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9:10-10:50 Chair: Saber Elaydi 

 

 Andrejs Reinfelds: Dynamic equivalence of dynamic systems on time scales 

 Agnese Šuste: On local Stability of Some Exponential-Type Difference Equations  

 Inese Bula: Periodic and eventually periodic solutions of a single neuron model 

 Saber Elaydi: A Dynamically consistent discretization method 

  

10:50-11:20  Coffee-Break 

 

11:20-13:00 Chair: Stephen Baigent 

 

 Daniel Franco: Harvest timing effect on discrete population models 
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      Nicolò Pecora: A monopoly model with memory: analysis of 1:4 resonance 

 Fausto Cavalli (with A. Naimzada): Pattern formation and periodic attractors in a spatially 

extended consumer model 

 Lorenzo Cerboni Baiardi: (with G.I. Bischi and D. Radi): Asymptotic dynamics of a 2D map 
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     Anna Agliari (with N. Pecora): Dynamics inside periodicity regions: co-dimension 2 and global 

bifurcations 
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growth model 

 Andrea Caravaggio (with M. Sodini): Multiple attractors and dynamics in an OLG model with 

productive environment  

 Davide Radi (with L. Gardini and P. Harting): An evolutionary generalization of the Shelling's 
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17:20-19:00 Chair: Witold Jarczyk  

 

 Petr Stehlík: Spectra of indefinite perturbations of discrete operators  

 Dorota Głazowska and Justyna Jarczyk (with W. Jarczyk): Embeddability of pairs of weighted 
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Wednesday, May 31 

 

9:10-10:50 Chair: Francisco Balibrea  

 

 Maria Teresa Silva (with L. Silva and S. Fernandes): Convergence time to equilibrium 

distributions of autonomous and periodic non autonomous graphs 
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Dynamics inside periodicity regions: co-dimension 2 and

global bifurcations

Anna Agliari∗1 and Nicolò Pecora†1

1Dept. of Economics and Social Science, Catholic University, Piacenza, Italy

Abstract

We study a simple model based on the cobweb demand-supply framework with costly innovators and
free imitators. The evolutionary selection between technologies depends on a performance measure
which is related to the degree of memory (see [1], [2], and [3] ).

The resulting dynamics is described by a two-dimensional discrete map. The local stability
analysis of the map shows that its unique fixed point may lose stability either via flip bifurcation
or supercritical Neimark-Sacker bifurcation. This latter is the starting point of the present talk, in
which we investigate some different situations associated with its occurrence.

In particular, through numerical simulations of the map we investigate the dynamics associated
with different eventualities, such as the occurrence of global bifurcations and codimension-2 bifurca-
tions (1:3 resonance). Furthermore, some periodicity regions are numerically investigated. In fact, a
typical structure of the bifurcation diagram, in a two-dimensional parameter plane, is given by the
so-called “Arnold’s tongues” issuing from the Neimark-Sacker bifurcation curve. It is well known
that the boundaries of a p/q tongue are saddle-node bifurcation curves of a cycle of period q, and
inside the tongue (in a neighborhood of the Neimark-Sacker bifurcation curve) we generally have an
attracting closed invariant set formed by a saddle-node connection, that is, the unstable set of the
saddle q-cycle reaches the node (or focus) q-cycle, thus forming a closed attracting curve. Through
the analysis of a particular periodicity region we shall show that as long as we move inside the
tongue, there exist peculiar situations in which an attracting closed curve coexists with a periodic
orbit. Such coexistence eventuality first appears and then disappears due to global bifurcations
occurring within the periodicity region. We shall show that the bifurcation mechanism leading to
invariant closed curves may be associated with a pair of cycles, a saddle cycle and an attracting
one (node or focus), and the appearance/disappearance may be related to a saddle-connection, also
called homoclinic connection ([4]).

∗anna.agliari@unicatt.it
†nicolo.pecora@unicatt.it
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Spectral Invariants of Markov Periodic Systems
João Ferreira Alves

Center for Mathematical Analysis, Geometry and Dynamical Systems
Instituto Superior Técnico, Universidade de Lisboa, Portugal

Consider a nonautonomous dynamical system determined by a p-periodic
sequence, (fi)i2N, of continuos self maps on I = [a; b]. Such a system is called
Markov if there exists a �nite partition of I;

I1 = [c0 = a; c1] ; I2 = [c1; c2] ; :::; Ik = [ck�1; ck = b] ,

satisfying the following:

1) fi is monotone on Ij , for i = 0; :::; p� 1; j = 1; :::; k:

2) fi is invariant in C = fc0; :::; ckg, that is fi (C) � C, for i = 0; :::; p� 1.

The spectral invariants of a Markov periodic system F = (fi)i2N are de�ned
as the spectral invariants of a nonautonomous graph attached to F . Since these
invariants characterize the periodic structure of the non-autonomous graph, it
is natural to ask what role these invariants play in characterizing the periodic
structure of F .
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Global stability in competitive population models 
 

Stephen Baigent 

 

Department of Mathematics, UCL 

London UK 
 

 

Abstract 

 
Local stability of fixed points of a map is usually simple to establish, but global stability is a much 

harder problem. Here we discuss a geometric method for proving global stability of many well-known 

population models. This method is then used to obtain the global stability of interior fixed points for 

some well-known competitive population models. Lastly we discuss how the method can be refined 

in competitive models if they are known to possess a carrying simplex, i.e. an  invariant manifold of 

codimension-1 that attracts all points bar the origin. 

 
 



The logistic two delays difference equation, revisited

Francisco Balibrea

Abstract. We analyze mainly the state of art of logistic second order dif-

ference equations with two delays. They model the evolution of populations

with respect to seasons in time n ∈ N. We will concentrate in cases when the
population is composed of only one species. The appearance of two delays are

usually related with the effect of food in the evolution of the population.

The equation to consider is

xn+1 = axn(1− xn−1) a > 0

As an adequate tool to understand the different behaviours of solutions of

the equation, we use an unfolding of it obtaining a discrete dynamical system
of dimension two, defined in the unit square by the transformation

La(x, y) = (y, ay(1− x))

where (x, y) ∈ [0, 1]2

We review some dynamical properties already known like periodic solu-

tions and local linear analysis around the fixed points of the unfolding. Besides

we also introduce new results on the analysis of the behaviour of invariant
curves. All analysis depend on the parameter a. Our study is mainly devoted

to the range a ∈ (0, 2], the setting where we will give some new results. Open
problems remain for the range when a ≥ 2.27 where 2.27 is a critical value. At

approximately this value the transformation has infinite many periodic orbits

Reference:

F.Balibrea, A logistic non-linear difference equation with two-delays. To

appear in a Special Issue devoted to Model in Biology in Springer

Facultad de Matemáticas, Universidad de Murcia Campus de Espinardo, 30100 Mur-
cia, Spain

E-mail address: balibrea@um.es
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Some recent global results for recurrences arising from dynamic economic modeling  
 
Gian Italo Bischi 
DESP - Dipartimento di Economia, Società, Politica − Università di Urbino Carlo Bo 
email: gian.bischi@uniurb.it 
URL: www.mdef.it/gian-italo-bischi/ 
 
Abstract 
 
In this lecture we give a summary of some nonlinear discrete-time dynamical systems recently 
studied in the framework of the research group on "Dynamic Models in Economics and Finance". 
Starting from these models, ranging from oligopoly games with boundedly rational agents to 
systems with expectatoins and learning with fading memory, we show how analytical, geometric 
and numerical methods have been combined to obtain a global qualitative analysis of some complex 
dynamic scenarios. Methods for the study of some nonlocal (or global) properties have been 
employed, including some global (or contact) bifurcations such as those based on the critical sets in 
the analysis of iterated noninvertible maps, and other ones have been created ad hoc, such as the 
study of focal points and prefocal sets, new kinds of singularities that characterize the global 
bifurcations of recurrences with a vanishing denominator. Chaos synchronization phenomena, with 
on-off intermittency, bubbling and riddled basins, observed in models with invariant submanifolds 
with lower dimension than the phase space, that naturally arise in symmetric models with identical 
agents and evolutionary games, are described in terms of Milnor attractors, natural transverse 
Lyapunov exponents and minimal absorbing areas. 
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Periodic and eventually periodic solutions
of a single neuron model

INESE BULA

Faculty of Physics and Mathematics, University of Latvia,
Zeļļu iela 25, Rı̄ga LV-1002, Latvia,

Institute of Mathematics and Computer Science, University of Latvia,
Raiņa bulvāris 29, Rı̄ga LV-1459, Latvia

ibula@lanet.lv

The basic model of our investigation is a delayed differential equation
x′(t) = −g(x(t − τ)) that is used as a model for a single neuron with no internal de-
cay ([3]), where g : R → R is either a sigmoid function or a piecewise linear signal
function and τ ≤ 0 is a synaptic transmission delay. From this equation it is possible to
obtain a discrete model in the form

xn+1 = βxn − g(xn), n = 0, 1, 2, ...

