the case of constant prices,
although with constant prices the optimal control is a combination of bang-bang controls with the
singular control to steer the system to the singular state as soon as possible, whereas with nonconstant
prices the optimal control is along the stable manifold of the saddle.

Fig.149 shows this case, where the red curves are the nullclines. Di¤erent colors correspond to

di¤erent signs of the vector �eld (256), namely
�
x > 0 and

�
h > 0 (red region),

�
x > 0 and

�
h < 0 (blue

region),
�
x < 0 and

�
h < 0 (yellow region),

�
x < 0 and

�
h > 0 (white region). Clearly E1, intersection

between the parabola and the vertical line, is a saddle point.
Now consider what happens when �2 � 4m� > 0, i.e. when all three equilibria exist. After E2

and E3 are created, through a fold bifurcation for (256) at m = �2

4� (see Figure 150)(a), E1 remains a

saddle point as long as m > �2��2
4� .

At E2 the Jacobian is

J(E2) =

" p
�2 � 4m� �1
0 �

p
�2 � 4m� + �

#

and the eigenvalues are the entries along the diagonal. So it is
p
�2 � 4m� > 0 and �

p
�2 � 4m�+� >

0 for m 2
�
�2��2
4� ; �

2

4�

�
. Hence, for m 2

�
�2��2
4� ; �

2

4�

�
, E2 is an unstable node and E1 is a saddle (see

Figure 150)(b)); when m 2
�
0; �

2��2
4�

�
, E2 is a saddle and E1 is an unstable node (Figure 150)(c)): at

m = �2��2
4� a transcritical bifurcation occurs at which E2 and E1 exchange their stability properties.

At E3 the Jacobian is

J(E3) =

"
�
p
�2 � 4m� �1
0

p
�2 � 4m� + �

#

Instantaneous pro�t �(x) is maximized at x = �
2�
if m > �2

4�
as �0

�
�
2�

�
= 0 and �00

�
�
2�

�
< 0 however, for m < �2

4�
,

�(x) has at x = �
2�
a minimum point, whereas �(x) is maximized at the "golden rule" levels given by the state values in

E2 and E3, namely at x =
��
p
�2�4m�
2�

.
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Figure 149: Phase portrait for the model of optimal �shery with nonconstant price. Red curves are
the nullclines, di¤erent colors correspond to di¤erent signs of the vector �eld (256).

with eigenvalues, again, on the diagonal. Since
p
�2 � 4m� < 0 and

p
�2 � 4m� + � > 0 for all

m 2
�
0; �

2

4�

�
, we conclude that E3, when exists, is a saddle.

Summing up, for m 2
�
�2

4� ;+1
�
, with � > � , the only equilibrium is the saddle E1. This equilib-

rium constitutes the optimal equilibrium of the system and the stable manifold of the equilibrium is
the optimal combination of state and control to maximize pro�ts, i.e. it provides the feedback control
(see �g. 149).

When m 2
�
�2��2
4� ; �

2

4�

�
the saddle E1 coexists with the unstable node E2 and the saddle E3.

Depending on the initial condition of the system, the optimal trajectory is either along the stable
manifold of the saddle E1 or along the stable manifold of the saddle E3 (see �g.150)(b))

When m 2
�
0; �

2��2
4�

�
, the saddle E2 coexists with the unstable node E1 and the saddle E3: when

x(0) > ���
2� it is optimal to harvest h = m in perpetuity to converge to E3; when x(0) < ���

2� , then
it is convenient to stay along the stable manifold of the saddle E2 to let the resource grow until it is
sustainable to harvest h = m. Then it is optimal to harvest m in perpetuity (see �g.150)(c)). Notice
that in this scenario, the modi�ed golden rule does not identify the optimal biomass level since it is
optimal to harvest according to the golden rule.
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Figure 150: Di¤erent dynamic scenarios for the model of optimal �shery with nonconstant price. Red
curves are the nullclines, di¤erent colors correspond to di¤erent signs of the vector �eld (256).

10 Appendix

10.1 Complex Numbers

It is well known from elementary algebra that a second degree equation of the form ax2 + bx+ c = 0
has real solutions if and only if � = b2 � 4ac � 0. For instance, equation x2 + 2x+ 3 = 0 has no real
solution, since if we try to write them we get x = �1�

p
�8
2 .

