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Abstract

In this paper we present a rather general phenomenological theory of tick-by-
tick dynamics in financial markets, based on the continuous time random walk
(CTRW) model. The theory can take into account the possibility of the non-
Markovian character of financial time series by means of a generalized master
equation with a time fractional derivative. We present predictions on the be-
haviour of the waiting-time probability density whose decay interpolates from a
stretched exponential at small times to a power-law for long times. A proper tran-
sition to the so-called diffusion or hydrodynamic limit is also discussed by using
scaling arguments. It turns out that the probability density function obeys a gen-
eralized diffusion equation of fractional order both in space and in time. Finally,
a general representation of the fundamental solution of the fractional diffusion
equation is given, which leads to a general scaling property for the the probability
density function, henceforth to a statistical self-similarity for the limiting process.
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1. Introduction

The importance of random walks in finance has been known since the seminal work
of Bachelier [1] which was completed at the end of the XIXth century, nearly a
hundred years ago. The ideas of Bachelier were further carried out and improved
by many scholars see e.g. Mandelbrot [37], Cootner [11], Samuelson [48], Balck
and Scholes [4], Merton [39], Mantegna and Stanley [38], Bouchaud and Potters
[5].

In a series of recent papers, see Scalas et al. [49], Mainardi et al. [36], Raberto
et al. [45], Gorenflo et al. [26], the authors have argued that the continuous time
random walk (CTRW) model, formerly introduced in Statistical Mechanics by
Montroll and Weiss [42], can provide a phenomenological description of tick-by-
tick dynamics in financial markets and they have discussed some applications
concerning high frequency exchanges of bond futures. Here, we review our theo-
retical arguments along with financial applications.

The paper is divided as follows. Section 2 is devoted to revisit the theoretical
framework of the CTRW model. We provide the most appropriate form for the
general master equation, which is expected to govern the evolution of the probabil-
ity density for non-local and non-Markovian processes. In Section 3 the conditions
for the derivation of the time-fractional master equation are given to character-
ize non-Markovian processes with long memory. In this respect, we outline the
central role played by the Mittag-Leffler function which exhibits an algebraic tail
consistent with such processes. Section 4 is devoted to explain how the CTRW
model can be used in describing the financial time series of the log-prices of an
asset, for which the time interval between two consecutive transactions varies
stochastically. In particular we test the theoretical predictions on the waiting-
time distribution against empirical market data. The empirical analysis concerns
high-frequency prices time series of German and Italian bond futures. In Section
5, we briefly discuss the transition to the diffusion (or hydrodynamic) limit in the
time-fractional master equation. This leads to the space-time fractional diffusion
equation. Section 6 is devoted to the scaling properties of the fundamental so-
lution (Green function) of the space-time fractional diffusion, which are derived
from its Fourier-Laplace representation. This is equivalent to provide the general
scaling form for the probability density function of finding the log-price of an asset
at a given time. Finally, the main conclusions are drawn in Section 7.

Appendices A and B introduce the correct notions of fractional derivatives in
time and space, respectively, in a simple way, which enter our fractional diffusion
equations.
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2. The CTRW model in statistical physics

We recall that the CTRW model leads to the general problem of computing the
probability density function (pdf) p(x, t) (x ∈ R , t ∈ R+) of finding, at position
x at time t, a particle (the walker) which performs instantaneous random jumps
ξi = x(ti) − x(ti−1) at random instants ti with i = 1, 2, . . .. We denote by τi =
ti − t1−1 the (so-called) waiting times. As usual, it is assumed that the particle is
located at x0 = 0 for t0 = 0 , which means p(x, 0) = δ(x) . We denote by ϕ(ξ, τ)
the joint probability density for jumps and waiting times.

The CTRW is generally defined through the requirement that the ξi and τi
are independent identically distributed (i.i.d.) random variables with pdf ’s in-
dependent of each other, so that we have the factorization ϕ(ξ, τ) = w(ξ)ψ(τ) ,
which implies w(ξ) =

∫∞
0 ϕ(ξ, τ) dτ , ψ(τ) =

∫+∞
−∞ ϕ(ξ, τ) dξ . The marginal prob-

ability densities w and ψ are called jump pdf and waiting-time pdf, respectively. Of
course, all the probability densities are assumed to be non negative and subjected
to the normalization conditions.

We now provide further details on the densities w(ξ) , ϕ(τ) in order to derive
their relation with the pdf p(x, t) .

The jump pdf w(ξ) represents the pdf for transition of the walker from a point
x to a point x + ξ , so it is also called the transition pdf . The waiting-time pdf
represents the pdf that a step is taken at the instant ti−1 + τ after the previous
one that happened at the instant ti−1 , so it is also called the pausing-time pdf .
Therefore, the probability that τ ≤ ti − ti−1 < τ + dτ is equal to ψ(τ) dτ . The
probability that a given waiting interval is greater or equal to τ will be denoted
by Ψ(τ) , which is defined in terms of ψ(τ) by

Ψ(τ) =
∫ ∞

τ
ψ(t′) dt′ = 1 −

∫ τ

0
ψ(t′) dt′ , ψ(τ) = − d

dτ
Ψ(τ) . (2.1)

We note that
∫ τ
0 ψ(t′) dt′ represents the probability that at least one jump is

taken at some instant in the interval [0, τ), hence Ψ(τ) is the probability that the
walker is sitting in x at least during the time interval of duration τ after a jump.
Recalling that t0 = 0 , we also note that Ψ(t) represents the so called survival
probability, namely the probability of finding the walker at the initial position
x0 = 0 until time instant t .

