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3 Definitions and preliminary notions.

The object of the present work is to describe some properties on the
complex world of the nonlinear dynamics in discrete systems. Let us
consider a dynamic model which is described by iterating some process:

Fig.1 Iterative process

The state of the system changes under the action of some function, here
represented (Fig.1) by T . The state x may be a scalar or a vector of
state variables. The state (or phase) space is a set X ⊆ Rm where
m is an integer denoting the dimension of the vector state variable x,
m ∈ {1, 2, 3...} , and T : X → X. A discrete dynamical system (DDS for
short) is represented by the standard notation

xn+1 = T (xn) or x0 = T (x) (1)

The object of the theory of DDS is that to understand which kind of
values will be obtained asymptotically, and this depending on the initial
value (or initial condition, i.c. henceforth) x0 in the phase space. Also
important will be the bifurcations, which are responsible of the changes
in the qualitative behaviors of the trajectories of the iterative process.
To this scope we recall that the bifurcations are studied in the para-
meter space, which includes all the parameters which are considered in
the model under study. Whenever the parameters have a fixed value
we have a dynamic system whose invariant sets in the phase space of
interest are our object of investigation, as well as the description of the
dynamic behavior associated with the points in the phase space (are the
trajectories converging to the same set ? are some of them uninteresting
for us because associated to divergent dynamics ? and so on). Then,
as the parameters are varied, things may change smoothly (as under a
deformation, we shall say "via an homeomorphism", which is a contin-
uous invertible function) or some drastic change may occur, in which
case we say that a bifurcation takes place. Roughly speaking, we say
that a bifurcation takes place at some specific parameters setting when
the dynamics occurring "before" and "after" (when the condition is not
fulfilled) cannot be obtained one from the other by a smooth change (via
an homeomorphism).
To study DDS it is important to introduce first a few definitions

and terms. Let us consider a map x0 = T (x), T is defined from X into
itself. The point x0 is called the rank-1 image of x. A point x such that
T (x) = x0 is called a rank-1 preimage of x0. The point x(n) = Tn(x),
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n ∈ N, is called image of rank-n of the point x, where T 0 is identified
with the identity map and T n (·) = T ◦ Tn−1 (·) = T (T n−1 (·)). A point
x such that Tn(x) = y is called rank-n preimage of y.
Let A ⊂ X be a such that T (A) ⊆ A, then A is called trapping

set. We have two kinds of trapping set: either (a) T (A) = A, then A
is called invariant set, or (b) T (A) ⊂ A than A is strictly mapped into
itself, and in this case T n+1(A) ⊆ T n(A) for any n > 0. When A is
a compact set then the intersection of the nested sequence of sets is a
closed nonempty invariant set, say B = ∩n>0T n(A), then T (B) = B
(note that the number of iterations necessary to get the invariant set B
may be finite or infinite). For our purposes it is important to stress the
properties of an invariant set A ⊆ X. As by definition any point of T (A)
is the image of at least one point of A, we have that for an invariant set
A ⊆ X, for which T (A) = A, this propery holds for any point in A, that
is:
Property 1. If T is invariant on A then any point of A has at least

one rank-1 preimage in A, and iteratively: any point of A has an infinite
sequence of preimages in A.
The behaviour of points in a neighburhood of an invariant set A

depends on the local dynamics (Amay be attracting, repelling, or neither
of the two).
An attracting set is a closed invariant set A which possess a trapping

neighborhood, that is, a neighborhood U , with A ⊂ Int(U), such that
A = ∩n≥0T n(U) (as in the case of the set B constructed above). In
other words, if A is an attracting set for T , then a neighborhood U of
A exists such that the iterates Tn(x) tend to A for any x ∈ U (and not
necessarily enter A). An attractor is an attracting set with a dense orbit.
The basin of attraction of an attracting set A, B(A), it the set of

all the points whose trajectory has the limit set in A (roughly speaking,
whose trajectory tends to A).

B (A) = {x|T n(x)→ A as n→ +∞ } .
As the attracting set possesses a neighborhood U of points having this
property, then the basin is made up of all the possible preimages of U :
B(A) = ∪n≥0T−n(U). Sometimes it is useful to consider as neighborhood
U the immediate basin, which is the largest connected component of the
basin which contains the attracting set A.
A repelling set is a compact invariant set K which possesses a neigh-

borhood U such that for any point x0 ∈ U\K, the trajectory x0 →
x1 → ... must satisfy xn /∈ U for at least one value of n ≥ 0 (but such a
trajectory may also come back again in U, as it occurrs when homoclinic
trajectories exist). A repellor is a repelling set with a dense orbit.
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It is worth noticing that this definition is a very strict one (as we
shall see below, by using this definition a saddle cycle cannot be called
repelling, but only unstable). Some authors use "expanding" in its place,
keeping a more soft definition for a repelling set saying that a closed
invariant setK which is not attracting is called repelling if however close
to K there are points whose trajectories goes away from K. And as usual
a repellor is defined as a repelling set containing a dense orbit. This less
restrictive definition allows, when applied to a cycle, to say that attractor
(repellor) is synonymous of asymptotically stable (unstable), however it
is worth noticing that in this case we have further to distinguish when
a repelling cycle is expanding or not.
Regarding the invariant sets, the simplest case is that of "fixed point".

We say that x∗ is a fixed point (or equilibrium point) of the DDS if it
satisfies

x∗ = f(x∗)

That is: starting in that point the system never changes. Then, given
that it is very difficult to be exactly in a fixed point, it is important to
understand when (i.e. under which conditions) starting from a different
state and iterating the process we are approaching the equilibrium, and
when this occurs for all the points in a suitable neighborhood, we call it
attracting: The definition given above is fulfilled. When for some points,
also very close to an equilibrium, the process will lead the state far away
from it, then it is unstable.

Fig.2

A map T is said to be noninvertible (or “many-to-one”, see Fig.2), if dis-
tinct points x 6= y exist which have the same image, T (x) = T (y) = x0.
This can be equivalently stated by saying that points exist which have
several rank-1 preimages, i.e. the inverse relation x = T−1 (x0) may be
multi-valued. Geometrically, the action of a noninvertible map T can
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be described by saying that it “folds and pleats” the plane, so that two
distinct points are mapped into the same point. Equivalently, we could
also say that several inverses are defined, and these inverses “unfold”
the plane. For a noninvertible map T , the space Rm can be subdivided
into regions Zk, k ≥ 0, whose points have k distinct rank-1 preimages
(Fig.3). Generally, as the point x0 varies in Rm, pairs of preimages ap-
pear or disappear as this point crosses the boundaries which separate
different regions. Hence, such boundaries are characterized by the pres-
ence of at least two coincident (or merging) preimages. This leads to the
definition of the critical sets, one of the distinguishing features of non-
invertible maps (Mira et al., [89]): The critical set CS of a continuous
map T is defined as the locus of points having at least two coincident
rank − 1 preimages, located on a set CS−1 called set of merging preim-
ages. The critical set CS is the n-dimensional generalization of the
notion of critical value (when it is a local minimum or maximum value)
of a one-dimensional map1, and of the notion of critical curve LC of a
noninvertible two-dimensional map (from the French “Ligne Critique”).
The set CS−1 is the generalization of the notion of critical point (when
it is a local extremum point) of a one-dimensional map, and of the fold
curve LC−1 of a two-dimensional noninvertible map. The critical set CS
is generally formed by (n− 1)-dimensional hypersurfaces ofRm, and por-
tions of CS separate regions Zk of the phase space characterized by a
different number of rank − 1 preimages, for example Zk and Zk+2 (this
is the standard occurrence).

Fig.3

1This terminology, and notation, originates from the notion of critical points as
it is used in the classical works of Julia and Fatou.
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4 One-dimensional phase-space.

Let us consider first the case of a 1D phase space, as all the main proper-
ties of dynamical systems and chaotic behaviors can be well introduced in
this space. As a very simple example consider the function f (x) =

√
x :

x0 =
√
x

Fig.4 Convergence to the stable fixed point.

Then it is easy to see that x∗ = 1 is a stable fixed point of this model
(Fig.4). Starting from any point as i.c. and iterating, the process shall
converge to the stable fixed point. From the graph of the function it is
easy to see this result also graphically, by using the "stair-process". The
stability can be obtained analytically from the slope of the tangent to the
function in the fixed point. This follows from the linearization theorem.
It is very easy to prove the property in the linear case: a straight line
with slope in modulus (or absolute value) lower (higher) than 1 has a
stable (unstable) fixed point.
For a nonlinear function the stability/instability is a local property,

which may be investigated by the first order approximation of the func-
tion in the fixed point. We can summarize as follows:

−1<S = f 0(x∗) < 1 : locally stable fixed point

S=+1 bifurcation (fold, transcritical or pitchfork)

S=−1 flip bifurcation

In the case of monotone increasing one-dimensional functions (Fig.5) the
only possible invariant sets are fixed points which are alternating: one
stable, one unstable. The basins of attractions of the stable fixed points
are bounded by the unstable fixed points or by infinity.
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Fig.5 Increasing functions, piecewise linear and nonlinear smmoth.

In the linear case we can see that at the bifurcation occurring when the
slope is equal to −1, a new kind of dynamics occurs: all the points be-
long to a 2-cycle (Fig.6).

Fig.6 Decreasing linear functions

In the generic case of a decreasing one-dimensional function the only
possible invariant sets are one fixed point, and 2-cycles, which are alter-
nating: one stable, one unstable.
We can already see a generic feature: if the slope in the fixed point is

positive (resp. negative) then locally we have monotonic dynamics (resp.
alternating dynamics), as qualitatively shown in Fig.7a and Fig.7b, re-
spectively.
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Fig.7 Monotone dynamics or alternating dynamics.

