Testing for Non-Linear Structure in
an Artificial Financial Market

by Shu-Heng Chen, Thomas Lux and Michele Marchesi

Abstract: We present a stochastic simulation model of a prototype financial market. Our market is
populated by both noise traders and fundamentalist speculators. The dynamics covers switches in the
prevailing mood among noise traders (optimistic or pessimistic) as well as switches of agents
between the noise trader and fundamentalist group in response to observed differences in profits.
The particular behavioral variant adopted by an agent also determines his decision to enter on the
long or short side of the market. Short-run imbalances between demand and supply lead to price
adjustments by a market maker or auctioneer in the usual Walrasian manner. Our interest in this
paper is in exploring the behavior of the model when testing for the presence of chaos or non-
linearity in the simulated data. As it turns out, attempts to determine the fractal dimension of the
underlying process give unsatisfactory results in that we experience a lack of convergence of the
estimate. Explicit tests for non-linearity and dependence (the BDS and Kaplan tests) also give very
unstable results in that both acceptance and strong rejection of IIDness can be found in different
realizations of our model. All in all, this behavior is very similar to experience collected with
empirical data and our results may point towards an explanation of why robustness of inference in
this area is low. However, when testing for dependence in second moments and estimating GARCH
models, the results appear much more robust and the chosen GARCH specification closely
resembles the typical outcome of empirical studies.
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1. Introduction

More than one decade ago, first applications of empirical methods from chaos theory raised
the hope of detecting low-dimensional chaotic motion in financial data (cf., for example,
Scheinkman and LeBaron, 1989; Frank and Stengos, 1989; or Medio and Gallo, 1992).
However, these early positive results were questioned a few years later by other authors (for
example, Ruelle, 1990; Gilmore, 1993). By now, a certain consensus seems to have emerged
that the search for low-dimensional chaos has not been successful. However, experience also
shows that the null hypotheses of either linearity or 1IDness are often rejected with financial
data. Furthermore, one also knows that much of the deviations from IIDness stems from the
volatility dynamics and can be captured to some degree by GARCH time series models.

In this paper, we take the findings reported above as stylized facts of financial data and ask
whether model-generated data from an “artificial’ market could reproduce these features. This
continues the line of research of Lux and Marchesi (1999, 2000) who show that their artificial
financial market generates time series of prices and returns sharing some even more
elementary stylized facts of empirical data: both the presence of a unit root in the asset price
dynamics as well as heteroscedasticity and leptokurtosis of returns can be found in
simulations of the model. These results are even in good quantitative agreement with
empirical findings: as with almost all real-life data, the tails of the distribution of returns (r)
are characterized by power-law behavior, i.e. F(|rt| >Xx) =cX™, with a ‘tail index’ p in the
range of about 2 to 4. Furthermore, both squared and absolute returns seem to exhibit long-
term dependence, i.e. a slow (hyperbolic) decline of the autocorrelation function, with a
realistic magnitude of the relevant statistics. At the same time, raw returns have only small
degrees of autocorrelation which implies that the (artificial) market appears rather efficient on
first sight since price increments are almost uncorrelated.

When testing for chaos and nonlinearity with simulated time series from the Lux/Marchesi
framework in this paper, our results will turn out to conform to empirical behavior in even
greater detail. The plan of the remainder is as follows: the next section reviews the basic
building blocks of the model and explains what kind of mechanism leads to its interesting
dynamics. Section 3 reports and evaluates the results of various statistical procedures. Section
4 provides concluding remarks.

2. The Artificial Financial Market

Among the various recent approaches towards dynamic behavioral modeling of financial
markets (for example, Day and Huang, 1990; Kirman, 1991; Brock and LeBaron, 1996; or



Arthur et al., 1997) the characteristic feature of the model presented in Lux and Marchesi
(1999, 2000) is its use of a mass-statistical approach which only considers a few key
behavioral variants and formalizes agents’ switching between these alternatives in a stochastic
manner. Three groups of agents are considered in the model: first, the fixed number of traders
in the market (N) is split up into the camps of noise traders and fundamentalists with n,(t) and
n¢(t) denoting the (time-varying) numbers of agents in both groups (n, + n; = N). Second, the
noise trader group itself consists of optimistic and pessimistic individuals whose numbers are
given by n.(t) and n_(t) with n.(t) + n.(t) = n,. Given this classification of behavioral variants,
the dynamics is encapsulated in six transition probabilities for changes between groups.