In [4] a difference equation was analyzed as a single neuron model, where β > 0 is an
internal decay rate and a signal function g is the following piecewise constant function
with McCulloch-Pitts nonlinearity:

g(x) =

{
1, x ≥ 0,
−1, x < 0.

(1)

Now we will study the following non-autonomous piecewise linear difference equa-
tion:

xn+1 = βnxn − g(xn), n = 0, 1, 2, ..., (2)

where (βn)
∞
n=0 is a period two or three sequence

βn =

{
β0, if n = 2k,
β1, if n = 2k + 1,

or βn =


β0, if n = 3k,
β1, if n = 3k + 1,
β2, if n = 3k + 2,

k = 0, 1, 2, ...

and g is in the form (1).
In [1] and [2] we studied this model where (βn)

∞
n=0 is a period two and three sequences

respectively. In our presentation we show that for model (2) there are many periodic and
eventyally periodic solutions, but the order of period depend on period of coefficients βn.

This work is collaboration with M.A. Radin, Rochester Institute of Technology, USA.
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Construction of an Infinite Path Towards Perfect Market

E. Camouzis, H. Kollias, and I. Leventidis
Department of Economics

National and Kapodistrian University of Athens
Sofokleous 1, 10559

Athens, Greece
ecamouzis@econ.uoa.gr

hkollias@econ.uoa.gr
ylevent@econ.uoa.gr

May 7, 2017

Abstract

In this article we present a Cournot type market, with an infinite number of firms and vari-
able marginal costs. At the equilibrium of this market the price of the homogeneous product is
equal with the ”average cost of the entire market”,

c̄ = lim
n→∞

∑n
j=1 cj

n
,

where cj is the cost of the firm j when firm j is active in the market. We present cases, for which
the equilibrium market contains an infinite number of infinitesimal firms that coexist with a
finite number of non-infinitesimal firms. In particular, when all marginal costs are identical,
the equilibrium market is a perfectly competitive market with an infinite number of infinitesi-
mal firms. We also establish that such markets might result as uniform limits of sequences of
Cournot-type markets each with a finite number of firms.
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Dynamical Analysis of a Financial Model in Discrete Time
with Heterogeneous Agents

Giovanni Campisi∗, Serena Brianzoni†, Alberto Russo ‡

Keywords
Piecewise Linear Maps, financial crises, heterogeneous agents, discrete dynamics.

In the present work we propose a financial model, following [9]. More precisely, we analyze a financial
market populated by three types of agents – fundamentalists, chartists and imitators.The latter submit buy-
ing/selling orders according to different trading rules using a 2D Piecewise Linear Map (PWL).
Our aim is to extend analytically the model of [9] which provides mainly numerical results. In particular, we
would like to better investigate the bifurcations shown by the model and the large variety of periodic cycles
produced. Moreover we frame our work in the light of the dynamics of financial crises as described by [4] and
[2]. There are only few papers analyzing different states of the market as proposed by previous authors, see
[1], [2] and [6] for example. We think that the use of PWL maps can help to enlarge this strand of research.
Finally, we provide numerical simulations in order to detect the different regimes of the market and to better
understand the model.
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Multiple attractors and dynamics in an OLG

model with productive environment

Andrea Caravaggio1 and Mauro Sodini2

1Department of Economics and Law, University of Macerata
2Department of Economics and Management, University of Pisa

April, 2017

Abstract

This work analyses an overlapping generations model in which environment en-
ters the production function as a productive input and environmental quality is
assumed as a free public resource damaged by the economic activity. In addi-
tion, public expenditures for environmental maintenance, financed by a share of
general labour income taxation are considered. By investigating some geometric
properties of the map and performing numerical simulations, we investigate con-
sequences of the interplay between environmental public expenditure and private
sector, describing different scenarios and characterizing dynamical properties of
the model. According to different parameters configurations, multiple equilibria
as well as complex dynamics may appear.
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Pattern formation and periodic attractors
in a spatially extended consumer model

F. Cavalli
Dipartimento di Discipline matematiche, Finanza matematica ed Econometria,

Università Cattolica del Sacro Cuore, Milano

A. Naimzada
Dipartimento di Economia, Metodi Quantitativi e Strategie di impresa,

Università di Milano-Bicocca.

In this talk, we present and study two families of high dimensional systems
of di¤erence equations for the modelling of an optimal choice consumer model
with local interaction. In the �rst family of models, the equation governing
the dynamics of each variable xi is a convex combination of two non-decreasing
one-dimensional maps h and f; respectively depending on xi and on a reduced
number of other variables xj ; where j 2 N(i) representing a neighborhood of i:
The model describe a situation in which agents decide their optimal consump-
tion level on the basis of their past consumption experience and on those of
their neighboring agents. The parameter � weighting the convex combination
represents the degree of social interaction. We analytically characterize spa-
tially homogeneous and heterogeneous (pattern formation) steady states and
we prove, using Lyapunov stability, their local stability independently of �:
Moreover, despite h and f are both monotone, we prove that stable period-2
cycles, coexisting with stable steady states, can emerge depending on �: We
study and compare their basins of attraction and the probability to converge
toward either a steady state or to a period-2 cycle.
In the second family, � becomes a state variable and it is governed by an

endogenous evolutionary mechanism. We characterize, both through analytical
and numerical investigations, the possible steady states and we show the emer-
gence of periodic attractors in which di¤erent periods coexist in di¤erent spatial
regions.

F. Cavalli, A. Naimzada, M. Pireddu �Emergence of complex social behaviors
from the canonical consumption model�, Mind & Society 15,71�81,2016
A. Bell, �Locally interdependent preferences in a general equilibrium envi-

ronment�JEBO 47,309-333, 2002
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Abstract

We consider a discrete time version of the model proposed by Lamantia and Radi (2015) to
describe a �shery where a population regulated by a logistic growth function is exploited by a
pool of agents that can choose, at each time period, between two di¤erent harvesting strategies
according to a pro�t-driven evolutionary selection rule. The resulting discrete dynamical system,
represented by a two-dimensional nonlinear map, is characterized by the presence of invariant
lines on which the dynamics are governed by one-dimensional restrictions that represent pure, i.e.
adopted by all players, strategies. However, interesting dynamics related to interior attractors,
where players playing both strategies coexist, are evidenced by analytical as well as numerical
methods that reveal local and global bifurcations.

Keywords: discrete-time population model, replicator dynamics, resource exploitation, at-
tractors, bifurcations.
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CLASSES OF FUNCTIONS AND THEIR INVARIANT SETS

(ATTRACTORS)

EMMA D’ANIELLO

Abstract. Let X be a complete metric space with S = {S1, . . . , SN} a finite

set of contraction maps from X to itself. We call a non-empty subset F of
X invariant, or an attractor, for the iterated function system (IFS) [15] S if

F = ∪Ni=1Si(F ) = S(F ). As an application of the Banach-Caccioppoli fixed

point theorem, it turns out that, for a particular finite set of contraction maps
S, there exists a unique invariant compact set F ⊆ X. This and other results

from [15] are summarized below.

Theorem 0.1. Let (X, d) be a complete metric space with S = {S1, . . . , SN}
a finite set of contraction maps from X to itself.

a. There exists a unique non-empty compact set F ⊆ X such that F =

S(F ).
b. The set F is the closure of the set of fixed points si1...ip of finite com-

positions Si1 ◦ . . . ◦ Sip of members of S.

c. If A is any compact set in X, then limp→∞ Sp(A) = F in the Hausdorff
metric.

When the contractions are similarities, so that |Si(x) − Si(y)| = ri|x − y|
for all x, y in X, and 0 < ri < 1, then each Si transforms subsets of X into

geometrically similar sets, giving rise to invariant sets that are self-similar.
When the images of the Si(F ) do not overlap “too much” (that is, the open set

condition is satisfied), then the self-similar set F = ∪Ni=1Si(F ) has Hausdorff

dimension equal to the value of s satisfying
∑N

i=1
ri

s = 1.

We investigate properties (the geometry, the Hausdorff dimension, etc...) of

the attractors generated by various types of iterated function systems: those
comprised of similarities, those which satisfy the open set condition, and those

made up of weak contractions.
We furnish the class K of compact subsets of X with the Hausdorff metric H;
this space is complete, so that good use can be made of the Baire category

theorem. We examine the collection of compact sets which are attractors and

study how large (or small) it is. In particular, we focus our attention on the
case when X = [0, 1]n, n ≥ 1.