Moreover we have seen that cycles may occur. A k−cycle is a sequence of
k distinc points xi, i = 1, 2, ..., k visited iteratively by the map, and such
that fk(xi) = xi for any point xi. That is, stated in other words, each of
the periodic points is a fixed point of the map fk = f ◦ f ◦ ... ◦ f. The
stability/instability of a cycle is determined by the stability/instability
condition of a fixed point of the map fk and from the chain rule we have,
for each point xi of the cycle,

S =
d

dx
(fk(x))|xi =

kQ
j=1

f 0(xj) (2)

Summarizing, if we consider a one—dimensional map xn+1 = f(xn) and
a k−cycle of points {x1, ..., xk} , k ≥ 1 (for k = 1 we have a fixed point),
the condition |S| < 1 (resp. > 1) is a sufficient condition to conclude
that the k−cycle is an attractor (resp. repellor), as S is the slope, or
eigenvalue, in any point xi of the map fk.
We have not considered the bifurcation cases in which |S| = 1, be-

cause the behavior depends on the kind of bifurcation. This can be found
in several textbooks ([104], [49], [50], [30], [70]), and we simply recall that
the bifurcations associated with S = −1 are related to a period-doubling
of the cycle, and it is frequently called flip bifurcation. That is, crossing
this bifurcation value, when suitable transversality conditions are sat-
isfied, then a stable k−cycle becomes unstable and a stable 2k−cycle
(of double period) appears around it. While the bifurcations associated
with S = +1 may be of three different kinds: (i) either related to a
fold bifurcation, giving rise to a pair of k−cycles, one attracting and
one repelling, (ii) or to a change of stability (also called transcritical),
a pair of stable/unstable cycles merge after which they exchange their
stability, i.e. become unstable/stable respectively, (iii) or a pitchfork
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bifurcation occurs at which a stable k−cycle becomes unstable and two
new k−cycles appear around it, both stable.
As observed several years ago by the pioneers of such studies ([92],

[103], [85], [86], [82], [87]) still in the one-dimensional case we can see
that once that the monotonicity (i.e. the invertibility property) is lost,
then very complicated paths may occur, which may be predictable or not
(although the model is completely deterministic). As a standard example
let us consider the simple logistic map (whose graph is a parabola):

x0 = f(x) , f(x) = µx(1− x) , µ ∈ [3, 4] (3)

which for µ > 3 has the origin as unstable fixed point and the pos-
itive fixed point which may be stable or unstable, depending on the
slope (or eigenvalue) in that point. This map has a unique critical point
c = µ/4, which separates the real line into the two subsets (see Fig.8):
Z0 = (c,+∞), where no inverses are defined, and Z2 = (−∞, c), whose
points have two rank-1 preimages. These preimages can be computed
by the two inverses

Fig.8 Logistic map

x1 = f−11 (x
0) =

1

2
−
p
µ (µ− 4x0)
2µ

; x2 = f−12 (x
0) =

1

2
+

p
µ (µ− 4x0)
2µ

.

(4)
If x0 ∈ Z2, its two rank-1 preimages, computed according to (4), are
located symmetrically with respect to the point c−1 = 1/2 = f−11 (µ/4) =
f−12 (µ/4). Hence, c−1 is the point where the two merging preimages of
c are located. The map f folds the real line, the two inverses unfold it
(Fig. 1b). As the map (3) is differentiable, at c−1 the first derivative
vanishes. However, note that in general a critical point may even be a
point where the map is not differentiable. This happens for continuous
piecewise differentiable maps such as the well known tent map or other
piecewise linear maps. In these maps critical points are located at the
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kinks where two branches with slopes of opposite sign join and local
maxima and minima are located.
As an equivalent model, we may consider any function which is ob-

tained by using a change of variable with an homeomorphism h (a con-
tinuous and invertible function). We are so introducing the concept of
"topological conjugacy": let

F = h ◦ f ◦ h−1 (5)

then the maps F and f are called topologically conjugated, and it can
be proved that topologically conjugated maps have the same dynamics:
all the trajectories can be put in one-to-one correspondence by using the
homeomorphism h.
It is easy to see that via a linear homeomorphism we can transform

the logistic map into the Myrber’s map (Myrber was the first author who
studied in details the bifurcations of such non-invertible one-dimensional
maps, still in 1963):

x0 = F (x) : F (x) = x2 − b (6)

For b ∈ [0, 2] we have F : I → I, I = [q∗−1, q
∗] where q∗ is the repelling

positive fixed point. At b = 0 the slope at the stable fixed point p∗ is zero
(also called superstable), and then, increasing b, the slope from positive
becomes negative, reaching the value −1 and a flip bifurcation takes
place, leading to the appearance of a stable cycle of period 2 (Fig.9).

Fig.9 Attracting 2-cycle

From the shape of the second iterate of the function (Fig.10) we can
see that locally the fixed point of the map F 2 (2−cycle of F ) behaves
as previously for the fixed point of the function F : the stable 2−cycle
becomes superstable. After that, the slope becomes negative, reaching
the value −1, and so on. By self-similarity all the cycles of period 2n
will be generated and become unstable leading, as n tends to infinity, to
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a critical bifurcation value b = b∞2 after which the map has a so-called
chaotic behavior, because a set Λ invariant for the map, i.e. F (Λ) = Λ,
on which the restriction is chaotic always exists.

Fig.10 Superstable 2-cycle

This is often represented in a bifurcation diagram (Fig.11) which shows
the asymptotic behavior of a generic point of the interval I = [q∗−1, q

∗]
as a function of the parameter b.

Fig.11 Bifurcation diagram

The bifurcation diagram is "self-similar" as for any period (and several
boxes exist having the same period) we can repeat the period-doubling
route to chaos described above. As an example the enlargement shows
the "box" associated with the period-3 cycle: a pair of these cycles
appear by saddle node-bifurcation (see Fig.12a), and the stable one, for
the map F 3, will have the same bifurcation structure.

17



Fig.12 Box of the 3-cycle

We also note that although in a chaotic regime the dynamic behavior
is unpredictable, some global properties can still be very useful. For
example the iterates of the critical point determine cyclical intervals
or one single interval inside which the trajectories are confined, and
such intervals are trapping: starting in a different point of the interval
I = [q∗−1, q

∗] a trajectory enters such absorbing interval from which it
will never escape (Fig.13).

Fig.13 Absorbing intervals

A "final bifurcation" is known to occur at the bifurcation value b = 2,
when the preimage of the unstable fixed point becomes equal to the
critical value, that is: the invariant interval I = [q∗−1, q

∗] becomes an
invariant chaotic interval (Fig.14a), and after, for b > 2, the generic
trajectory will be divergent. However a set which is invariant inside I
exists also for b > 2. As we shall see, it is a Cantor set on which the
restriction of the map F is chaotic. Notice that in two iterations all the
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points of the segment in the middle in Fig.14b are mapped above the
unstable fixed point q∗, and then will diverge to +∞. The two distinct
preimages of this middle part will give two more intervals, one inside
I0 and one inside I1, whose points are mapped, let us say "outside" q∗,
in three iterations, and we continue this proces. Leaving from the old
interval all the points whose trajectory will be divergent we are left with
an invariant set Λ which is a Cantor set.

Fig.14 Full chaos in (a) and chaos in a Cantor set in (b).

A set Λ is a Cantor set if it is closed, totally disconnected and perfect2.
The simplest example is the "Middle-third Cantor set": start with a
closed interval I and remove the open "middle third" of the interval
(see Fig.15). Next, from each of the two remaining closed intervals, say
I0 and I1, remove again the open "middle thirds", and so on. After n
iterations, we have 2n closed intervals inside the two intervals I0 and I1.

Fig.15 Middle-third Cantor set

It is quite clear the similarity of this construction with that of the invari-
ant set for the Myrberg’s map for any b > 2. Considering our unimodal

2Totally disconnected means that it contains no intervals (i.e. no
subset [a, b] with a 6= b) and perfect means that every point is a limit
point of other points of the set.
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map, for any point ξ belonging to the interval I = [q∗−1, q
∗] there are two

distinct inverse functions, say F−1(ξ) = F−10 (ξ) ∪ F−11 (ξ), where

F−10 (ξ) = −
p
b+ ξ , F−11 (ξ) = +

p
b+ ξ (7)

The set of points whose dynamics is bounded forever in the interval I
can be obtained removing from the interval all the points which exit the
interval after n iterations, for n = 1, 2, ..... Thus let us start with the
two closed disjoint intervals

F−1(I) = F−10 (I) ∪ F−11 (I) = I0 ∪ I1, (8)

(see (Fig.14ab), i.e. we have removed the points leaving I after one iter-
ation. Next we remove the points exiting after two iterations obtaining
four closed disjoint intervals

F−2(I) = I00 ∪ I01 ∪ I10 ∪ I11,
defining in a natural way F−1(I0) = F−10 (I0) ∪ F−11 (I0) = I00 ∪ I10 and
F−1(I1) = F−10 (I1) ∪ F−11 (I1) = I01 ∪ I11. Note that if a point x belongs
to I01 (or to I11) then F (x) belongs to I1 (i.e. one iteration means drop-
ping the first symbol of the index). Continuing the elimination process
we have that F−n(I) consists of 2n disjoint closed intervals (satisfying
F −(n+1)(I) ⊂ F−n(I)), and in the limit we get

Λ = ∩∞n=0F−n(I) = lim
n→∞

F−n(I). (9)

The set Λ is closed (as intersection of closed intervals), invariant by
construction (as F−1(Λ) = F−1(∩∞n=0F−n(I)) = ∩∞n=0F−n(I) = Λ). Let
us consider b > 2 and such that |F 0(x)| > 1 for any x ∈ I0 ∪ I1 (the
property holds for any b > 2, but the proof is more complicated, it can
be found in [30]), then Λ cannot include any interval (because otherwise,
since F is expanding, after finitely many application of F to an interval,
we ought to cover the whole set I0∪ I1). Thus Λ is totally disconnected,
and perfect by construction, so that it is a Cantor set.
Moreover, by construction, to any element x ∈ Λ we can associate

a symbolic sequence, called Itinerary, or address, of x in the backward
dynamics, Sx = (s0s1s2s3...) with si ∈ {0, 1}, i.e. Sx belongs to the set
of all one-sided infinite sequences of two symbols Σ2. Sx comes from the
symbols we put as indices to the intervals in the construction process,
and there exists a one-to-one correspondence between the points x ∈ Λ
and the elements Sx ∈ Σ2. Also, from the construction process we have
that if x belongs to the interval Is0s1...sn then F (x) belongs to Is1...sn.
Thus the action of the function F on the points of Λ corresponds to the
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application of the "shift map σ" to the itinerary Sx in the code space
Σ2:

if x∈Λ has Sx = (s0s1s2s3...) (10)

then

F (x)∈Λ has SF (x) = (s1s2s3...) = σ(s0s1s2s3...) = σ(Sx)