First, the probabilities of switches of agents from the pessimistic to the optimistic subgroup
and vice versa during a small time increment At are denoted by 11, _At and 1T At where 11, and
TL, are concretized as follows:
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Here, the basic influences on the noise traders’ formation of opinion are the majority

, and the actual price trend, M The first
n, P

component may be seen as a short-hand reflecting herd behavior or the attempt to trace out

underlying information from the behavior of others. The second component may be

interpreted as being representative of trend following practices. Parameters v, ,a,, and a, are
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opinion of their fellow traders, x =

measures of the frequency of revaluation of opinion and the importance of majority opinion
and trend, respectively. The transition probabilities are multiplied by the actual fraction of
chartists (that means, potential transitions are restricted to such a fraction) because we will
also allow interaction with fundamentalist traders in the next step.

Switching from the noise trader to the fundamentalist group and vice versa is formalized in
a similar manner. The notational convention in the transition probabilities below is again that
the first index denotes the subgroup to which a trader moves who had changed his mind and
the second index gives the subgroup to which he formerly belonged (hence, as an example,
T, ¢ At is the probability for a fundamentalist to switch to the optimistic noise traders’ group
within a small time interval At):
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The forcing terms U,; and U, for these transitions depend on the difference between the
(momentary) profits earned by noise traders and fundamentalists:
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Profits enjoyed by noise traders from the optimistic group (who are buyers and, thus,
increase the fraction of the asset in their portfolio) are composed of nominal dividends (r) and
capital gains due to the price change (dp/dt). Dividing by the actual market price gives the
revenue per unit of the asset. Excess returns are computed by subtracting the average real risk-
adjusted return (R) available from other investmentsﬂ Fundamentalists, on the other hand,
consider the deviation between price and fundamental value ps (irrespective of its sign) as the
source of arbitrage opportunities. As the gains from arbitrage occur only in the future (and
depend on the uncertain time for reversal to the fundamental value) the latter are discounted
by a factor s < 1. Furthermore, neglecting the dividend term in fundamentalists’ profits is
justified by assuming that they correctly perceive the (long-term) real returns to be equal to the
average return of alternative investments (i.e. r/ps = R) so that the only source of excess profits
in their view is arbitrage when prices are ‘wrong’ (p # py).

As concerns the second U-function, U,,, we consider profits from the viewpoint of
pessimistic noise traders who in order to avoid losses will rush out of the market and sell the
asset under consideration. Their fall-back position by acquiring other assets is given by the

1 Usually, one would think of R as a risk-free rate. However, as our model lacks risk aversion on the part of
speculators, we have no basis for computation of a risk premium. An extension of the model to the case of risk-
averse traders is on our agenda. In such a framework, one would hope to be able to account for a positive, time-
varying risk premium as well as for leverage effects (dependence of volatility on the sign of returns) which so
far the model is unable to produce.



average return R which they compare with nominal dividends plus price change (which, when
negative, amounts to a capital loss) of the asset they sell. This explains why the first two items
in the forcing term are interchanged when proceeding from U, 1 to U, 5.

Lastly, the dynamics of the asset’s price results from the market operations of our agents
and the ensuing price adjustment by a market maker who reacts on imbalances between
demand and supply. With optimistic (pessimistic) noise traders entering on the demand
(supply) side of the market, excess demand within this group depends on the number of
individuals in both groups. Assuming a constant average trading volume per transaction, tp,
this amounts to: ED, = (n:+ - n.) t,. Excess demand of fundamentalists, on the other hand,

typically obeys a law of the type: ED, =n, [y P =P

, Y being a parameter for the strength of

reaction on differences between p and p:. In order to conform with the general structure of our
framework, we also formalize the price adjustment process in terms of (Poisson) transition
probabilities. As a stochastic version of the standard Walrasian adjustment we use the
following probabilities for the price to increase (decrease) by a small percentage Ap = £+ 0.001
p during a time increment At:El

4 M= max[0, R(ED+W)] , U min[R(ED+p), 0] , ED = EDs + ED,,

where 3 is a parameter for the price adjustment speed and p is a small random component
which is added to the speculators’ excess demand.