Our study is motivated by researches dealing with the structure of attractive
sets. Some of them are listed below.
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A Dynamically consistent discretization method 
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Abstract 

 
We present a nonstandard discretization method related to the methods of Mickens for converting 

single species population models from continuous time to discrete time.  

The discretization method preserves the original dynamic properties of the continuous model, in the 

sense of equilibria and their stability and bifurcation characteristics, for a wider range of parameter 

values than do the common discretizations used in ecology. Furthermore, the discretization produces 

solution trajectories in remarkable agreement with those of the continuous model, so that the 

dynamics of the resulting difference equation is largely independent of the size of the step interval 

used. Examples of single and multi-species models with and without negative density dependence, 

with an Allee effect, and with an alternative positive stable equilibrium (predator pit) are studied.  

We provide a comparative analysis of bifurcations of ODE and DE systems of some of these models. 

Partly out of historical tradition, ecological population models are frequently presented as ordinary 

differential equations (ODEs), but discretization of such models is generally necessary before such 

models can become useful scientific hypotheses to be tested with time series observations of 

population abundances. Results presented here will be important to future ecological studies that seek 

to evaluate the pervasiveness and strength of negative density dependence as well as Allee effects, 

along with the prospects of alternative stable states, in natural populations. 



Harvest timing effect on

discrete population models

Daniel Franco
dfranco@ind.uned.es

Departamento de Matemática Aplicada
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Abstract

We will present results obtained in [1, 2] on the impact of different harvest times on the stability of
population dynamics using a discrete-time model proposed in [3]. Contrary to expectations, we will
show that timing can be destabilizing in population models with overcompensation. Nevertheless,
we will prove that high enough harvest intensities are always stabilizing and that timing can be
stabilizing by itself.
We will consider the effect of timing on global stability as well. First, showing that strong enough
removal efforts create a positive equilibrium that attracts all positive solutions under general con-
ditions. Second, discussing how to obtain for the Ricker case a complementary global stability
result independent of timing and valid for low-medium harvesting.

This talk is based on joint work with with H. Logemann (U. Bath, UK), J. Perán (UNED, Spain)
and J. Segura (UNED and U. Pompeu-Fabra, Spain).
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A dynamic type Parrondo paradox
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The study of periodic discrete dynamical systems is a classical topic that has

attracted the researcher’s interest in the last years, among other reasons, because

they are good models for describing the dynamics of biological systems under periodic

fluctuations whether due to external disturbances or effects of seasonality, see [3, 6]

and the references therein.

These k-periodic systems can be written as

xn+1 = fn+1(xn), (1)

with initial condition x0, and a set of maps {fm}m∈N such that fm = f` if m ≡
` (mod k). It is well-known that system (1) can be studied via the composition map

fk,k−1,...,1 = fk ◦ fk−1 ◦ · · · ◦ f1.
It can be seen that the fixed point of any composition map fk,...,1 in Rn resulting of

the composition of k maps fj with a common hyperbolic fixed point, which is repeller

for all them, must be generically either repeller or a saddle, but it can never be a local

asymptotically stable (LAS) fixed point. See for instance the examples of [1] or [5, p.

8]. We will show that this third possibility may happen dealing with non-hyperbolic

fixed points. Our main result is:

Theorem. The following statements hold:

(a) For all n ≥ 1 there exist k ≥ 3 polynomial maps fi : U ⊆ Rn → Rn, for

i ∈ {1, . . . , k}, sharing a common fixed point p which is repeller (resp. LAS) for

each map, and such that p is LAS (resp. repeller) for the composition map fk,k−1,...,1.

Furthermore, for one-dimensional maps (n = 1), this result is optimal on k, that is, it

1



is not possible to find only two of such maps such that the corresponding composition

map f2,1 satisfies the given properties.

(b) For all n = 2m ≥ 2 there exist 2 polynomial maps f1, f2 : U ⊆ R2m → R2m,

sharing a common fixed point p which is repeller (resp. LAS) for both maps, and such

that p is LAS (resp. repeller) for the composition map f2,1.

The so called Parrondo’s paradox is a paradox in game theory, that essentially

says that a combination of losing strategies becomes a winning strategy, see [4]. Our

result implies that in the non-hyperbolic case the periodicity can destroy the repeller

character of the common fixed points, giving rise to attracting points for the com-

plete non-autonomous system, showing, in consequence, the existence of a kind of

Parrondo’s dynamic type paradox for periodic discrete dynamical systems.

This talk is based on the paper [2].
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Abstract

In this paper we describe the mechanism of the anharmonic routes to chaos
in one-dimensional piecewise monotonic maps with a single discontinuity. This
kind of route is via a sequence of period doubling bifurcations and border colli-
sion bifurcations which generate periodic orbits of period pn for n � 1; on the
boundary of chaos, with

pn+1 = 2pn + (�1)nk (1)

where k is a nonzero integer, which exists for classes of maps having the shapes
as in the following �gure:

We analyze the border collision bifurcations of the periodic orbits of the maps
and explain the sequences leading to the appearances and disappearances of
periodic orbits in terms of bifurcations. An important related question is if
there exist maps having anharmonic cascade with jkj > 1. Glendinning has
claimed that the answer to this question is positive by considering larger classes
of maps. But to date, no concrete examples of such maps have been found. In
this work we present a counterexample and motivate why such an anharmonic
sequence can exist only with jkj = 1:
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This is a joint work with Witold Jarczyk.

For any arbitrary set X we consider semiflows Φ: X×(0,+∞)→ X, that is solutions
of the celebrated translation equation

Φ (Φ(x, s), t) = Φ(x, s+ t).

Φ is also called an iteration semigroup. If, in addition, φ : X → X and Φ(·, 1) = φ,
then we say that Φ is an iteration semigroup of the function φ. In the case when X
is a topological space and Φ(x, ·) is a continuous function for all x ∈ X, then the
semiflow Φ is called continuous.

Given an interval I by CM(I) we denote the set of all continuous strictly monotonic
functions defined on I. If f ∈ CM(I) and p ∈ (0, 1), then Af

p denotes a mean on I
given by the equality

Af
p(x, y) = f−1 (pf(x) + (1− p)f(y)) .

It is so-called weighted quasi-arithmetic mean generated by f with the weight p.

Given functions f, g ∈ CM(I) and numbers p, q ∈ (0, 1) the pair
(
Af

p , A
g
q

)
is said to

be embeddable if there exists a continuous semigroup Φ: I2 × (0,+∞) → I2 of the
pair

(
Af

p , A
g
q

)
such that for every t ∈ (0,+∞) the function Φ(·, t) is a pair of weighted

quasi-arithmetic means.

We find all pairs of weighted quasi-arithmetic means on I, which are embeddable in a
continuous semiflow of pair of such means. Moreover, we prove that such embedding
is uniquely determined.
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Abstract. The present work investigates the qualitative dynamics of a Solow-Swan

growth model with differential saving as proposed by Böhm and Kaas [1] assuming

the Shifted Cobb-Douglas production function as given by Capasso et al. [7]. The

resulting model is a discontinuous map generating a poverty trap. We show that, as

in Brianzoni et al. [2, 5, 3, 6, 4], fluctuation may arise. Moreover multistability and

complex basins emerge.
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Abstract 

 

The choice of time as a discrete or continuous variable may radically affect the stability of 
equilibrium in an endogenous growth model with durable consumption. In the continuous-
time model the steady state is locally saddle-path stable with monotonic convergence. 
However, in the discrete-time model the steady state may be unstable or saddle-path stable 
with monotonic or oscillatory convergence. 
In this paper, we study general polynomial discretization in backward and forward looking, 

and the preservation of stability properties. We apply these results to the Ramsey model. 

Finally, in this paper, we  study the local and global dynamics of a new discrete Ramsey 

model 
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Asymptotic properties of cocycles contracting on fibers

Grzegorz Guzik

We deal with cocycle mappings on general metric spaces which are uniformly
contractive on fibers. Namely, let (X, %) be a metric space (a phase space) and Ω be
a non–void set (a parameter space), moreover let T be a set of all possible ’times’
(some nontrivial subgroups of reals). Suppose that θ = {θt : Ω → Ω : t ∈ T} is a
group of bijective transformations (a base flow) and the mapping ϕ : T+×Ω→ XX

satisfies the following equation

ϕ(s+ t, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for s, t ∈ T+ and ω ∈ Ω.