Now, only based upon the previous probabilistic arguments, we can derive the
evolution equation for the pdf p(x, t) , that we shall call the master equation of the
CTRW. In fact, we are led to write

p(x, t) = δ(x) Ψ(t) +
∫ t

0
ψ(t− t′)

[∫ +∞

−∞
w(x− x′) p(x′, t′) dx′

]
dt′ , (2.2)

where we recognize the role of the survival probability Ψ(t) and of the pdf ’s
ψ(t) , w(x) . The first term in the RHS of Eq. (2.2) expresses the persistence
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(whose strength decreases with increasing time) of the initial position x = 0. The
second term (a spatio-temporal convolution) gives the contribution to p(x, t) from
the walker sitting in point x′ ∈ R at instant t′ < t jumping to point x just at
instant t , after stopping (or waiting) time t− t′ . Furthermore, as a check for the
correctness of Eq. (2.2) we can easily verify that p(x, t) ≥ 0 for all t ≥ 0 and
x ∈ R , and

∫+∞
−∞ p(x, t) dx = 1 for all t ≥ 0 .

Originally the master equation was derived by Montroll and Weiss in 1965,
see [42], recurring to the tools of the Fourier-Laplace transforms. These authors
showed that the Fourier-Laplace transform of p(x, t) satisfies a characteristic equa-
tion, now called the Montroll-Weiss equation, which reads

̂̃p(κ, s) = Ψ̃(s)
1

1 − ŵ(κ) ψ̃(s)
, with Ψ̃(s) =

1 − ψ̃(s)
s

. (2.3)

Here, we have adopted the following standard notation for the generic Fourier and
Laplace transforms:

F {f(x);κ} = f̂(κ) =
∫ +∞

−∞
e iκx f(x) dx , L{g(t); s} = g̃(s) =

∫ ∞

0
e−st g(t) dt ,

where f(x) (x ∈ R) and g(t) (t ∈ R+) are sufficiently well-behaved functions of
their arguments. It is straightforward to verify the equivalence between the Eqs.
(2.2) and (2.3) by recalling the well-known properties of the Fourier and Laplace
transforms with respect to the space and time convolution.

Hereafter, we present an alternative form to Eq. (2.2), formerly proposed by
Mainardi et al. [36], which involves the first time derivative of p(x, t) (along with
an additional auxiliary function), so that the resulting equation can be interpreted
as an evolution equation of Fokker-Planck-Kolmogorov type. To this purpose we
re-write Eq. (2.3) as

Φ̃(s)
[
s ̂̃p(κ, s) − 1

]
= [ŵ(κ) − 1] ̂̃p(κ, s) , (2.4)

where

Φ̃(s) =
1 − ψ̃(s)
s ψ̃(s)

=
Ψ̃(s)
ψ̃(s)

=
Ψ̃(s)

1 − sΨ̃(s)
. (2.5)

Then our master equation reads∫ t

0
Φ(t− t′)

∂

∂t′
p(x, t′) dt′ = −p(x, t) +

∫ +∞

−∞
w(x− x′) p(x′, t) dx′ , (2.6)

where the ”auxiliary” function Φ(t) , being defined through its Laplace transform
in Eq. (2.5), is such that Ψ(t) =

∫ t
0 Φ(t− t′)ψ(t′) dt′ . We remind the reader that

Eq. (2.6), combined with the initial condition p(x, 0) = δ(x) , is equivalent to
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Eq. (2.4), and then its solution represents the Green function or the fundamental
solution of the Cauchy problem for Eq. (2.6).

From Eq. (2.6) we recognize the role of Φ(t) as a ”memory function” . As
a consequence, the CTRW turns out to be in general a non-Markovian process.
However, the process is ”memoryless”, namely ”Markovian” if (and only if) the
above memory function degenerates into a delta function (multiplied by a certain
positive constant) so that Ψ(t) and ψ(t) may only differ by a multiplying positive
constant. By appropriate choice of the unit of time we assume Φ̃(s) = 1 , so
Φ(t) = δ(t) , t ≥ 0 . In this case we derive

ψ̃(s) = Ψ̃(s) =
1

1 + s
, so ψ(t) = Ψ(t) = e−t , t ≥ 0 . (2.7)

Then Eq. (2.6) reduces to

∂

∂t
p(x, t) = −p(x, t) +

∫ +∞

−∞
w(x− x′) p(x′, t) dx′ , p(x, 0) = δ(x) . (2.8)

This is, up to a change of the unit of time (which means multiplication of the
RHS by a positive constant), the most general master equation for a Markovian
CTRW; it is called the Kolmogorov-Feller equation in [46].

We note that the form (2.6), by exhibiting a weighted first-time derivative, is
original as far as we know; it allows us to characterize in a natural way a peculiar
class of non-Markovian processes, as shown in the next Section. Furthermore, Eq.
(2.6) represents for us the suitable starting point to derive from it the generalized
diffusion equations of fractional order in time and/or in space that will be treated
later.

In closing this Section we note that several authors have treated the CTRW
model and/or the passage to the fractional diffusion equation. The reader, for
example, may refer to the following list of selected papers [43, 55, 41, 29, 54, 28,
30, 27, 51, 2, 52, 3, 40], and to the references therein quoted.