Note that using Poisson transition probabilities for all dynamic processes, we have
formulated a continuous-time model with asynchronous changes of behavior. In our
simulations, updating of p and the number of individuals in the various subgroups is
performed with sufficiently small time increments (ranging in a flexible manner between At =
0.002 and At = 0.01) in order to achieve a close approximation to the underlying continuous
process. For the statistical analyses, the realized sample paths are extracted at integer time
steps.

As a benchmark for the analysis of the resulting price dynamics, we introduce an exogenous

news arrival process. Our assumption here is that the log of the fundamental value follows a
Wiener process and, hence,

(5)  In(pre) = In(pgrar) + €At

2 The increment Ap has been chosen as small as possible in order to avoid artificial lumpiness of price changes
with concentration of the distribution of returns at a few values only.



with increments ¢ identically and independently distributed according to a Normal
distribution with mean zero and (time-invariant) variance o’ . This specification ensures that
neither fat tails nor volatility clustering nor any kind of non-linear dependence are brought
about by the exogenous news arrival process.ElHence, emergence of these characteristics in
market prices would not be driven by similar characteristics of the news, but would rather
have to be attributed to the trading process itself. In fact, the major finding from our earlier
work on this artificial market (Lux and Marchesi, 1999, 2000) is that the trading process itself
generates realistic dynamics of asset returns, i.e., market interactions of agents magnify and
transform exogenous noise (news) into fat tailed returns with clustered volatility (cf. Fig. 2 for
an example of the resulting dynamics of returns).

Lux and Marchesi (2000) provide a theoretical analysis of the mean-value dynamics of the
model that allows to gain some insights into the origin of this dynamic behavior. They show
that the above system is characterized by a continuum of equilibriaﬂwith a market price which
(on average) equals the fundamental value, balanced disposition among noise traders, and
indeterminate fraction of agents within the noise trader and fundamentalist group. The reason
or this indeterminacy can be understood by taking into account that neither group has any
advantage in a situation where no arbitrage opportunities exist (p = ps) and no deviations from
the equilibrium price are expected (which amounts to dp/dt = 0). This implies, that switches of
individual agents between groups become random in the neighborhood of an equilibrium, so
that the system moves in an erratic manner along its continuum of equilibria. The relevant
equilibrium *selected’ in any period, then, depends on the whole history of the process.El

Another theoretical result is that stability of an equilibrium depends on the fraction of noise
traders among agents. A critical value for the fraction of chartists can be computed that
separates the region of stable and unstable equilibria. When the configuration comes close to
this critical point, volatility increases due to destabilizing reactions of the now larger chartist
group. However, these destabilizing forces are kept in check by a tendency of agents to switch

3 Another stylized fact, unit root behavior, is, in fact, shared by both the fundamental value and market prices. It
seems to us, however, that this is not an entirely trivial consequence of our assumptions as the price dynamics
follows a different, much more complicated process than fundamentals. In fact, as shown in Lux and Marchesi
(2000), one can get non-rejection of unit roots from the price process even with stationary fundamentals.

4 More precisely, these are the equilibria of a first-order approximation to the time development of mean values
of the relevant variables (cf. Lux, 1995; 1997; 1998). In the original stochastic system, these equilibria are
stationary in the sense that the systematic factors in the transition probabilities vanish (all U-functions in eq. 1
to 3 are identical zero as is excess demand) and the dynamics is confined to stochastic fluctuations.

S1n out-of-equilibrium episodes, however, one finds more systematic motions between groups. There one also
finds changing majorities of optimistic or pessimistic noise traders. Note also that with a price close to the
fundamental value, balanced disposition of noise traders implies that their excess demand is close to a random
process with mean zero. Hence, as long as no bubbles built up our noise traders do essentially behave like the
‘liquidity traders’ of standard market microstructure models.



back to a fundamentalist behavior in the presence of large deviations between price and
fundamental value. The resulting decline of the number of noise traders, then, leads to
reduction of the amplitude of the fluctuations again. As a result, destabilization is only a
temporal phenomenon which, nevertheless, occurs repeatedly in the course of the market’s
development. Note that for the fraction of noise traders this stabilizing mechanism amounts to
some kind of re-injection (this is similar to, but more complicated than a random walk with a
reflecting boundary).

