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8 Abstract

9 A Cournot duopoly game is proposed where the interdependence between the quantity-setting ®rms is not only related to the selling

10 price, determined by the total production through a given demand function, but also on cost-reduction e�ects related to the presence of

11 the competitor. Such cost reductions are introduced to model the e�ects of know-how spillovers, caused by the ability of a ®rm to take

12 advantage, for free, of the results of competitors' Research and Development (R&D) results, due to the di�culties to protect intel-

13 lectual properties or to avoid the movements of skilled workers among competing ®rms. These e�ects may be particularly important in

14 the modeling of high-tech markets, where costs are mainly related to R&D and workers' training. The results of this paper concern the

15 existence and uniqueness of the Cournot±Nash equilibrium, located at the intersection of non-monotonic reaction curves, and its

16 stability under two di�erent kinds of bounded rationality adjustment mechanisms. The e�ects of spillovers on the existence of the Nash

17 equilibrium are discussed, as well as their in¯uence on the kind of attractors arising when the Nash equilibrium is unstable. Methods

18 for the global analysis of two-dimensional discrete dynamical systems are used to study the structure of the basins of attrac-

19 tion. Ó 2001 Elsevier Science Ltd. All rights reserved.

20

21 1. Introduction

22 An oligopoly is a market structure where a few producers, each of appreciable size, manufacture the same
23 commodity, or homogeneous commodities (i.e. perfect substitutable goods). The fewness of ®rms gives rise
24 to interdependencies, that is, each producer must take into account the actions of the competitors in
25 choosing its own action.
26 In the industrial organization literature, one of the most widely used mathematical representations of
27 oligopoly competition is the Cournot model, ®rst introduced by the French Mathematician Cournot about
28 160 years ago, which describes a market where N quantity-setting ®rms, producing homogeneous goods,
29 update their production strategies in order to maximize their pro®ts. In the original work of Cournot, as
30 well as in many of the subsequent papers, the above-mentioned interdependence only depends on the fact
31 that the retail price p is determined by the total supply on the market, Q � q1 � q2 � � � � � qN , according to
32 a given inverse demand function, p � f �Q�. But also other sources of interdependencies can be considered,
33 for example originated by positive cost externalities, i.e. a reduction of production cost due to the presence
34 of competitors. This may appear rather paradoxical, but several reasons can be given to support such a
35 cost-reduction e�ect, due to technological and intellectual spillovers between companies, related to ex-
36 changes of information on technological innovations, skilled labor, results of Research and Development
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37 (R&D) investments. Indeed, as stressed by many authors, see e.g. [4,5,36,19], information may spill from
38 one ®rm to another, due to the di�culties of protecting intellectual properties. Moreover, when a ®rm
39 operates in a district where other ®rms producing the same goods already exist, it is more easy to ®nd skilled
40 workers (thus giving a reduction of costs for workers training) and the presence of suitable structures for
41 transportation and other services may contribute to lower the costs for goods delivery. In particular, we
42 consider the fact that a ®rm producing goods for high-tech markets must invest a lot in R&D issues, and
43 when it increases its production it often dedicates more resources to R&D. But information may spill from
44 one ®rm to another, due to the di�culties of protecting intellectual properties, so it often happens that such
45 results on technological innovations become common industrial knowledge. This fact can be seen as a
46 positive cost externality, which can be used to model the trivial statement that successful inventions of rivals
47 can be imitated by a ®rm at lesser cost than if they are reinvented by itself (see e.g. [19]).
48 All these facts introduce cost externalities which change the standard way of modeling Cournot oligopoly
49 competition. In this paper we consider the simplest oligopoly market, where just two producers are present,
50 called duopoly, and in order to model the presence of spillover e�ects we assume that the cost function of
51 ®rm i has the form:

ci�q1; q2� � kiqi � si�qi�
1� cijqj

; i; j � 1; 2; j 6� i; �1�

53 where the parameter cij P 0 characterizes the positive cost externality in the cost of producer i related to the
54 presence of producer j, ki P 0 represent the unitary cost of ®rm i without taking into account the presence of
55 the spillovers and the function si�qi� incorporates the extra costs (if any) which ®rm i pay to avoid spill-
56 overs. In fact, as stressed by some authors (see e.g. [3,34]) a ®rm may adopt some actions to avoid that its
57 R&D results, as well as its skilled workers, can spill over the competitors, and we assume that these costs
58 can be represented as an additive cost proportional to its own ®rm's production. Indeed, if R&D e�orts of a
59 ®rm are proportional to its own production also the costs to protect them will be proportional to the
60 production, and the same can be said for the salary increases necessary to avoid the movement of skilled
61 workers towards competing ®rms. For sake of simplicity we assume a linear function si�qi�, so that these
62 costs can be included in a unique linear function at the numerator. Moreover, in order to focus our at-
63 tention to the role of positive externalities due to spillover e�ects, we shall assume a linear demand function,
64 expressed by p � aÿ b�q1 � q2�, where a and b are positive parameters. So, the pro®t of ®rm i becomes

pi�q1; q2� � qi a� ÿ b q1� � q2�� ÿ ciqi

1� cijqj
; i; j � 1; 2; i 6� j: �2�

66 Our goal is to investigate the e�ect of increasing values of the spillover parameters cij on the existence and
67 stability of the Nash equilibria 1 of the duopoly game. The assumption of a linear demand function, to-
68 gether with the fact that also the cost functions become linear if spillover e�ects are neglected, i.e.
69 c12 � c21 � 0, allow us to obtain linear reaction functions, 2 which is the simplest case proposed by all the
70 standard textbooks. In other words, the only cause for the non-linearity and (as we shall see in Section 2) of
71 non-monotonicity of the reaction curves is due to the presence of cost externalities due to spillover e�ects.
72 Other papers where cost externalities are considered in duopoly games are [28,36]. In both cases mul-
73 tiplicity of Nash equilibria is obtained (see also [13]). Indeed, in our simple Cournot duopoly game, even if
74 the introduction of spillover e�ects, in the form of cost externalities, has the e�ect of changing the reaction
75 curves from lines to strictly concave curves, which are unimodal for su�ciently high values of spillover
76 parameters, it is easy to see that at most one Nash equilibrium exists. This is proved in Section 2, where we
77 also show that the conditions to ensure the existence of a Nash equilibrium are weaker than in the linear
78 case.

1 A Nash equilibrium is a pro®le of strategies such that each ®rm's strategy is an optimal response to the other ®rms' strategies. In the

Nash equilibrium none of the ®rms has an incentive to deviate, since each ®rm's strategy is that ®rm's best response to the other ®rms'

predicted strategies.
2 A reaction function describes the pro®t-maximizing production of a ®rm given the production decision of the other ®rms. A Nash

equilibrium can be de®ned as an intersection point of the reaction functions of the oligopolists.
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79 In Sections 3 and 4, in order to investigate the e�ects of the spillovers on the stability of the Nash
80 equilibrium, we analyze the Nash Equilibrium from an evolutionary point of view, i.e. we consider how the
81 equilibrium arises as the outcome of a dynamic adjustment process occurring when less that fully rational
82 players play the game repeatedly (see e.g. [22], or [7, Chapter 9).
83 Several kinds of boundedly rational adjustment processes may be considered, all sharing the same Nash
84 equilibrium but with di�erent methods to update productions when the system is out of it. Of course, these
85 boundedly rational games are based on some kinds of pro®t increasing mechanism adopted by the ®rms,
86 but no fully rational optimization solutions are obtained. This means that the players generally do not
87 reach a Nash equilibrium immediately, but play the game repeatedly in order to approach it. In Section 3 a
88 kind of boundedly rational adjustment mechanism is proposed, known in the literature as gradient dy-
89 namics (or myopic adjustment, see [9,21,40,41]). In this section we give results on the stability of the Nash
90 equilibrium and the local bifurcations through which it becomes unstable, and we also investigate on the
91 kind of attractors arising and the structure of their basins of attraction. In Section 4 we propose another
92 classical dynamic adjustment, which was originally proposed by Cournot himself, known as best reply with
93 naive expectations, and we show that in this case the Nash equilibrium is always stable. We end the paper
94 with a discussion in Section 5.