3. The time-fractional master equation for ”long-
memory” processes

Let us now consider ”long-memory” processes, namely non-Markovian processes
characterized by a memory function Φ(t) exhibiting a power-law time decay. To
this purpose a natural choice is

Φ(t) =
t−β

Γ(1 − β)
, t ≥ 0 , 0 < β < 1 . (3.1)

Thus, Φ(t) is a weakly singular function that, in the limiting case β = 1 , reduces
to Φ(t) = δ(t) , according to the formal representation of the Dirac generalized
function, δ(t) = t−1/Γ(0) , t ≥ 0 (see e.g. [15]).
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As a consequence of the choice (3.1), we see that (in this peculiar non-
Markovian situation) our master equation (2.6) contains a time fractional deriva-
tive. In fact, by inserting into Eq. (2.4) the Laplace transform of Φ(t) ,
Φ̃(s) = 1/s1−β , we get

sβ ̂̃p(κ, s) − sβ−1 = [ŵ(κ) − 1] ̂̃p(κ, s) , 0 < β < 1 , (3.2)

so that the resulting Eq. (2.6) can be written as

∂β

∂tβ
p(x, t) = −p(x, t) +

∫ +∞

−∞
w(x− x′) p(x′, t) dx′ , p(x, 0) = δ(x) , (3.3)

where ∂β/∂tβ is the pseudo-differential operator explicitly defined in the Appendix
A, that we call the Caputo fractional derivative of order β . Thus Eq. (3.3) can
be considered as the time-fractional generalization of Eq. (2.8) and consequently
can be called the time-fractional Kolmogorov-Feller equation. We note that this
derivation differs from that presented in [49] and references therein, in that here
we have pointed out the role of the long-memory processes rather than that of
scaling behaviour in the hydrodynamic limit. Furthermore, here the Caputo frac-
tional derivative appears in a natural way without use of the Riemann-Liouville
fractional derivative.

Our choice for Φ(t) implies peculiar forms for the functions Ψ(t) and ψ(t) that
generalize the exponential behaviour (2.7) of the Markovian case. In fact, working
in the Laplace domain we get from (2.5) and (3.1)

Ψ̃(s) =
sβ−1

1 + sβ
, ψ̃(s) =

1
1 + sβ

, 0 < β < 1 , (3.4)

from which by inversion we obtain for t ≥ 0

Ψ(t) = Eβ(−tβ) , ψ(t) = − d

dt
Eβ(−tβ) , 0 < β < 1 , (3.5)

where Eβ denotes an entire transcendental function, known as the Mittag-Leffler
function of order β , defined in the complex plane by the power series

Eβ(z) :=
∞∑

n=0

zn

Γ(β n + 1)
, β > 0 , z ∈ C . (3.6)

For detailed information on the Mittag-Leffler-type functions and their Laplace
transforms the reader may consult e.g. [12, 20, 21, 34]. We note that for 0 < β < 1
and 1 < β < 2 the function Ψ(t) appears in certain relaxation and oscillation
processes, then called fractional relaxation and fractional oscillation processes,
respectively (see e.g. [20, 21, 32, 33] and references therein).
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Hereafter, we find it convenient to summarize the features of the functions
Ψ(t) and ψ(t) most relevant for our purposes. We begin to quote their series
expansions and asymptotic representations:

Ψ(t)


=

∞∑
n=0

(−1)n tβn

Γ(β n + 1)
, t ≥ 0

∼ sin (βπ)
π

Γ(β)
tβ

, t → ∞ ,

(3.7)

and

ψ(t)


=

1
t1−β

∞∑
n=0

(−1)n tβn

Γ(β n + β)
, t ≥ 0

∼ sin (βπ)
π

Γ(β + 1)
tβ+1

, t → ∞ .

(3.8)

The expression for ψ(t) can be shown to be equivalent to that one obtained by
Hilfer and Anton [27] in terms of the generalized Mittag-Leffler function in two
parameters. We consider it conceptually more economical to remain (as long as
possible) in the kingdom of Mittag-Leffler functions with one parameter only.

In the limit for β → 1 we recover the exponential functions of the Markovian
case. We note that for 0 < β < 1 both functions ψ(t), Ψ(t), even if losing
their exponential decay by exhibiting power-law tails for large times, keep the
”completely monotonic” character. Complete monotonicity of the functions ψ(t),
Ψ(t), t > 0, means:

(−1)n dn

dtn
Ψ(t) ≥ 0 , (−1)n dn

dtn
ψ(t) ≥ 0 , n = 0, 1, 2, . . . (3.9)

or equivalently, their representability as (real) Laplace transforms of non-negative
functions. In fact, it can be shown for 0 < β < 1 :

Ψ(t) =
sin (βπ)

π

∫ ∞

0

rβ−1 e−rt
r2β + 2 rβ cos(βπ) + 1

dr , t ≥ 0 , (3.10)

and

ψ(t) =
sin (βπ)

π

∫ ∞

0

rβ e−rt
r2β + 2 rβ cos(βπ) + 1

dr , t ≥ 0 . (3.11)

A special case is β = 1
2 for which it is known that

E1/2(−√
t) = e t erfc(

√
t) = e t

2√
π

∫ ∞
√

t
e−u2

du , t ≥ 0 , (3.12)

where erfc denotes the complementary error function.
It may be instructive to note that for sufficiently small times Ψ(t) exhibits a

behaviour similar to that of a stretched exponential; in fact we have

Eβ(−tβ) 
 1 − tβ

Γ(β + 1)

 exp{−tβ/Γ(1 + β)} , 0 ≤ t � 1 . (3.13)
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4. The CTRW model in statistical finance

The price dynamics in financial markets can be mapped onto a random walk whose
properties are studied in continuous, rather than discrete, time, see e.g. [39].

As a matter of fact, there are various ways in which to embed a random walk
in continuous time. Here, we shall base our approach on the CTRW discussed
in Sect. 2, in which time intervals between successive steps are i.i.d. random
variables.