As this temporary destabilization does not lead to lasting deviations from fundamental
valuation, the resulting picture still seems to be consistent with efficiency of the price
formation process, but the market can also be characterized by a certain fragility with a
tendency towards ‘unnecessarily’ large fluctuations and alternation between tranquil and
turbulent periods. This behavior resembles a phenomenon called on-off intermittency in
natural science (cf. Heagy et al. 1994).E|

3. Testing for Non-Linear Structure in the Simulated Data

We now proceed with the statistical analyses of our model-generated data. The parameter
values used for simulations are the same as in Lux and Marchesi (1999):

N =500,v,=2,v,=0.6,8 =4, t, =0.001, y=0.01, o, = 0.6, 0, = 1.5, 0t = 1,
R =0.0004 (r =R ps), s = 0.75,

The random variables p and € are assumed to follow Normal distributions with mean zero
and standard deviations ¢ = 0.005 and o, = 0.05.

‘Fine-tuning’ of the model’s parameters was not necessary in order to get ‘realistic’
statistical attributes. What we did in choosing the parameters was some scale adjustment in
order to get an interval of price changes which fits with empirical observations in
industrialized economies (with absolute returns over unit time intervals not exceeding 0.2 to
0.3). With changes of the parameters, we are, of course, able to evoke fluctuations which are
either wilder or more moderate, but these nevertheless share the same statistical characteristics
as the data shown in this paper. Now turn to the details of the statistical analysis.

Fractal (or correlation) dimension: First, we follow many of the early empirical chaos
papers in attempting to estimate the so-called fractal dimension of our data. The fractal

6 Another economic example of its occurrence is given in Youssefmir and Huberman (1997).



dimension (denoted by D, in the following) is a measure to determine the degree of
complexity of a time series which, for data from a chaotic attractor, would assume some non-
integer value D, > 1. With a reasonably low estimate, say < 4, the hope would emerge of
understanding the underlying dynamics, while a higher dimension estimate (if its existence
could be assured at all) would imply that the dynamics is close to truly random generating
mechanisms.

Of the various definitions of the fractal dimension, the correlation dimension is usually
adopted in empirical work. To arrive at an estimate of D, for a given time series {y}, t =
1,2,..., n, one first computes the so-called correlation function:

(6) ng ZS zl (yt ’ys

" B

with Y™ = (Y, Yier e Yis-nym) @0 ‘M-history” constructed from the underlying uni-variate
m __ ysm
correlation function, thus, measures the relative frequency with which different points are
within radius € of each other. Here, m is called the embedding dimension, and the lag t used
in constructing the m-histories is chosen in a way to avoid too high a correlation between the

elements of an m-tuple. It is usually recommended to set this lag equal to the first zero-

crossing of the autocorrelation function and we follow this practice here. For chaotic
attractors, C, . should behave like C,  =constant[z™ . As stochastic processes exhibit

data set and I( ) an indicator function: I,(y,",ys' < ¢ and 0 otherwise. The

increasing estimates of D, with increasing ‘embedding’ dimensions, one looks for the
development of the estimate when using m-histories y," with increasing m. If the estimate D,
exhibits convergence to some almost constant value, this value is used as an estimate of the
‘true’ correlation dimension of the process under investigation.

In Fig. 1, we show the application of this procedure to a data set of 40,000 observations of
returns over unit time steps simulated from our model. The upper part illustrates the behavior
of the correlation integral with increasing embedding dimension m. It can readily be seen that
at least for embeddings up to m = 12, the slope of the fitted linear curves increases with
increasing m. Plotting the slopes as the estimates of D, in the bottom part confirms that one
cannot speak of convergence of the estimate which seems to increase monotonously and,
finally, at m = 12, reaches a value of 8.81. Looking up early papers such as Scheinkman and
LeBaron (1989) or Frank and Stengos (1989), this pattern appears quite familiar. For
comparison, our plot also shows the behavior of the increments of the fundamental value
(which are assumed to follow a Normal distribution). Here we see higher estimates of D,
coming close to the 45° line throughout and increasing up to a high 11.06 at m = 12. Thus, it



appears that, although we are unable to establish convergence of the correlation dimension
estimate, the price dynamics from the model appears less complex (less random) than the
pseudo-random numbers underlying the dynamics of the fundamental value.