95 2. The reaction curves and the Nash equilibrium

96 As explained in Section 1, a Cournot duopoly game is based on the assumption that each player decides,
97 given the competitor's action, its own production in order to maximize the expected pro®t

max
qi

pi�q1; q2�; i � 1; 2; �3�

99 where pi is the pro®t that ®rm i expects by selling a production of qi units of good and assuming that the
100 competitor decides to produce a quantity qj.
101 From the ®rst-order conditions opi=oqi � 0, we can easily get the solution of (3) with pro®t functions
102 given by (2), expressed by the reaction functions

qi � ri�qj� � 1

2b
a

 
ÿ bqj ÿ ci

1� cijqj

!
: �4�

104 A simple check of the second derivatives testi®es that these solutions indeed represent local pro®t maxima,
105 provided that the quantities are non-negative. Accordingly, in the following we shall call reaction curves R1

106 and R2 the portions, inside the positive orthant, of the functions q1 � r1�q2� and q2 � r2�q1�, respectively.
107 Hence, for a given expected production of the competitor, Ri represents the ``Best Reply'' of the quantity-
108 setting ®rm i according to the optimization problem (3).
109 Every intersection between the two reaction curves, being an optimal choice for both ®rms, is charac-
110 terized by the fact that no ®rm has an incentive to unilaterally deviate from its chosen strategy given the
111 choice of its rival. As mentioned above, such a point is called a Cournot±Nash equilibrium in the economics
112 literature. A Nash equilibrium might then serve as a prediction of what outcome will be observed in an
113 oligopoly market with fully rational players.
114 For c12 � c21 � 0 the reaction functions become linear, so the well-known case of linear reaction curves is
115 obtained, for which the unique Nash equilibrium

E� � a� c2 ÿ 2c1

3b
;
a� c1 ÿ 2c2

3b

� �
�5�

117 exists, provided that the constant unitary costs are not too high, namely

2c1 ÿ c2 < a and 2c2 ÿ c1 < a: �6�
119 A necessary condition for (6) to be satis®ed is that ci < a, i � 1; 2, which, in the case of a linear cost
120 function, corresponds to the trivial statement that each unitary production cost must be less than the
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121 maximum selling price. In the following we shall assume that this condition is always satis®ed in order to
122 rule out uninteresting situations.
123 In the presence of spillovers, i.e. with cij > 0, the reaction curves are concave branches of hyperbolae. Let
124 us consider, for example, R2. It is strictly concave, intersects the q2 axis in r2�0� � �aÿ c2�=2b (as in the
125 linear case), the q1 axis in q1 � q0

1, with

q0
1 �

ac21 ÿ b�
������������������������������������������������������
ac21 ÿ b� �2 � 4bc21 aÿ c2� �

q
2bc21

�7�

127 and has a maximum for q1 � bq1 � �
���������������
c21c2=b

p ÿ 1�=c21 provided that c21 > b=c2. Of course, the same de-
128 scription also holds for the reaction curve R1 just swapping the indexes 1 and 2 (see Fig. 1).
129 So, in this simple Cournot game, the introduction of spillover e�ects in the form of cost externalities has
130 the e�ect of changing the reaction curves Ri, i � 1; 2, from straight lines to strictly concave curves, which are
131 unimodal for su�ciently high values of spillover parameters cij. We now show that in the presence of
132 spillovers the conditions on the parameters ci (now representing the maximum unitary costs) in order to
133 ensure the existence of a Nash equilibrium E� are weaker than in the linear case and, like in the linear case,
134 when E� exists it is unique. This result is not obvious at a ®rst sight, because in the presence of non-
135 monotonic reaction curves multiple Nash equilibria may exist, see e.g. [13,28,39]. In [36] the fact that cost
136 externalities may give multiplicity of Nash equilibria is extensively discussed. However, in our case, even if
137 an analytical computation of the positive solutions of the equations q1 � r1�q2� and q2 � r2�q1� is not easy,
138 the following proposition can be proved.

139 Proposition 1. Let ci < a, i � 1; 2. A unique Nash equilibrium E� � �q�1; q�2� exists with 0 < q�1 < q0
1 and

140 q�2 � r1�q�1�, where q0
1 is given in (7) if and only if

c21 >
2b 2c2 ÿ c1 ÿ a� �

a2 ÿ c2
1

; c12 >
2b 2c1 ÿ c2 ÿ a� �

a2 ÿ c2
2

: �8�

142 The proof is in Appendix A.
143 Notice that if

c21 >
2b�2c2 ÿ c1 ÿ a�

a2 ÿ c2
1

and c12 �
2b�2c1 ÿ c2 ÿ a�

a2 ÿ c2
2

Fig. 1. Graph of the reaction curves R1 and R2 of equation q1 � r1�q2� and q2 � r2�q1�, respectively.
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145 then the Nash equilibrium collapses to a monopoly situation given by E� � �0; �aÿ c2�=2b�, where only
146 ®rm 2 produces, whereas if

c21 �
2b�2c2 ÿ c1 ÿ a�

a2 ÿ c2
1

and c12 >
2b�2c1 ÿ c2 ÿ a�

a2 ÿ c2
2

148 then the Nash equilibrium collapses into a monopoly situation given by E� � ��aÿ c1�=2b; 0�, where only
149 ®rm 1 produces.
150 The presence of spillover e�ects enlarges, in the space of parameters, the region of existence of the Nash
151 equilibrium. In fact, positive parameters cij ensure the positivity of E� even when conditions (6) are not
152 satis®ed. Moreover, a simple analysis of the reaction curves reveals that if cij is increased then (ceteris
153 paribus) q�i also increases, that is, as expected, a greater ability to take advantage of competitor's results
154 allows one to improve production (and pro®ts).
155 The arguments given above only concern the existence of the Nash equilibrium, but nothing is said about
156 its stability. In order to investigate the e�ects of the spillovers on the stability of the Nash equilibrium we
157 must consider how the equilibrium arises as the outcome of a dynamic adjustment process occurring when
158 less than fully rational players play the game repeatedly (see e.g. [22], or [7], Chapter 9). This ``evolu-
159 tionary'' concept of the stability of a Nash equilibrium was already stated by Nash himself: we can attain
160 such a optimal equilibrium solution not as a result of a fully rational choice (i.e. with the help of Adam
161 Smith ``invisible hand'') but as the asymptotic (i.e. long-run) outcome of a repeated game played by
162 boundedly rational players (see e.g. [31]).
163 Indeed, a fully rational game is based on the following assumptions:
164 (i) each ®rm, in taking its optimal production decision, knows beforehand its rival's production decision;
165 (ii) each ®rm has a complete knowledge of the pro®t function.
166 Under these conditions of full information, the system moves straight (in one shot) to a Nash equilibrium, if
167 it exists, independently of the initial status of the market, so that no dynamic adjustment process is needed.
168 However, it seems unlikely that ®rms would immediately coordinate on such an equilibrium. Indeed, as
169 stressed by many authors, ®rms are not so rational and often use simpler (and less expensive) ``rules of
170 thumb'' in their decision-making processes (see e.g. [6]). Nevertheless, even a not fully rational game may
171 gradually move to a Nash equilibrium if it is played many and many times, so that the long-run outcome is
172 the same as if the player were fully rational. This idea has been largely con®rmed after the advent of ex-
173 perimental economics, where human agents typically ®nd their way to a Nash equilibrium by using trial and
174 error methods. So, it is interesting to ask if, even relaxing assumptions (i) and/or (ii) competitors would
175 learn to play according to a Nash equilibrium pro®le over time. This naturally leads to an analysis of the
176 stability properties of the Nash equilibria and to the consideration of various dynamic adjustment pro-
177 cesses.
178 Of course, several kinds of boundedly rational adjustment processes may be considered, by weakening
179 assumptions (i) and (ii).

180 3. Bounded rationality adjustment based on marginal pro®ts

181 In this section we propose a repeated Cournot duopoly game where two boundedly rational players
182 update their production strategies at discrete time periods by an adjustment mechanism based on a local
183 estimate of the marginal pro®t opi=oqi: At each time period t a ®rm decides to increase (decrease) its
184 production for period t � 1 if it perceives positive (negative) marginal pro®t on the basis of information
185 held at time t, according to the following dynamic adjustment mechanism (see e.g. [9]):

qi�t � 1� � qi�t� � ai�qi�t�� opi

oqi
q1�t�; q2�t�� �; i � 1; 2; �9�

187 where ai�qi� is a positive function which gives the extent of production variation of ith ®rm following a
188 given pro®t signal. With this kind of adjustment dynamics both the assumptions (i) and (ii) are relaxed: in
189 fact, in order to follow this local adjustment mechanism the two producers are not requested to have a
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190 complete knowledge of the demand and cost functions, since they only need to infer how the market will
191 respond to small production changes by an estimate of the marginal pro®t, which may be obtained by brief
192 experiments of small (or local) production variations performed at the beginning of period t (see e.g. [41]).
193 Of course, this local estimate of expected marginal pro®ts is much easier to obtain than a global knowledge
194 of the demand function (involving values of qi that may be very di�erent from the current ones).
195 We also notice that a Nash equilibrium, de®ned by the ®rst order conditions opi=oqi � 0 is a stationary
196 point of the dynamical system de®ned by (9), but the converse is not necessarily true, as we shall see below.
197 This adjustment mechanism, which is sometimes called myopic (see [20,21]) has been recently proposed
198 by many authors, see e.g. [6,14,15,23,40,41], mainly with continuous time and constant ai. However, fol-
199 lowing [9,12], we believe that a discrete time decision process is more realistic since in real economic systems
200 production decisions cannot be revised at every time instant. Moreover, we assume linear functions
201 ai�qi� � viqi, i � 1; 2, since this assumption captures the fact that relative production variations are pro-
202 portional to marginal pro®ts, i.e.