Given a point x ∈ Λ how do we construct its itinerary Sx? In the obvious
way: we put s0 = 0 if x ∈ I0 or s0 = 1 if x ∈ I1, then we consider F (x)
and we put s1 = 0 if F (x) ∈ I0 or s1 = 1 if F (x) ∈ I1, and so on. It
follows that F is chaotic in Λ, because it is topologically conjugated with
the shift map, which is the prototype of the chaotic map. We recall that,
following the definition of chaos given by Devaney [30], an invariant set
is chaotic under the action of a map F if

1) there exist infinitely many periodic orbits, dense in the invariant set

2) there exist an aperiodic trajectory dense in the set

As a consequence of the above two conditions we have that the sensitivity
with respect to the initial conditions also exists (which often is added as
a third condition).
Indeed, it is easy to see that the two properties hold. If fact from

the correspondence given above we have that each periodic sequence of
symbols of period k represents a periodic orbit with k distinct points,
and thus a so-called k−cycle. Since the elements of Σ2 can be put in
one-to-one correspondence with the real numbers3, we have that the
periodic sequences are dense in the space, thus (1): the periodic orbits
are dense in Λ. Also there are infinitely many aperiodic sequences (i.e.
trajectories) which are dense in Λ thus (2) also is satisfied, and we also
have sensitivity with respect to the initial conditions.

4.1 Iterated Function System (IFS)
The construction process previously used, with the two contraction func-
tions in (7) leading to the Cantor set in (9), can be repeated with any
number of contraction functions defined in a complete metric space D of
any dimension4, as it is well known since the pioneering work by Barnsley
(see [17], [18]). Let us recall the definition of an IFS:
Definition. An Iterated Function System (IFS) {D;H1, ...Hm} is a

collection of m mappings Hi of a compact metric space D into itself.

3We can think for example of the representation of the numbers in
binary form.

4or better (D, d) where d denotes the function distance
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We can so defineW = H1∪ ...∪Hm. Denoting by si the contractivity
factor of Hi then the contractivity factor of W is s = max {s1, ...sm},
and for any point or set X ⊆ D we define

W (X) = H1(X) ∪ ... ∪Hm(X).

The main property of this definition is given in the following theorem:
Theorem (Barnsley 1988 [18] p. 82). Let {D;H1, ...Hm} be an IFS.

If the Hi are contraction functions then there exists a "unique attractor"
Λ such that Λ =W (Λ) and Λ = limn→∞Wn(X) for any non-empty set
X ⊆ D.

The existence and uniqueness of the set Λ is guaranteed by the the-
orem and it is also true that given any point or set X ⊆ D by applying
each time one of the m functions Hi the sequence tends to the same set
Λ.
In the case previously described with the Myrberg’s map we have

D = I, H1 = F−10 , H2 = F−11 .
In general, if the sets Di = Hi(D) i ∈ {1, ...,m} are disjoint, we can

put the elements of Λ in one-to-one correspondence with the elements of
the code space on m symbols Σm. The construction is the generalization
of the process described above for the two inverses of the Myrberg’s
function. Let U0 = D and define

U1=W (U0) = H1(D) ∪ ... ∪Hm(D) = D1 ∪ ... ∪Dm ⊂ U0

U2=W (U1) =W 2(U0) = H1(U1) ∪ ... ∪Hm(U1) = D11 ∪ ... ∪Dmm ⊂ U1

...

Un=W (Un−1) =W n(U0) ⊂ Un−1

i.e. all the disjoint sets of U1 are identified with one symbol belonging
to {1, ...,m} , all the disjoint sets of U2 are identified with two symbols
belonging to {1, ...,m} (m2 in number) and so on, all the disjoint sets of
Un are identified with n symbols belonging to {1, ...,m} (mn in number).
And in the limit, as Λ = limn→∞ Un = limn→∞Wn(U0) = ∩∞n=0Wn(U0),
each element x ∈ Λ is in one-to-one correspondence with the elements
Sx ∈ Σm, where Sx = (s0s1s2s3...), si ∈ {1, ...,m} .
Moreover, for any element x ∈ Λ we can define a transformation (or

map) F on the elements of Λ by using the inverses of the functions Hi

(the so called shift transformation or shift dynamical system in Barsnley
1988, p. 144):

if x ∈ Hi(D) then F (x) = H−1
i (D)

so that we can also associate an induced dynamic to the points be-
longing to Λ, and the rule described above holds for F, i.e. if x ∈
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Λ has itinerary Sx = (s0s1s2s3...) then F (x) ∈ Λ has itinerary SF (x) =
(s1s2s3...) = σ(s0s1s2s3...) = σ(Sx). Clearly, when the functions Hi are
distinct inverses of a unique function f then the induced dynamic system
is the same, as F = f .

4.2 The chaos game and Random IFS
As a second relevant example (besides the logistic map) let us consider
another well known IFS with three functions, the so-called chaos game.
Choose three different points Ai, i = 1, 2, 3, in the plane, not lying
on a straight line. Let D be the closed set bounded by the triangle
with vertices given by the three points Ai, and consider the system
{D;H1,H2, H3} where the Hi are linear contractions in D with center
Ai and contractivity factor 0.5. Then choose an arbitrary initial state
x0 in D. An orbit of the system is obtained by applying one of the
three maps Hi, after throwing a dice. More precisely, xn+1 = Hi(xn)
with i = 1 after throwing 1 or 2, i = 2 after throwing 3 or 4, i = 3
after throwing 5 or 6. For any initial state x0 ∈ D, plotting the points
of this orbit after a short transient gives Fig.16a. This fractal shape is
called the Sierpinski triangle and it is the unique attractor of the chaos
game. Almost all the orbits generated in the chaos game are dense in
the Sierpinski triangle

Fig.16 (a) Sierpinski triangle, unique attractor Λ of the ITF
{D;H1, H2, H3} . (b) A subset Λ∗ of the Sierpinski triangle is the unique
attractor of the RIFS {D;H1, H2, H3} with the restriction that H1 is never

applied twice consecutively.

Moreover, in Barnsley (1988, p. 335) it is also shown how, besides the
standard IFS, we can consider a Random IFS (RIFS for short, or IFS
with probabilities) by associating a probability pi > 0 to each function
Hi, such that Σm

i=1pi = 1. Considering a point x0 ∈ D then we choose
recursively

xn+1 ∈ {H1(xn), ..., Hm(xn)}
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and the probability of the event xn+1 = Hi(xn) is pi. The iterated points
always converge to the unique attractor Λ of the standard IFS, but the
density of the points over the set Λ reflects in some way the chosen
probabilities pi. However, we note that if the probabilities in the RIFS
are strictly positive, pi > 0, then the unique attractor does not change,
and the iterated points are dense in Λ.
This may be very useful and convenient when using IFS theory ap-

plied to backward dynamic models. Using an approach similar to the
Random IFS, we can define a Restricted IFS (or IFS with restrictions)
imposing that, depending on the position of a point x ∈ D not all the
maps Hi can be applied but only some of them. Stated differently, we
can impose some restrictions on the order in which the functions can
be applied. As an example let us consider the chaos game described
above, but now with some restrictions, that is: The order in which the
three different maps Hi are applied is not completely random, but sub-
ject to certain restrictions. Suppose for example that the map H1 is
never applied twice consecutively, i.e. whenever H1 is applied then the
next map to be applied is either H2 or H3. Let Σ3 be the code space on
three symbols, and let Σ∗ ⊂ Σ3 be the subset of all sequences which do
not have two consecutive 1’s. The chaos game {D;H1,H2, H3} with the
restriction so described has a unique attractor Λ∗ whose points are in
one-to-one correspondence with the restricted space Σ∗. A typical orbit
of this chaos game with restrictions, after a short transient, is shown
in Fig.16b. The unique attractor of the chaos game with restrictions
is a subset of the Sierpinski triangle, the attractor of the chaos game.
In fact, the attractor contains precisely those points of the Sierpinski
triangle whose itinerary, or addresses, do not have two consecutive 1’s.
This example shows that when some restrictions upon the order in

which the maps are applied is imposed, then a unique fractal attractor
can arise, which is some subset of the unique attractor of the IFS.
In the following sections we shall see how IFS are related in a nat-

ural way to non-uniquely defined forward sequences within a backward
model. We will also see that the forward states can be described by IFS,
whenever the uniquely defined dynamics has homoclinic trajectories due
to the existence of a snap-back repellor.
In the next section we shall show applications of the above theorem

associated with the existence of homoclinic orbits.
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5 Homoclinic theorem in 1D.

Note that the main property in the previous construction is the existence
of two disjoint intervals, I0 and I1, such that

F k(I0) ⊃ I0 ∪ I1 and F k(I1) ⊃ I0 ∪ I1
for a suitable k, and indeed this propery is the key feature in any dimen-
sion, i.e. to prove the existence of chaos for maps in Rn whith n ≥ 1.
We shall recall this in general in Section 5, but let us here briefly recall
its application to the one-dimensional case, where a similar property
(leading to the construction of an invariant set on which the restriction
of the map is chaotic) can be repeated whenever we have a homoclinic
trajectory to some fixed point or cycle. A homoclinic trajectory to a
cycle is one which tends to the cycle in the forward process, and in some
backward one. For example, in a unimodal map it is easy to see when
the unstable fixed point p∗ becomes homoclinic (also called snap back
repeller, after Marotto [79]). See also Fig.17 where in a neighborhood U
of p∗ we can find two intervals I0 and I1 such that fk(I0) ⊃ I0 ∪ I1 and
fk(I1) ⊃ I0 ∪ I1 for a suitable k.