To check the significance of this apparently different behavior formally, we applied the
‘shuffle test’ (Scheinkman and LeBaron, 1989) and ‘surrogate data test’ (Theiler et al., 1992).
In the former, the results for the original series are compared with estimates obtained for
randomly reshuffled time series, whereas, in the latter, they are compared to that of synthetic
data with similar distributional characteristics and (linear) autocorrelation. Table 1 shows the
outcome of these tests for embedding dimensions m = 3, 6, 9, and 12. It can be seen that the
dimension estimates from 20 sets of surrogate data are uniformly larger than those of the
original data set. Reshuffling yields lower estimates than the surrogate data technique, but for
the higher embeddings (m = 9 and 12) also leads to a rejection of the underlying null
hypothesis (that the original data does not behave differently from the randomized ones) at the
95 percent level. Again, similar results are familiar from the empirical chaos literature, where
randomly reshuffled series usually lead to higher estimates of D, despite lack of convergence
of the dimension estimate. The overall result is that like most of the empirical time series that
have been analyzed in this way our computer-generated data show traces of hidden structure
which, however, appears to be of a more complicated nature than time series from some low-
dimensional deterministic dynamics.

Fig. 1 and Table 1 go about here

BDS and Kaplan test: Having been unable to establish a low-dimensional correlation
dimension for our simulated data, we are turning to more modest goals. In the following we
are interested in whether explicit tests for nonlinearity and I1Dness would indicate at all that
there is more in our data than a purely stochastic motion or short-term linear dependence.
From the wealth of available procedures, we choose the BDS and Kaplan test (Brock et al.,
1996; Kaplan, 1994).

The reason for this choice is that these two tests turned out to be the best performing ones in
a recent competition among nonlinearity tests (cf. Barnett et al., 1998). Our application can
also be viewed as adding another type of process to their competition. In order to facilitate
comparison, we use the same sample size as Barnett et al. did in their ‘large’ samples, i.e.
2,000 observations, and consider 20 subsamples from a longer simulation run in order to
perform a small Monte Carlo experiment.HThe whole data series of 40,000 entries is shown in
Fig. 2, it is the same series that was used in the above attempt at estimating the correlation

7 Of course, both the size of this experiment as well as the number of testing procedures applied to the data are
restricted by computation time.
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dimension.
Fig. 2 and Table 2 go about here

The idea of the BDS test is to look for significant deviations of the behavior of the
correlation integral (6) from that expected under 11Dness of the data. In particular, if the data

under consideration are identically and independently distributed, then it can be shown that
limCem = (limC, ;)™ almost surely for all € > 0 and m = 2,3,... The pertinent test statistics is

n - oo

(Brock et al., 1996):

(7) Ve,m = \/ﬁ(cs,m - Cinl )/Ue,m !

which has a limiting standard Normal distribution under the null hypothesis of 1ID. With
the estimate of the standard deviation oz, given in Brock et al. application of the above is
straightforward.

The outcomes of a sequence of BDS tests applied to twenty data windows are given in
Table 2 and are visualized in Fig. 2. In constructing the m-tuples, we tried embedding
dimensions ranging from 2 to 5 and, since linear dependence had been removed by ARMA
fiItering,El we set the lag length 1 equal to 1. We classify the results as ‘acceptance’
(‘rejection’) of 1IDness, if none (all) of the test statistics over m = 2 to 5 are significant at the
95 percent level. Mixed results are classified as ‘ambiguous’.

