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Abstract

The dynamic programming problem with one-period concave qua-
dratic returns is analysed. As well-known, in this context the funda-
mental Blackwell's contraction theorem cannot be applied since the
return functions are unbounded from below. In this paper, we estab-
lish results on the existence of the ¯xed points of the Bellman operator
and properties on the convergence of the iterative processes generated
by this operator. The main tool for obtaining these results is a con-
traction theorem given by the Thompson metric.
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1 Introduction

This paper studies the somewhat classical problem of quadratic dynamic
programming over an unbounded horizon which can be formulated as:

v(x0) = sup
P+1
t=0 q(xt; xt+1)¯

t

s.t. xt 2 <n, x0 given in <n (1)

where v(x) is the optimal value function, ¯ 2 (0; 1) is the intertemporal
discount factor and the one-period return is a concave quadratic function
q(x; y) = (x; y)0Q(x; y). The 2n-order matrix Q can be partitioned in the
form

Q =

"
A B
B0 C

#
with A, B and C n-order matrices and, in addition, A and C symmetric.
Besides this, it will also analyse the complete quadratic problem obtained by
adding a linear function to the one-period return of the previous case, i :e:
q(x; y) = (x; y)0Q(x; y) + (a; b)0(x; y) + k with a; b 2 <n.
Though these classes of optimization problems have a long story and

are often adopted for approximating more complex nonlinear programming
models, we want to underline that their treatment is far from being entirely
completed. In spite of the fact that the issue is evidently of an algebraic
nature. As a matter of fact, the 2n-order matrix Q encloses entirely all the
properties of the purely quadratic programming.
One of the main reasons of the analytical di±culties met within this con-

text is that the quadratic returns (x; y)0Q(x; y) are necessarily unbounded
from below. We cannot therefore invoke the fundamental Blackwell's con-
traction theorem which requires the return function to be bounded. In fact,
our main results will be obtained by employing a di®erent contraction theo-
rem related to the Thompson metric and recently established byMontruc-
chio [4] to study the di®erentiability property of policy functions arising in
nonlinear dynamic programming.
Before going into the speci¯c results presented here, let us recall a few

basic ingredients related to the technique of dynamic programming and that
are valid for returns q(x; y) non necessarily quadratic.
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It is very well known that the value function v(x) of sequential problem
(1) satis¯es the Bellman functional equation ([7], [2], [5])

v(x) = sup
y2<n

[q(x; y) + ¯v(y)] : (2)

Put di®erently, if we de¯ne the Bellman operator

(Tf)(x) = sup
y2<n

[q(x; y) + ¯f(y)] (3)

associated with (2), the value function v(x) turns out to be a ¯xed point of
this operator. That is to say, Tv = v must hold. Another important aspect
concerns the computational procedure vn+1 = Tvn that is hoped to converge
to the value function v for a convenient initial function v0. Actually, Black-
well's result shows that the operator T is a contraction, whenever q(x; y) is
bounded, and therefore the iterative process vn+1 = Tvn converges uniformly
to v for any initial bounded function v0 (see Stokey et Alii [7]):
Let us turn to our class of problems. To ¯x ideas, we shall mention here

the purely quadratic case q(x; y) = (x; y)0Q(x; y). We list below questions
which arise naturally in this context and that will be answered in the present
paper. It is worth mentioning that we left the matrix Q to be singular. The
nonsingular case, i.e., Q negative de¯nite, is slightly simpler and already
su±ciently investigated in the literature.

1. Is the value function v(x) a quadratic function? Of course, the answer
is yes, but an elementary proof of this fact is not known to us, unless
in a general setting.

2. It is straightforward that the operator T maps the cone of concave
quadratic functions into itself. It is also easily veri¯ed by means of
examples that not always T has a unique ¯xed point given by the value
function. Is it possible to characterize algebraically the matrices Q for
which the ¯xed point is unique? More generally, how many ¯xed points
can T exhibit? Which algebraic properties of Q are involved?