Let S(t) denote the price of an asset or the value of an index at time t. In
finance, returns rather than prices are considered. For this reason, in the following
we shall take into account the variable x(t) = logS(t), that is the logarithm of
the price. Indeed, for a small price variation ∆S = S(ti) − S(ti−1), the return
r = ∆S/S(ti−1) and the logarithmic return rlog = log [S(ti)/S(ti−1)] virtually
coincide. The statistical physicist will recognize in x the position of a random
walker jumping in one dimension. Thus, in the following, we shall use the language
and the notations of Sect. 2.

In financial markets, prices are fixed when demand and offer meet and a
transaction occurs. In this case, we say that a trade takes place. As a consequence,
not only prices but also waiting times between two consecutive transactions can
be modelled as random variables. In agreement with the assumptions of Sect. 2,
we consider the returns ξi = x(ti)−x(ti−1) as i.i.d random variables with pdf w(ξ)
and the waiting times τi = ti − ti−1 as i.i.d. random variables with pdf ψ(τ) . In
real processes of financial markets this independence hypothesis may not strictly
hold for their duration or not be verified at all. Therefore, it may be considered
with caution.

In the following we limit ourselves to investigate the consistency of the long-
memory process analyzed in Sect. 3 with respect to the empirical data concerning
exchanges of certain financial derivatives.

We have considered the waiting time distributions of certain futures traded
at LIFFE in 1997 and estimated the corresponding empirical survival probabil-
ities. LIFFE stands for London International Financial Futures (and Options)
Exchange. It is a London-based derivative market; for further information, see
http://www.liffe.com. Futures are derivative contracts in which a party agrees
to sell and the other party to buy a fixed amount of an underlying asset at a given
price and at a future delivery date.

As underlying assets we have chosen German and Italian Government bonds,
called BUND and BTP respectively, for both of which the delivery dates are June
and September 1997∗.

∗ BUND and BTP (Buoni del Tesoro Poliennali) are respectively the German
and Italian word for BOND (middle and long term Government bonds with
fixed interest rate).
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Hereafter we summarize the results obtained by Mainardi et al. [36] and
Raberto et al. [45].

Usually, for a future with a certain maturity, transactions begin some months
before the delivery date. At the beginning, there are few trades a day, but closer to
the delivery there may be more than 1 000 transactions a day. For each maturity,
the total number of transactions is greater than 160 000.

In Figs. 4.1-4.4 we plot Ψ(τ) for the four cases (June and September delivery
dates for BUND and BTP).

The circles refer to market data and represent the probability of a waiting
time greater than the abscissa τ . We have determined about 500 values of Ψ(τ)
for τ in the interval between 1 s and 50 000 s, neglecting the intervals of market
closure.

The solid line is a two-parameter fit obtained by using the Mittag-Leffler type
function

Ψ(τ) = Eβ

[
−(γτ)β

]
, (4.1)

where β is the index of the Mittag-Leffler function and γ is a time-scale factor,
depending on the time unit. The dash-dotted line is the stretched exponential
function exp{−(γτ)β)/Γ(1 + β)} , see the RHS of Eq. (3.13), whereas the dashed
line is the power law function (γτ)−β/Γ(1− β), see the RHS of the second Eq. in
(3.7), noting that Γ(β) sin(βπ)/π = 1/Γ(1 − β) .

The Mittag-Leffler function well interpolates between these two limiting be-
haviours: the stretched exponential for small time intervals, and the power law
for large ones.

As regards the BUND futures we can summarize as follows. For the June
delivery date we get an index β = 0.96 and a scale factor γ = 1

12 , whereas, for
the September delivery date, we have β = 0.95 and γ = 1

12 . The fit in Fig. 4.1
has a reduced chi square χ̃2 
 0.26, whereas the reduced chi square of the fit in
Fig. 4.2 is χ̃2 
 0.25.

As regards the BTP futures we can summarize as follows. For the both the
June and September delivery dates we get the same index β = 0.96 and the same
scale factor γ = 1

13 . The fits in Fig. 4.3 and 4.4 have a reduced chi square χ̃2 
 0.2.
We may note the common behaviour of the survival probabilities found from

the trading of the above assets. This might be corroborated or not in other
cases. To the possible objection that, in all four cases here treated, β does not
differ significantly from 1 and so the process still could be Markovian, we answer
that then we would have Ψ(τ) = exp(−γτ) and the graph of Ψ(τ) would look
completely different for sufficiently long times.
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Fig. 4.1
Survival probability for BUND futures with delivery date: June 1997.

The Mittag-Leffler function (solid line) of index β = 0.96 and scale factor γ = 1/12
is compared to the stretched exponential (dash-dotted line) and the power law (dashed line).
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Fig. 4.2
Survival probability for BUND futures with delivery date: September 1997.

The Mittag-Leffler function (solid line) of index β = 0.95 and scale factor γ = 1/12
is compared to the stretched exponential (dash-dotted line) and the power law (dashed line).
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Fig. 4.3
Survival probability for BTP futures with delivery date: June 1997.

The Mittag-Leffler function (solid line) of index β = 0.96 and scale factor γ = 1/13
is compared to the stretched exponential (dash-dotted line) and the power law (dashed line).
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Fig. 4.4
Survival probability for BTP futures with delivery date: September 1997.

The Mittag-Leffler function (solid line) of index β = 0.96 and scale factor γ = 1/13
is compared to the stretched exponential (dash-dotted line) and the power law (dashed line).
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5. The transition to the space-time fractional diffusion

Let us now consider the so called diffusion or hydrodynamic limit for the transition
from the time-fractional master equation (3.3) to a space-time fractional diffusion
equation. Our aim is to prove this transition in a correct and transparent way
by using proper scaling arguments. In other words, we would like to show which
scaling assumptions ensure the validity of the fractional diffusion limit. Indeed, the
correct transition to this limit needs a special care and involves the introduction of
a vanishing length scale h (a limit of infinitely fine discretization in the CTRW).