Fig.17 Homoclinic trajectory

In general we can state the following property for a unimodal map with
a local maximum (and a similar property with obvious changes holds for
a unimodal map with a local minimum):
Let xm be the maximum point of a unimodal continuous map of an

interval into itself, say f : I → I, smooth in I\ {xm} , with a unique
unstable fixed point x∗, and a sequence of preimages of xm tends to x∗.
Then the first homoclinic orbits (all critical) of the fixed point x∗ occur
when the critical point satisfies f3(xm) = x∗. For f3(xm) < x∗ the
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fixed point is a snap-back repellor. There exists a closed invariant set
Λ ⊆ [f2(xm), f(xm)] ⊆ I on which the map is topologically conjugate to
the shift automorphism, and thus f is chaotic, in the sense of Devaney
(i.e. topological chaos, with positive topological entropy).

The proof of the bifurcation condition is immediate, as for f3(xm) >
x∗ the fixed point x∗ has no rank-1 preimages in I, while at f3(xm) = x∗

the critical point is homoclinic and infinitely many homoclinic trajecto-
ries exist, all critical. When f3(xm) < x∗ then infinitely many noncritical
homoclinic orbits exist (close to those critical at the bifurcation value,
that is, the homoclinic points are obtained by the same sequences of
preimages of the function). So that the fixed point x∗ becomes a snap-
back repellor.
Then the existence of chaotic dymanics associated with noncritical

homoclinic orbits, let us call it "homoclinc theorem", is well known in a
one-dimensional space (see for example [79], [30], [40]). In Section 5 we
shall give a different proof of this "homoclinc theorem" for expanding
cycles in any dimension n ≥ 1, by using the ITS.
It is plain that the same result (that is, the existence of a closed

invariant set Λ on which the map is chaotic) holds for any cycle (pe-
riodic point of any period), when it is a snap-back repellor (i.e. when
homoclinic orbits exist), because the proposition above can be applied
to fixed points of the map fk, for any k > 1 (in suitable intervals for fk,
corresponding to cyclical intervals for f).
In Fig.11, showing the bifurcation diagram of the Myrberg’s map,

such invariant sets with chaotic dynamics occur for any b > b∞2 (which
represents the limit of the first period doubling sequence, after which the
cycles of period 2n become homoclinic in decreasing order of period).

Fig.18

A remarkable application of this theorem in the economic context occurs
in the study of models formulated in the so called “backward dynam-
ics”. That is, as discrete models in the form xt = F (xt+1), and the
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interest is in the behavior of the forward values of the state variable
(xt, xt+1, xt+2...). Two well known examples are the overlapping gener-
ations (OLG)-model (e.g. Grandmont, 1985 [45], [46], [101], [47]) and
the cash-in-advance model (e.g. Woodford, 1994 [117], Michener and
Ravikumar, 1998 [84]). There are no problems when the function F (.)
is invertible (as xt+1 = F−1(xt) is a standard dynamical system), while
difficulties arise in the cases in which the function F (.) has not a unique
inverse, and difficulties may also arise in the interpretation of the mod-
els. Mathematically, this kind of models have been investigated consid-
ering the space of all possible sequences, which is a space of infinite
dimension (the so-called Hilbert Cube), and is known as Inverse Limit
Theory (for the interested reader we refer to [60], [61] and the references
therein). As applications to economic models see [83], [65], [66]. How-
ever, the inverse limit approach is rather abstract (as it always considers
infinitely many states all together at once, without a real selection of
the states step by step), so we prefer to follow a different approach,
which is based on the theory of Iterated Function Systems. As stated
above, we show a kind of "bridge" between the theory of Dynamical
Systems and the theory of IFS, which is useful to describe fractal "at-
tractors" in the forward states of backward models. In [43] it is proposed
this technique applied to a one-dimensional model due to Grandmond,
where the shape of the one-dimensional unimodal map fµ(.) is reported
in Fig.18a (whose bifurcation diagram is shown in Fig.18b). Another
example is in [83], where it is proposed an overlapping generation model
represented by the backward model with the one-dimensional logistic
map xt = fµ(xt+1) = µxt+1(1 − xt+1) already seen in Section 2, and
topologically conjugated with the Myrberg’s map.
Let us consider the one-dimentional unimodal map fα(.) shown in

Fig.18a and let α∗ the bifurcation value at which the unstable fixed
point becomes a snap-back repellor. Then for any α > α∗ there are
noncritical homoclinic orbits of x∗. Let us consider an example, and
let O(x∗) = {x∗, x1, x2, ...xp, ...} be the homoclinic orbit (an example
is given in Fig.17) such that x1 = f−11 (x

∗) (while x∗ = f−10 (x
∗)), and

xi = f−10 (xi−1) for any i > 1.
Let U be a neighborhood of x∗ in which fµ(.) is expanding and such

that U1 = f−40 ◦ f−11 (U) ⊂ U, U0 = f−50 (U) (clearly U0 ∩ U1 = ∅).
Then we have that G = f−50 (.) and F = f−40 ◦ f−11 (.) are contractions
in S = U0 ∪ U1. Thus {S;F,G} is an Iterated Function System ( IFS)
which has a unique attractor Λ ⊂ S: an invariant Cantor set on which
fα is chaotic.
To find some particular sequences in the forward process, for any

initial condition x0 ∈ S let us consider the following rule: whenever we
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apply the left inverse f−11 then we apply the right inverse f−10 for at
least 4 times consecutively, i.e. any number q of times with the only
restriction q ≥ 4. It is clear that the sequence of forward states of the
backward model always belongs to the set A =

4S
i=0

Si where S0 = S,

S1 = f−11 (S), Si = f−10 (Si−1) for i = 2, 3, 4, and the points have a kind
of chaotic behavior in this set.
The "rules" which we may construct leading to bounded forward

sequences (which seem chaotic) are infinitely many. Thus it depends on
the applied meaning of the model to have meaningful rules or not. In the
economic context such rules may be associated to "sunspot" dynamics
([25], [117], [13]).

6 Dynamics in higher dimensional spaces.

After the one-dimensional case let us consider m−dimensional dynam-
ical systems T : X → X, X ⊂ Rm, m > 1. The definition of the local
stability of a fixed point x∗ can be easily extended by using the lineariza-
tion of the map, that is, the Jacobian matrix evaluated at the fixed point
JT (x

∗). When all the eigenvalues are less than 1 in absolute values then
the fixed point is locally attracting, when one eigenvalue is higher than
1 in absolute values then the fixed point is unstable.
For real eigenvalues we have properties similar to those already de-

scribed in the one-dimensional case. That is, when one eigenvalue λ
crosses through λ = −1 then a flip bifurcation may occur, while when
one eigenvalue λ crosses through λ = +1 then we may have a saddle-
node or a transcritical or a pitchfork bifurcation. However now we have
one more kind of bifurcation, related with a pair of complex conjugated
eigenvalues which cross the modulus 1. This new kind of bifurcation is
the discrete analogue of the Hopf bifurcation for flows (dynamical sys-
tems in continuous time), and it is called Neimark-Sacker (NS for short)
bifurcation in the discrete case (associated with the names of the re-
searchers who first and independently studied this kind of bifurcation).
The existence of complex eigenvalues is also reflected in the dynamic
behaviors of the trajectories, which are oscillating around the equilib-
rium, spiraling toward it when attracting or spiraling far from it when
unstable. The NS bifurcation is associated with the existence of closed
invariant curves around the fixed point or cycle (which, as usual, can
be studied as a fixed point for the iterated map). Let us recall here the
Neimark-Sacker bifurcation theorem for a two-dimensional map ([50],
[70]):
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Fig.19

Let Fµ : R2 → R2 be a one-parameter family of 2D maps which has a
smooth family of fixed points x∗(µ) at which the eigenvalues are complex
conjugates λ(µ), λ(µ). Assume
(1) |λ(µ0)| = 1, but λj(µ0) 6= 1 for j = 1, 4;
(2) d

dµ
(|λ(µ0)|) = d 6= 0. (transversality condition)

Then there is a smooth change of coordinates h so that the expression
hFµh

−1 in polar coordinates has the form hFµh
−1(r, θ) = (r(1 + d(µ −

µ0) + ar2), θ + c+ br2)+ higher-order terms. If, in addition,
(3) a 6= 0,
then there is a 2D surface Σ (not necessarily infinitely differentiable)

in R2 ×R having quadratic tangency with the plane R2 × {µ0} which is
invariant for Fµ. If Σ ∩ (R2 × {µ0}) is larger than a point, then it is a
simple closed curve.
The sign of the coefficients d and a determine the direction and sta-

bility of the bifurcating orbits, while c and b give information on the rota-
tion numbers. The NS bifurcation is called supercritical (when a < 0) or
subcritical (when a > 0) (Fig.19). We remark that numerically one can
deduce the type of the bifurcation just from the stability of the fixed
point at the bifurcation value: If the fixed point is locally attracting
(resp., repelling), then the NS bifurcation is supercritical (resp., subcrit-
ical).
A qualitative example is shown in Fig.20, where we can see that after

its appearance, via supercritical NS bifurcation, a closed invariant curve
Γ may undergo several local and global bifurcations, leading to chaotic
dynamics which often are related with an annular shape.
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Fig.20

Let us notice that for 2D linear maps the condition a 6= 0 is obviously
not satisfied, and not only at the fixed point, but in the whole region
of definition of the map. And, indeed, considering a linear map, say,
Fµ, with complex-conjugate eigenvalues λ(µ), λ(µ), if |λ(µ0)| = 1 then
the fixed point x = x∗(µ0) of Fµ is a center, so that the trajectory of
any point x 6= x∗(µ0) belongs to a related invariant ellipse and is either
periodic, or quasiperiodic, depending on the parameters. For µ 6= µ0
the fixed point is either a globally attracting focus or a repelling focus
(in which case the trajectory of any point x 6= x∗(µ) goes to infinity).
Thus the bifurcation which occurs in a 2D linear map when its complex-
conjugate eigenvalues cross the unit circle is called center bifurcation.
In the particular case of a 2D map

T :

½
x0 = F1(x, y)
y0 = F2(x, y)

then the stability analysis at a fixed point X∗ = (x∗, y∗) is quite sim-
ple. Let JT (X∗) be the jacobian matrix evaluated at the fixed point,
of elements Jij , then we have to consider the eigenvalues, roots of the
characteristic polynomial

P (λ) = det(JT (X
∗)− λI) = λ2 − Trλ+Det = 0

where
Tr = J11 + J22 , Det = J11J22 − J12J21

then the following conditions are necessary and sufficient to have all the
eigenvalues less than 1 in modulus:

i) P (1)=1− Tr +Det > 0

ii) P (−1)=1 + Tr +Det > 0

iii) Det< 1
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In the parameter plane (Tr,Det) the three conditions i), ii), iii) are
three straight lines which bound a triangle (known as stability triangle,
see Fig.21), and when the parameters are such that the representative
point (Tr,Det) is inside the triangle then the fixed point is locally at-
tracting. The bifurcation occurring when P (1) = 0 is associated with
one eigenvalues equal to +1, the one occurring when P (−1) = 0 is as-
sociated with one eigenvalues equal to −1, while the NS bifurcation is
associated with the condition Det = 1 (the curve inside the triangle
separates real from complex eigenvalues).