3. The "uniqueness versus multiplicity of ¯xed points for T" is closely
related to the convergence of iterative process vn+1 = Tvn to the value
v. Which subclass ofQ leads to the global convergence to v? Otherwise,
which does initial quadratic functions v0 assure the convergence to v?
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These and other related issues will be investigated in this paper. The
plan of the paper is the following. In Section 2 we shall present the re-
sults on the purely quadratic case. The main result is the Theorem 1 which
provides statements on the existence of ¯xed points of Bellman operator
and the convergence of vn+1 = Tvn: An important consequence is Theorem 2
which establishes a su±ciently general subclass of problems having an unique
globally convergent ¯xed point. Section 3 is dedicated to studying the case
q(x; y) = (x; y)0Q(x; y)+(a; b)0(x; y)+k. The proofs of theorem are gathered
in Section 4.

2 Results

2.1 Notation

Vector x 2 <n is viewed as column vector and x0 denotes its transposed.
The symbol jxj denotes the Euclidean norm, i.e., jxj2 = x0x. The set S =n
x 2 <n : jxj2 = 1

o
means the unit sphere of <n.

B(Y ) is the vector space of bounded functions f : Y ! <, where Y
is an arbitrary set. The vector space B(Y ) is endowed with the uniform
convergence norm kfk = supy2Y jf(y)j. In B(Y ) there is the point-wise
partial order: f · g if and only if f(y) · g(y) for all y 2 Y . K (Y ) is
the cone of non-positive functions of B(Y ). We de¯ne the interval [f; g] =
fh 2 B(Y ) : f · h · gg.
The cone of n-order symmetric negative semide¯nite matrices will be

denoted by Sym (n). A matrix H 2 Sym (n) can be identi¯ed with the
quadratic form f(x) = x0Hx, x2<n. Moreover, since a one-to-one corre-
spondence exists between f and its restriction over the unit sphere S of <n,
the set Sym (n) may be viewed as a subset of K¡(S). The partial order in-
duced on Sym (n) by B(S) is the natural order among symmetric matrices,
i.e., A ¸ B if and only if A ¡ B is positive semide¯nite. If H 2 Sym (n),
the norm of uniform convergence is kHk = supjxj=1 jx0Hxj, i.e., the spectral
norm of the matrix. In fact, kHk = ½ (H) = maxi j¸ij, where ¸i are its
eigenvalues:
A function f : ­ ! <, where ­ is a convex set of <n, is said ®-concave

if f(x) + 1
2
® jxj2 is concave over ­. Following Montrucchio [3], a function

f(x; y) is called (®; °)-concave whenever f(x; y)+ 1
2
® jxj2+ 1

2
° jyj2 is concave.
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If A : X ! Y is a linear operator, R(A) ½ Y is the range of A. The sets
N (A) = fx : Ax = 0g and N (A)? are the null-space of A and its orthogonal
complement, respectively. A+ denotes the pseudoinverse matrix of A. For
the main properties of A+ see Luenberger [1]; in particular we shall often
use of property: A+AA+ = A+ .

In view of providing an algebraic characterization of quadratic form, for
a matrix Q 2 Sym (2n) we de¯ne by induction the following sequence of
vector subspaces of <n :

N0 = pr1N (Q) = fx 2 <n; 9y 2 <n s. t. (x; y) 2 N (Q)g
Nr+1 = fx 2 Nr;9y 2 Nr s. t. (x; y) 2 N (Q)g ; 8r ¸ 0

Since N0 ¾ N1 ¾ N2 ¾ :::, an index i will exist such that Ni = Ni+1 =
Ni+2 = ::: . Such a vector subspace will be denoted by NQ. That to say:
NQ = \iNi:
Obviously this set NQ satis¯es the property: if x 2 NQ then there exists

a vector y 2 NQ such that (x; y) 2 N (Q). Moreover, NQ is the maximal set
satisfying this property, i.e.,: for every set M for which:

x 2M =) 9y 2M such that (x; y) 2 N (Q);

we have M ½ NQ. This fact is easily seen by observing that M ½ Nr for
each r; so that M ½ \rNr.
In the following, for a vector subspace M of <n, Sym (n;M) ½ Sym (n)

will denote the convex set of all symmetric negative semide¯nite matrices H
such that N (H) =M .