Thus, second degree equations with � < 0 do not admit (real) solutions since the square root of
a negative number can not be de�ned in the set of real numbers R as a consequence of the sign rule:
the square of any real number is nonnegative. To overcome this problem, let us de�ne the quantity i
which satis�es the condition i2 = �1, from which it is

p
�1 = i. reworking the previous example we

get that the solutions of x2 + 2x+ 3 = 0 are

�1�
p
�8
2

= �1�
p
�1 � 8
2

= �1�
p
�1
p
8

2
= �1� i

p
2

Motivated by this example, in this appendix we provide a concise treatment of complex numbers.

De�nition. The set of complex numbers C is the set of the ordered couples (x,y) of real numbers
for which the operations of sum and product are de�ned satisfying properties listed (P1) to (P9) below.

The imaginary unity is i = (0; 1). Any complex number (x; y) can be expressed in the form
x+ iy = x(1; 0)+y(0; 1), where x is called the real part of x+ iy and y is the imaginary part of x+ iy.
From a geometric point of view, a complex number q = a+ ib can be represented in a Cartesian plane,
called Complex plane, through the vector [a; b]. Usually, in the horizontal axis a segment of length
a is traced (the real part of q) and, analogously, a segment of length b is considered in the vertical
axis (the imaginary part of q). A complex number with imaginary part equals to zero becomes a
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real number, i.e. R � C. All the operations between complex numbers de�ned below are the usual
arithmetic operations between real numbers whenever they are applied to complex numbers with zero
imaginary part.

Let us de�ne the operations of sum and product of complex numbers.
De�nition. If q = a + ib and w = c + id, then the sum q + w is de�ned as follows: q + w =

(a+ ib) + (c+ id) = (a+ c) + i(b+ d).
De�nition. If q = a + ib and w = c + id, then the product q � w is de�ned as follows: q � w =

(a+ ib)�(c+ id) = (ac� bd) + i(bc+ ad).
To remember how to perform the two operations, it is useful to notice the followings. For the sum
one has to sum the real parts of the two numbers to obtain the real part of the complex number and,
analogously, for the imaginary parts. For the product, one calculates the product in the usual way
recalling that i2 = �1.

Examples:
(2 + 3i) + (1 + 5i) = 3 + 8i;
(2 + 3i)� (1 + 5i) = (2 + 3i) + (�1� 5i) = 1� 2i
(3 + i6) � (2� i3) = 24 + i3 ; i2 = (0; 1) � (0; 1) = �1.

10.1.1 Properties of sum and product of complex numbers.

Let us consider a; b; c 2 C
(P1) a+ b = b+ a
(P2) (a+ b) + c = a+ (b+ c)
(P3) a+ 0 = a+ (0; 0) = a
(P4) a+ (�a) = 0
(P5) a � b = b � a
(P6) (a � b) � c = a � (b � c)
(P7) 1 � a = (1; 0) � a = a
(P8) if a = x+ iy 6= 0 )9a�1 2 C such that a�1 � a = 1
(P9) (a+ b) � c = a � c+ b � c
Another useful de�nition is the following:
De�nition. The modulus of the complex number q = a+ ib is

jqj =
p
a2 + b2

The modulus of a complex number has the following properties:
(M1) jqj = ja+ ibj = 0, q = 0 (that is a = b = 0)
(M2) jq + wj � jqj+ jwj
(M3) jqwj = jqj�jwj
For instance j�2+3ij =

p
4 + 9 =

p
13; j�3j = 3. Notice that the modulus extends in C the de�nition

of absolute value of a real number. By Pythagorean�s theorem, the modulus of the complex number
q = a+ ib represents the (Euclidean) distance between the point (a; b) and the origin (0; 0).

De�nition. Given the complex number q = a+ ib, the complex conjugate of q is �q = a� ib.
Notice that a number q coincides with its complex conjugate if and only if q 2 R. Moreover, it is

easy to verify that given any q 2 C; q � �q 2 R, since it is

(a+ ib)(a� ib) = a2 + iab� iab+ b2 = ja+ ibj2 = ja� ibj2:
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For instance (2 + i)(2� i) = 5 and it is j2 + ij = j2� ij =
p
5.

The de�nitions of modulus and complex conjugate of a complex number are useful to de�ne the
inverse of a complex number.