qi�t � 1� ÿ qi�t�
qi�t� � vi

opi

oqi

� �
;

204 where vi is a positive speed of adjustment, which represents ®rm's i speed of reaction to pro®t signals per
205 unitary production. With these assumptions, together with the pro®t functions given in (2), we obtain a
206 discrete dynamical system of the form �q1�t � 1�; q2�t � 1�� � T �q1�t�; q2�t��, with the map T : R2 ! R2

207 given by

q01 � q1 � v1q1 a
�
ÿ 2bq1 ÿ bq2 ÿ c1

1� c12q2

�
q02 � q2 � v2q2 a

�
ÿ 2bq2 ÿ bq1 ÿ c2

1� c21q1

�
; �10�

209 where 0 denotes the unit-time advancement operator, that is, if the right-hand side variables represent the
210 productions at time period t then the left-hand side represents the productions at time �t � 1�. Of course,
211 only non-negative trajectories obtained by the iteration of (10) are interesting from the point of view of
212 economic applications.
213 Besides the Equilibrium point E�, located at the intersections of the reaction curves (4), the map (10) has
214 three boundary equilibria located along the coordinate axes

E0 � �0; 0�; E1 � aÿ c1

2b
; 0

� �
; E2 � 0;

aÿ c2

2b

� �
: �11�

216 The ®xed points E1 and E2 can be denoted as monopoly equilibria provided that ci < a, i � 1; 2.
217 It is worth to note that the coordinate axes qi � 0, i � 1; 2, are invariant submanifold, i.e. if qi � 0 then
218 q0i � 0. This means that starting from an initial condition on a coordinate axis (monopoly case) the dynamics
219 are trapped into the same axis for each t, thus giving monopoly dynamics, governed by the restriction of the
220 map T to that axis. Such a restriction is given by the following one-dimensional map, obtained from (10)
221 with qi � 0

qj � �1� vj�aÿ cj��qj ÿ 2bvjq2
j j 6� i: �12�

223 This map is conjugate to the standard logistic map x0 � lx�1ÿ x� through the linear transformation

qj � 1� vj�aÿ cj�
2bvj

x �13�

225 from which we obtain the relation l � 1� vj�aÿ cj�.
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226 If c12 � c21 � 0 the dynamic game (10) reduces to the one studied in [9], which may be considered as a
227 benchmark case in this context. As shown in [9], unbounded trajectories are obtained if the initial condition
228 is taken su�ciently far from the Nash equilibrium, 3 hence E� cannot be globally stable. Moreover, even if
229 bounded trajectories are obtained, they may fail to converge to the Nash equilibrium since they may
230 continue to move around it, on some more complex (periodic or chaotic) attractor or converge to the
231 boundary equilibria.

232 3.1. Local stability analysis for boundary (monopoly) equilibria and the Nash equilibrium

233 In this section we perform the standard study of the local stability of the ®xed points of the map (10),
234 based on the localization, on the complex plane, of the eigenvalues of the Jacobian matrix

DT q1; q2� � �
1� av1 ÿ 4v1bq1 ÿ v1bq2 ÿ v1c1

1�c12q2
v1q1

c1c12

1�c12q2� �2 ÿ b
� �

v2q2
c2c21

1�c21q1� �2 ÿ b
� �

1� av2 ÿ 4v2bq2 ÿ v2bq1 ÿ v2c2

1�c21q1

24 35: �14�

236 The main results are summarized in the following proposition:

237 Proposition 2. Let ci < a; i � 1; 2. Then
238 (i) the fixed point E0 � �0; 0� is a repelling node;
239 (ii) the monopoly equilibrium E1 is stable if

v1 a� ÿ c1� < 2 and c21 <
2b 2c2 ÿ c1 ÿ a� �

a2 ÿ c2
1

; �15�

241 where the first inequality corresponds to the condition for attractivity along the invariant axis q2 � 0 and the
242 second inequality is the condition for attractivity along a direction transverse to the invariant axis. At
243 v1�aÿ c1� � 2 a flip bifurcation occurs which creates a cycle along the q1 axis, at

c21 �
2b�2c2 ÿ c1 ÿ a�

a2 ÿ c2
1

245 a transcritical bifurcation occurs at which E1 and E� merge and exchange the stability along the transverse
246 direction.
247 (iii) the monopoly equilibrium E2 is stable if

v2 a� ÿ c2� < 2 and c12 <
2b 2c1 ÿ c2 ÿ a� �

a2 ÿ c2
2

; �16�

249 where the first inequality corresponds to the condition for attractivity along the invariant axis q1 � 0 and the
250 second inequality is the condition for attractivity along a direction transverse to the invariant axis. At
251 v2�aÿ c2� � 2 a flip bifurcation occurs which creates a cycle along the q2 axis, at

c12 �
2b�2c1 ÿ c2 ÿ a�

a2 ÿ c2
2

253 a transcritical bifurcation occurs at which E2 and E� merge and exchange the stability along the transverse
254 direction.
255 (iv) the fixed point E� is a stable node if conditions (8) are satisfied and v1, v2 are sufficiently small; it
256 becomes a saddle point, through a supercritical flip bifurcation, as v1 or v2 are increased, or for increasing
257 values of c12 or c21 provided that v1 and v2 are not too small. For

3 From an economic point of view, diverging trajectories do not represent interesting evolutions, as they can be interpreted as an

irreversible departure from optimality.
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c12 �
2b�2c1 ÿ c2 ÿ a�

a2 ÿ c2
2

; c21

�
� 2b�2c2 ÿ c1 ÿ a�

a2 ÿ c2
1

�
259 a transcritical bifurcation occurs at which E� � E2 (E� � E1).

260 The proof, based on the standard analysis of the eigenvalues, is given in Appendix A.
261 From the Proposition 2 we can deduce that whenever the Nash equilibrium exists, i.e. E� is inside the
262 positive orthant, the monopoly equilibria are transversely unstable (saddle points or repelling nodes ac-
263 cording to the ®rst inequalities in (15) and (16) are satis®ed or not). This implies that when the Nash
264 equilibrium exists then the duopoly does not collapse into a monopoly, i.e. coexistence of ®rms is preserved.
265 Of course, coexistence in the long run does not necessarily mean that the game will converge to E�, since E�
266 may be a saddle point and some non-stationary dynamics of the game may be observed around it.
267 This proposition also con®rms the role of spillovers to help the coexistence in the market of the two ®rms
268 involved in the duopoly competition, in the sense that greater spillover e�ects not only contribute to ensure
269 the existence of the positive Nash equilibrium, where both the ®rms produce and share the market, but also
270 contribute to make the monopoly equilibria more repelling in the direction transverse to the coordinate
271 axes. This means that if, at a certain time period, the production of a ®rm is close to zero, say qi ' 0, then a
272 su�ciently high cij helps this ®rm to increase its production for the next period. By using a term from
273 ecology, we may say that spillovers help the persistence of producers in the market.