2.2 Main results: purely quadratic case

The ¯rst theorem is directed at solving the purely quadratic dynamic pro-
gramming (1) illustrated in the introduction. Here q (x; y) = (x; y)0Q (x; y)
and Q 2 Sym (2n). Some more words are needed to understand the state-
ments formulated below. The Bellman operator T de¯ned in (3) is acting
over the function space f (x), x 2 <n. We shall restrict it to the quadratic
functions f (x) = x0Hx, with H 2 Sym¡ (n). More importantly, given the
one-to-one correspondence between quadratic forms and matrices, we can
think of T as a mapping T : Sym¡ (n)! Sym¡ (n). For ease of notation we
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shall use the same symbol T for both operators. By resorting to pseudoin-
verses, it is not di±cult to write down this new operator. In fact, we have
TH = A¡B (C + ¯H)+B0 (see the proof of Lemma 7 in section 4.2).

Theorem 1

i) Any purely quadratic problem (1) admits optimal solutions for all initial
condition x0;

ii) its value function v(x) is quadratic: v(x) = x0H¤x where:

iii) the negative semide¯nite matrix H¤ is the only one ¯xed point of the
Bellman operator T belonging to Sym (n;NQ);

iv) if H^ 2 Sym (n) is any other ¯xed point of T , then H^ 2 Sym (n;M),
where M is a vector subspace of <n satis¯es the following property:
x 2M =) 9y 2M such that (x; y) 2 N (Q). Moreover the maximality
property H^ · H¤ holds;

v) given any initial matrix H0 such that N (H0) ¾ NQ and H1 · H0, the
iterative system Hm+1 = THm converges to H

¤.

It is worth underlining that the previous theorem does not establish the
convergence of Hm+1 = THm to the ¯xed point H

¤ for every initial condition.
Indeed, the iterative process may converge to another ¯xed pointH^ for many
initial H0 2 Sym (n). The following simple example illustrates this aspect.
Let q(x; y) = ¡1

2
(x¡ cy)2 , with c > 0. The value function turns out to

be v(x) = 0 for all discount factors. N (Q) = f(x; y) ;x = cyg. Therefore
NQ = <. Of course, there is also the invariant vector space M = f0g. The
iterative system Hm+1 = THm is

¡1
2
hm+1x

2 = max
y

·
¡1
2
(x¡ cy)2 ¡ 1

2
¯hmy

2
¸

where we have set x0Hmx = ¡1
2
hmx

2 and hm ¸ 0. After some calculations,
we obtain hm+1 = ¯hm (c

2 + ¯hm)
¡1
. If ¯ · c2; the iterative system has the

only one ¯xed point h¤ = 0 which is globally attractive. For ¯ > c2, another
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¯xed point h^ = 1 ¡ c2¯¡1 arises. This ¯xed point attracts all the initial
conditions di®erent from zero (see ¯gure below).
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In the previous theorem the existence of the only one ¯xed point and
its attractive property is not guaranteed. It is of interest to single out spe-
cial subclasses of problems having stronger properties. The next theorem
provides one of these subclasses.

Theorem 2

If the matrix Q has the following property: 9° 2 (0; 1) such that the
matrix "

°A B
B0 C

#
is still negative semide¯nite, then T has one and only one ¯xed point H¤.
The sequence of iterates Hm+1 = THm converges uniformly to H

¤, from any
starting H0 2 Sym (n).

It is worth remarking that this class of matrices includes the case in
which the quadratic form (x; y)0Q (x; y) is (®; 0)-concave and, in turn, the
non-singular matrices. In fact, if (x; y)0Q (x; y) is (®; 0)-concave, we have
A ¡ BC+B0 · ¡®I (see Lemma 5). Thus °A + (1¡ °)A ¡ BC+B0 ·
¡®I, i:e:, °A ¡ BC+B0 · ¡®I ¡ (1¡ °)A. Since ® > 0, for ° su±ciently
close to 1 the matrix ¡®I ¡ (1¡ °)A is negative de¯nite and consequently
°A¡BC+B0 · 0 that implies that Q belongs to the class of Theorem 2 (see
Lemma 5).
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3 Complete quadratic return