Fig.21 Stability triangle

6.1 Quadratic map.
In the case of maps in Rm, m > 1, chaotic dynamics may occur (as-
sociated with homoclinic orbits) also in invertible maps (as a standard
example we may refer to the Henon map). While the true extension of
the properties of the Myrberg map can be analyzed in a two-dimensional
non-invertible map. As a prototype let us consider the map T defined
by

T :

½
x0 = ax+ y
y0 = b+ x2

which was considered in [89] and [1]. The points which are the analogue
of the critical points of a one-dimensional map are now associated with
the vanishing of the Jacobian determinant. Here we have

JT (x, y) =

·
a 1
2x 0

¸
, det JT (x, y) = −2x

then the set defined by detJT (x, y) = 0, here x = 0, represents the
so called critical line LC−1 (from the french Ligne Critique, see in [51],
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[52]), and its image, LC = T (LC−1) here the line of equation y = b,
is a set which separates the phase plane into two regions: Z0 and Z2.
Each point belonging to Z0 has no rank-1 preimage, while each point
belonging to Z2 has two distinct rank-1 preimages, located one on the
right and one on the left of LC−1.

Fog.22 Foliation of the plane

In a generic two-dimensional map, and in analogy of the one-dimensional
case, the set LC−1 is included in the set where det JT (x, y) changes sign,
since T is locally an orientation preserving map near points (x, y) such
that det JT (x, y) > 0 and orientation reversing if det JT (x, y) < 0. Also
in this case, when the map is continuously differentiable the points of
LC−1 necessarily belong to the set where the Jacobian determinant van-
ishes, and LC = T (LC−1) belongs to boundaries which separate regions
Zk characterized by a different number of preimages. In order to give a
geometrical interpretation of the action of a multi-valued inverse relation
T−1, it is useful to consider a region Zk as the superposition of k sheets,
each associated with a different inverse. Such a representation is known
as Riemann foliation of the plane (see e.g. Mira et al., [89]). Different
sheets are connected by folds joining two sheets, and the projections of
such folds on the phase plane are arcs of LC. This is shown in the qual-
itative sketch of Fig.22, where the case of a Z0 − Z2 noninvertible map
is considered. This graphical representation of the unfolding action of
the inverses gives an intuitive idea of the mechanism which causes the
creation of non-connected basins for noninvertible maps of the plane.
We can easily extend the definition given above to them-dimensional

case. It is clear that the relation CS = T (CS−1) holds, and the points
of CS−1, in which the map is continuously differentiable, are necessarily
points where the Jacobian determinant vanishes. In fact, in any neigh-
borhood of a point of CS−1 there are at least two distinct points which
are mapped by T in the same point. Accordingly, the map is not locally
invertible in points of CS−1.
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Fig.23

As it occurs in one-dimensional maps, where absorbing intervals are
bounded by the images of the critical point, also now the images of
the critical curve (also called critical curves of higher rank) are used to
bound absorbing areas as well as chaotic areas. An example of chaotic
area is shown in Fig.23, and in [89] it is proved that the boundary of
the chaotic area is given by portions of critical curves belonging to the
images of the segment (called generating arc g) of LC−1 belonging to
the area itself.
The white area in Fig.24 shows the basin of attraction of the chaotic

attractor, while gray points denote points having divergent trajectories.
The basins also may have a fractal (or chaotic) structure, and a basin
may be simply connected, or connected but not simply or disconnected
(which cannot occur in invertible maps), as we shall see in Section 7.
The bifurcations leading to changes in the structure of the basins

(connected, multiply connected or disconnected) are called contact bi-
furcations (see in [89]) because they are due to the contact of the fron-
tier of the basin with the critical set LC. While bifurcations leading to
changes in the structure of the chaotic areas (reunion of chaotic pieces,
explosion to a wide area, final bifurcation, etc.) are also called contact
bifurcations but due to the contact of two (at least) different invariant
sets.
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Fig.24

It is clear now that things may be extended also to dynamics of a map T
in higher dimensions (m ≥ 3), although the related properties are more
complicated for the analysis.
As already recalled, the simplest analysis is that of the local stability

of equilibria. In particular we mention that when all the eigenvalues are
in modulus higher than 1 then the fixed point (clearly unstable) is called
expanding. Among the relevant notions associated with fixed points
and k−cycles (fixed points of the map T k) we always have the notion of
homoclinic trajectories, as these are the basic tools to rigorously show the
existence of chaotic dynamics. For expanding fixed points the extension
of the properties of the one-dimensional case is very simple, and related
with the properties of T k(I0) ⊃ I0∪I1 and T k(I1) ⊃ I0∪I1 for a suitable
k, as we shall see in the next Section.
However, homoclinic orbits may now also be related with saddle cy-

cles. For example, in a two-dimensional case, a saddle fixed point S or
cycle C is characterized by a stable manifold, or more generally by a
stable set, denoted as W s(C) which is defined as the set of points whose
forward trajectory tends to C (and in 2D it is made up of two branches
{ω1 ∪ ω2}), and by an unstable set, denoted asW u(C) which is defined as
the set of points for which at least a sequense of preimages exist leading
to C (and in 2D it is made up of two branches {α1 ∪ α2}) Then whenever
we have W s(C)∩W u(C) 6= ∅ we have homoclinic points and chaotic sets
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exist associated with a homoclinic orbit. A point q ∈ W s(C)∩W u(C) is
called homoclinic to C as the sequence of its forward images tends to
C and a suitable sequence of preimages also tends to C. The chaotic
dynamics associated to such a homoclinic orbit is well known since the
works of Smale (Smale horseshoe) and the homoclinc tangle associated
to it, shown in Fig.25, will be described in Section 6.

Fig.25 Homoclinic tangle in a saddle fixed point S.

Before closing this section we recall that in higher dimensions the exis-
tence of a closed invariant curve may occur not only via a NS bifurcation,
as stated in Section 3, but also via global bifurcations connected with
the homoclinic tangles of saddle cycles, as we shall see in Section 6.

Fig.26

As an example, in Fig.26 we show several closed invariant curves, whose
existence is not related with a NS bifurcation. In that example we have
an attracting curve ΓS and two repelling curves eΓ1 and eΓ2.This case,
occurring in a simple invertible map, may be found in [6].
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7 Homoclinic theorem for expanding periodic points.

Here we recall how chaotic behaviors exist in a dynamical system when-
ever we have transverse (which means non critical) homoclinic orbits of
expanding cycles, also called snap-back repellors by Marotto. Without
loss of generality we can deal with an expanding fixed point x∗ of a C(1)
map T from a space X into itself, X ⊂ Rm with m = 1, as for a cycle
of period k we can consider the map T k (k − th iterate of T ).
We recall that a fixed point x∗ is hyperbolic if all the eigenvalues

of JT (x∗) are different from 1 in modulus, when all are higher then 1
in modulus, then x∗ is expanding. Also, a homoclinic trajectory of a
fixed point x∗ is called non degenerate (or non critical, or transverse) if
detJT (.) 6= 0 in all the points of the homoclinic trajectory.
Definition. A fixed point x∗ of a smooth dynamical system is called a

snap-back repellor if it possesses a neighborhood U such that the Jacobian
matrix has all the eigenvalues higher than 1 in modulus in all the points
of U, and in U there exist a homoclinic point of x∗.
It is well known (as recalled before) that in any neighborhood of a

nondegenerate homoclinic trajectory we can find an invariant set Λ in
which a suitable iterate of T , and thus T , is chaotic in the sense of Li
and Yorke [71]. For the proof we refer to [30], [79], [80]. Here we give a
different proof, showing its connection with the IFS ([40], [43], [115]).
The proof consists in showing that in any neighborhood U of x∗ we

can find two disjoint compact sets, U0 and U1, U0 ∩ U1 = ∅, such that
for a suitable k we have

T k(U0) ⊃ U0 ∪ U1 and T k(U1) ⊃ U0 ∪ U1 (11)

thus for the map T k there exists an invariant chaotic set Λ ⊂ U0 ∪ U1.
In the following we illustrate:
( I) how the set property in (11) is used to construct an invariant

Cantor set Λ ⊂ U0 ∪ U1, on which T k, and thus T , is chaotic;
(II) how the set property in (11) can be found associated with a

given homoclinic trajectory;
(III) an economic application.

Fig.27 Qualitative picture showing the application of F and G on the sets
U0 and U1.
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( I) We repeat here the process already used in Section 2 in the
1D space. Let us consider eT = T k. As, from (11), eT (U0) ⊃ U0 then a
suitable inverse, say F = eT−10 , exists such that F (eT (U0)) = U0, and aseT (U1) ⊃ U1 (from (11) as well) then a suitable inverse, say G = eT−11 ,

exists such that G(eT (U1)) = U1.
Let S = U0∪U1 then F (S) is made up of two disjoint pieces U00 ⊂ U0

and U10 ⊂ U0, and the action of the map eT on such sets may be read on
the symbols which label the set, dropping the first symbol: eT (U00) = U0
and eT (U10) = U0 (see the qualitative picture in Fig.27). Similarly G(S)
is made up of two disjoint pieces U01 ⊂ U1 and U11 ⊂ U1, and the action
of the map eT on such sets may be read on the symbols which label the
set, dropping the first symbol: eT (U01) = U1 and eT (U11) = U1. And so
on, by repeating this mechanism we construct, in the limit process, a
set Λ ⊂ S = U0 ∪ U1, Λ = ∩∞n=0(F ∪ G)n(S). The elements (or sets)
Vs of Λ are in 1− 1 correspondence with the elements s = (s0s1s2s3...)
(si ∈ {0, 1}) of the space

P
2 of (one sided) infinite sequences on two

symbols. Moreover the action of the map eT in Λ corresponds to the
action of the shift map σ to elements of Σ2, that is: if x is a point of
Λ and x ∈ Vs then eT (x) ∈ Vσ(s) (when s = (s0s1s2s3...) the shift map
drops the first symbol σ(s) = (s1s2s3...) ).