274 3.2. E�ects of the spillovers on global dynamics

275 Up to now, we only considered questions related to the existence and local stability of the equilibria.
276 However, other issues are important in the study of long-run dynamic behavior of the duopoly game
277 considered. Firstly, the question of what happens when the positive equilibrium exists, but it is not stable.
278 Do the trajectories starting near the unstable Nash equilibrium remain close to it, thus giving some kind of
279 bounded and positive dynamics (characterized, for example, by periodic or chaotic oscillations) or do they
280 irreversibly depart from optimality?
281 Secondly, the question of the extension, in the strategy space R2

�, of the set of initial conditions which
282 generate economically feasible trajectories (i.e. bounded and positive trajectories, which may or not con-
283 verge to the Nash equilibrium). Does every initial condition generate an economically feasible time evo-
284 lution of the game (10) or only a subset of points located around the Nash equilibrium?
285 Both these questions require a global analysis of the dynamical system represented by the iteration of the
286 map (10). As we shall see, this study can be performed through a continuous dialogue between analytic,
287 geometric and numerical methods. This is typical of the study of the global properties of non-linear dy-
288 namical systems of dimension greater than one, as clearly emphasized, among others, in [16,32,38].
289 If c12 � c21 � 0 the dynamic game (10) reduces to the one studied in [9], which will constitute our
290 benchmark (no-spillovers) case in this section. So, for both the questions outlined above, the e�ect of the
291 spillovers will be evaluated in comparison with the results given in [9], where it is shown that when the Nash
292 equilibrium is unstable, feasible attractors may still exist around it, on which the productions of the two
293 ®rms exhibit periodic or chaotic time paths. In the following we shall see that similar dynamic situations are
294 still present with spillover e�ects, but changes in the spillover parameters may have remarkable e�ects on
295 the creation and the structure of the complex attractors, and consequently on the qualitative properties of
296 the time evolutions of the duopoly game. Concerning the second question, in [9] it is proved that diverging
297 and negative trajectories (hence economically unfeasible) are obtained if the initial condition is taken
298 su�ciently far from the Nash equilibrium. Moreover, the boundary which separates the set of initial
299 strategies giving feasible trajectories from the complementary set is studied, and it is proved that in the
300 simplest case such boundary is a quadrilateral whose sides are given by portions of the invariant coordinate
301 axes and their rank-one preimages. However, global bifurcations are detected which lead to more complex
302 structures of the boundary as the speeds of adjustment vi are varied. As we shall see below, similar results
303 hold with positive spillover parameters, and we shall evaluate the main di�erences caused by the increase of
304 these parameters.
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305 3.2.1. E�ects of spillovers on the properties of complex attractors
306 As stated in Proposition 2, with the dynamic adjustment considered in this section, based on gradient
307 dynamics, the introduction of spillover e�ects has a destabilizing role, in the sense that starting from sit-
308 uations in which the game has a stable Nash equilibrium with c12 � c21 � 0, it may lose stability and be-
309 come a saddle point for increasing values of one (or both) cij, and more complex attractors appear around
310 E�. Moreover, when the duopoly dynamics fail to converge to E�, an increase in the spillover parameters
311 may have some particular e�ects on the kind of oscillatory dynamics of the duopoly game.
312 We now show some of the numerical experiments which support the statements given above. In Fig. 2(a),
313 obtained with parameters a � 10, b � 0:5, v1 � v2 � 0:23, c1 � c2 � 2, we consider the benchmark case of
314 no spillover e�ects, i.e. c12 � c21 � 0. With this set of parameters, the Nash equilibrium

E� � a� c2 ÿ 2c1

3b
;
a� c1 ÿ 2c2

3b

� �
� �5:3; 5:3�

316 is stable, because the stability condition given in [9] for the no-spillovers case, i.e.
317 3b2q�1q�2v1v2 ÿ 4bq�1v1 ÿ 4bq�2v2 � 4 < 0, holds true. Its basin is represented by the white region, whereas the
318 grey region represents the basin of in®nity, i.e. the set of initial conditions which generates unbounded
319 trajectories. As proved in [9], the basin of E� is the interior of the quadrilateral OO�1�ÿ1O�3�ÿ1O�2�ÿ1, where
320 O � �0; 0� and the other three vertexes are its rank-1 preimages, i.e. the points such that T �O�i�ÿ1� � O,
321 i � 1; 2; 3, given by

O�1�ÿ1 �
1� v1�aÿ c1�

2bv1

; 0

� �
; O�2�ÿ1 � 0;

1� v2�aÿ c2�
2bv2

� �
�17�

323 and

O�3�ÿ1 �
v1v2 a� c2 ÿ 2c1� � � 2v2 ÿ v1

3bv1v2

;
v1v2 a� c1 ÿ 2c2� � � 2v1 ÿ v2

3bv1v2

� �
: �18�

325 We now increase c21 with c12 � 0, in order to model an asymmetric situation where only one ®rm (®rm 2 in
326 this case) is able to take advantage from the rival's developments by exploiting its know-how. We obtain
327 that the Nash equilibrium ¯ip bifurcates as c21 is increased, and in the situation shown in Fig. 2(b), obtained
328 with c21 � 1 and all the other parameters with the same values as in Fig. 2(a), the Nash equilibrium
329 E� � �4:25; 7:49� is a saddle point. The generic feasible trajectory is attracted by a stable cycle of period two,

Fig. 2. Numerical representation of the attractors and the basins of attraction for the duopoly game with myopic adjustment. (a) For

the benchmark (no spillover) case with parameters a � 10, b � 0:5, v1 � v2 � 0:23, c1 � c2 � 2, c12 � c21 � 0, the Nash equilibrium E�
is stable (a stable node). (b) With the same parameters a, b, vi, ci as in (a) and asymmetric spillover parameters c12 � 0 and c21 � 1 the

Nash equilibrium is unstable (a saddle point) and the generic trajectory starting from the white region converges to a stable cycle of

period 2. The two ®gures are obtained by taking a grid of initial conditions and generating, for each of them, a numerically computed

trajectory of the duopoly map. If the trajectory is diverging then a grey dot is painted in the point corresponding to the initial con-

dition, otherwise a white dot is painted.
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330 given by C2 � ��3:81; 6:46�; �4:64; 8:27��. It can be noticed that the increase of c21 induces an increase of q�2,
331 as remarked in Section 2, and the same is true ``on the average'' during the long-run periodic motion on the
332 cycle C2. Another e�ect which can be noticed in Fig. 2b concerns a change of the shape of the boundary
333 which separates the basin B of the feasible trajectories from the basin of in®nity, denoted by B�1�. Indeed,
334 B becomes larger in the direction of q2, so that the duopoly system seems to be less vulnerable with respect
335 to perturbations of q2. We shall analyze this question in the next subsection where we shall give the analytic
336 expression of the boundary.
337 Here we are interested in the numerical exploration of the e�ects of the spillover parameters on the
338 qualitative properties of the complex attractors which exist around the unstable Nash equilibrium. In Fig.
339 3a we consider a di�erent set of parameters, with slightly higher values of the speeds of adjustment, given by
340 v1 � v2 � 0:32 and, again, an asymmetric situation for the spillover parameters, given by c12 � 0 and
341 c21 � 0:25. So, the two ®rms only di�er in the asymmetric behavior with respect to spillovers. Due to the
342 higher values of vi, in this case the Nash equilibrium becomes unstable for smaller values of c21 with respect
343 to the case analyzed in Fig. 2. Indeed, in the situation shown in Fig. 3a chaotic dynamics occur, but the
344 shape of the chaotic area implies a certain degree of correlation, in the sense that high (low) productions of
345 ®rm 1 are associated with high (low) productions of ®rm 2 in the same period. An increase in the asym-
346 metric spillover leads to a progressive loss of correlation, as it can be seen in Fig. 3b, obtained with c21 � 1.
347 In fact, in this case the large chaotic area suggests a very low correlation between the two production
348 choices, in the sense that low production of a ®rm may be associated with low or high production of its
349 competitor. So, even if in both the cases shown in Fig. 3 chaotic time series are obtained for the production
350 choices of the two competitors, an higher asymmetry in spillover parameters introduces a loss of pre-
351 dictability because any correlation between the two production strategies is lost.
352 It can also be noticed that in Fig. 3b the boundary of the chaotic area is rather close to the basin
353 boundary. Indeed a further increase of c21 will lead to a contact between the chaotic area and the basin
354 boundary which will cause the disappearance of the chaotic area (see [25,26]) and after the contact the
355 generic trajectory will be divergent. Such a global bifurcation is called ®nal bifurcation in [1,32] or boundary
356 crisis in [24]. This con®rms the destabilizing e�ects of too high spillover parameters.
357 We now consider, again, the set of parameters a, b, vi, and ci as in Fig. 3, and a more symmetric situation
358 with respect to spillover parameters, namely c12 � 0:2 and c21 � 0:25. In this case the chaotic area becomes
359 larger, as shown in Fig. 4a, but the density of the iterated points inside the chaotic area is mainly con-
360 centrated along the diagonal q1 � q2, i.e. a generic trajectory inside the chaotic area visits much more often
361 the region around the diagonal with respect to the portions of the chaotic area which are far from the
362 diagonal. This property reveals the occurrence of so-called on-o� intermittency dynamics (see [35]) which
363 typically arise in symmetric and quasi-symmetric dynamic duopoly games, see [10,12,29]. In order to ex-
364 plain better the kind of dynamics occurring in such a situation we show, in Fig. 4b, the versus time plot of

Fig. 3. (a) For a � 10, b � 0:5, v1 � v2 � 0:32, c1 � c2 � 2, c12 � 0, c21 � 0:25, the Nash equilibrium E� is unstable and an attracting

chaotic area exists around it. (b) With the same parameters a, b, vi, ci as in (a) and c12 � 0, c21 � 1 a larger chaotic area exists around

the unstable Nash equilibrium
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365 the di�erence q1�t� ÿ q2�t� along a typical trajectory inside the chaotic area of Fig. 4a. It can be seen that the
366 two productions are almost synchronized, i.e. q1�t� ' q2�t�, for several time periods, but sudden bursts occur
367 sometimes at which some periods are characterized by very di�erent production choices, which may be
368 called periods of asynchronous production. The time periods at which such asynchronous bursts occur are
369 randomly distributed along the time axis, so it is very di�cult to make forecastings about their occurrence.
370 However, their maximum amplitude can be determined through the study of critical curves of the non-
371 invertible map (10) as described in [11] and [10] (see Appendix B for a de®nition of critical curve). Indeed, as
372 shown in [11], the critical curves can be used to obtain the boundary of the chaotic area, so they de®ne a
373 sort of bounded vessel inside which the asymptotic dynamics are trapped, thus giving an upper bound for
374 the on-o� intermittency phenomena (see also [29]).