We assume that every function ϕ(t, ω) : X → X is continuous. A pair (θ, ϕ) is
called a cocycle (over θ).

Given a cocycle (θ, ϕ) for ω ∈ Ω and D ⊂ X we define the limit set

L(ω,D) :=
⋂

t∈T+

cl
( ⋃
s≥t

ϕ(s, θ−sω)(D)
)
.

Then define a family A = {Aω : ω ∈ Ω} by

Aω := cl
⋃
D

L(ω,D) for ω ∈ Ω,

where the sum on the right–hand side is taken over all bounded subsets D of X.
The cocycle (θ, ϕ) is said to be pullback uniformly contractive on fibers if for

every ω ∈ Ω, every nonempty bounded subset D of X and every ε > 0 there is a
t0 = t0(ε, ω,D) ∈ T+ such that for every t ≥ t0 condition

diam(ϕ(t, θ−tω)(D)) < ε

is satisfied.
Our main result is as follows.

Theorem 0.1. Let (X, %) be a complete metric space and (θ, ϕ) be a cocy-
cle pullback uniformly contractive on fibers. Suppose that there exists a nonempty
bounded subset A of X such that

ϕ(t, ω)(A) ⊂ A for t ∈ T+ and ω ∈ Ω.

Then for every ω ∈ Ω there is a unique point xω ∈ X such that Aω = {xω}.

In fact, this says that under assumption of uniform contractivity on fibers one
can obtain a (pullback) cocycle attractor which consists of singletons. Since the
parameter space Ω is supposed to be a nonempty set only, both cases of random as
well as nonautonomous dynamical systems are covered. Moreover, we can obtain a
vast class of iterated function systems with so–called point–fibred attractors.
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This is a joint work with Justyna Jarczyk.
Let I be an interval of reals. A function M : I × I → I, satisfying the condition

min{x, y} ≤M(x, y) ≤ max{x, y}, x, y ∈ I,

is called a mean on I. If the above inequalities are sharp whenever x, y ∈ I, x 6= y,
then the mean M is said to be strict.

Take any interior point ξ of I and define Iξ := {x ∈ I : x ≤ ξ} and ξI :=
{x ∈ I : ξ ≤ x} . Given means M and N on the intervals Iξ and ξI, respectively, the
problem is to find a mean M⊕N on I extending both M and N :

M⊕N |Iξ×Iξ =M and M⊕N |
ξI×ξI = N.

We present one of possible approach to the problem, studying the limit behaviour
of a simple dynamical system built by use of the limit functions h1, h2 : I → I defined
by

h1(x) =

{
M(x, ξ), if x ∈ Iξ,
N(x, ξ), if x ∈ ξI,

h2(y) =

{
M(ξ, y), if y ∈ Iξ,
N(ξ, y), if y ∈ ξI.

The iterated procedure of joining M and N , presented in the talk, makes use of
some properties of the iterates (h1 × h2)n, where h1 × h2 : I × I → I × I is given by

(h1 × h2) (x, y) = (h1(x), h2(y)) .

In particular, the following facts are crucial.
1. Assume that I is compact and the functions h1, h2 are continuous. Then

(i) (hn1 (I))n∈N and (hn2 (I))n∈N are decreasing (in the sense of inclusion) sequences of
compact intervals containing ξ;
(ii) J1 :=

⋂∞
n=1 h

n
1 (I) and J2 :=

⋂∞
n=1 h

n
2 (I) are compact intervals containing ξ;

(iii) J1× J2 is an attractor of the dynamical system ((h1 × h2)n)n∈N: for every neigh-
bourhood U of J1 × J2 there is an n0 ∈ N such that

((h1 × h2)n) (I × I) ⊂ U, n ≥ n0.

2. Assume that I is compact, the functions h1, h2 are continuous and the means
M and N are strict. Then J1 × J2 = {(ξ, ξ)}, that is

lim
n→+∞

(h1 × h2)n (x, y) = (ξ, ξ)

uniformly in I × I.
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LetN be positive integer and h = π
N
.Also, xi = nh, qn = q(nh) for n = 0, 1, 2, ...N−

1. In this talking, we will give some spectral results as eigenvalues, eigenfunctions, norm-
ing constants and zeros of eigenfunctions. Also, by comparing continuous and discrete
case for classical Ambarzumyan theorem [4], we will give similar and different points for
difference Sturm-Liouville problem [1-3]

−∆2y(n) + q(n)y(n+ 1) = λy(n+ 1), (1)

y(0) = y(N) = 0 (2)

where the sequence q = [q(n)] is referred to as the potential. As usual, ∆ is the
forward difference operator defined by

∆y(n) =
y(n+ 1) − y(n)

h
, ∆2y(n) =

y(n+ 2) − 2y(n+ 1) + y(n)

h2
.

It is well known that the problem (1),(2) has simple real eigenvalues with corresponding
orthogonal eigenfunctions.
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Abstract

We study the dynamic effects of fiscal reforms on migration and tax
evasion in an international context with two asymmetric countries. Given
an initial international distribution of honest and dishonest tax payers,
the tax system (e.g. tax rates and degrees of progressivity) and the salary
in each country, individuals decide where to reside and how much time to
spend working. The model allows us to study in an evolutionary dynamic
setting how the distribution of honest and dishonest earners is geograph-
ically affected by fiscal reforms (e.g. variations in tax rates) and auditing
efforts (e.g. probability of auditing and fines) of different countries. Due to
progressivity of tax systems, the evolutionary system is modelled through
a piecewise-smooth map. We show that various dynamic long term sce-
narios can be generated. The particular convergence of the model depends
crucially on the initial geographic distribution of dishonest agents. This
implies that tax reforms that have been successful in reducing tax eva-
sion in one country may produce very different results in others, if initial
conditions are significantly different. Chaotic cyclical behavior may also
arise if individual propensity to migrate is suffi ciently high.

Keywords: Migration; Tax evasion; Progressive vs. flat tax; Evolutionary
dynamics; Piecewise-smooth maps.
JEL codes: H26; H31; F22.
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On topological properties of Brouwer
homeomorphisms
Zbigniew Leśniak
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We describe properties of Brouwer homeomorphisms that are not necessarily em-
beddable in a flow. The presented results can be treated as counterparts of results
concerning Brouwer flows proved in [1] and [2].

We show results which concern invariant lines that are closed sets. Such lines
play a similar role as trajectories in the case where a Brouwer homeomorphism is
embeddable in a flow. In particular, using such lines we can describe the structure of
equivalence classes of the codivergency relation.
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Piecewise Monotone Maps
Chaotic in the Whole Interval
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In this work we consider a discontinuous piecewise smooth expanding map f
of an interval into itself, constituted by N�pieces with N � 2. It is expanding
when f 0(x) > � � 1 in all the points of continuity. Our goal is to determine
the necessary and su¢ cient conditions for the map to be chaotic in the sense
of Devaney in the whole interval. This condition, which we call of full chaos, is
very important in engineering applications, especially those related to grazing
bifurcations, as well as in other applied �elds. Without loss of generality we con-
sider the unit interval, and a one-dimensional discontinuous piecewise smooth
map f : [0; 1] �! [0; 1] de�ned as follows:

f(x) =

8>>><>>>:
f1(x) if 0 � x < �1
f2(x) if �1 � x < �2
...

...
fN (x) if �N�1 � x � 1

(1)

where the strictly increasing functions ffigNi=1 de�ned in Ii =
�
�i�1; �i

�
satisfy

fi(�i) = 1 and fi+1(�i) = 0 for 1 < i < N � 1, while in the two extrema:
0 � f1(0) < 1, 0 < fN (1) � 1:
For N = 2 the considered map is the standard expanding Lorenz map, which

has been studied by many authors. It is well known that for the expanding
Lorenz map, N = 2; if the derivative satis�es f 0(x) >

p
2 then the piecewise

smooth map is chaotic in the whole interval. However, as it is known, this
condition is not necessary, and the necessary and su¢ cient conditions are related
to the existing basic cycles RLn and RnL; n � 1; which must be all homoclinic.
New results are obtained considering the expanding map for N � 3, which
we call Baker-like map, proving that for N = 3 the necessary and su¢ cient
condition for chaos in [0; 1] is that the internal �xed point is homoclinic, while
for N > 3 it is always true, i.e. the map is always chaotic in the whole interval.
Our main result is to show how this theorem can be used to prove full chaos
in non expanding Lorenz maps (a discontinuous map with only two branches).
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In fact, the obtained results are applicable to a non expanding Lorenz map of
an interval onto itself, by use of a suitable �rst return map which is necessarily
a Baker-like map. We show an example of a non expanding Lorenz map g(x)
from the engineering �eld, whose graph is shown in the following �gure.
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Abstract 

 

Bifurcation equations, non-degeneracy and transversality conditions are obtained for the fold, 

transcritical, pitchfork and flip bifurcations for periodic points of one dimensional implicitly 

defined discrete dinamical systems. 