Fig.28 Homoclinic trajectory in the phase plane, and neighborhoods I0 and
I1.

This set Λ constructed up to now, without any other information on the
map eT , is invariant (eT (Λ) = Λ), and its elements satisfy Vs 6= ∅ for
any s, and Vs ∩ Vs0 = ∅ for s 6= s0 : It is what we call a set with Cantor
like structure, and its elements Vs are closed and compact (and thus Λ
is closed and compact) and simply connected if so are the starting sets
U0 and U1.
When F and G are "contraction mappings" then Λ is a classical
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Cantor set of points. In fact, if the inverses F andG of eT are contractions
in U (or in S = U0 ∪ U1), the we can apply the IFS theory which states
that {U ;F,G} is an Iterated Function System ( IFS) (or {S;F,G} is a
IFS) which has a unique attractor Λ ⊂ U (or S): an invariant Cantor
set on which the map eT is chaotic.
(II) Now we show that the conditions in (11) are satisfied, and the

functions constructed in (II) are contractions, when we have a repelling
fixed point (or cycle), unstable node or unstable focus, and a non degen-
erate homoclinic trajectory, which means that the preimages of the fixed
point belonging to the considered homoclinic orbit are not on the crit-
ical curves (while degenerate homoclinic trajectories denote homoclinic
explosions). So that we prove the following:

Theorem. If a fixed point x∗ is expanding for a C(1) map T in X ⊆ Rm

with a non degenerate homoclinic orbit, then in any neighborhood of the
homoclinic orbit there exist an invariant set Λ on which T is chaotic.

Proof. Consider a compact neighborhood U of x∗ in which T is
expanding (i.e. all the eigenvalues of JT (x) are higher then 1 in modulus
for all the points x in U). Let us first show that under the assumptions
of the theorem we can always find two disjoint compact sets in U , U0 and
U1, U0 ∩ U1 = ∅, such that for a suitable k we have T k(U0) ⊃ U0 ∪ U1
and T k(U1) ⊃ U0 ∪ U1. Then we show that two suitable inverses are
contractions, so that the result comes from the properties descibed in
(I).
Let O(x∗) = {x∗, x1, x2, ...xp, ...} be the homoclinic orbit, and let

T−11 be the local inverse, satisfying T−11 (x∗) = x∗ and T−10 the inverse
such that T−10 (x∗) = x1, while the point xp is such that the repeated
applications of T−11 to xp converge to x∗. Notice that T−10 (U) ∩ U = ∅.
The nondegeneracy implies that DetJT (xi) 6= 0 in all the points of the
homoclinic orbit. The expansivity in a neighborhood implies that T−11
is a contraction in U or locally homeomorphic to a contraction, but we
can choose a suitable integer p such that T−p1 is a contraction in U.
Define G = T−p1 , and U1 = G(U). Then we apply to U the sequence
of inverses which follow the homoclinic orbit until we have again points
located inside U (see the qualitative picture in Fig.28). Define F =
T−s1 ◦ ...T−11 ◦T−10 where the integer s is such that F (U) ⊂ U and F is a
contraction in U. Define U0 = F (U). Obviously x∗ ∈ U1, U1 and U0 are
disjoint (because T−11 (U) and T−10 (U) are disjoint by construction), and
thus all the applications of the inverses by T−11 give disjoint sets, and
by properly choosing the integers p and s (number of local inverses with
T−11 ) in the construction of G and F we can assume k = p and such that
T k(U0) = U ⊃ U0 ∪ U1 and T k(U1) = U ⊃ U0 ∪ U1, so that {U ;F,G} is
an Iterated Function System (IFS) which has a unique attractor Λ ⊂ U :
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an invariant cantor set on which T k, and thus T , is chaotic, which ends
the proof.
(III) An application of this theorem to a two dimensional model

in backword dynamics is described in [43] from an overlapping genera-
tion model due to Grandmond [45], to which we refer for its deduction.
Here let us briefly say that it refers to a map T of the plane into it-
self of so-called Z0 − Z2 type: there exists a critical line LC−1 in which
DetJT (X) = 0 for any X ∈ LC−1, mapped into a line LC = T (LC−1)
which separates the plane in to regions: Z0 whose points have no rank-
1 preimages and Z2 whose points have two distinct rank-1 preimages,
T−1R (.) and T

−1
L (.) giving one point on the right and one point on the left

of LC−1, respectively. Explicitely, we have that the backward dynamics
is described by the two-dimensional backward map

(xt, yt) = T (xt+1, yt+1) = (f [a(1− δ +
1

a
)xt+1 − ayt+1], yt+1).

where the function f is unimodal, and its shape is reported in Fig.17
and Fig.18. Thus we have the two inverses of T , associated with the two
distinct inverses of f , given by

T−1i :

½
xt+1 = yt

yt+1 = (1− δ + 1
a
)yt − 1

a
f−1i (xt)

where i = L,R. At suitable values we have the fixed point X∗ of the
function T, at the L side with respect to LC−1, which is an unstable fo-
cus, with homoclinic points, i.e. it becomes a snap-back repellor. Then
we may consider backword dynamics as follows. For a suitable neigh-
bourhhood U we have that U0 = F (U) = T−7L ◦T−1R (U) ⊂ U is disjoint
from U1 = G(U) = T−8L (U), and F and G are contractions in U (see
Fig.28). Then {U ;F,G} constitutes an IFS.
Moreover, as discussed in Section 2, we can also consider the IFS with

probabilities, or Random Iteration Function System (RIFS) {U ;F,G; p1, p2},
pi > 0, p1 + p2 = 1, which means that given a point x ∈ U we consider
the trajectory obtained by applying the function F with probability p1
or the function G with probability p2, that is, one of the functions is se-
lected at random, with the given probabilities. The sequence of points is
trapped in U , i.e. the forward trajectory cannot escape, and the qualita-
tive shape of the asymptotic orbit has the set Λ as a “ghost” underlying
it. Some points in Λ are visited more often than others, that is, typi-
cal forward trajectories may be described by an invariant measure with
support on the fractal set Λ.
Thus "the generic forward trajectory" obtained in this way is a ran-

dom sequence of points in the bounded region obtained by the starting
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interval U and its images with the functions which are involved in the
definition of the contractions of the IFS. In our example, the set includ-
ing all the forward states includes U , T−1R (U), T−2RL(U), ..., T

−(8)
RL...L, that

is, the trajectory always belongs to the set

A = U ∪ T−1L (U) ∪ T−2RL(U) ∪ ... ∪ T−(8)RL...L.

Moreover, it is not always necessary to apply the function T−1L only once
in a row. In fact IFS may be constructed in which two consecutive ap-
plications of T−1L can occur. Thus we can conclude that "the generic
forward trajectory" (with the only constraint that we cannot apply the
function T−1R when it leads outside of the curve LC) is a random se-
quence of points in the bounded regions.

Fig.29 Qualitative description of the construction of the different sets
belonging to U , involved in the IFS similar to the "chaos game" associated

with the two-dimensional model.

As for the 1D case, we have infinitely many choices to construct such
functions and related invariant chaotic sets Λ. Let us construct an ex-
ample of IFS, using two (instead of one) iterations of the right inverse
map to the set U . That is we consider the neighborhood U of X∗ given
above (i.e. such that the two eigenvalues of JT are in modulus larger
than 1 in all points of U). Then apply to U the right inverse map T−1R (U)
twice, after which the left inverse map T−1L is applied n times, where n
is such that the final set is again located inside U . Such an integer exists
because we are following a homoclinic trajectory (whose existence has
been previously verified), thus applying the left inverse map repeatedly
the sequence of sets will converge to the fixed point X∗. In our exam-
ple we need k = 11 consecutive applications of T−1L to obtain a set U2
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such that U2 ⊂ U . In this way we have built a suitable inverse functioneF = T
−(2+k)
RRL...L, with k = 11 and we can assume that it is a contraction in

the euclidean norm in U (if not, we adapt eF by appling the left inverse
map T−1L as many times as necessary). Then we have U1 = eG(U) =
T
−(13)
L (U), U2 = F (U) = T

−(13)
RL...L(U) and U3 = eF (U) = T

−(13)
RRL...L(U)., De-

fine H1 = eG = T
−(13)
L , H2 = F = T

−(13)
RL...L and H3 = eF = T

−(13)
RRL...L, which

are all contractions so that {U ;H1, H2, H3} is an IFS (Fig.29).
As a third example, we will obtain an IFS similar to the chaos game

describing forward trajectories. As shown for the 1-D case, we may con-
sider the Random Iteration Function Systems, say RIFS {U ;H1,H2,H3; p1, p2, p3},
pi > 0, p1+p2+p3 = 1, which means that given a point x ∈ U we consider
the trajectory obtained by applying the function Hi with probability pi,
that is, at each date one of the functions is selected at random, with the
given probabilities. Then the random sequence of points is trapped in
U , i.e. the forward trajectory cannot escape, and the asymptotic orbit
is always dense in the chaotic set, although the distribution of points
on the fractal set may be uneven, as some regions may be visited more
often than others depending on the magnitude of the probabilities. An
example of trajectory is shown in Fig.30.

Fig.30 A trajectory of the RIFS in (a). An enlarged part in (b).
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8 Global Bifurcations of Invariant Sets and Homo-
clinic Tangles

The aim of this Section is to illustrate some global bifurcations related
to the appearance/disappearance of closed invariant curves, and to the
interaction between coexisting cycles and other invariant curves. We
shall see that such bifurcations are related to saddle connections, which
may be associated with homoclinic tangles. These global bifurcations
may arise both in invertible and non invertible maps. To achieve our
goal, we shall start considering an introductory example and then we
shall turn on some economic models, where the above cited bifurcations
take place.