Let us consider q = a+ ib 6= 0. Then, by property (P8) an element q�1 exists such that q � q�1 =
q�1 � q = 1. Through the relationship (a+ ib)(a� ib) = ja+ ibj2 = ja� ibj2 it is easy to see that

q�1 =
�q

jqj2

in fact it is

q � q�1 = q � �q

jqj2 =
jqj2
jqj2 = 1

De�nition. Given the complex numbers q; z 2 C, the division z
q is de�ned as:

z

q
= z � q�1

For example, let us consider the division 3�i5
2�6i . Being

(2� 6i)�1 = 1

20
+
3

20
i

it is

3� 5i
2� 6i = (3� 5i) �

�
1

20
+
3

20
i

�
=

�
9

10
+
1

5
i

�
10.1.2 Polar form of a complex number

From elementary geometry, we know that a point in the plane can be indicated in a unique way
through its Cartesian coordinates (a; b). An alternative way to identify the same point is to indicate
the distance between the point (a; b) and the origin (0; 0), which is the modulus, and the angle � that
the vector [a; b] forms with the positive semiaxis. Consider the complex number q = a + ib, with
� = jqj. Then it is cos � = a

� and sin � =
b
� . Hence, we can write the complex number in polar form as

follows
q = a+ ib = � � cos� + � � i � sen� = � � (cos � + i � sin �):

For instance, consider the complex number q = 1 + i, whose modulus is jqj =
p
2. We can write

q =
p
2

�
1p
2
+ i

1p
2

�
moreover, recalling that cos � = 1=

p
2 and sin � = 1=

p
2, we get that it is � = �

4 . Summing up, we can
write q as follows:

q = 1 + i =
p
2
�
cos

�

4
+ i sin

�

4

�
The polar form of a complex number is useful since it allows to apply trigonometric relationships in

calculations with complex numbers. In particular, recall the rules of adding and subtracting: 8�; �2 R
it is:
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sin(�+ �) = sin� cos� + sin� cos�
cos(�+ �) = cos� cos� � sin� sin�
sin(�� �) = sin� cos� � sin� cos�
cos(�� �) = cos� cos� + sin� sin�
Thus, we can perform the product of complex numbers in polar form in the following way. Let us

consider two complex numbers q = �(cos�+ i sin�) and w = �(cos� + i sin�). Then it is

q � w = �(cos�+ i sin�) � �(cos� + i sin�) =
= � � �(cos� cos� � sin� sin� + i(sin� cos� + sin� cos�)) =
= � � �[cos(�+ �) + i sin(�+ �)]

For instance, consider q =
p
2
�
cos �4 + i sin

�
4

�
and w = 3

�
cos 34� + i sin

3
4�
�
, then it is

q � w =
hp
2
�
cos

�

4
+ i sin

�

4

�i
�
�
3

�
cos

3

4
� + i sin

3

4
�

��
=

= 3
p
2(cos(

�

4
+
3

4
�) + i sin(

�

4
+
3

4
�)) = �3

p
2

The previous rule is particularly useful when one wants to calculate the power of a complex number
(De Moivre�s formula). Consider the complex number q = �(cos� + i sin�). Then, by the previous
argument, the product of q with itself n times can be written as

qn = �n(cos(n�) + i sin(n�)):

10.1.3 Exponential form of a complex number

An alternative way to write a complex number is through the exponential function. We motivate this
point by considering expansions in Taylor series of the exponential function

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ ::: =

1X
j=0

xj

j!

and the Taylor series of trigonometric functions:

cosx = 1� x2

2!
+
x4

4!
� x6

6!
+ :::

sinx = x� x3

3!
+
x5

5!
� x7

7!
+ :::

Thus, we can write a complex number in the so called exponential form as follows:

q = �(cos�+ i sin�) = �

��
1� �2

2!
+
�4

4!
� �6

6!
+ :::

�
+ i

�
�� �3

3!
+
�5

5!
� �7

7!
+ :::

��
=

= �

��
1 +

i2�2

2!
+
i4�4

4!
+
i6�6

6!
+ :::

�
+

�
i�+

i3�3

3!
+
i5�5

5!
+
i7�7

7!
+ :::

��
=

= �

�
1 + i�+

i2�2

2!
+
i3�3

3!
+
i4�4

4!
+
i5�5

5!
+
i6�6

6!
+ :::

�
=

= �

�
1 + i�+

(i�)2

2!
+
(i�)3

3!
+
(i�)4

4!
+ :::

�
= �ei�:
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Considering the product of complex numbers in trigonometric form, the following relationship holds:
qn = �nein�; 8n 2 N. Moreover, it is possible to show that the complex exponential maintains all the
properties that the exponential has in R. For instance, it is eqew = eq+w. Thus, it is ea+ib = eaeib =
ea(cos b+ i sin b).

10.1.4 Complex numbers and polynomial equations

The most important application of complex numbers is the famous Fundamental theorem of algebra,
which states that any polynomial with complex coe¢ cients has roots in the set of complex numbers.
Obviously, the theorem applies as a particular case to polynomial with real coe¢ cients.