In our opinion, and to our knowledge, the approaches to the diffusion limit,
appearing in the literature, even if usually good enough for practical purposes,
may present flaws from the mathematical point of view. Usually (see e.g. Scalas et
al. [49] and references therein) the transition to the diffusion limit is obtained by
approximating the Fourier transform of the jump pdf and the Laplace transform
of the waiting-time pdf as follows,

ŵ(κ) ∼ 1 − |κ|α , κ → 0 , 0 < α ≤ 2 ; (5.1)

ψ̃(s) ∼ 1 − sβ , s → 0 , 0 < β ≤ 1 . (5.2)

In order to properly carry out the transition, we follow the arguments stated
by Gorenflo et al. [26] (see also Scalas et al. [50]). We start from Eqs. (2.8) and
(3.3) and pass through their Fourier-Laplace counterpart. The process described
by these equations originates via a sequence of jumps, each jump being a sample
of the real random variable Y . The particle is at position Y1 + Y2 + . . . Yn during
the time interval tn ≤ t < tn+1 (n = 1, 2, . . .), at position 0 in the interval
t0 ≤ t < t1 (in agreement with the empty sum convention). The Yj (j = 1, 2, . . .)
are i.i.d. random variables all having, like Y , the pdf w(x) , and, consequently,
the characteristic function ŵ(κ) . To be precise, we require that the pdf w(x) is
such that, if α = 2 :

σ2 =
∫ +∞

−∞
x2 w(x) dx < ∞ , (5.3)

whereas, if 0 < α < 2 :

w(x) = (b + ε(|x|)) |x|−(α+1) , b > 0 , ε(|x|) → 0 as |x| → ∞ , (5.4)

where ε(|x|) is assumed to be bounded and O (|x|−η) with some η > 0 as |x| → ∞ .
We now consider a sequence of random processes with pdf ′s ph(x, t) resulting

from jumps of size hYk instead of Yk , and from an acceleration of the process
by a factor (the scaling factor) µ−1/β h−α/β , where µ must fulfill some conditions
to be stated later. The pdf of the jump size is wh(x) = w(x/h)/h , so that its
characteristic function is ŵh(κ) = ŵ(κh) . For 0 < α ≤ 2 and 0 < β ≤ 1 we
replace Eq. (3.3) (including (2.8) in the special case β = 1) by the sequence of
equations
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µhα ∂β

∂tβ
ph(x, t) = −ph(x, t) +

∫ +∞

−∞
wh(x− x′) ph(x′, t) dx′ . (5.5)

Applying the Fourier-Laplace transform and recalling the Laplace transform of
the Caputo time-fractional derivative, see (A.1), we get

µhα
{
sβ ̂̃ph(κ, s) − sβ−1

}
= [ŵh(κ) − 1] ̂̃ph(κ, s) . (5.6)

Let us now be guided by the classical central limit theorem or by the Gnedenko
limit theorem, see Gnedenko & Kolmogorov [16] and Feller [14], both expressed in
terms of the characteristic functions. We recall that the Gnedenko limit theorem
provides a suitable generalization of the classical central limit theorem for space
pdf ′s with infinite variance, decaying according to condition (5.4).

The transition to the diffusion limit is based on the following Lemma due to
Gorenflo (for the proof see [25]):
With the scaling parameter

µ =
σ2

2
, if α = 2 , (5.7)

µ =
b π

Γ(α + 1) sin(απ/2)
, if 0 < α < 2 , (5.8)

we have the relation

lim
h→0

ŵ(κh) − 1
µhα

= −|κ|α , 0 < α ≤ 2 , κ ∈ R . (5.9)

Now, it is possible to set

ρh(κ) =
ŵ(κh) − 1

µhα
, (5.10)

and the sequence of equations (5.6) reads:

sβ ̂̃ph(κ, s) − sβ−1 = ρh(κ) ̂̃ph(κ, s) . (5.11)

Then, passing to the limit h → 0, thanks to (5.8), we get:

sβ ̂̃p0(κ, s) − sβ−1 = −|κ|α ̂̃p0(κ, s) , 0 < α ≤ 2 , 0 < β ≤ 1 . (5.12)

By inversion and using the Fourier transform of the Riesz space-fractional deriva-
tive defined in Eq. (B.1), we finally obtain the equation:

∂β

∂tβ
p0(x, t) =

∂α

∂|x|α p0(x, t) , p0(x, 0) = δ(x) , (5.13)

which is the required space-time fractional diffusion equation. In view of the
initial condition as a delta function, the corresponding solution p0(x, t) is thus
the fundamental solution or Green function of the space-time fractional diffusion
equation. In the limiting cases β = 1 and α = 2 , Eq. (5.13) reduces to the
standard diffusion equation.
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In summary, we have shown a formally correct transition to the diffusion limit
starting from the general master equation of the CTRW, namely Eq. (2.2) or Eq.
(2.6). Indeed, by invoking the continuity theorem of probability theory, see e.g.
Lukacs [31], we can convince ourselves that the random variable whose density is
ph(x, t) converges in distribution (”weakly” or ”in law”) to the random variable
whose density is p0(x, t) .