8.1 Stable and unstable sets. Homoclinic tangle.
Let us consider a generic smooth map T : R2 → R2. As already defined
in Section 1, we recall that a set E ⊂ Rn is invariant for the map T
if it is mapped onto itself, T (E) = E. This means that if x ∈ E then
T (x) ∈ E, which also means that each point of E is the forward image
of at least one point of E. As we have seen, the simplest examples
of invariant sets are the fixed points and the cycles of the map. More
generally, the attracting (repelling) sets and the attractors (repellors)
of a map are invariant sets. An attracting set A is a closed invariant
set for which a neighborhood U of A exists such that the trajectories
starting in U converge to A. Here, a closed invariant set A which is not
attracting is called repelling if however close to A there are points whose
trajectories goes away from A. This definition is more suitable in this
section due to the fact that we are explicitly interested in trajectories
which are convergent to some invariant set which is not attracting (for
example when we have a saddle cycle, then it is not an attractor, but
neither an expanding repellor). Thus let us call as repelling any invariant
set which is not attracting.
Given a point x, denote by τ (x) its trajectory (i.e. the sequence

of states T n(x) for n ≥ 0), then we are interested in the asymptotic
behavior of the trajectory (i.e. what is the behavior of T n(x) for n→∞
?) so we also introduce the ω−limit set of a point x, ω(x), which is the
limit set of the trajectory τ (x) (so a point q ∈ ω(x) if it is a limit point
of τ (x) which means that there exists an increasing sequence of integers
n1 < n2 < ... < nk... such that the points T nk (x) tend to q as k →∞).
The set ω(x) is invariant and gives an idea of the long run behavior of
the trajectory from x.
The same definition can be associated with the backward iterations of

T , so obtaining the α−limit set of x: A point q ∈ α(x) if there exists an
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increasing sequence n1 < n2 < ... < nk... such that the points T
−nk
jk

(x) ,
for a suitable sequences of inverses jk in case of a noninvertible map,
tend to q as k → ∞ (clearly such a point q belongs to the limit set of
∪n≥0T−n(x)).
In the particular case of a fixed point p∗ of T we define the stable

and unstable sets of p∗ as

W st (p∗) =
½
x : lim

n→+∞
Tn(x) = p∗

¾

W un (p∗) =
½
x : lim

n→+∞
T−njn

(x) = p∗
¾

respectively, where T−njn
means for a suitable sequence of inverses. This

means that the stable set of p∗ is the set of points x having p∗ as ω-limit
set and the unstable set of p∗ is given by the points having p∗ in their
α-limit set.
If p∗ is an asymptotically stable fixed point, then its stable set co-

incides with its basin of attraction, B (p∗) , and its unstable set is not
empty if the map is noninvertible in p∗. If p∗ is an expanding fixed point,
then its unstable set is a whole area and its stable set is not empty if
the map is noninvertible in p∗.
Other important sets in the study of the global properties of a map

T are the stable and unstable sets of an hyperbolic5 saddle fixed point
p∗. Indeed, if the map T admits several disjoint attracting sets, the
stable sets of some saddles (fixed points or cycles) often play the role of
separatrices between basins of attraction.
If p∗ is a hyperbolic saddle and T is smooth in a neighborhood U

of p∗ in which T has a local inverse denoted by T−11 , the Stable Mani-
fold Theorem states the existence of the local stable and unstable sets
(defined in such a neighborhood U of p∗) as

W S
loc (p

∗) = {x ∈ U : xn = Tn (x)→ p∗ and xn ∈ U}
WU

loc (p
∗) =

©
x ∈ U : x−n = T−n1 (x)→ p∗ and x−n ∈ U

ª
.

The set WS
loc (p

∗) (resp. WU
loc (p

∗)) is a one-dimensional curve as smooth
as T , passing through p∗ and tangent at p∗ to the eigenvectors associated
with the stable (resp. unstable) eigenvalue. Then the global stable set is
made up of all the preimages of any rank of the points of the local stable
set:

WS (p∗) = ∪
n≥0

T−n
¡
WS

loc (p
∗)
¢

(12)

5A fixed point p∗ is said hyperbolic if the jacobian matrix evaluated at p∗ has no
eigenvalues of unit modulus.
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where T−n denotes all the existing preimages of rank−n, and the global
unstable set is made up of all the forward images of the points of the
local unstable set:

WU (p∗) = ∪
n≥0

T
¡
WU

loc (p
∗)
¢
. (13)

If the map T is invertible, the stable and unstable sets of a saddle p∗

are invariant manifolds of T . If the map is noninvertible, the stable set
of p∗ is backward invariant, but it may be strictly mapped into itself
(since some of its points may have no preimages), and it may be not
connected. The unstable set of p∗ is an invariant set, but it may be not
backward invariant and (contrarily to what occurs in invertible maps)
self intersections are allowed.
It is worth to observe that analogous concepts are also given for con-

tinuous flows, but the main difference here is that the stable and unstable
sets are not trajectories, but union of different trajectories (indeed infi-
nitely many distinct trajectories).

Fig.31 Stable set and unstable set of a saddle.

A qualitative representation of the local stable and unstable sets, WS
loc

and WU
loc, of a saddle fixed point p

∗ is given in Fig.31, where ES and EU

are the eigenvectors. In the following, we shall consider the stable (resp.
unstable) set of a saddle as given by the union of two branches merging
in p∗ denoted by ω1 and ω2 (resp α1 and α2) because all the points in
these branches have p∗ as ω−limit set (resp. in their α−limit set).

WS (p∗) = ω1 ∪ ω2 , WU (p∗) = α1 ∪ α2
The concepts of stable and unstable sets can be easily extended to a
cycle of period k, say C = {p∗1, p∗2, ..., p∗k} , simply considering the union
of the stable (unstable) sets of the points of the cycle considered as k
fixed points of the map T k. For example

W st (C) =
k[
i=1

W st (p∗i ) , W st (p∗i ) =
½
x : lim

n→+∞
T k n(x) = p∗i

¾
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and analogously for the unstable set. In particular, for a k−cycle saddle
we obtain the stable and unstable sets from (12) and (13) with the map
T k instead of T , that is

W S (C) =
k[
i=1

WS (p∗i ) =
k[
i=1

(ω1,i ∪ ω2,i)

WU (C) =
k[
i=1

WU (p∗i ) =
k[
i=1

(α1,i ∪ α2,i)

The importance of the stable and unstable sets is related to the fact
that they are global concepts, that is, they are not defined only in a
neighborhood of the fixed point (or cycle). Thus, being interested in the
global properties of the mapG, we may study its invariant sets, through a
continuous dialogue between analytic, geometric and numerical methods,
and focus our attention on the basins of attraction of its attractors and
on the stable and unstable sets of some of its saddle points or cycles.
If the map is nonlinear, the stable and unstable sets may intersect,

i.e. it may exist a point q such that

q ∈W S (p∗) ∩WU (p∗) .

Such a point q is a homoclinic point and it is easy to see that if a
homoclinic point exists then infinitely many homoclinic points must also
exist, accumulating in a neighborhood of p∗. Intuitively, this can be
understood observing that the forward orbit of q and a suitable backward
sequence is also made up of homoclinic points, and converge to p∗. The
union of the forward orbit and a suitable backward orbit of a homoclinic
point q is called a homoclinic orbit of p∗, or orbit homoclinic to p∗:

o (q) = {..., q−n, ..., q−2, q−1, q, q1, q2, ..., qn, ...}
where qn = Tn (q) and T n (q)→ p∗ while q−n = T−njn

(q) and T−njn
(q)→

p∗ is a suitable backward orbit. More generally, an orbit homoclinic to
a cycle approaches the cycle asymptotically both through forward and
backward iterations, so that it always belong to the intersection of the
stable and unstable sets of the cycle.

Fig.32 Homoclinic tangle
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The appearance of homoclinic orbits of a saddle point p∗ corresponds
to a homoclinic bifurcation and implies a very complex configuration of
WS andWU , called homoclinic tangle, due to their winding in the prox-
imity of p∗. The existence of an homoclinic tangle is often related to a
sequence of bifurcations occurring in a suitable parameter range, and
qualitatively shown in Fig.32. First, a homoclinic tangency (Fig.32a)
between one branch, say ω1, of the stable set of the saddle p∗ and one
branch of the unstable one, say α1, followed (Fig.32b) by a transversal
crossing between ω1 and α1, that gives rise to a homoclinic tangle, and
by a second homoclinic tangency (Fig.32c) of the same stable and un-
stable branches, occurring at opposite side with respect to the previous
one, which closes the sequence. It is worth to recall that in the para-
meter range in which the manifolds intersect transversely, an invariant
set exists such that the restriction of the map to this invariant set is
chaotic, that is, the restriction is topologically conjugated with the shift
map, as stated in the Smale-Birkhoff Theorem (see for example in [50],
[87], [116], [54], [70]). Thus we say that the map possesses a chaotic
repellor Λ, made up of infinitely many (countable) repelling cycles and
uncountable aperiodic trajectories. In the case shown in Fig.32 such a
chaotic repellor certainly exists after the first homoclinic tangency and
disappears after the second one. Before and after the homoclinic tan-
gle (i.e. before the first and after the last homoclinic tangencies), the
dynamic behavior of the two branches involved in the bifurcation must
differ: The invariant set towards which α1 tends to (or equivalently the
ω-limit set of the points of α1) and the invariant set from which ω1 comes
from (or equivalently the α-limit set of the points of ω1) before and af-
ter the two tangencies are different. Also at the bifurcation value, as
in Fig.32a, are different from those of Fig.32c. Thus we can detect the
occurrence of such a sequence of bifurcations looking at the asymptotic
behavior of the sets WS and WU .
We observe that if the saddle is a cycle C = {p∗1, p∗2, ..., p∗k}, we may

have homoclinic orbits of p∗i , i = 1, ..., k, belonging to the stable and un-
stable sets of the periodic point p∗i (considered as fixed points of the map
T k): In such a case we say that there exists points homoclinic to C. But
it may also occur that the unstable set WU(p∗i ) transversely intersects
WS(p∗i+1), i = 1, ..., k and p