Fundamental Theorem of Algebra. Every polynomial equation in the unknown z of the type

anz
n + an�1z

n�1 + � � �+ a1z + a0 = 0 (258)

with ai 2 C , i=0,...,n, has n roots in C, each one counted with its multiplicity.
We recall that z0 is a root of multiplicity m of the polynomial equation P (z) = anz

n+an�1zn�1+
� � � + a1z + a0 if P (z0) = 0 and P (z) = (z � z0)

mQ(z), with Q(z0) 6= 0. In particular, if we consider
a polynomial equation of degree n with real coe¢ cients, i.e. (258) with ai 2 R, and all its roots
z1; z2 : : : ; zk of multiplicity m1;m2 : : : ;mk, respectively, it is m1+m2+ � � �+mk = n, and it is possible
to write the polynomial as P (z) = an(z � z1)m1(z � z2)m2 : : : (z � zk)mk .
Moreover, it is useful to observe that for polynomial equations P (z) = 0 with real coe¢ cients, if
a + ib 2 C is a root of the equation, i.e. P (a + ib) = 0, then also the complex conjugate a + ib is a
root of the equation, i.e. P (a� ib) = 0.

10.2 Some examples of solutions of �rst order ODE

Recall that a solution of an ordinary di¤erential equation (ODE)

dx

dt
= f(x; t)

in an interval (a; b) is a function x = x(t) such that

dx

dt
= f(x(t); t)

8t 2 (a; b). If in addition to the ODE also an initial condition on x is speci�ed, e.g. x(0) = x0, then it
is de�ned a Cauchy problem. We brie�y review some techniques to solve an ODE for the most basic
cases. In the following, we also use the notations

�
x and x0(t) interchangeably with dx

dt . The reader is
referred to more specialized books for a broader treatment on the topic.

10.2.1 Integrals as ODE

The easiest examples of di¤erential equations are those whose right hand side does not depend on x.
In this case, to solve the equation it su¢ ces to solve an inde�nite integral.32 For example, consider
the di¤erential equation

dx

dt
= t2 + e2t

32Note that even in this case, it could be impossible to write the solution in terms of elementary functions!
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Since it is dxdt = f(t), i.e. f does not depend on x, it su¢ ces to calculate the integralZ
t2 + e2tdt =

t3

3
+
e2t

2
+ c

thus obtaining in�nite functions varying the constant c 2 R.

10.2.2 First order linear ODE

Consider the linear ODE
dx

dt
= f(x; t) = p(t)x(t) + q(t) (259)

If q(t) = 0, then the equation is called homogeneous. In the easiest case p(t) and q(t) are constant
functions, p(t) = a and q(t) = b. Equation (259) then becomes

x0(t) = ax(t) + b: (260)

One solution to this equation is the constant function x(t) = � b
a , with

dx
dt = 0. Let us consider a

generic solution di¤erent to the constant one. If x(t) 6= � b
a , we can rewrite equation (260) as

x0(t)

ax(t) + b
= 1

from which

x0(t)

x(t) + b
a

= a (261)

Observe that

d

dt

�
log

����x(t) + b

a

����� = x0(t)

x(t) + b
a

so that (261) can be written as

d

dt

�
log

����x(t) + b

a

����� = a:

Integrating both sides of this equality we getZ
d

dt

�
log

����x(t) + b

a

����� dt = Z adt

so that, by de�nition of inde�nite integral, it is

log

����x(t) + b

a

���� = at+ c

We have obtained so far an equation (not di¤erential anymore!) in the unknown x(t), which we can
easily solve taking the exponential of both terms:

elogjx(t)+
b
a j = eat+c
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from which ����x(t) + b

a

���� = eatec

and, �nally,

x(t) = Keat � b

a

where K = �ec. It is useful to observe that the solution to the original di¤erential equation is the sum
between a particular solution to the equation (x(t) = � b

a) and the general solution of the homogeneous
equation: x0(t) = ax(t) has general solution x(t) = Keat.