375 3.2.2. E�ects of spillovers on the boundary of the set of feasible trajectories
376 In the following we denote by B the set of points which generate feasible trajectories, i.e. trajectories
377 which are constituted by sequences of positive and bounded values of the state variables q1 and q2. A
378 feasible trajectory may converge to the Nash equilibrium E�, to another more complex attractor 4 inside B
379 or to a one-dimensional invariant set embedded inside a coordinate axis. The last occurrence means that
380 one of the two competitors exits the market, i.e. a monopoly situation is reached. However, we already
381 know that when the Nash equilibrium exists, i.e. conditions (8) are satis®ed, the coordinate axes are
382 transversely unstable, so they behave as repelling sets with respect to trajectories approaching them from
383 the interior of the non-negative orthant, and consequently evolutions of the duopoly game toward mo-
384 nopoly situations are excluded. Trajectories starting outside the set B represent exploding (or collapsing)
385 evolutions of the economic system, because trajectories which start out of B always involve negative values
386 and diverge. 5 In other words, the iterated map (10) has an attractor at in®nite distance, and we denote the
387 complementary of the set B as B�1�. This can be interpreted by saying that the adjustment mechanism
388 expressed by the dynamical system (10) is not suitable to model the time evolution of a duopoly system with
389 initial productions outside the set B.
390 An exact determination of the boundary oB which separates B from B�1�, and the study of the
391 qualitative changes of its structure as some parameters are let to vary, are important in the understanding
392 of the dynamic behavior of the duopoly game proposed. This is the main goal of this subsection. The same
393 problem has been studied in [9] in the case c12 � c21 � 0, where it is shown that oB is included in the set
394 formed by the union of the coordinate axes and all their preimages, i.e. the set of all the points which are

4 Several attractors may coexist inside B, each with its own basin of attraction, although this has not been observed in our numerical

explorations.
5 This has been proved in [9] for the benchmark case with no spillovers, but similar arguments also apply to the model with spillovers.

Fig. 4. (a) With the same parameters a, b, vi, ci as in Fig. 3 and c12 � 0:2, c21 � 0:25 the portion of the chaotic area close to the

diagonal is more frequently visited by the iterated point. (b) With the same set of parameters as in (a) the versus time representation of

the di�erence q1�t� ÿ q2�t� is represented along a generic chaotic trajectory.
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395 mapped into the coordinate axes after a ®nite number of iterations of the map T. Indeed, the same result
396 also applies to our case, as we explain below.
397 Let us ®rst consider the dynamics of T restricted to the invariant axis q2 � 0. From the one-dimensional
398 restriction de®ned in (12), we can deduce that bounded trajectories along that invariant axis are obtained
399 for v1�aÿ c1�6 3 (corresponding to l6 4 in (13)), provided that the initial conditions are taken inside the
400 segment x1 � OO�1�ÿ1, where O�1�ÿ1 is the rank-1 preimage of the origin O computed according to the re-
401 striction (12), i.e.

O�1�ÿ1 �
v1�aÿ c1�

2bv1

; 0

� �
�19�

403 and divergent trajectories along the invariant q1 axis are obtained starting from an initial condition out of
404 the segment x1. Analogously, when v2�aÿ c2�6 3, bounded trajectories along the invariant q2 axis are
405 obtained provided that the initial conditions are taken inside the segment x2 � OO�2�ÿ1, where

O�2�ÿ1 � 0;
v2�aÿ c2�

2bv2

� �
�20�

407 and, also in this case, divergent trajectories along the q2 axis are obtained starting from an initial condition
408 out of the segment x2.
409 Consider now the region bounded by the segments x1 and x2 and their rank-1 preimages, say xÿ1

1 and
410 xÿ1

2 , respectively. Such preimages can be analytically computed as follows. Let X � �x; 0� be a point of x1.
411 Its preimages are the real solutions �q1; q2� of the algebraic system obtained from (10) with �q01; q02� � �x; 0�:

q1 1

�
� v1 a

�
ÿ 2bq1 ÿ bq2 ÿ c1

1� c12q2

��
� x;

q2 1

�
� v2 a

�
ÿ 2bq2 ÿ bq1 ÿ c2

1� c21q1

��
� 0: �21�

413 From the second equation it is easy to see that the preimages of the points of x1 are either located on the
414 same invariant axis q2 � 0 or on the curve of equation

q2 � r2�q1� � 1

2bv2

; �22�

Fig. 5. (a) The reaction curves Ri, i � 1; 2, and the lines xÿ1
i , i � 1; 2, of Eqs. (22) and (23), respectively, are represented for the

benchmark (no spillover) case with parameters a � 10, b � 0:5, v1 � v2 � 0:25, c1 � 3, c2 � 4, c12 � c21 � 0. (b) The reaction curves Ri,

i � 1; 2, and the lines xÿ1
i , i � 1; 2, are represented for the same parameters a, b, vi, ci as in (a) and asymmetric spillover parameters

c12 � 0 and c21 � 3.
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416 where r2 is the reaction function de®ned in (4). Analogously, the preimages of a point Y � �0; y� of x2

417 belong to the same invariant axis q1 � 0 or to the curve of equation

q1 � r1�q2� � 1

2bv1

; �23�

419 where r1 is the reaction function de®ned in (4). It is straightforward to see that curve (22) intersects the q2

420 axis in the point O�2�ÿ1 and curve (23) intersects the q1 axis in the point O�1�ÿ1. Moreover, the two curves in-
421 tersect at a point O�3�ÿ1, which is another rank-1 preimage of O � �0; 0�. These four rank-1 preimages of the
422 origin are the vertexes of a ``quadrilateral'' OO�1�ÿ1O�3�ÿ1O�2�ÿ1, whose sides are x1, x2 and their rank-1 preimages
423 located on the curves of Eqs. (22) and (23), respectively, denoted by xÿ1

1 and xÿ1
2 in the Figs. 5 and 6. It is

424 evident that the sides O�2�ÿ1O�3�ÿ1 and O�3�ÿ1O�1�ÿ1, given by xÿ1
1 and xÿ1

2 of Eqs. (22) and (23), respectively, are
425 parallel translations of the reaction curves R2 and R1, shifted of 1=2bvi, i � 2; 1, respectively. All the points
426 outside this quadrilateral cannot generate feasible trajectories. In fact, the points located on the right of xÿ1

2

427 are mapped into points with negative q1 after one iteration, as can be easily deduced from the ®rst com-
428 ponent of (10), and the points located above xÿ1

1 are mapped into points with negative q2 after one iter-
429 ation, as can be deduced from the second component of (10).
430 For c12 � c21 � 0 the curves xÿ1

1 and xÿ1
2 reduce to straight lines, as already proved in [9]. This situation

431 is shown in Fig. 5(a), obtained with v1 � 0:2, v2 � 0:25, c1 � 3, c2 � 4 and c12 � c21 � 0. With this set of
432 parameters the Nash equilibrium E� is stable, and the set B coincides with the basin of E�. As it can be seen
433 in Fig. 5(a), where the numerically computed basin of E� is represented by the white region and the basin of
434 in®nity by the grey one, the boundary oB is formed by x1, x2 and their rank-1 preimages xÿ1

1 and xÿ1
2 of

435 Eqs. (22) and (23), respectively, which are parallel to the reaction curves R2 and R1 (shown in Fig. 5). In Fig.
436 5(b) one of the spillover parameters is positive, namely c21 � 3, and the other parameters are the same as in
437 Fig. 5(a). It can be noticed that in this case the upper boundary, belonging to the curve xÿ1

1 , is concave.
438 As proved in [9], the boundary of oB is given, in general, by the union of all the preimages, of any rank,
439 of the segments x1 and x2

oB�1� �
[1
n�0

Tÿn x1� �
 !

[
[1
n�0

Tÿn x2� �
 !