Kaplan’s test (Kaplan, 1994) is a test based upon continuity in phase space of deterministic
dynamics. Continuity implies that nearby points on a trajectory from a deterministic process
should also be nearby in phase space, while, with data from a purely stochastic dynamics,
nearby points (in time) may be further apart in phase space. More formally, this amounts to
testing whether for pairs of data points which are within some small distance
d; =|y, = y;| <r. the average of the differences of their iterations &; = |y,,, = ¥;.,| is found

to be smaller than some threshold value. The significance of this test statistics is judged by
comparison with surrogate data. As the computational burden of this test allows only limited
experimentation, we resorted to the conservative choice m = 2 for the length of the vectors y;
and again set t = 1. Furthermore, we performed 20 replications with surrogate data and

8 The optimal ARMA(p,q) model was estimated by the PSC (predictive stochastic complexity) algorithm, cf.
Chen and Tan (1999). The finding of small positive orders of the ARMA parameters is mainly due to a
negative spike at the first lag which appears somewhat too large when compared to empirical numbers. The
reason for this negative short-run autocorrelation is probably a too swiftly change of noise traders from
optimistic to pessimistic mood and vice versa during turbulent episodes. Further attempts at fine-tuning of
parameters may eliminate this feature.
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adopted two variants of this test: in the first, we computed the test statistic K as the average
gjj from the 500 smallest distances djj, while in the second variant, we performed a linear

regression on these smallest pairs (dij,sij) and considered the intercept at dij = 0. In both

cases, the resulting test statistics K is compared to the minimum K from 20 time series of
surrogate data. With the latter greater (smaller) than the actual one, we accept (reject) linearity
of the data and report ‘ambiguous’ results, if both cases have divergent outcomes.

Detailed results are given in an unpublished Appendix which is available upon request. As
can be seen from Table 2, results from both tests are similar within most subperiods, but are in
no way uniform across subsamples. Interestingly, comparing test results with the visual
appearance of the relevant parts of the time series, there seems to be a general tendency
towards rejection in periods with larger fluctuations, while in periods with moderate volatility
both the BDS and Kaplan test do not reject 11D or Iinearity.ElIt is interesting to compare this
behavior of our model with de Lima’s recent findings for U.S. stock market data: Considering
daily S&P 500 data during the eighties, he was unable to reject 1IDness in all subsamples
prior to the crash in 1987. However, once he extended the sample to include this event and
the following episodes, the outcome was overwhelming rejection (de Lima, 1998).
Apparently, the results from our model are quite similar to de Lima’s findings with the BDS
and Kaplan statistics becoming significant in periods of high volatility only.EHowever, note
that, in our model, both the rejection and non-rejection periods are generated from one and the
same simulation run without any change of the underlying mechanism. This serves to question
the suggested interpretation in de Lima’s paper that non-stationarity rather than dependence
may be the source of rejection of 1IDness in the eighties. In fact, here it is shown that one can
conceive processes that look practically random for extended time spans (and, the theoretical
arguments outlined in sec. 2, in fact, suggest, that the dynamics is close to random near the
equilibrium), but encapsulate non-linear forces which only show up in the dynamics and in the
test statistics in certain subperiods. It is worth emphasizing that what the process does is
exactly what the tests indicate: switching between tranquil phases in which the dynamics is
practically indistinguishable from purely random motion and more turbulent phases where

9 The four panels of 10,000 time steps each in Fig. 2 have been scaled according to the maximum fluctuations
occurring within each window. In the second and third panel, no excessively large fluctuations appear.
However, in the first and fourth panel we have some very large fluctuations which may artificially give the
impression of a lower average volatility over the remaining parts of the window. This is, however, an optical
illusion only as the usual bandwidth of fluctuations which are observed over the total of the second and third
panel is dominated here by a few outliers.

10 Performing recursive BDS tests as in de Lima (1999) we often get exactly the same picture with the statistic
‘jumping’ right across the critical values when large fluctuations set in.
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some structural elements can be detected.

GARCH estimation: As it is well known that most of the non-linearity in financial data
seems to be contained in their second moments, we proceed by carrying out a sequence of
tests and parameter estimates on volatility dynamics. Our first step is to test for the presence
of GARCH effects by applying the Ljung-Box and Lagrange multiplier tests to squared entries
of our data. In both cases the number of lags considered is 12. In order to conserve space, we
confine ourselves to a short summary here instead of giving all the details (which are available
upon request): both tests gave uniform results for each of our 20 subsamples with usually
overwhelming rejection of the null hypothesis in the majority (17) of cases. As can be seen in
Table 2, those periods without rejection of independence of squared returns (nos. 5, 15, and
20) are also periods without rejection of 1IDness with any of the variants of the BDS test or
the Kaplan test. On the other hand, with 17 out of 20 rejections at the 95 percent level, the
presence of GARCH effects seems to be more robust than the rejection of I1Dness from the
non-linearity tests.