The backward Euler method and the trapezoid method for numeric solutions of ordinary differential 

equations fall in the category of implicit dynamical systems. Examples of bifurcations are given for 

some implicit dynamical systems including bifurcations for the backward Euler method when the 

step size is changed. 



Bifurcation structures related to chaotic attractors in a 1D PWL map
defined on three partitions

Anastasiia Panchuk, Iryna Sushko, Frank Westerhoff

Let us consider a family of one-dimensional discontinuous piecewise linear maps defined as

f : x→ f(x) =


fL(x) = aLx+ µL if x ≤ −z−,
fM(x) = aMx if −z− < x < z+,

fL(x) = aRx− µR if x ≥ z+,

(1)

where µL, µR, z− and z+ are positive parameters, and aM > 1, aL, aR ∈ R, aL = aR. The map of
such a kind appears when modelling bull and bear asset market dynamics. For example, in [1] a
symmetric case with µL = µR, z− = z+ was considered. And in [2] for a similar map bifurcation
structures in the parameter space corresponding to attracting cycles were described.

The aim of the paper presented is studying bifurcation structures in the chaotic domain of the
map (1) for the particular case with aL = aM = aR =: a. The map can have at most three fixed
points: x∗L = µL/(1 − a), x∗R = µR/(a − 1), x∗M = 0. However, since all three slopes are greater
than one the only possible asymptotic dynamics is a set of chaotic intervals or a single chaotic
interval.

Since the function f has two discontinuity points there can be two coexisting disjoint absorbing
intervals JL := [c−M, c

−
L ] and JR := [c+R, c

+
M], or only one absorbing interval, namely, JL, JR, JM :=

[c−M, c
+
M] or J := [c+R, c

−
L ]. One can distinguish seven different cases:

1) {c+M < x∗R, c
+
R > x∗M, c

−
M > x∗L, c

−
L < x∗M}: the map f has two disjoint invariant absorbing in-

tervals JL and JR each representing a chaotic attractor.

2) {c+M < x∗R, c
+
R > x∗M, c

−
M < x∗L} or {c+M < x∗R, c

+
R > x∗M, c

−
L > x∗M}: the map f has an invariant

absorbing interval JR.

3) {c+M > x∗R, c
−
M > x∗L, c

−
L < x∗M} or {c+R < x∗M, c

−
M > x∗L, c

−
L < x∗M}: the map f has an invariant

absorbing interval JL.

4) {c−M < c+R < x∗M, c
+
M < x∗R, x

∗
M < c−L < c+M, c

−
M > x∗L}: f has an invariant absorbing interval

JM.

5) {c−M < c+R < x∗M, c
+
M < c−L < x∗R, c

−
M > x∗L}: f has an invariant absorbing interval JL.

6) {x∗L < c+R < c−M, c
+
M < x∗R, x

∗
M < c−L < c+M}: f has an invariant absorbing interval JR.

7) {x∗L < c+R < c−M, c
+
M < c−L < x∗R}: f has an invariant absorbing interval J .

For the cases 1)–3) the restriction of f on every its absorbing interval is represented by a discontin-
uous (piecewise increasing) map defined on two partitions. In the parameter space the associated
chaoticity regions are organised in bandcount adding bifurcation structure (see, e.g., [3]).
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A monopoly model with memory: analysis of
1:4 resonance

Nicolò Pecora∗1

1Dept. of Economics and Social Science, Catholic University, Piacenza, Italy

Abstract

This paper considers a monopoly model with gradient adjustment mechanism and log-concave
demand function. The monopolist is assumed to be boundedly rational and memory is introduced
to obtain information on output. Locally, the unique equilibrium may be destabilized through a
period doubling or a supercritical Neimark-Sacker bifurcation.

The analysis is then carried on from a global perspective. We first study the delimitation of
the set of feasible trajectories and we identify phenomena of multistability. The phenomenon of
attractors coexistence is relevant for the structure of the basins of attraction, and the dependence
of the basin boundaries to the parameters of the model plays a fundamental role in the long-run
behavior. Then the two-parameter bifurcations of the model is discussed. It is shown that the
system undergoes a 1:4 resonance by using a continuation procedure. The numerical simulations,
including phase portraits, illustrate the theoretical features associated with the resonance and
display interesting and complex dynamical behaviors, like the emergence of square and clover
orbits.
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Many situations, in social sciences and economics in particular, can be modeled as binary choices 

with externalities, that is, as games that describe collective behavior when agents have two 

alternatives and the received payoff depends on how many other agents choose which alternative.  

In this paper a dynamic adjustment mechanism, based on replicator dynamics in discrete time, is 

used to study the time evolution of a population of players facing a binary choice game with social 

influence characterized by payoff curves that intersect at two interior points, also denoted as 

thresholds, so that besides the boundary equilibria (in pure strategies) where all players make the 

same choice, there are two further equilibria where agents playing different strategies coexist and 

get identical payoffs. For such binary games both interior points have an economic interpretations: 

the first one being related to a cooperative sharing cost and the second one (typical of minority 

games) to congestion. These games, also denoted as club goods games, can be used (and indeed 

have been used in the literature) to represent several social and economic systems.  Existence and 

stability of equilibrium points are studied, as well as the creation of more complex attractors 

(periodic or chaotic) related with overshooting effects. The study of some local and global dynamic 

properties of the evolutionary model proposed reveals that the presence of two thresholds causes the 

creation of complex topological structures of the basins of coexisting attracting sets, so that a strong 

path dependence is observed. The dynamic effects of memory, both in the form of convex 

combination of a finite number of previous observation (moving average) and in the form of 

memory with increasing length and exponentially fading weights are investigated as well. 

     

 

    Keywords: Binary games, Social externalities, Club goods, Discrete Dynamical Systems, 

Replicator Dynamics, Global bifurcations 
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Abstract

The major urban centers exhibit extreme racial separation both in Europe and in the United States. The
extreme levels of segregation have a negative impact on the economic system and represent a serious threat to the
social stability. The problem has attracted scholars’ attention and, already several decades ago, Shelling pointed
out that the driving forces behind persistent residential segregation are many and include both ethnic reasons and
economic aspects, see Schelling (1969) and Schelling (1971). Since then, a burgeoning area of research focused on
studying the effect of ethnic factors, such as a limited level of tolerance towards other ethnic groups, to explain
the phenomenon of residential segregation, see, e.g. Zhang (2004), Pancs and Vriend (2007), G. Fagiolo and
Vriend (2007), Zhang (2011) and Bischi and Merlone (2011). Instead, rather neglected are the economic drivers
of residential segregation, see, e.g., Sethi and Somanathan (2004). In this paper, we try to bridge the gap by
developing a model that includes both economic and ethnic drivers. In particular, economic segregation, caused
by income inequality, and ethnic segregation, caused by limited levels of tolerance, are combined together in a
dynamic evolutionary game. The modeling framework consists of two populations that differ for ethnicity and
income. The first population is the more wealthy while the second one is the more tolerant and all households
have a strong preference for integrated over segregated neighborhoods as revealed by empirical observations, see,
e.g., Clark. (1991) and H. Schuman and Krysan (1997). In defining the residential location, an household sorts
between a totally segregated neighborhood, without any possibility of integration, and an integrated neighborhood
in which the ethnic composition evolves over time according to a replicator dynamics. The price of the houses in
a neighborhood depends on residents’ income. In particular the housing market is cheaper when there are more
residents of the second population. Thus, the members of the first population may want to choose an integrated
neighborhood because attracted by a cheap residential housing market. On the another hand, the members of the
second population want to live in a mixed ethnic neighborhood because of the high preference for integration, but
the racial income disparity that affect the housing price may prevent this choice.

The analysis shows that ethnic factors and economic factors combined together may facilitate integration and
narrowing racial income disparities results in increasing residential segregation. Thus, a right mix of racial income
disparities and racial preference for integration disparities facilitate integration, although the risk of segregation
cannot be eliminate. In fact, a stable equilibrium of integration coexists with a stable equilibria of segregation.
To foster integration a policy measure is introduce to subsidize house purchase in integrated neighborhood. The
dynamics of the model reveals that this policy increases the number of households of the first population in
integrated neighborhood, favoring evenly integrated neighborhoods, but the risk of segregation increases.