; �24�

441 where T ÿn�xi� represents the set of all the points which are mapped into a point of xi after n iterations of
442 the map T (T 0�xi� represents xi). However, the simple shape of oB shown in Fig. 5 is due to the fact that
443 only preimages of rank-1 of xi exist. In fact, xÿ1

1 and xÿ1
2 are entirely included inside a region of the plane

444 whose points have no preimages. The situation is di�erent when the values of the parameters are such that
445 some portions of these curves belong to regions whose points have preimages, which constitute preimages

Fig. 6. (a) For a � 10, b � 0:5, v1 � 0:25, v2 � 0:3, c1 � 4, c2 � 3, c12 � 2, c21 � 4 the critical curves LCÿ1 and LC are represented,

together with the boundaries which separate B from B�1�. (b) With the same parameters a, b, vi, ci as in (a) and c12 � 3, c21 � 7 a

portion of B�1� belongs to the region Z2, and consequently ``lakes'' of B�1� are nested inside B.
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446 of rank higher than one of the segments xi. In this case the set B has a more complex topological structure,
447 due to the fact that the map T is non-invertible (see Appendix B). The transitions between qualitatively
448 di�erent structures of the boundary oB, as some parameters are varied, occur through so-called contact
449 bifurcations (see e.g. [32]) which can be described in terms of contacts between oB and arcs of critical curves,
450 as described below.
451 The map T de®ned in (10) is a non-invertible map (see Appendix B for de®nitions). In fact, given a point
452 �q01; q02� 2 R2 its preimages are computed by solving, with respect to q1 and q2, the following sixth degree
453 algebraic system obtained from (10)

q1 1� v1 aÿ 2bq1 ÿ bq2 ÿ c1

1�c12q2

� �h i
� q01;

q2 1� v2 aÿ 2bq2 ÿ bq1 ÿ c2

1�c21q1

� �h i
� q02;

�25�

455 which may have up to six real solutions. For example, as shown above, the origin O � �0; 0� can have four
456 rank-1 preimages, given by O itself and O�i�ÿ1, i � 1; 2; 3.
457 For a given set of parameters, the critical curves of the map (10) can be easily obtained numerically
458 following the procedure outlined in Appendix B. In fact, being the map (10) continuously di�erentiable, the
459 set LCÿ1 can be obtained numerically as the locus of points �q1; q2� for which the Jacobian determinant
460 det DT vanishes, where DT is given in (14). Then the critical curves LC, which separate regions Zk whose
461 points have di�erent numbers of preimages, are obtained by computing the images of the points of LCÿ1,
462 i.e. LC � T �LCÿ1�. For example, for the set of parameters used to obtain Fig. 6(a), i.e. v1 � 0:25, v2 � 0:3,
463 c1 � 4, c2 � 3 and c12 � 2, c21 � 4, the numerically computed set of points at which the Jacobian vanishes is
464 formed by the union of two branches, denoted by LC�a�ÿ1 and LC�b�ÿ1 in Fig. 6(a). Also LC � T �LCÿ1� is formed
465 by two branches, denoted in Fig. 6(a) by LC�a� � T �LC�a�ÿ1� and LC�b� � T �LC�b�ÿ1�. By de®nition (see Ap-
466 pendix B) each branch of the critical curve LC separates the phase plane of T into regions whose points
467 have the same number of distinct rank-1 preimages: in our case LC�b� separates the region Z0, whose points
468 have no preimages, from the region Z2, whose points have two distinct rank-1 preimages, and LC�a� sep-
469 arates the region Z2 from Z4, whose points have four distinct preimages.
470 The curve LC�b�ÿ1 intersects the qi axis at the point of maximum of restriction (12), given by
471 Mi

ÿ1 � 1� vi�aÿ ci�=4bvi, and the curve LC�b� intersects the qi axis at the corresponding maximum value
472 Mi � �1� vi�aÿ ci��2=8bvi of restriction (12).
473 As it can be seen in Fig. 6(a), the simple structure of the set B, which is a simply connected set with the
474 boundary oB having the ``quadrilateral shape'' described above, is due to the fact that the preimages xÿ1

i ,
475 i � 1; 2, of the invariant axes, are entirely included inside the region Z0, so that no preimages of higher rank
476 exist. The situation would be di�erent if some portions of these lines were inside the regions Z2 or Z4.
477 Indeed, the fact that a portion of LC�b� is close to oB suggests that a contact bifurcation may occur if some
478 parameter is varied. In fact, if a portion of B�1� enters Z2 after a contact of oB with LC�b�, then new
479 preimages of that portion will appear near LC�b�ÿ1 and such preimages must belong to B�1�. This is the
480 situation illustrated by Fig. 6(b), obtained after an increase of the spillover parameters, i.e. c12 � 3 and
481 c21 � 7. In fact, after a contact between oB and LC�b�, a portion of B�1�, say H0 (bounded by a portion of
482 xÿ1

1 and LC) which was in region Z0 before the bifurcation, enters inside Z2. The points belonging to H0

483 have two distinct preimages, located at opposite sides with respect to the line LCÿ1, with the exception of the
484 points of the curve LC�b� inside B�1� whose preimages, according to the de®nition of LC, merge on LC�b�ÿ1 .
485 Since H0 is part of B�1� also its preimages belong to B�1�. In other words, the rank-1 preimages of H0 are
486 formed by two areas joining along LCÿ1 and constitutes a hole of B�1� nested inside B (this hole is also
487 called ``lake'' in [33]). This is the largest hole appearing in Fig. 6(b), and is called the main hole. It lies inside
488 region Z2, hence it has 2 preimages, which are smaller holes bounded by preimages of rank 3 of x1. Even
489 these are both inside Z2, so each of them has two further preimages inside Z2, and so on. Now the boundary
490 oB is formed by the union of an external part, given by the coordinate axes and their rank-1 preimages (22)
491 and (23), and the boundaries of the holes, which are sets of preimages of higher rank of x1. So, the global
492 bifurcation just described transforms a simply connected basin into a multiply connected one, with a
493 countable in®nity of holes, called arborescent sequence of holes, inside it (see [32,33] for a rigorous treatment
494 of this type of global bifurcation, or [1] for a simpler and charming exposition).
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495 To sum up, our numerical results show that the structure of the basins may become more complex as the
496 spillover parameters cij are increased. Moreover, the size of the holes of B�1� increases as one or both cij

497 become larger and larger. This leads to a higher probability of obtaining unfeasible trajectories, and this
498 indicates that we are moving to unrealistic values of the spillover parameters.
499 We end this section by stressing that both in Figs. 6(a) and (b) segments of LC bound the upper portion
500 of the chaotic area. Indeed, by drawing images of LC of higher rank, i.e. LCk � T k�LC�, an exact delimi-
501 tation of the chaotic attractor can be obtained (see e.g. [1,32] or [38]), but we do not exploit such a property
502 in this paper.

503 4. Best reply dynamics with naive expectations

504 We now consider a di�erent kind of boundedly rational dynamic adjustment, based on the assumption
505 that the two ®rms have a global knowledge of the pro®t function, so that they are able to compute their best
506 reply to the expected production choice of the competitor, given by

qi�t � 1� � ri q�e�j �t
�

� 1�
�

i; j � 1; 2 i 6� j; �26�

508 where q�e�j represents the expectation of producer i about the next period production of producer j.
509 However, we assume that the two ®rms are not so rational to be able to know in advance the competitor's
510 choices, and like in the original Cournot paper [17], we assume that each ®rm adopts a very simple (or
511 naive) expectation, by guessing that the production of the other ®rm will remain the same as in current
512 period, i.e. q�e�i �t � 1� � qi�t�. This assumption, together with (26), leads to the following dynamical system
513 �q1�t � 1�; q2�t � 1�� � T �q1�t�; q2�t�� where the map T is now given by

T :
lq01 � r1 q2� �;
q02 � r2 q1� �:

�
�27�

515 This dynamical system describes the so-called best reply dynamics with naive expectations. With this kind of
516 dynamic adjustment, only the assumption (i), given in Section 2, is relaxed, whereas (ii) is now assumed to
517 hold.
518 The equation qi�t � 1� � qi�t�, which de®nes the steady states, is only satis®ed at the intersections be-
519 tween the two reaction curves, hence the positive ®xed points of the map (27) are Nash equilibria and vice
520 versa. The stability properties of the Nash equilibrium, as well as the global dynamics of the dynamical
521 system (27), are very simple. Indeed, due to the simple structure of the Jacobian matrix of (27), given by

DT �q1; q2� � 0 r
0
1�q2�

r
0
2�q1� 0

" #
523 it is rather easy to prove, after some algebraic manipulations, that the eigenvalues,

z1;2 � �
������������������������
r01 q�2� �r02 q�1� �

q
� � 1

2

����������������������������������������������������������������������������������������������
b 1� q�2c12� �2 ÿ c1c12

� �
b 1� q�1c21� �2 ÿ c2c21

� �
b2 1� q�2c12� �2 1� q�1c21� �2

vuut
525 have modulus less than 1 whenever a positive Nash equilibrium E� � �q�1; q�2� exists.
526 Moreover, in this case also the delimitation of the feasible set B is quite straightforward: a feasible
527 trajectory is generated if and only if the initial condition is taken in the rectangle

B � 0; q0
1

� �� 0; q0
2

� �
; �28�

529 where q0
1 and q0

2 are the intersections of the reaction curves with the axes q1 and q2, respectively given by (7)
530 and the expression obtained from it just swapping the indexes 1 and 2. In fact, from (27) follows that for
531 0 < q2 < q0

2 we have q
0
1 > 0 and for 0 < q1 < q0

1 we have q
0
2 > 0, and all the successive iterations give

532 positive values being max q
0
1 � max r1�q2� � r1�bq2� < q0

1 and, symmetrically, max q
0
2 � max r2�q1� �
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533 r2�bq1� < q0
2. Instead, for q1 > q0

1 we have q
0
2 < 0, i.e. a non-feasible trajectory, and, symmetrically, for

534 q2 > q0
1 we have q

0
1 < 0.