This section is devoted to studying the complete quadratic case:

q(x; y) = (x; y)0Q(x; y) + (a; b)0(x; y) + k: (4)

Here, the operator (3) acts on the space of functions f(x) = x0Hx+ h0x+ °.
In addition to T , we shall introduce the operator TQ:

(TQf)(x) = sup
y2<n

[(x; y)0Q(x; y) + ¯f(y)] (5)

where it is acting over the purely quadratic function f .
The next theorem gives the relationship between the pair T and TQ. In

order to obtain this result we need an additional assumption given below:

A) the Euler equation of problem (1) admits at least one stationary solution,
that is to say, some ¹x exists such that

D2q(¹x; ¹x) + ¯D1q(¹x; ¹x) = 0 (6)

Proposition 3 If assumption (A) holds, then for any quadratic ¯xed point
x0Ĥx of TQ; there exists at least one quadratic function x0Ĥx+h0x+° which
is a ¯xed point of T . More precisely the quadratic function is

(x¡ ¹x)0Ĥ(x¡ ¹x) + u0(x¡ ¹x) + 1

1¡ ¯ q(¹x; ¹x)

where ¹x satis¯es (6) and u = 2A¹x+ 2B¹x+ a.

4 Proofs

This section is dedicated to the proofs of the statements claimed in Sections
2 and 3. We need several lemmas and properties both of algebraic nature and
on dynamic optimization. It will be essential to provide as well a contraction
theorem which will be used in the proofs.
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4.1 Algebraic properties

Lemma 4 A is a matrix belonging to Sym (n), c is a vector of <n ¡ f0g
and f(x) = 1

2
x0Ax¡ c0x: If L = supx2<n f(x) < +1 then L = maxx2<n f(x).

Proof. Since f(x) is concave, a stationary point is a maximum. The ¯rst
order condition is Ax = c or equivalently c2R(A).
Let us suppose for absurd that the maximum is not achieved. This implies

c=2R(A). Since it holdsR(A) = N (A)?; c=2N (A)? .Therefore, there will exist
an element x0 2 N (A) such that c0x0 6= 0. If we now consider the vectors
x = ¸x0, we have f(x) =

1
2
x0Ax ¡ c0x= ¡¸c0x0. But this function is not

bounded when ¸ 2 R: This contradicts the assumption made and thus the
lemma is proved.

The next proposition provides a characterization of the quadratic form
(x; y)0Q (x; y) by means of the elements of the partitioned matrix.

Lemma 5 The quadratic function (x; y)0Q (x; y) is concave i® matrix C is
negative semide¯nite, A ¡ BC+B0 is negative semide¯nite and R(C) ¾
R(B0). It is (®; 0)-concave for some real number ® > 0 i® in addition
A¡BC+B0 is negative de¯nite.
Proof. We only prove the second part of the lemma. The quadratic function
will be (®; 0)-concave if and only if the following inequality holds

k0Ak + h0Ch+ 2k0Bh · ¡® jkj2 (7)

8 (k; h) 2 <n.
From (7) with k = 0, it follows h0Ch · 0 and therefore C is negative

semide¯nite.
Let us calculate maxh k

0Ak + h0Ch+ 2k0Bh. First of all, R(C) ¾ R(B0)
is a necessary condition in order that the superior is ¯nite. The maximum
value can easily be written down through the pseudoinverse matrix C+. In
fact we get:

max
h
k0Ak + h0Ch+ 2k0Bh = k0

h
A¡BC+B0

i
k:

Thus the (7) becomes k0 [A¡BC+B0] k · ¡® jkj2 and this last inequality
amount to saying that A ¡ BC+B0 is negative de¯nite. It should be noted
that the ¯rst part of lemma is obtained by setting ® = 0:
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4.2 Dynamic Programming

We collect here the main properties related to in¯nite horizon problem (1)
and which are extensively exploited throughout the paper. For more details
we refer to Stokey et alii [7]. We underline that all these properties hold
under very general assumptions made on the return q (x; y). One must only
postulate that the objective series is well de¯ned and the value function is
¯nitely valued. However, in our case q (x; y) = (x; y)0Q (x; y) this happens
to be true. In fact, q(xt; xt+1) · 0 and thus the series