Solving Eq. (5.11) for ̂̃ph(κ, s) , Eq. (5.12) for ̂̃p0(κ, s) , gives

̂̃ph(κ, s) =
sβ−1

sβ − ρh(κ)
, ̂̃p0(κ, s) =

sβ−1

sβ + |κ|α . (5.14)

Inverting the Laplace transforms in Eqs (5.14) implies

p̂h(κ, t) = Eβ

(
ρh(κ)tβ

)
, p̂0(κ, t) = Eβ

(
−|κ|αtβ

)
, (5.15)

where Eβ denotes the Mittag-Leffler function of index β , see Eqs. (3.4)-(3.6). By
(5.9) we obtain ρh(κ) → −|κ|α as h → 0 , hence

ph(x, t) → p0(x, t) , for t > 0 , h → 0 . (5.16)

6. The scaling properties of the fractional diffusion

In this Section we are going to complement our analysis by presenting the funda-
mental solution of the fractional diffusion equation (5.13) with particular attention
to its scaling properties. We agree to rename this solution as pα,β(x, t) to point
out its dependence on the parameters α (0 < α ≤ 2) and β (0 < β ≤ 1). We
shall also consider the relevant particular cases {α = 2, β = 1} (standard dif-
fusion), {0 < α < 2, β = 1} (space-fractional diffusion), {α = 2, 0 < β < 1}
(time-fractional diffusion).

From (5.14) and (5.15) we recall the Fourier-Laplace transform and the Fourier
transform of the fundamental solution pα,β(x, t), which read respectively

̂̃pα,β(κ, s) =
sβ−1

sβ + |κ|α , (6.1)

p̂α,β(κ, t) = Eβ

(
−|κ|α tβ

)
, 0 < α ≤ 2 , 0 < β ≤ 1 . (6.2)

By using the known scaling rules for the Fourier (F ) and Laplace (L ) transforms

F [f(ax)] = a−1 f̂(κ/a) , a > 0 , L [f(bt)] = b−1 f̃(s/b) , b > 0 ,

we can infer directly from (6.1) (thus without inverting the two transforms) the
following similarity property of the fundamental solution,

pα,β(ax , bt) = b−γpα,β(ax/bγ , t) , γ = β/α . (6.3)
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Consequently, we can write

pα,β(x, t) = t−γ Kα,β(x/tγ) , γ = β/α , (6.4)

where
Kα,β(u) =

1
2π

∫ +∞

−∞
e−iqu Eβ(−|q|α) dq . (6.5)

We note that for 0 < α ≤ 1 and 0 < β < 1 the integral in (6.5) is intended
as a Cauchy Principal Value. In fact the function Eβ(−|q|α), being completely
monotonic in R+ , turns out to be positive and decreasing to zero like |q|−α/Γ(1−
β) . For u = 0 we obtain, after some calculations on the Mittag-Leffler function,
see e.g. [35, 17],

Kα,β(0) =



∞ if 0 < α ≤ 1 and 0 < β < 1 ,

1
π

Γ(1 + 1/α) Γ(1 − 1/α)
Γ(1 − β/α)

if 1 < α ≤ 2 and 0 < β < 1 ,

1
π

Γ(1 + 1/α) if 0 < α ≤ 2 and β = 1 .

(6.6)

For α = 2 and β = 1 we recover the known Green function of the standard
diffusion equation: in fact Eq. (6.2) reduces to

p̂2,1(κ, t) = exp(−κ2 t) , (6.7)

then we obtain

p2,1(x, t) = t−1/2 1
2
√
π

exp(−x2/(4t)) = t−1/2G(x/t1/2) , (6.8)

where G(x) denotes the Gaussian pdf

G(x) =
1

2
√
π

exp(−x2/4) . (6.9)

We note that
K2,1(0) = G(0) =

1
2
√
π
. (6.10)

For 0 < α < 2 and β = 1 (space-fractional diffusion equation) Eq. (6.2) re-
duces to

p̂α,1(κ, t) = e−|κ|α t , (6.11)

so we obtain
pα,1(x, t) = t−1/α Lα

(
x/t1/α

)
, 0 < α < 2 , (6.12)

where Lα(x) is the (non Gaussian) Lévy stable pdf of index α . For this class of
probability densities we refer e.g. to [16], [14].
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The Green function (6.12) has been discussed in several papers, for example
in [23, 24], and references therein. We note that

Kα,1(0) = Lα(0) =
1
π

Γ(1 + 1/α) . (6.13)

It is worthwhile to remember the algebraic decay of the non-Gaussian stable dis-
tributions; in fact the asymptotic behaviour of Lα(x) is given by

Lα(x) ∼ sin(απ/2)
π

Γ(α + 1)
|x|α+1

, |x| → ∞ , 0 < α < 2 . (6.14)

We note that for α = 2 the asymptotics (6.14) breaks down (the coefficient of the
power becoming zero so that an exponentially decreasing remainder comes into
play).

For α = 2 and 0 < β < 1 (time-fractional diffusion equation) Eq. (6.2) re-
duces to

p̂2,β(κ, t) = Eβ

(
−κ2 tβ

)
, (6.15)

so, we get

p2,β(x, t) =
1
2
t−β/2 Mβ/2

(
|x|/tβ/2

)
, (6.16)

where Mβ/2 denotes a function of Wright-type of index β/2 , introduced by
Mainardi, see e.g. [32, 33]. For a given ν ∈ (0, 1) the function Mν(z) is defined in
the whole complex plane by the power series

Mν(z) =
∞∑

n=0

(−z)n

n! Γ[−νn + (1 − ν)]
, 0 < ν < 1 , z ∈ C . (6.17)

For a detailed discussion on the Wright-type functions and related Laplace trans-
forms we refer to the recent papers by Gorenflo, Luchko and Mainardi, see [18, 19],
and references therein quoted. We note that