In the second stage of GARCH modeling we attempted to specify the appropriate model
from the GARCH(p,q) family and estimate its parameters. This amounts to the following
specification of the returns generating process:

p q
@ r,=u+ h'? &, ht:ao"'Zaith—i'l'ZIBiht—i'

with & IID normal innovations and the restrictions ag > 0, aj, &j =0 and Zai + ZBi <1.

For the selection of the optimal number of lags in the variance equation we adopted the BIC
criterion. Overall results as shown in Table 3 point to the parsimonious GARCH (1,1)
specification as the optimal model for 16 out of the 17 time series under consideration, while
for the remaining sample GARCH (1,2) has been chosen. Table 3 gives the detailed parameter
estimates which are relatively uniform across samples: browsing through the rows we find for
all (1, 1) specifications a small influence of the most recent innovation (a; < 0.1 throughout)
coming along with strong persistence of the variance coefficient (3, > 0.9). A glance at the
relevant literature shows that such parameter estimates are rather common when considering
returns from share markets of foreign exchange rates at daily frequencies (cf. de Vries, 1994;
Pagan, 1996). It is also interesting to observe that the sum of the coefficients a; + 1 (+ B2) is
close to one in all cases, i.e. the process is close to an Integrated GARCH process. Again, the

11 As noted in the introduction, the tails of the distribution of returns drop off with a power-law index around 3.
This assures existence of second moments which can also be confirmed by the convergence of recursive
variances. The process should, thus, be covariance stationary, so that the variation in the results of the BDS and
Kaplan tests should not be due to moment condition failures.
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whole chain of results found for the GARCH framework is astonishingly similar to what one
usually extracts from real-life data.

Table 3 goes about here

4. Conclusions

The aim of this paper was to investigate the time series behavior of simulated data from a
simple model of a financial market with interacting agents. Extending earlier work on the
unconditional distributional properties and scaling laws of our model, we were interested in
the dependence structure in our data and the outcome of various tests for non-linearity. We
found mixed results with the omnibus tests by Brock et al. and Kaplan. Hence, without
knowledge of the generating mechanism a researcher would probably not find it easy to
classify our data and would perhaps even find it doubtful that all the samples have been
generated from one and the same underlying mechanism. One of the contributions of this
paper is to point exactly to this possibility of obtaining seemingly divergent results from an
extended simulation of our artificial market. This behavior may account for the appearance of
non-stationarity of stock market indices during the eighties (cf. de Lima, 1998). More
generally, such mechanisms may provide a possible explanation for the lack of robustness of
the results of non-linearity tests both over time periods and between tests (cf. Barnett et al.,
1996). On the other hand, the last part of our experiments showed that the finding of GARCH
effects appears to be much more robust and, in most subsamples, yields realistic parameter
estimates. Even the numerical estimates fall into a very narrow and realistic range for those 16
samples where GARCH (1,1) appears appropriate.

It is worth emphasizing that, in our model, all these interesting qualitative features arise
endogenously from the trading process and the interactions of our agents. With the assumption
of 1ID Normal innovations of the fundamental value, none of these characteristics can be
attributed to exogenous influences. Taking together our earlier results on the unconditional
distributions (Lux and Marchesi, 1999, 2000) and the present findings, it seems that a large
part of the stylized facts of financial data can be explained by relatively simple models of
interacting agents.
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Table 1: Estimates of Correlation Dimension

embedding raw data shuffled data surrogate data

dimension min max min max
3 2.21 2.20 2.28 2.65 2.71
6 451 4.40 4.55 5.26 5.42
9 6.54 6.66 6.89 7.86 8.15
12 8.81 8.84 9.19 9.69 11.28
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Table 2: Overall results of Nonlinearity Tests