The analysis is further extended considering, within an agent-based modeling framework, heterogeneous incomes
within the same ethnic group. The results of the stylized model are confirmed.

Keywords: Residential segregation; Housing market; Racial income disparities; Evolutionary games.

References

G. I. Bischi and U. Merlone. Nonlinear economic dynamics, chapter An Adaptive dynamic model of segregation,
pages 191–205. Nova Science Publisher, 2011.

W. A. V. Clark. Residential preferences and neighborhood racial segregation: A test of the Schelling segregation
model. Demography, 28(1):1–19, 1991.

M. Valente G. Fagiolo and N. J. Vriend. Segregation in networks. Journal of Economic Behavior & Organization, 64
(3–4):316–336, 2007.

L. Bobo H. Schuman, C. Steeh and M. Krysan. Racial attitudes in America: Trends and Interpretations. Cambridge,
MA: Harvard University Press, 1997.

R. Pancs and J. N. Vriend. Schelling’s spatial proximity model of segregation revisited. Journal of Public Economics,
91(1):1–24, 2007.

T. C. Schelling. Models of segregation. The American Economic Review, 59(2):488–493, 1969.

1



T. C. Schelling. Dynamic models of segregation. Journal of Mathematical Sociology, 1(2):143–186, 1971.

R. Sethi and R. Somanathan. Inequality and segregation. Journal of Political Economy, 112(6):1296–1321, 2004.

J. Zhang. Residential segregation in an all-integrationist world. Journal of Economic Behavior and Organization, 54
(4):533–550, 2004.

J. Zhang. Tipping and residential segregation: a unified schelling model. Journal of Regional Science, 51(1):167–193,
2011.

2



Urbino 2017

PODE 2017

29th May 2017 � 31st May 2017

Urbino, Italia

Mixing properties for

monotonic mod one transformations

with two pieces

Peter Raith

Abstract. Let f : [0, 1]→ [0, 2] be a continuous strictly increasing function,

and suppose that f is di�erentiable on (0, 1) \F where F is a �nite set. Fur-

thermore assume that inf f ′ > 1, where inf f ′ := infx∈(0,1)\F f
′(x). Because

of these assumptions there exists a unique c ∈ (0, 1) with f(c) = 1. De�ne

Tfx := f(x)−bf(x)c, where byc is the largest smaller or equal to y. Then Tf is
called a monotonic mod one transformation with two monotonic pieces. Such

maps are also called Lorenz maps. Observe that these maps are piecewise

monotonic maps but have a discontinuity at c. Moreover, limx→c− Tfx = 1
and limx→c+ Tfx = 0. Using a standard doubling points construction one can

apply all usual de�nitions of dynamical systems also to monotonic mod one

transformations.

Important notions in chaotic dynamical systems are topological transitivity

and di�erent mixing properties. Assume that β is a real number satisfying

inf f ′ > β. If β ≥
√
2 or if β ≥ 3

√
2 and f(0) ≥ 1

β+1
or f(1) ≤ 2 − 1

β+1

then Tf is topologically transitive. Moreover, it is also topologically mixing

except in the cases f(x) =
√
2x + 1 − 1√

2
, f(x) = 3

√
2x + 2+ 3√4−2 3√2

2
and

f(x) = 3
√
2x+ 2− 3√4

2
.

Other notions often used in this context are locally eventually onto and renor-

malizability. Here according to classical de�nition Tf is called locally even-

tually onto if for any nonempty open set U there exist open subintervals

U1, U2 and natural numbers n1, n2 such that Tf
n1 maps U1 homeomorphic-

ally to (0, c) and Tf
n2 maps U1 homeomorphically to (c, 1). Every locally

eventually onto map is topologically mixing but the converse need not be

true. It was believed that Tf is locally eventually onto if and only if Tf is

not renormalizable. Unfortunately this is not true. One has the improve the

de�nition above to obtain this equivalence.
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Dynamic equivalence of dynamic systems on time scales

ANDREJS REINFELDS

Institute of Mathematics and Computer Science, University of Latvia;
Department of Mathematics, University of Latvia

reinf@latnet.lv

In 1988 (Ph.D. thesis), Stefan Hilger introduced the calculus of time scale in order
to unify continuous and discrete analysis (see [1]) Many results concerning differential
equations carry over quite easily to corresponding results for difference equations, while
other results seem to be completely different in nature from their continuous counterparts.
The study of dynamic equations on time scales reveals such discrepancies, and helps avoid
proving results twice, once for differential equations and once for difference equations.

We consider the dynamic system in a Banach space on unbounded above and below
time scale: {

x∆ = A(t)x+ f(t, x, y),
y∆ = B(t)y + g(t, x, y).

(1)

This system satisfies the conditions of integral separation with the separation constant ν,
the integral contraction with the integral contraction constant µ, nonlinear terms are ε-
Lipshitz, and the system has a trivial solution. We find sufficient conditions under which
the system (1) is locally dynamic equivalent

{
x∆ = A(t)x+ f(t, x, u(t, x)),
y∆ = B(t)y.

(2)
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ALMOST PERIODICITY, RICKER MAP, BEVERTON-HOLT MAP

AND OTHERS, A GENERAL METHOD

ROBERT J. SACKER AND GEORGE R. SELL

It is known that under the certain conditions on the coefficient the Ricker difference
equation (or map) has a fixed point that is globally asymptotically stable with respect to
the positive reals. We show here that under the same conditions, the Ricker equation with
almost periodic coefficient has a globally asymptotically stable almost periodic solution
with the same frequency module as the coefficient. This is accomplished by showing that
the omega limit set Ω of an asymptotically stable solution is a covering space of the omega
limit set of the coefficients and the flow on Ω is uniquely reversible. We provide a unified
framework that allows us to conclude that any system of maps in finite dimensions that
has an orbit that is bounded and whose omega limit set is asymptotically stable, also has
the property that certain attributes of the coefficients (periodicity, almost periodicity) can
be carried over, or lifted to the solution. In particular if the successive compositions are
bounded and have Fréchet derivatives with spectrum inside the unit circle in the complex
plane then the above conclusions apply.
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adaptive limiters
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Abstract

Due to their recurring and sometimes unpredictable ups and downs, fluctuations in popula-
tion size pose several challenges for biological conservation and the management of wildlife
and exploited populations. Control strategies are aimed to reduce the outbreak frequency
and extinction probability, stabilize the fluctuations or maximize the yield of harvested pop-
ulations. Limiter control methods have the advantage that no detailed information of the
system is required, which is why they are easy and fast to implement.

The purpose of this talk is to present a new limiter strategy called adaptive threshold
harvesting (ATH). This control method is the harvesting version of adaptive limiter control
(ALC), and takes effect only if the population size has grown by at least a certain factor in
comparison to the previous census. It differs from textbook strategies like constant-effort or
constant-yield harvesting, as it responds only to population increases sufficiently large.

Results relative to the stabilizing properties of ATH and possible applications of both ATH
and ALC to the control of realistic biological populations will be exposed.

This talk is based on a joint work with Daniel Franco (UNED, Spain) and Frank Hilker (U.
Osnabrück, Germany).
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Systems of iterative functional equations: some

constructive examples

Cristina Serpa, Jorge Buescu

CMAF-CIO and FCUL

Abstract

We consider a general system of iterative functional equations between
general spaces X and Y . The most common and representative functions
which are solutions of these systems are the so called fractal interpolation
functions. A general theory may be developed for affine systems, which are
the most frequently found in the literature. We present general formulas
for solutions of this type of systems which covers non-affine cases and
provide a list of examples, with graphic illustrations.
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Periodic attractors on a family of nonautonomous

dynamical systems generated by stunted tent

maps
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Abstract
Families of stunted sawtooth maps have been used as models to study

related families of differentiable maps, since they are closely related with
symbolic dynamics and are rich enough to encompass in a canonical way
all possible kneading data and all possible itineraries, see [1] and [3].

In [4] we studied the bifurcation structure of a family of 2-periodic
nonautonomous dynamical systems, generated by the alternate iteration
of two stunted tent maps. However, when we get into the general nonau-
tonomous context, usual notions from autonomous (and periodic nonau-
tonomous) discrete dynamics, like fixed or periodic points, invariant sets,
attractivity and repulsivity must be reinterpreted and reformulated. This
is the core of nonautonomous bifurcation theory, that has been devel-
oped in recent years by various authors, see for example [2] and references
therein. In this work we will consider a family of nonautonomous dynami-
cal systems xk+1 = fk(x, λ), λ ∈ [−1, 1]N0 , generated by a one-parameter
family of stunted tent maps gα(x), i.e., fk(x, λ) = gλk (x) for all k ∈ N0.
We will reinterpret the concept of attractive periodic orbit in this con-
text, through the existence of some periodically invariant attractive sets
and establish sufficient conditions, based on symbolic dynamics, over the
parameter sequences for the existence of such periodic attractors.
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CONVERGENCE TIME TO EQUILIBRIUM DISTRIBUTIONS OF

AUTONOMOUS AND PERIODIC NON AUTONOMOUS GRAPHS

TERESA SILVA *‡, LUÍS SILVA * ‡, AND SARA FERNANDES †‡

Abstract

We present some estimates of the time of convergence to the equilibrium distribu-
tion in autonomous and periodic non autonomous graphs, with ergodic stochastic
adjacency matrices, using the eigenvalues of these matrices. On this way we gener-
alize previous results from several authors, that only considered reversible matrices.