K2,β(0) =
1
2
Mβ/2(0) =

1
2 Γ(1 − β/2)

. (6.18)

This Wright-type function has an exponential decay; in fact its asymptotic be-
haviour is

Mβ/2(|x|) ∼ A(β)x d(β) exp
[
−B(β)x c(β)

]
, |x| → ∞ , (6.19)

where A and B are certain positive constants depending on β and

c(β) = 2/(2 − β) , d(β) = (β − 1)/(2 − β) . (6.20)

We note that d(β) = c(β)/2−1 ; in particular, as β varies from 0 to 1, c(β) increases
from 1 to 2 whereas d(β) increases from −1/2 to 0 . When β = 1 (standard
diffusion) formula (6.19) is no longer asymptotic but provides the exact expression
(6.9) in terms of the Gaussian.
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Furthermore, as a consequence of Eq. (6.19), all the spatial moments of
p2,β(x, t) of order δ > −1 are finite. In particular, considering the moments
of even (integer) order, we have∫ +∞

−∞
x 2n p2,β(x, t) dx =

Γ(2n + 1)
Γ(β n + 1)

t β n , n = 0, 1, 2, . . . (6.21)

In particular, we interpret p2,β(x, t) as a spatial pdf evolving in time, which ex-
hibits a finite variance σ2 (the moment of order 2) proportional to the β-th power
of time, tβ (anomalous slow diffusion, being 0 < β < 1).

We recall that Mainardi [32, 33] has shown that the Green function (6.16)
for the time-fractional diffusion equation can be obtained also from the Laplace
transform

p̃2,β(x, s) =
1
2
sβ/2−1 e−xsβ/2

. (6.22)

We note that such solution is valid also for 1 < β < 2 when the time-fractional
equation, describing an intermediate process between diffusion and wave propa-
gation, can be referred to as the time-fractional diffusion-wave equation. Also in
this case the Green function can be interpreted as a spatial pdf evolving in time,
but now we have anomalous fast diffusion as the exponent β (related to time in
the variance) exceeds 1.

We now present a composition rule which allows us to express the general
Green function of the space-time fractional diffusion equation as an integral involv-
ing the two Green functions corresponding to space-fractional and time-fractional
diffusion equations. To this purpose we note that the Fourier Laplace transform
of the Green function (6.1) can be re-written in integral form as suggested by
Saichev & Zaslavski [46] of the space-time-fractional diffusion equation, as

˜̂pα,β(κ, s) =
sβ−1

sβ + |κ|α = sβ−1
∫ ∞

0
e−r(sβ + |κ|α) dr . (6.23)

Now, our result (6.22) coupled with (6.11) allows us to interpret Eq. (6.23) with a
better insight than in [46]. In fact, in view of (6.11), (6.22) we can express (6.23)
as ̂̃pα,β(κ, s) = 2

∫ ∞

0
p̂α,1(κ, r) p̃2,2β(r, s) dr , (6.24)

so, by inversion,

pα,β(x, t) = 2
∫ ∞

0
pα,1(x, r) p2,2β(r, t) dr . (6.25)

Note the presence of p2,2β instead of p2,β . Hence Eq. (6.25) is a sort of a formula
of separation of variables stating that the Green function for the space-time-
fractional diffusion equation of order {α, β} can be expressed in terms of the
Green function for the space-fractional diffusion equation of order α and the Green
function for the time-fractional diffusion-wave equation of order 2β .
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Because of Eqs. (6.12) and (6.16), we can write Eq. (6.25) as

pα,β(x, t) = t−β
∫ ∞

0
r−1/α Lα

(
x/r1/α

)
Mβ

(
r/tβ

)
dr . (6.26)

Of course, the formulas (6.12) and (6.16) corresponding to the particular cases
{α, 1} and {2, β} are recovered from (6.26) as follows:

pα,1(x, t) = t−1
∫ ∞

0
r−1/α Lα

(
x/r1/α

)
δ (r/t− 1) dr = t−1/α Lα

(
x/t1/α

)
, (6.27)

and

p2,β(x, t) =
t−β

2
√
π

∫ ∞

0
e−x2/4r Mβ

(
r/tβ

)
dr =

t−β/2

2
Mβ/2

(
x/tβ/2

)
. (6.28)

Eq. (6.27) is a direct consequence of the property that, as ν → 1− , we have
Mν(r) → δ(r − 1) , r > 0 . Eq. (6.28) is a sort of (integral) duplication formula
with respect to the index for the function Mν(r) , r > 0 .

In a recent paper by Mainardi, Luchko and Pagnini [35], that was inspired by
a previous one by Gorenflo, Iskenderov and Luchko [17], the authors have given
a general representation of the fundamental solution of the space-time fractional
diffusion equation (including asymmetry effects in the space-fractional derivative
by a skewness parameter θ) in terms of Mellin-Barnes integrals. Indeed they have
derived explicit formulae (based on convergent series matched with asymptotic
expansions) which allow them to plot the fundamental solution for different values
of the relevant parameters α, θ, β in any space domain.

7. Conclusions

In this paper we have reviewed our phenomenological theory of tick-by-tick dy-
namics in financial markets, based on the continuous time random walk (CTRW)
model. The theory can take into account the possibility of the non-Markovian
character of financial time series by means of a generalized master equation with
a time fractional derivative. We have presented predictions on the behaviour of
the waiting-time probability density by introducing a special function of Mittag-
Leffler type whose decay interpolates from a stretched exponential at small times
to a power-law for long times. This function has been successfully applied in the
empirical analysis of high-frequency prices time series of German and Italian bond
futures.