535 However, we may assume that whenever qi�t� < 0 a zero production decision occurs, i.e. we put qi�t� � 0.
536 With this assumption the best-reply dynamics gives qj�t � 1� � rj�0� � �aÿ cj�=2b and qi�t � 2� �
537 ri�qj�t � 1� � ri��aÿ cj�=2b� > 0. In other words, with this kind of adjustment the coordinate axes are not
538 trapping, so that the duopoly market is maintained even if some periods of no-production choices occur.
539 On the basis of the reasoning given above, and supported by numerical explorations, we can say that the
540 generic trajectory starting from a positive initial condition converges to the unique Nash equilibrium E�
541 provided that it exists, i.e. (8) hold.
542 This behavior is very similar to the one observed in the benchmark game without spillover e�ects, which
543 in this case is given by the classical linear Cournot game with naive expectations, that is, the standard
544 example considered in any elementary textbooks. However, the result was not obvious. In fact, when
545 spillovers are considered, and the parameters cij are su�ciently large so that non-monotonic reaction
546 functions are got (as explained in Section 2) things could be not so trivial. In fact, best reply dynamics with
547 unimodal reaction functions may exhibit very complex behaviors, as was clearly proved in [39]. Indeed, as
548 shown in [8], the dynamics of discrete dynamical systems of form (27) with non-monotonic functions ri may
549 be extremely rich, being characterized by the coexistence of many periodic and chaotic attractors with very
550 intermingled basins of attraction. Particular economic situations where unimodal reaction functions are
551 obtained as a consequence of non-linearities in demand or cost functions have been described by Dana and
552 Montrucchio (see [18,28,37]). So, our assumption on cost externalities may be seen as a straightforward way
553 to obtain unimodal reaction functions starting from a simple economic situation, but our conclusions show
554 that no complexity is introduced if best reply dynamics with naive expectations is considered.

555 5. Conclusions

556 Starting from a standard Cournot duopoly game, we introduced positive cost externalities in order to
557 investigate, in a simple and well-known framework, the e�ects of spillovers in a high-tech market. These
558 e�ects are mainly related to the fact that ®rms which invest in R&D are not able to exclude that the bene®ts
559 obtained by their own research spill over to competitors, due, for example, to employees which change ®rms
560 or informal communication occurring during the innovation processes. From the analysis of the reaction
561 curves of the game, our results indicate that the presence of spillovers generally helps coexistence at (or
562 around) a Nash equilibrium, in the sense that they may contribute to avoid that a duopoly collapses into a
563 monopoly.
564 If we extend these results to an oligopoly situation, where more than two ®rms producing homogeneous
565 goods are present in the same district, the fact that spillover e�ects help to avoid the elimination of ®rms
566 may be stated by saying that the existence of spillover e�ects may help the formation of clusters of ®rms
567 producing a given good in the same district. Indeed, it is well known that ¯ow of informations and facilities
568 among ®rms of the same region is one of the main reasons for the creation of clusters of competing ®rms
569 which operate in the same district, and regional planners interested in building up a certain industry cluster
570 can help this process by providing infrastructure and incentives for the emergence of spillovers (see e.g.
571 [4,5]).
572 In the spirit of the evolutionary games, we have also considered the problem of stability of the Nash
573 equilibrium of the duopoly game under two di�erent adjustment processes with boundedly rational players,
574 both extensively supported by the current literature: one based on local (or myopic) pro®t maximization,
575 obtained by following the direction of increasing marginal pro®ts, and one based on the best reply dy-
576 namics with naive expectations (�a la Cournot). With the ®rst kind of dynamic adjustment we have shown
577 that the introduction of spillover e�ects has a destabilizing role, in the sense that starting from situations in
578 which the game has a stable Nash equilibrium, it fails to converge for increasing values of spillover pa-
579 rameters, and more complex attractors are obtained. Moreover, also the structure of the basins may be-
580 come more complex as the spillover e�ects increase.
581 Instead, with the second type of adjustment, the Nash equilibrium remains stable even in the presence of
582 spillovers. The fact that the stability under bounded rationality depends on the kind of adjustment con-
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583 sidered is well known, and our results con®rm this. Of course, the type of adjustment process which is
584 suitable to describe a given duopoly depends on the market one is considering. In the recent literature many
585 authors stress that ®rm behaviors in real markets (and in experimental economics) are often characterized
586 by myopic strategies, like the one modeled by gradient dynamics (see e.g. [6,21,40] to cite a few).
587 This paper also collocates in the stream of non-linear duopoly games with non-monotonic reaction
588 curves, which starting from the paper by Rand [39] gave rise to a ¯ourishing literature (see e.g. [18,28,37] to
589 cite a few).
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597 Appendix A. Proofs

598 Proof of Proposition 1. In order to prove that there can be at most one Nash equilibrium, let us assume that
599 a Nash equilibrium E� � �q�1; q�2� exists, and let us consider the line l through E� with slope ÿ1, i.e. the line
600 of equation q1 � q2 � q�1 � q�2, which can be written as

q2 � l�q1� � ÿq1 � 1

2
q�1 �

a
2b
ÿ c2

2b�1� c21q�1�
602 being q�2 � r1�q�1�. We now prove that the points of R2 with 0 < q1 < q�1 lie below the line l and the points of
603 R2 with q1 > q�1 lie above that line. In fact, r2�q1� < l�q1� if and only if

1

2
q1 � c2

2b�1� c21q1� > q1 ÿ 1

2
q�1 �

c2

2b�1� c21q�1�
;

605 which is true for 0 < q1 < q�1 being, in this case,

c2

2b�1� c21q1� >
c2

2b�1� c21q�1�
and

1

2
q1 � q1 ÿ 1

2
q1 > q1 ÿ 1

2
q�1

607 and the reverse inequalities hold if q1 > q�1. Symmetrically, every point of R1 is below the line l for
608 0 < q2 < q�2 and above l for q2 > q�2. Therefore, there cannot be another point of intersection between R1

609 and R2.
610 In order to prove that at least one equilibrium exists if and only if conditions (8) hold, we recall that a
611 Nash equilibrium E� � �q�1; q�2� exists if and only if q�1 is a positive solution of F1�q1� � q1, where
612 F1�q1� � r1�r2�q1��, and q�2 is a positive solution of F2�q2� � q2, where F2�q2� � r2�r1�q2��. Let us ®rst
613 consider the equation F1�q1� ÿ q1 � 0. We have F1�0�P 0 i�

c12 P
2b�2c1 ÿ c2 ÿ a�

a2 ÿ c2
2

and F1�q0
1� ÿ q0

16 0

615 i� c21 P 2b�2c2 ÿ c1 ÿ a�=a2 ÿ c2
1. So, if (8) hold then a solution q�1 2 �0; q0

1� exist and vice versa (due to the
616 already proved uniqueness). Symmetrically, F2�0�P 0 i�

G.-I. Bischi, F. Lamantia / Chaos, Solitons and Fractals 000 (2001) 000±000 17

CHAOS 1738



UNCORRECTED
PROOF

c21 P
2b�2c2 ÿ c1 ÿ a�

a2 ÿ c2
1

and F2�q0
2� ÿ q0

26 0

618 i� c12 P 2b�2c1 ÿ c2 ÿ a�=a2 ÿ c2
2. This proves the statement on existence. �

619 Proof of Proposition 2. We ®rst consider the boundary equilibria Ei ; i � 0; 1; 2. At E0 � �0; 0� the Jacobian
620 matrix (14) becomes diagonal