P+1
t=0 q(xt; xt+1)¯

t is
well de¯ned and non-positive. Hence v(x) · 0: Furthermore, by evaluating
the objective functional along the sequence (x; 0; 0; 0:::) we can infer that
v(x) ¸ x0Ax regardless to the value of the discount factor. Consequently, the
value function v(x) is ¯nitely-valued independently of the discount factor.
We must recall two properties of the operator (3) : First, T is monotonic,

i.e., Tf · Tg, if f · g: Second, T is convex. That to say:
T [®f + (1¡ ®) g] · ®Tf + (1¡ ®)Tg

for ® 2 [0; 1] :
In fact, we have

T [®f + (1¡ ®) g] (x) = sup
y2<n

[q(x; y) + ®¯f(y) + (1¡ ®)¯g(y)] =

= sup
y2<n

[®q(x; y) + ®¯f(y) + (1¡ ®) q(x; y) + (1¡ ®) ¯g(y)] ·

· ® sup
y2<n

[q(x; y) + ¯f(y)] + (1¡ ®) sup
y2<n

[q(x; y) + ¯g(y)] =

= ®(Tf)(x) + (1¡ ®) (Tg)(x).
An other useful property will be frequently invoked is the following [5]:

Proposition 6 Let some function v^(x) satisfy the following properties:

1. Tv^ · v^;
2. lim inft!1 ¯tv^(xt) · 0 for each feasible sequence;
3.

P1
t=0 q(xt; xt+1)¯

t · v^(x0); 8x0 2 <n and for each feasible sequence;
4. the function w(x) = limm!1(Tmv^) (x) is a ¯xed point of T ;
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then w is the value function of (1) :

Whenever q (x; y) in (1) is quadratic, T sends quadratic functions to
quadratic functions. Below we formulate a sharper statement.

Lemma 7 The Bellman operator (3) sends the cone Sym (n) into the in-
terval [A;A¡BC+B0].

Proof. Let f (x) = x0Hx; with H 2 Sym (n). The supremum of (3) is
attained in view of Lemma 4. We have (Tf)(x) = x0Ax¡x0B(C+¯H)+B0x.
Moreover (Tf)(x) ¸ x0Ax because B(C + ¯H)+B0 is negative semide¯nite.
Since T is monotonic, (Tf)(x) · (T0)(x) = x0(A ¡ BC+B0)x and hence T
sends Sym (n) into interval [A;A¡BC+B0] :

4.3 Thompson metric and contraction property

We present a contraction theorem which uses Thompson's distance. We must
¯rst add some more notation.
Two functions f; g 2 K (Y )¡f0g are said comparable if two real numbers

®; ¯ > 0 exist such that ®f · g · ¯f .
If f and g are comparable, we de¯ne

M(f j g) = inf f® > 0; g ¸ ®fg :
The Thompson's distance is given by

d(f; g) = max flnM(g j f), lnM(f j g)g :
We refer to Thompson [8] for further details. The following theorem

[4] is a contraction theorem valid for a certain class of operators acting over
K (Y ).

Theorem 8 Let [f0; f1] be an interval of K (Y ) ¡ f0g, with f0 and f1 two
comparable functions. If T is an operator mapping [f0; f1] into itself, having
the following two properties:

1. T is monotonic, i.e., f · g implies Tf · Tg, for all f , g 2 [f0; f1],
2. T (®f + (1¡ ®) f1) · ®Tf +(1¡ ®)Tf1 for ® 2 [0; 1] and f 2 [f0; f1],
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then T turns out to be a contraction for Thompson's distance. More
precisely, d(Tf; Tg) · °d(f; g) holds for all f and g in [f0; f1], where ° =
1¡ ¹¡1 < 1 and ¹ =M(f0 j f1).

The two assumptions postulated in the previous theorem hold for the
Bellman operator T: We saw that T is monotonic. Moreover, the convexity
property of T implies assumption 2. It should be noted that all what will
be needed in the present paper is inclosed in the next corollary that can be
easily derived from Theorem 8 (see [4]).