For instance, consider the equation
�
x(t) = �2x(t), with x(0) = 2 (a Cauchy problem). Being b = 0

and a = �2, the solution is x(t) = Ke�2t. From the initial condition, we get K = 2.
Now consider

�
x(t) = 3x(t)� 6, x(0) = 1. The solution is x(t) = Ke3t + 2. From x(0) = K + 2 = 1

we get K = �1. Thus the solution is x(t) = �e3t + 2.
Now we tackle the di¤erential equation (259). In order to �nd a solution, we try to write the left

hand side of this equation as the derivative of a function. For this reason, we multiply both sides of
equation (259) for the function �(t) (to be determined), thus obtaining

�(t)
dx

dt
� �(t)p(t)x(t) = q(t)�(t) (262)

If we impose that d�dt = ��(t)p(t), then (262) becomes the derivative of �(t)x(t). In fact, from the
product rule of derivatives it is

d

dt
[�(t)y(t)] =

dx

dt
�(t) +

d�

dt
x(t) = �(t)

dx

dt
� �(t)p(t)x(t):

In order to choose the "right" �(t) we have to pick �(t) such that d�
dt = ��(t)p(t). This means

that �(t) itself must solve the di¤erential equation

d�

dt
= ��(t)p(t)

If �(t) 6= 0, we can write

d�

dt
� 1

�(t)
= �p(t)

and taking the integrals of both sidesZ �
d�

dt
� 1

�(t)

�
dt = �

Z
p(t)dt

from which Z �
d

dt
log�(t)

�
dt = �

Z
p(t)dt

Thus, log�(t) = �
R
p(t)dt and �nally �(t) = e�

R
p(t)dt. Now consider that �(t) = e�

R
p(t)dt in the

previous relationships. From
d

dt
[�(t)x(t)] = q(t)�(t)
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we get, taking the integrals of both terms:Z
d

dt
[�(t)x(t)] dt =

Z
q(t)�(t)dt

so that

�(t)x(t) + c =

Z
q(t)�(t)dt

and, �nally,

x(t) =

R
q(t)�(t)dt+K

�(t)
= e

R
p(t)dt

�Z �
q(t)e�

R
p(t)dt

�
dt+K

�
(263)

where K is a constant that can be determined through the initial condition.
As an example, consider the Cauchy problem dx

dt � 4t
3x(t) = t3 with initial condition x(0) = 2.

Obviously, p(t) = 4t3 and q(t) = t3. First calculateZ
p(t)dt =

Z
4t3dt = t4 + c

then, by the previous formula, we obtain the solution of the di¤erential equation

x(t) = et
4

�Z
t3e�t

4
dt+K

�
= et

4

�
�1
4
e�t

4
+K

�
= �1

4
+Ke�t

4

From the initial condition, it is x(0) = �1
4 +K = 2, from which K = 9

4 . The solution of the Cauchy
problem is thus

x(t) =
1

4

�
�1 + 9e�t4

�
Note that, although the formula in (263) has been easily obtained, it could be that the integrals

in (263) can not be expressed in terms of elementary functions.

10.2.3 Separation of variables

This technique is useful when the ODE is in the form

dx

dt
= f(x; t) = g(t)h(x)

with the initial condition x(0) = K. If h(K) = 0, then dx
dt = 0 and a solution is x(t) = K. Otherwise,

it can be shown that the equation can be written as

dx

h(x)
= g(t)dt

from which Z
dx

h(y)
�
Z
g(t)dt = c

231



where c is a constant.
For instance, consider the equation dx

dt = sin (t) e
2x, with initial condition x(0) = 0.Z

dx

e2x
�
Z
sin (t) dt = c) �1

2
e�2x + cos t = c

from which

x(t) = �1
2
log [2(cos t� c)]

From the initial condition it is c = 1=2.
As an additional example, consider the logistic growth equation, already encountered in various

parts of the text:
�
x = �x� sx2

where x = x(t). If x(0) = 0 (or x(0) = �
s ), then a solution is x(t) = 0 (or x(t) = �

s ). Otherwise, if
x 6= 0 or x 6= �

s , we can write the logistic equation as

dx

�x� sx2 = dt

and the solution of the equation has the formZ
dx

�x� sx2 �
Z
dt = c (264)

With few algebraic manipulation it is possible to write down x(t) in explicit form. In fact, the �rst
integral in (264) is Z

dx

�x� sx2 =
Z

dx

x (�� sx) =
1

�
log

�
x

�� sx

�
+ k

So from (264):

1

�
log

�
x

�� sx

�
= t+ c) x

�� sx = e�t+c

) x

�� sx = e�tec ) x = e�tec (�� sx)

) x
�
1 + sece�t

�
= �e�tec

from which we get

x(t) =
�e�tec

1 + sece�t
=

�e�t

e�c + se�t

Now remember that x(0) = x0, i.e. x0 = �
e�c+s . Hence, �c = log

�
��sx0
x0

�
so that

x(t) =
�e�t

��sx0
x0

+ se�t
=

x0�e
�t

�+ sx0 (e�t � 1)
:
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