Furthermore, we have proposed a scaling method to derive, in a correct way,
the transition to the diffusion limit from the CTRW master equation governing
a stochastic process. It turns out that the probability density function obeys a
generalized diffusion equation, of fractional order both in space and in time, with
self-similarity properties.
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Appendix A: The Caputo time-fractional derivative

For readers’ convenience, here we present an introduction to the Caputo fractional
derivative starting from its representation in the Laplace domain and contrasting
it to Riemann-Liouville fractional derivative. In so doing we avoid the subtleties
lying in the inversion of fractional integrals.

If f(t) is a (sufficiently well-behaved) function with Laplace transform
L{f(t); s} = f̃(s) =

∫∞
0 e−st f(t) dt , we have

L
{
dβ

dtβ
f(t); s

}
= sβ f̃(s) − sβ−1 f(0+) , 0 < β < 1 , (A.1)

if we define
dβ

dtβ
f(t) :=

1
Γ(1 − β)

∫ t

0

df(τ)
dτ

dτ

(t− τ)β
. (A.2)

We can also write, in each of the following two ways,

dβ

dtβ
f(t) =

1
Γ(1 − β)

d

dt

{∫ t

0
[f(τ) − f(0+)]

dτ

(t− τ)β

}
, (A.3)

dβ

dtβ
f(t) =

1
Γ(1 − β)

d

dt

{∫ t

0

f(τ)
(t− τ)β

dτ

}
− t−β

Γ(1 − β)
f(0+) . (A.4)

The Eqs. (A.1-4) can be extended to any non integer β > 1 , see e.g. the survey
by Gorenflo & Mainardi [21]. We refer to the fractional derivative defined by
(A.2) as the Caputo fractional derivative, since it was formerly applied by Caputo
in the late sixties for modelling dissipation effects in Linear Viscoelasticity, see
e.g. [6, 7, 10]. Several applications have been treated by Caputo himself up to
nowadays, see e.g. [8, 9] and references therein.

The reader should observe that the Caputo’s definition differs from the usual
one named after Riemann and Liouville, which is given by the first term in the
RHS of (A.4), see e.g. the treatise on Fractional Calculus by Samko, Kilbas &
Marichev [47]. The Caputo fractional derivative is of course more restrictive than
the Riemann-Liouville fractional derivative in that the first-order derivative is
required to exist and be absolutely Laplace transformable.

The Caputo fractional derivative, practically ignored in the mathematical
treatises, represents a sort of regularization in the time origin for the Riemann-
Liouville fractional derivative. Recently, it has been extensively investigated by
Gorenflo & Mainardi [21] and by Podlubny [44] in view of its major utility in
treating problems of physical interest, which require standard initial conditions.
In fact, in physical problems, the initial conditions are usually expressed in terms
of a given number of bounded values assumed at t = 0 by the field variable and
its derivatives of integer order, despite the fact that the governing evolution equa-
tion may be a generic integro-differential equation and therefore, in particular, a
fractional differential equation.



20 R. Gorenflo, F. Mainardi, M. Raberto, E. Scalas

Appendix B: The Riesz space-fractional derivative

If f(x) is a (sufficiently well-behaved) function with Fourier transform

F {f(x);κ} = f̂(κ) =
∫ +∞

−∞
e iκx f(x) dx , κ ∈ R ,

we have
F
{

dα

d|x|α f(x);κ
}

= −|κ|α f̂(κ) , 0 < α < 2 , (B.1)

if we define
dα

d|x|α f(x) = Γ(1 + α)
sin (απ/2)

π

∫ ∞

0

f(x + ξ) − 2f(x) + f(x− ξ)
ξ1+α

dξ . (B.2)

In other words dα

d|x|α is the pseudo-differential operator with symbol −|κ|α .
Let us recall that a generic pseudo-differential operator A, acting with respect
to the variable x ∈ R , is defined through its Fourier representation, namely∫+∞
−∞ e iκx A [f(x)] dx = Â(κ) f̂ (κ) , where Â(κ) is referred to as symbol of A ,

given as Â(κ) =
(
A e−iκx

)
e+iκx .

The fractional derivative defined by (B.2) can be referred to as the Riesz frac-
tional derivative since it is obtained from the inversion of the fractional integral
originally introduced by Marcel Riesz in the late 1940’s, known as the Riesz po-
tential, see e.g. [47]. It is based on a suitable regularization of a hyper-singular
integral, according to a method formerly introduced by Marchaud in 1927. The
representation (B.2) can be found in [47] as formula (12.1’) and is more explicit
and convenient than other ones available in the literature, see e.g. [46], [53], in
that it is valid in the whole range 0 < α < 2 . We have used it in [25], where we
have shown that it holds also in the singular case α = 1 .

For α = 1 the Riesz derivative is related to the Hilbert transform, as pointed
out by Feller in 1952 in his pioneering paper [13], resulting in the formula

d

d|x|f(x) = − 1
π

d

dx

∫ +∞

−∞
f(ξ)
x− ξ

dξ . (B.3)

For α = 2 the Riesz derivatives reduces to the standard derivative of order
2 since −|κ|2 = −κ2 is known to be its symbol. We note, by writing −|κ|α =
−(κ2)α/2 , that the Riesz derivative of order α can be interpreted as the negative
of the α/2 power of the (positive definite) operator −D2 = − d2

dx2 , namely

dα

d|x|α = −
(
− d2

dx2

)α/2

. (B.4)

The notation here adopted is due to Zaslavsky, see e.g. [46]. A different notation
which allows asymmetric effects is motivated by Feller’s paper [13] and is due to
Gorenflo & Mainardi, see e.g. [23], [24].
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