subsample ARMA BDS Kaplan GARCH
1 0,0 reject reject 1,1
2 1, 0) accept ambiguous 1,1)
3 0, 0) accept ambiguous 1,1)
4 1, 0) accept ambiguous 1,1)
5 1,0 accept accept no GARCH
6 (1,0 accept accept 1,1
7 (1,0 accept accept 1,1
8 (1,0 accept accept 1,1
9 (2, 2) ambiguous | ambiguous 1,1
10 1,0 accept accept 1,1
11 0, 2) ambiguous | ambiguous 1,1
12 0, 0) reject ambiguous 1,1
13 0, 2) ambiguous | ambiguous 1,1
14 (1,0 reject reject 1,2
15 1,0 accept accept no GARCH
16 0, 2) ambiguous | ambiguous 1,1
17 (2,1) reject reject 1,1
18 ©, 2) accept ambiguous 1,1)
19 (2, 2) ambiguous | ambiguous 1,1
20 1,0 accept accept no GARCH




18

Table 3: Details of GARCH Estimation Results

subsample i o a1 B1 B2

1 3.82*10° 9.77*107 0.07466 0.91276 -
(0.241) (3.476) (8.522) (93.067)

2 -2.43*10™ 4.78*10” 0.02932 0.95979 -
(-1.734) (1.741) (3.740) (79.004)

3 -7.30%10° 7.35%107 0.03332 0.94903 -
(-0.530) (2.277) (4.367) (70.968)

4 2.12*10™ 1.02*10°® 0.03124 0.94429 -
(1.498) (2.536) (4.591) (65.950)

no evidence of GARCH

1.27*10™ 1.30*10°® 0.02185 0.94130 -
(0.961) (1.410) (2.231) (28.590)

7 -6.74*10° 6.67*107 0.02316 0.95898 -
(-0.508) (1.814) (3.359) (62.986)

8 -1.02*10™ 4.84*107 0.02691 0.96051 -
(-0.765) (1.721) (4.034) (79.321)

9 1.01*10™ 6.65*107 0.04534 0.94431 -
(0.616) (2.384) (5.234) (87.341)

10 -1.63*10° 3.48*10” 0.01563 0.97553 -
(-0.119) (1.302) (2.551) (84.008)
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-1.36%107 1.11*%10° 0.04598 0.93318 -

11 (-0.089) (2.898) (6.718) (76.466)

12 -8.94*10° 4.72%107 0.04255 0.95004 -
(-0.583) (2.726) (7.429) (139.042)

13 4.00%10° 3.13*10” 0.02975 0.96464 -
(0.262) (2.020) (4.860) (129.026)

14 2.40%10™ 4.83*10” 0.11720 -0.08093 0.95432
(1.627) (2.438) (4.519) (-2.890) (101.419)

15 no evidence of GARCH

16 3.54*10™ 5.48*107 0.03987 0.95111 -
(2.224) (2.374) (5.308) (99.659)

17 -1.45%10™ 4.59%10” 0.076136 0.92184 -
(-0.848) (3.084) (10.356) (159.800)

18 3.90*10° 4.63*10” 0.03296 0.95634 -
(0.284) (2.466) (4.892) (103.815)

19 -1.05*10™ 4.01*10” 0.03428 0.95814 -
(-0.701) (2.313) (4.695) (108.365)

20 no evidence of GARCH
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Fig. 1: Estimation of the correlation dimension D for a sample of 40,000 observations. Top:

loglog plot of the scaling of the correlation integral with embedding dimension ranging
from m =2 to m = 12. The eleven curves proceed counter-clockwise from lower to higher
numbers of m, the broken vertical lines demarcating the scaling region. As can be seen, the
slope keeps increasing, so there is no saturation of the correlation dimension as can also be
inferred from the bottom plot of D, versus m. The bottom plot also shows that the
randomly generated changes of the fundamental value are characterized by higher estimates
of D, at all embedding dimensions.
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Fig. 2: Simulation run over 40,000 time steps. The parameter values underlying this
simulation are: N = 500, v, =2, v, = 0.6, R = 4, t, =0.001, y=0.01, a, = 0.6, a, = 1.5,
o; =1, R=0.0004 (r =R pg), s =0.75, and o, = 0.005. The broken and dotted lines
indicate those subperiods with clear rejection from the BDS test (----) and ambiguous
results (......), respectively, cf. Table 1.
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