It is known that a Markov chain represented by an ergodic stochastic matrix P
converges to a stationary distribution, the equilibrium π, which means that powers
P k converge componentwise to a stochastic matrix W in which all rows are equal
to π (see [Beh00]). We associate a matrix A, the adjacency matrix, to a weighted
directed graph G = (V,E). Following the classical relation between Markov chains
and graph theory described in [LM95], from A we define a stochastic matrix P . All
eigenvalues of a stochastic matrix have modulus less than one, except the first one
that has modulus one, and the time of convergence of P k to W will depend on the
modulus of the second eigenvalue, λ∗ = maxj{|λj | : λj is an eigenvalue and λj 6=
1}. Some bounds for the time of convergence are known (see [Beh00] and [LPW09]
for example), nevertheless the bounds using eigenvalues are restricted to reversible
matrices, i. e., such that P and the equilibrium distribution π are in detailed
balance.

Periodic non autonomous graphs can be used to model periodic non autonomous
discrete dynamical systems, see [AS15] and [SSF14]. On the other hand, discrete
periodic non autonomous dynamical systems are being increasingly considered as
good models in applications, namely in biology, for example in modeling period-
ically forced populations ([Hen00] and references therein). We extend the results
given in [SSF14], where we introduced the notion of equilibrium distribution in pe-
riodic non autonomous graphs and gave an estimate for the convergence time to the
equilibrium under certain conditions. Namely, given a p-periodic non autonomous
graph G = (V, (Ei)

∞
i=0) with adjacency matrices (Pi)

∞
i=0 , consider the cyclic prod-

ucts Bi = Pi · · ·P(i+p−1) mod p, i = 1, . . . , p. Requiring one of the matrices Bi to
be reversible we provided an estimate for the maximal relative error using λ∗, the
second eigenvalue in modulus associated to the matrices Bi.

However, in both autonomous and non autonomous case, that kind of restriction
brings some issues: in applications we deal with adjacency matrices which are not
necessarily reversible, for example, matrices obtained from restricting the Perron-
Frobenius operator to a finite dimensional space, see [BG97]. On the other hand,
in the non autonomous case, how to choose stochastic matrices Pi, i = 0 . . . p − 1,
such that one of the cyclic products Bi, i = 0 . . . p− 1, is reversible?

The estimates presented concern both autonomous and non autonomous graphs,
giving weaker conditions to have useful bounds for the time of convergence for the
equilibrium distribution. Roughly, the bounds proposed depend on the modulus of
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the second eigenvalue and on the dimension of its Jordan blocks, generalizing to a
wider class of matrices the results of [SSF14] and [Beh00].
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[BG97] A. Boyarsky and P. Góra. Laws of chaos. Birkhauser, 1997.
[Hen00] S. M. Henson. Multiple attractors and resonance in periodically forced population mod-

els. Phisica D, 140:33–49, 2000.

[LM95] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press, 1995.

[LPW09] D. Levin, Y. Peres, and E. Wilmer. Markov Chains and Mixing Times. American Math-

ematical Society, 2009.
[Sil08] D. D. Siljak. Dynamic graphs. Nonlinear Analysis: Hybrid Systems, 2(2):544–567, 2008.

[SSF14] T. Silva, L. Silva, and S. Fernandes. Equilibrium distributions of discrete non-
autonomous graphs. Journal of Difference Equations And Applications, 20(8):1190–

1200, 2014.

[SSF16] T. Silva, L. Silva, and S. Fernandes. Convergence time to equilibrium distributions of
autonomous and periodic non-autonomous graphs. Linear Algebra and Its Applications,

(488):199–215, 2016.

[Str88] G. Strang. Linear Algebra and its Applications. Brooks/Cole, 1988.
[Wal82] Peter Walters. Introduction to ergodic theory. Springer-Verlag, 1982.

*Departmental area of mathematics, ISEL–Instituto Superior de Engenharia de Lis-
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Price competition in a nonlinear differentiated

duopoly with isoelastic demand

Luca Gori∗• Mauro Sodini†

Abstract

This article represents the first attempt to characterise the dynamics of a nonlinear duopoly
with price competition and horizontal product differentiation by accounting for non-negativity
constraints (on profits and the market demand). The model is set up by following the tradition
led by Bischi et al. (1998), according to which players have limited information. It shows several
local and global phenomena of a two-dimensional discrete time system when the price demand
elasticity varies. It also points out the differences from both a mathematical and economic
point of views in the dynamics of the economy when the non-negativity constraints are not
binding and when they are binding. This is done by combining mathematical techniques and
simulative exercises.

Keywords Chaos; Local and global bifurcations; Price competition; Product differen-
tiation
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Discrete Bessel functions and partial difference equations

Antońın Slav́ık
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

slavik@karlin.mff.cuni.cz

In their paper [1], M. Bohner and T. Cuchta have proposed a new definition of the discrete Bessel
function, which is different from discrete Bessel functions studied in earlier papers. Its advantage is that
it shares many properties with the classical Bessel function, e.g., it satisfies the difference equation

t(t− 1)∆2y(t− 2) + t∆y(t− 1) + t(t− 1)y(t− 2)− n2y(t) = 0,

which is a discrete analogue of the Bessel differential equation

t2y′′(t) + ty′(t) + (t2 − n2)y(t) = 0.

Inspired by the paper [1], we have introduced a new class of discrete Bessel functions and discrete
modified Bessel functions denoted by J c

n and Icn, respectively, where n ∈ N0 is the order and c ∈ R is
a parameter [2]. These functions are the discrete analogues of the functions t 7→ Jn(ct) and t 7→ In(ct),
where In and Jn are the classical Bessel function and modified Bessel function, respectively. If c = 1,
then J c

n reduces to the discrete Bessel function from [1].
Our motivation comes from the theory of lattice differential equations, i.e., equations with discrete

space and continuous time. It is known that the fundamental solutions of the semidiscrete wave equation
have the form u1(x, t) = J2x(2ct) and u2(x, t) =

∫ t

0
J2x(2cs) ds, where x ∈ Z and t ≥ 0 (see [3]). The

fundamental solution of the semidiscrete diffusion equation has the form u(x, t) = e−2ctIx(2ct) (see [4]).
Using the new functions J c

n and Icn, we obtain similar formulas for the fundamental solutions of the
purely discrete wave equation and diffusion equation. Formulas for fundamental solutions of these partial
difference equations are already available in the existing literature (e.g., [3, 4]), but they have a different
form. Expressing them in terms of the discrete Bessel functions can simplify the study of their properties,
such as the oscillatory behavior.
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Spectra of indefinite perturbations of discrete operators
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Dept. of Mathematics and NTIS, University of West Bohemia
Univerzitni 8, 30614 Pilsen, Czech Republic
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(joint work with Petr Vaněk)

In this talk we provide sufficient conditions for positive (semi)definiteness of sign-changing
diagonal perturbations of positive semidefinite difference operators and their matrix rep-
resentations, the graph Laplacian matrices. Our estimates arise from the discrete version
of the Poincaré inequality and involve the algebraic connectivity, i.e., the second smallest
eigenvalue of the graph Laplacian matrix. We illustrate our results by numerical exper-
iments and discuss the optimality of our assumptions. We also discuss applicability to
discrete boundary value problems, stability of stationary solutions of lattice and graph dy-
namical systems. Finally, we examine possible extensions to difference operators which
cannot be represented by graph Laplacian matrices.
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On a problem of Derfel
Mariusz Sudzik

University of Zielona Góra
28 April 2017

The talk concerns the functional equation

f(x) = 1
2f(x− 1) + 1

2f(−2x). (1)

Last year, during 21st European Conference on Iteartion Theory held in Innsbruck, Professor
Gregory Derfel posed the following:

Problem Is there a non-constant bounded continuous function f : R→ R satisfying
equation (1)?