DT �0; 0� � 1� v1�aÿ c1� 0
0 1� v2�aÿ c2�

� �
622 whose eigenvalues, given by the diagonal entries, are greater than 1 if c1 < a and c2 < a. Thus, under the
623 given assumptions, E0 is a repelling node with eigendirections along the coordinate axes.
624 At E1 � �aÿc1

2b ; 0� the Jacobian matrix is given by the triangular matrix

DT E�1
ÿ � � 1ÿ v1 aÿ c1� � v1

aÿc1

2b c1c12 ÿ b� �
0 1� v2

a�c1� �
2
ÿ c2

1�c21
aÿc1

2b� �
� �24 35

626 whose eigenvalues, given by the diagonal entries, are z1 � 1ÿ v1�aÿ c1�, with eigenvector r
�1�
1 � �1; 0� along

627 the q1 axis, and

z2 � 1� v2

�a� c1�
2

�
ÿ c2

1� c21�aÿc1

2b �
�

629 with eigenvector

r
�2�
1 � 1;

2b�k2 ÿ k1�
v1�aÿ c1��c1c12 ÿ b�

� �
:

631 So, the condition for the stability along the invariant axis q2 � 0 is v1�aÿ c1� < 2, and when the reverse
632 inequality holds the well-known bifurcation scenario of a logistic map occurs, as can be easily deduced from
633 the topological conjugacy given in (13). The stability condition z2 < 1 can be written as the second of the
634 (15). Moreover, it is straightforward to see that for c21 � 2b�2c2 ÿ c1 ÿ a�=a2 ÿ c2

1 we have z2 � 1 and
635 q�0�1 � �aÿ c1�=2b, so that E� � E1. Hence, this corresponds to a typical transcritical bifurcation (see e.g.
636 [27] or [30]).
637 For E2 symmetric considerations hold just swapping the indexes 1 and 2.
638 To study the local stability of the ®xed point E� � �q�1; q�2�, we consider the Jacobian matrix (14) which,
639 by using the fact that E� 2 R1 \ R2, i.e.

2bq�i � aÿ bq�j ÿ
ci

1� cijq
�
j

i; j � 1; 2; i 6� j;

641 becomes

DT E�� � �
1ÿ 2v1bq�1 v1q�1

c1c12

1�c12q�
2� �2 ÿ b

� �
v2q�2

c2c21

1�c21q�
1� �2 ÿ b

� �
1ÿ 2v2bq�2

2664
3775 �A:1�

643 Let Tr� and Det� be, respectively, the trace and the determinant of the matrix A.1. Then the characteristic
644 equation becomes

P �z� � z2 ÿ Tr� � z�Det� � 0

646 and a set of su�cient conditions for the stability of E�, i.e. for the eigenvalues to be inside the unit circle of
647 the complex plane, is given by

P �1� � 1ÿ Tr� �Det� > 0; P �ÿ1� � 1� Tr� �Det� > 0; 1ÿDet� > 0 �A:2�
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649 From the analysis of the boundary equilibria we already know that when one of conditions (8) becomes an
650 equality then we have P �1� � 0, i.e. z � 1 is an eigenvalue, and these equalities correspond to the occurrence
651 of transcritical bifurcations related to the merging of E� with E1 and E2, respectively. After some algebraic
652 manipulations 6 it is possible to show that when conditions (8) hold the eigenvalues are real, i.e.
653 Tr� ÿ 4Det� > 0, P �1� > 0 whereas P �ÿ1� may change its sign. In particular, P �ÿ1� > 0 is satis®ed for
654 su�ciently small values of v1 or v2, since P �1� > 0 as at least one of the vi tends to zero, whereas it changes
655 sign if one of them is increased with the other one ®xed at a positive value. Moreover, for ®xed positive
656 values of both v1 and v2, P �ÿ1� becomes negative as one of the parameters cij are increased. These sign
657 changes of P �ÿ1� give rise to ¯ip (or period doubling) bifurcations (see e.g. [27] or [30]).

658 Appendix B. Non-invertible maps and critical curves

659 In this appendix, we give some basic de®nitions and a minimal vocabulary concerning non-invertible
660 maps of the plane and the method of critical curves. 7

661 Let us consider a two-dimensional map T : �x; y� ! �x0; y 0� written in the form

x0; y 0
ÿ � � T �x; y� � �f �x; y�; g�x; y�� �A:3�

663 where �x; y� 2 R2 and f, g are assumed to be real valued continuous functions. The point �x0; y0� 2 R2 is
664 called rank-1 image of the point �x; y� under T, and �x; y� is called rank-1 preimage of the point �x0; y 0�. The
665 point �xt; yt� � T t�x; y�, t 2 N, is called image of rank-t of the point �x; y�, where T 0 is identi®ed with the
666 identity map and T t��� � T �T tÿ1����. A point �x; y� such that T t�x; y� � �xt; yt� is called rank-t preimage of
667 �xt; yt�.
668 The map T is said to be non-invertible (or ``many-to-one'') if distinct points �xa; ya� 6� �xb; yb� exist which
669 have the same image, T �xa; ya� � T �xb; yb� � �x; y�. This can be equivalently stated by saying that points
670 �x; y� exist which have several rank-1 preimages, i.e. the inverse relation Tÿ1�x; y� is multivalued.
671 As the point �x; y� varies in the plane, the number of its rank-1 preimages can change, and according to
672 the number of distinct rank-1 preimages associated with each point of R2, the plane can be subdivided into
673 regions, denoted by Zk, whose points have k distinct preimages. Generally pairs of real preimages appear or
674 disappear as the point �x0; y 0� crosses the boundary separating regions characterized by a di�erent number
675 of rank-1 preimages. Accordingly, such boundaries are generally characterized by the presence of two
676 coincident (merging) preimages. This leads us to the de®nition of critical curves, one of the distinguishing
677 features of non-invertible maps. The critical curve of rank-1, denoted by LC (from the French ``Ligne
678 Critique'') is de®ned as the locus of points having two, or more, coincident rank-1 preimages. These
679 preimages are located in a set called critical curve of rank-0, denoted by LCÿ1. The curve LC is the two-
680 dimensional generalization of the notion of critical value (local minimum or maximum value) of a one-
681 dimensional map, and LCÿ1 is the generalization of the notion of critical point (local extremum point).
682 From the de®nition given above it is clear that the relation LC � T �LCÿ1� holds, and the points of LCÿ1 in
683 which the map is continuously di�erentiable are necessarily points where the Jacobian determinant van-
684 ishes:

LCÿ1 � x; y� � 2 R2j det DT
� � 0

	 �A:4�
686 In fact, as LCÿ1 is de®ned as the locus of coincident rank-1 preimages of the points of LC, in any neigh-
687 borhood of a point of LCÿ1 there are at least two distinct points mapped by T in the same point near LC.
688 This means that the map T is not locally invertible in the points of LCÿ1 and, if the map T is continuously
689 di�erentiable, it follows that det DT necessarily vanishes along LCÿ1.

6 The algebraic calculations, performed by the package Mathematica, are available from the authors.
7 For a deeper treatment see [32]; see also [38] for several applications of the method of critical curves to non-invertible maps arising

in dynamic economic modeling.
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690 Portions of LC separate regions Zk of the phase space characterized by a di�erent number of rank ÿ 1
691 preimages, for example Zk and Zk�2 (this is the standard occurrence). This property is at the basis of the
692 contact bifurcations which give rise to complex topological structures of the basins, like those formed by
693 non-connected sets or multiply connected sets. In fact, if a parameter variation causes a crossing between a
694 basin boundary and a critical set which separates di�erent regions Zk so that a portion of a basin enters a
695 region where an higher number of inverses is de®ned, then new components of the basin may suddenly
696 appear at the contact.
697 Geometrically, the action of a non-invertible map T can be expressed by saying that it ``folds and pleats''
698 the plane, so that two or more distinct points are mapped into the same point, or, equivalently, that several
699 inverses are de®ned which ``unfold'' the plane.
700 So, the backward iteration of a non-invertible map repeatedly unfolds the phase plane, and this implies
701 that a basin may be non-connected, i.e. formed by several disjoint portions.
702 Instead, the fact that the forward iteration of a non-invertible map repeatedly folds the phase plane along
703 the critical curves and their images, gives the property that segments of the critical curves LC, together with
704 a suitable number of their images LCk � T k�LC�, may be used to bound a trapping regions, called absorbing
705 areas in [32], which act like a bounded vessels inside which the asymptotic dynamics of the bounded tra-
706 jectories are ultimately con®ned. In particular, this property of the critical curves allows one to obtain the
707 boundaries of the chaotic areas, and practical procedures are given in the literature in order to obtain the
708 boundary of a chaotic area by segments of critical curves (see e.g. [1,11,32,38].
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