Corollary 9 Under the same conditions of Theorem 8, T has an unique
¯xed point f¤. For any initial condition f 2 [f0; f1], the sequence Tmf of
iterates converges uniformly to f ¤, i.e., kTmf ¡ f ¤k ! 0.

We need to add an important remark. Theorem 8 is valid for functions
f0; f1 2 K (Y ) ¡ f0g. Indeed, in our applications f0; f1 are quadratic func-
tions. In other words, f0; f1 2 Sym¡ (n). It should be noted that every thing
has unchanged and of course the ¯xed point f¤ is a quadratic function as
well. All this follows from the fact that the subset [f0; f1] \ Sym¡ (n) is a
complete subspace of [f0; f1] with respect of Thompson's distance.

4.4 Proofs of theorems

Lemma 10 Given the iterative process Hm+1 = THm, with H0 2 Sym¡ (n),
if N (H0) ¾ NQ and H1 · H0, then after a ¯nite number i of steps, Hm 2
Sym (n;NQ); 8m ¸ i. If Hi is the ¯rst matrix belonging to Sym (n;NQ),
then it follows that TH 2 Sym (n;NQ) for each H · Hi :

Proof. Since H1 · H0, it follows that Hm+1 · Hm, 8m , from the mono-
tonicity of T . From this last inequality we get N (Hm+1) ½ N (Hm), 8m.
Hence an index i exists such that N (Hi) = N (Hi+1) = ::: = M . Moreover,
the vector space N (Hm+1) can be de¯ned as

N (Hm+1) = fx 2 <n; 9y 2 N (Hm) s.t. (x; y) 2 N (Q)g :

In fact, x0Hm+1x = supy2<n [q(x; y) + ¯y
0Hmy]. Now, if for one x we have

Hm+1x = 0, Lemma 4 implies that some y exists for which q(x; y) = 0 and
y0Hmy = 0.

12



Hence the vector space M satis¯es the following property: x 2 M =)
9y 2M such that (x; y) 2 N (Q). Therefore, M ½ NQ.
Being N (H0) ¾ NQ, let us prove that N (Hm) ¾ NQ, 8m ¸ 0 , by

induction. Let N (Hm) ¾ NQ. If x 2 NQ, then some y 2 NQ ½ N (Hm)
exists such that q(x; y) = 0. But y0Hmy = 0, hence it follows x0Hm+1x = 0,
i.e. x 2 N (Hm+1). Thus N (Hm+1) ¾ NQ and the induction argument is
concluded.
From the previous property, we infer that M ¾ NQ and thus M = NQ.

So that, after a ¯nite number i of steps, Hm 2 Sym (n;NQ); 8m ¸ i.
Let us now prove the second part of this lemma. If H · Hi then TH ·

Hi+1 · Hi. Therefore N (TH) ½ NQ. Since H 2 Sym (n;NQ) , then
N (TH) ¾ NQ and this shows that TH 2 Sym (n;NQ).

Lemma 11 If M is a vector subspace, any two elements H and K of
Sym (n;M) are comparable.

Proof. The proof will be an immediate consequence of the following prop-
erty. Let H be a negative semide¯nite matrix with N (H) =M and
(¹1; ¹2; :::; ¹k; 0) be its eigenvalues with ¹1 · ¹2 · ::: · ¹k < 0 and k · n.
If P denotes the orthogonal projection on the subspace M? then, obviously,
N (P ) = M . By the diagonalization method, it is possible to prove that for
any x the following inequalities hold:

¹1 kPxk2 · x0Hx · ¹k kPxk2 :

From this we infer that any H 2 Sym (n;M) is comparable to ¡P 0P ,
since it holds that ¹ kPxk2 = ¡ j¹jx0P 0Px:
Proof of Theorem 1: Let us take H0 = 0. By virtue of Lemma 10,

we have Hi = T i0 2 Sym (n;NQ) for some index i. Let ¾ = ½(A) be the
spectral radius of A. Consider the matrix ¡¾P 0P 2 Sym (n;NQ), where P
is the orthogonal projection on N?