I will show a partial solution to the Problem. The talk is divided into three parts. In the
first part I will prove that every bounded continuous solution of equation (1) which attains
its extreme value is constant. It is the main result. Its proof is quite elementary.

In the second part of my presentation I will discuss the properties of solutions of the
equation (1) which do not attaining their extreme values. In this case the Problem is still
open. I will show, for example, the following fact

Let a, b ∈ R and let f : R→ R be a bounded continuous solution of equation (1). If

inf{f(t) : t ∈ R} < f(x) < sup{f(t) : t ∈ R} for every x ∈ R,

then
(i) inf{f(x) : x ∈ R} = inf{f(x) : x < a} = inf{f(x) : x > b},

(ii) sup{f(x) : x ∈ R} = sup{f(x) : x < a} = sup{f(x) : x > b}.

The last part of my talk is connected with solutions of equation (1) in a smaller class of
functions. For example, we can see that there are no non-trivial, bounded, continuous, with
bounded variation solutions of equation (1).



Smale Horseshoe in 2D Noninvertible Maps
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Abstract

The original Smale horseshoe [5] has been constructed for smooth di¤eomorphisms. Our aim is to discuss
similar construction for endomorphisms. We �rst recall the characteristic features of noninvertible maps, as-
sociated with the structure of stable and unstable invariant sets of a saddle [7], [2], [1], [6], [4]. Then, as an
example of the Smale horseshoe in a nonsmooth noninvertible map, we construct it for a 2D piecewise linear
map F : R2 ! R2 which is known as Border Collision Normal Form, given by two linear maps FL and FR
which are de�ned in two half planes denoted L and R:

F : (x; y) 7!
�
FL(x; y) if (x; y) 2 L;
FR(x; y) if (x; y) 2 R;

where

FL :

�
x
y

�
7!
�
�Lx+ y + �
��Lx

�
; L = f(x; y) : x � 0g ;

FR :

�
x
y

�
7!
�
�Rx+ y + �
��Rx

�
; R = f(x; y) : x > 0g :

Here �L, �R are the traces and �L, �R are the determinants of the Jacobian matrix of map F in the left and
right halfplanes, i.e., in L and R, respectively. The dynamics of map F is nowadays quite intensively studied
by many researchers not only due to its appearance in several applications, but also in order to classify border
collision bifurcations in generic 2D piecewise smooth maps [3].
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ON LOCAL STABILITY FOR SOME
EXPONENTIAL-TYPE DIFFERENCE EQUATIONS

AGNESE SUSTE

University of Latvia, Faculty of Physics and Mathematics

Zellu Street 29, Riga, LV-1002, Latvia

E-mail: agnese.suste@lu.lv

In [1] was considered a first order difference equation

xn+1 = (1− xn)(1− e−Axn), n = 0, 1, ... (1)

that is a variation of the classical Reed-Frost continous-time model. In this model parameter A can
be interpreted as infectivity of the disease. Authors of [1] also are interested in model

xn+1 =

1−
k−1∑
j=0

xn−j

 (1− e−Axn), n = 0, 1, ... (2)

Authors of [3] proposed Research Project 6.7.1. and Research Project 6.7.2. about the difference
equation (2).

In [4] was proposed Open Problem 6.10.14 about the difference equation

xn+1 = (1− xn − xn−1)(1− e−Axn), n = 0, 1, ... (3)

Authors of [9] study the oscillation, global asymptotic stability, and other properties of positive
solutions of the difference equation (2). In [7] was investigated the global stability of the negative
solutions of (2). In [6] was considered the fuzzy difference equation (2) where A and the initial
values are in a class of fuzzy numbers. System of difference equations related to the model (2) are
studied in [5] and [8]. Model (2) is extended in [2].

Accordingly to Open Problem 6.10.14 ([4]), we study the existence of positive solutions, the
existence of a unique nonnegative equilibrium and the local asymptotic stability of the difference
equation

xn+1 = (1− xn − xn−1)(1− e−A(xn+xn−1)), n = 0, 1, ..., (4)

where A ∈ (0,∞) and the initial values x−1, x0 are arbitrary real positive numbers such that
x−1 + x0 < 1.

We also consider the difference equation

xn+1 =

1−
k−1∑
j=0

xn−j

(1− e−A
∑k−1

j=0 xn−j

)
(5)

where A ∈ (0,∞) and the initial values x−k+1, x−k+2, ..., x0 are arbitrary real positive numbers such
that x−k+1 + x−k+2 + ... + x0 < 1.

This work is collaboration with I. Bula, University of Latvia.
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“Dribbling Method" for continuation of bifurcation curves 

 

from conservative into dissipative systems 
 

 

Laura Tedeschini Lalli and Corrado Falcolini 
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Abstract 
 

 

In area-preserving maps of the plane, modelling conservative systems, it is customary to see a high 

coexistence of stable periodic solutions. In area-contracting maps, modelling dissipative systems, 

coexistence of stable (and attracting) periodic solutions is much more elusive. Homoclinic 

bifurcations result in infinite coexistence, albeit very difficult to detect. We study quasi-

conservative maps, i.e. maps for which the area-contraction factor is almost 1. Using the area-

contraction factor as parameter, we devised a numerical method to continue periodic solutions and 

their bifurcation values from the conservative case into the dissipative. Such bifurcation values are 

in general highly degenerate and allow no obvious continuation method. We devised one, based on 

topological considerations, and dribbling around the degeneracies. 

This method allowed following entire families of coexisting elliptic periodic solutions, into families 

of coexisting sinks in the dissipative Henon map. In turn, some of the families coexist. All families 

arise via a rotatory homoclinic tangency. 



A behavioral cobweb model

Ahmad Naimzada∗

Nicolò Pecora†
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Abstract

A cobweb model is extended in order to consider the notion of transaction utility

(Thaler, R. 1985. Mental accounting and consumer choice. Marketing Science 4, 199-

214). As a consequence, a psychological reference price enters directly into the demand

function. Differently from the traditional cobweb model, the economy is described by a

discontinuous map. Such a feature, deriving from the behavioral assumptions, directly

influences the equilibrium price, its stability properties and the emerging dynamics.

Keeping the essential underlying mechanics of the model intact, this behavioral feature

covers the phenomenon of loss aversion manifested in agents’ behavior and changes the

model’s dynamics considerably, permitting us to mimic some stylized facts concerning

the dynamic evolution of prices and their volatility.

JEL codes: D03, E32

Keywords: Cobweb model; Reference price; Transaction utility; Behavioral economics; Dis-

continuous maps; Complex dynamics.
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We study the existence and uniqueness for difference equations on graphs. This general setting in-
volves, e.g., Neumann and periodic problems for both ordinary and partial difference equations. We
consider semilinear problems with sublinear growth of the nonlinearity. All the proofs are based on re-
formulating these discrete problems as a general singular algebraic system. Firstly, we use variational
techniques (specifically, the Saddle Point Theorem) and prove the existence result based on a type of
Landesman-Lazer condition. Then we show that for a certain class of bounded nonlinearities this condi-
tion is even necessary and therefore, we specify also the cases in which there does not exist any solution.
Finally, we study the uniqueness.
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On singular iteration groups of monotonic functions
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Let I = (a, b) and ϕ : I → R be a non-increasing continuous surjection. Denote by
{Iα, α ∈ A} the family of the intervals of constancy of ϕ. Put L := I \

⋃
α∈A Int Iα.

Define the set-valued functions F t(x) = ϕ−1[{ϕ(x) + t}], t ∈ R, x ∈ I . The family
{F t : I → 2I} forms a set-valued iteration group, i.e. F t ◦ F s = F t+s, t, s ∈ R, where
F t◦F s(x) =

⋃
y∈F s(x) F

t(y) x ∈ I.Define f t−(x) := inf F t(x), f t+(x) := sup F t(x) for
t ∈ R, x ∈ I. The families {f t−, t ∈ R} and {f t+, t ∈ R} are iteration groups such that f t−
and f t+ for t ∈ R are non-decreasing discontinuous functions constant on the intervals Iα,
moreover f t−[I] ⊂ L, f t+[I] ⊂ L, t ∈ R. Define T := {t ∈ R : ϕ[I \L∗]+ t = ϕ[I \L∗]}.
If T 6= {0}, then T is a countable Abelian group and the set of intervals Iα is countable.
If T is acyclic group then the set L is a Cantor set and ϕ is a singular Lebesgue function
such that ϕ[L] = R. If T 6= {0} then there exists an iteration group {f t, t ∈ T} of
homeomorphisms restricted to group T such that f t− ≤ f t ≤ f t+ for t ∈ T and T is a
maximal group with this property.
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