Q (see proof of Lemma 11).
Let us show that the Bellman operator T sends the interval [¡¾P 0P , T i0]

into itself. In fact, if H 2 [¡¾P 0P , T i0], then N (H) = NQ. Now, since
H · T i0 , TH · T i+10 · T i0. Moreover we know that TH ¸ A ¸ ¡¾I and
this last property means that all the eigenvalues of TH are greater than ¡¾.
By Lemma 11 it follows that TH ¸ ¡¾P 0P and this proves the invariance
of the interval [¡¾P 0P , T i0].
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By Theorem 8 we can conclude that T is a contraction and consequently
a unique ¯xed point H¤ exists within [¡¾P 0P , T i0].
Considering the sequence T i0, this converges uniformly to the ¯xed point

H¤ respect to the Thompson metric. Therefore, in view of the Proposition
6, x0H¤x turns out to be the value function. This proves (ii).
It is also straightforward to show that H^ 2 Sym (n;M) for some M .

Let us prove that H^ · H¤. For any given x0, if H^ satis¯es the Bell-
man equation then some x1 exists such that x

0
0H

^x0 = q(x0; x1) + ¯x
0
1H

^x1.
By iterating this procedure, a sequence of vectors is obtained for which
x00H

^x0 =
PN¡1
t=0 q (xt; xt+1) ¯

t + ¯Nx0NH
^xN · PN¡1

t=0 q (xt; xt+1) ¯
t. Con-

sequently x00H
^x0 · PN¡1

t=0 q (xt; xt+1)¯
t · x00H¤x0 and (iv) is proven:

Now, let us prove (iii), i.e., the existence of a unique ¯xed point of T
in Sym (n;NQ). If, for absurd, another ¯xed point H1 would exist then we
have H1 · H¤. Therefore T would map [H1;H¤] into itself. Therefore T
would result a contraction but this leads to an absurd.
Point (v) is a direct consequence of Lemma 10. It should be noted that

optimal solutions exist since lim infN!1 ¯Nx0NH
¤xN · 0 (see Stokey et

Alii [7]).

Proof of Theorem 2 It will be su±cient to prove that the matrices A
and A¡BC+B0 are comparable so that the assert will be a direct consequence
of the Corollary 9.
In fact, A · A ¡ BC+B0. In addition, by Lemma 5 it follows that

°A¡BC+B0 must be negative semide¯nite and hence A¡BC+B0 · (1¡°)A.
Therefore the matrix A and A¡BC+B0 are comparable and this concludes
the proof.

Proof of Proposition 3. Use the linear translation (x; y) = (»; ´) +
(h; h). The (4) becomes

(»; ´)0Q(»; ´) + (2Ah+Bh+ a)0» + (2B0h+ 2Ch+ b)0´ + ° (8)

where ° = q(h; h). Since the Euler equation (6) turns into:

(2B0¹x+ 2C¹x+ b) + ¯(2A¹x+ 2B¹x+ a) = 0;

if we de¯ne u = 2A¹x + 2B¹x + a; then 2B0¹x + 2C¹x + b = ¡¯u. Therefore,
if the translation is made with h = ¹x, the (8) becomes (»; ´)0Q(»; ´) + u0» ¡
¯u0´ + ¹° ¡ ¯¹° where ° = ¹° ¡ ¯¹°, that is ¹° = °=(1¡ ¯).
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Now, let Ĥ be a ¯xed point of the TQ Bellman operator (5) that is,

»0Ĥ» = sup´2<n
h
(»; ´)0Q(»; ´) + ¯´0Ĥ´

i
: By adding u0» + ¹° to the left and

the right-hand sides we obtain

»0Ĥ»+u0»+¹° = sup
´2<n

h
(»; ´)0Q(»; ´) + u0» ¡ ¯u0´ + ¹° ¡ ¯¹° + ¯(´0Ĥ´ + u0´ + ¹°)

i
:

Hence the quadratic function »0Ĥ» + u0» + ¹° turns out to be a ¯xed point of
T which becomes (x ¡ ¹x)0Ĥ(x ¡ ¹x) + u0(x ¡ ¹x) + 1

1¡¯°; coming back to the
old variables (x; y). This completes the proof.
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