∗
k+1 = p∗1: In such a case we have heteroclinic

points and heteroclinic tangle denotes the corresponding configuration
of WS and WU sets.
In the following, we shall see that, apart from the connection to

chaotic dynamics, the homoclinic (heteroclinic) tangles play a funda-
mental role in the bifurcations involving invariant closed curves.
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8.2 Invariant closed curves
Beside fixed points and cycles, invariant closed curves are possible at-
tracting or repelling sets for a map of the plane. Such curves correspond
to quasi-periodic or periodic (eventually, of very large period) trajecto-
ries and may emerge from a Neimark-Sacker (NS for short) bifurcation.
Let us briefly recall the properties of such particular sets.
Assume that E∗ = (x∗, y∗) is a fixed point of a smooth map G, for

which the Jacobian matrix DG in E∗ has complex-conjugate eigenvalues
(i.e., E∗ is a focus). As long as the eigenvalues are in modulus less than
one, the focus is stable and locally (in a small neighborhood of E∗) the
trajectories belong to spirals and tend to the fixed point. When the
eigenvalues exit the unit circle (belonging in modulus greater than one),
the focus becomes unstable (repelling) and locally the trajectories still
belong to spirals, however they have a different asymptotic behavior.
The crossing of the complex eigenvalue trough the unitary circle corre-
sponds to a NS bifurcation. The analytical conditions at which it occurs,
and the so called “resonant cases”, recalled in Section 4 now belong to
standard dynamical results which can be found in many textbooks, see
for example [62], [63], [50], [70], [116]. A NS bifurcation is related with
closed invariant curves, existing in a neighborhood of the fixed point,
and develops in two different ways, said subcritical and supercritical
types (see Fig.19 in Section 4). If the NS bifurcation is of subcritical
type, then the fixed point E∗ becomes unstable, merging with a repelling
closed curve ΓU (existing when E∗ is attracting). It is worth noting that
in such a case the closed repelling curve is generally the boundary of
the basin of attraction of the stable fixed point. After the bifurcation
the asymptotic behaviour of a point close to the fixed point depends
on the nonlinearity of the map (it may converge to another attracting
set or diverge). Otherwise, if the NS is of supercritical type, then the
fixed point E∗ becomes unstable and an attracting closed curve ΓS ap-
pears, surrounding it. Thus, after the bifurcation, the points close to E∗

converge to such closed invariant curve.
In a neighborhood of the bifurcation value, the closed invariant curve

Γ (stable or unstable) is homeomorphic to a circle, and the restriction
of the map to Γ is conjugated with a rotation on the circle. Thus the
dynamics on Γ are either periodic or quasiperiodic, depending on the
rotation number. Roughly speaking, the rotation number represents
the average number of turns of a trajectory around the fixed point.
When the rotation number is rational, say q/p, it means that a pair of
periodic orbits of period p exists on Γ, and to get the whole periodic
orbit a trajectory makes q turns around the fixed point. The dynamics
occurring in such a case on Γ are qualitatively shown in Fig.33a in case
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of a supercritical bifurcation (ΓS is attracting): The closed curve is made
up by the unstable set of the saddle cycle, and ΓS is also called a saddle-
(stable) node connection. Instead, Fig.33b shows the subcritical case
(ΓU is repelling): The closed curve is made up by the stable set of the
saddle cycle, and ΓU is also called a saddle-(unstable) node connection.

Fig.33 Saddle-node connections

When the rotation number is irrational, the trajectories of G on the
closed curve Γ are all quasiperiodic. That is, each point on Γ gives rise
to a trajectory on the invariant curve which never comes on the same
point, and the closure of the trajectory is exactly Γ.

Fig.34 Saddle-focus connections

It is worth to observe here that the destruction of the invariant closed
curve may occur in two different ways: Either because the invariant
closed curve Γ becomes no longer homeomorphic to a circle, or because
the restriction of the map on Γ becomes no longer conjugate with a
rigid rotation or an invertible map of the circle. The first case naturally
occurs when the cycle node (stable or unstable) on Γ becomes a focus:
Fig.34 qualitatively represents this case, together with a saddle-focus
connection, which may be stable (Fig.34a) or unstable (Fig.34b).
Investigating the bifurcation of a fixed point of G as a function of two

parameters, we have described in Section 4 how to derive the so called
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stability triangle (see Fig.21) whose boundaries represent the stability
loss due to different properties of the eigenvalues. That is, one side
represents a flip-bifurcation (one eigenvalue equal to −1), another side
a fold or pitchfork-bifurcation (one eigenvalue equal to +1), and a third
side the NS bifurcation (complex eigenvalues in modulus equal to+1). In
the supercritical case, such a portion of bifurcation curves is the starting
point of so called “periodicity tongues”, or Arnol’d tongues, associated
with different rational rotation numbers q/p. A peculiar property of such
tongues is associated with the summation rule ([87], [54], [57]): Between
any two tongues with rotation numbers q1/p1 and q2/p2 there is also a
tongue associated with the rotation number q0/p0 = (q1 + q2)/(p1 + p2).
Crossing transversely an Arnold tongue we observe the frequency

locking phenomenon. At the crossing of one boundary of the tongue,
two cycles (an attracting node and a saddle) appear via saddle-node
bifurcation and the invariant closed curve is given by the saddle-node
connection. As the opposite boundary is approached, the periodic points
of the two cycles move on the curve, until a second saddle-node bifurca-
tion takes place and cause the disappearance of the cycle.
It is clear that properties and bifurcations similar to those described

above for a fixed point can occur also for a k−cycle of any period k > 1,
simply considering the k periodic points as fixed points of the map Gk.
In such a case the closed invariant curves Γk of the map Gk belong to a
k−cyclical set for the map G.
Several examples of bifurcation diagrams and invariant closed curves

Γ with periodic or with quasiperiodic trajectories, will be shown in the
following examples, associated with different economic models. In par-
ticular we shall give a survey of possible mechanisms leading to the
appearance/disappearance of a closed curve, when this phenomenon is
not related to a NS bifurcation. This is the case, for example, associated
with the appearance of the repelling closed curve involved in the sub-
critical NS bifurcation. And even when a pair of parameters are let to
vary in a parameter plane outside the stability triangle, from the region
close to a supercritical pitchfork (or flip) bifurcation curve towards the
region where a supercritical NS bifurcation occurs, then global bifurca-
tions associated with (attracting and repelling) closed invariant curves
must necessarily occur. In continuous dynamical systems one of the
mechanism associated with the appearance and disappearance of closed
invariant curves involves a saddle connection: A branch of the stable set
of a saddle point (or cycle) merges with a branch of the unstable one
(of the same saddle or a different one), giving rise to an invariant closed
curve.
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Fig.35 Saddle connections: (a) homoclinic loop (b) double homoclinic loop
(c) heteroclinic loop

When the involved saddle is a fixed point, the saddle connection can
be due to the merging of one branch of the stable set and one of the
unstable set, as in Fig.35a: We shall call such a situation homoclinic
loop. Otherwise, if both the branches of the stable and unstable sets are
involved in the saddle connection we obtain an eight-shaped structure
that we shall call double homoclinic loop (see Fig.35b).
Homoclinic loops and double homoclinic loops can also involve a

saddle cycle of period k, being related to the map Gk, but in this case
we can also obtain a heteroclinic loop: Indeed, the map Gk exhibits k
saddles points and a branch of the stable set of a saddle may merge with
a branch of another periodic point of the saddle cycle.
Stated in other words, if Si, i = 1, ..., k, are the periodic points of the

saddle cycle and α1,i∪α2,i (ω1,i∪ ω2,i) are the unstable (stable) sets of Si,
then a heteroclinic loop is given by the merging, for example, of the un-
stable branch α1,i of Si with the stable branch ω1,j of a different periodic
point Sj. Then each periodic point of the saddle cycle is connected with
another one, and an invariant closed curve is so created that connects
the periodic points of the saddle cycle. In Fig.35c an heteroclinic loop
is shown, related to a pair of saddles (or a saddle cycle of period 2).
All these loops correspond to structurally unstable situations and

cause a qualitative change in the dynamic behavior of the dynamical
system. Since they cannot be predicted by a local investigation, i.e., a
study of the linear approximation of the map, we classify them as global
bifurcations. Indeed, we study this kind of bifurcation looking at the
asymptotic behavior of the stable and unstable sets of the saddle: If
a bifurcation associated with a loop has occurred, before and after the
bifurcation the involved branch of the unstable set converges to differ-
ent attracting sets, and the points of the involved stable branch have a
different α-limit set, as well.
Although homoclinic and heteroclinic loops may also occur in discrete

dynamical systems, in this case they are frequently replaced by homo-
clinic tangles, as described in Section 8.1. That is, a tangency between
the unstable branch WU

1 (S) = ∪α1,i with the stable one WS
1 (S) = ∪ω1,i

occurs, followed by transverse crossings of the two manifolds, followed
by another tangency of the same manifolds, but on opposite sides.
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8.3 Appearance of an invariant closed curve. A
simple example

Let us start to investigate the mechanisms leading to the appearance of
closed invariant curves. As a first step we analyze the global bifurcation
associated with the appearance of the repelling closed curve involved in
a subcritical NS bifurcation. To do that we consider the simple example
studied in [9], where interested readers may found major details. This
map allows us to investigate interesting situations that may be found
also in many economic applications related to business cycle models (e.g.
[67],[72],[8],[73],[10]), duopoly models (e.g. [93], [3],[4],[5]) and models
describing financial market wit heterogeneous agents (e.g. [44],[36]).
Let us consider the family of two-dimensional maps depending on 5

real parameters: a, b, c, d and k given by:

T :

½
x0 = ax+ bky + cky2 + dky3

y0 = −bx+ ay + cx2 + dx3
(14)

The map in (14) has the origin E∗ = (0, 0) as a fixed point. Analyzing
the local stability of the fixed point E∗, through the triangle of stability,
we obtain that it is locally stable if½−1 < a < 1

b = 0
∪

½ −1 < a ≤ 0
− (a+1)2

b2
< k < 1−a2

b2

∪
½

0 < a < 1

− (a−1)2
b2

< k < 1−a2
b2

Furthermore, if k = − (a− 1)2 /b2 (and 0 < a < 1) one of the eigenvalues
is −1 and a flip bifurcation occurs, whereas if k = − (a+ 1)2 /b2 (and
−1 < a < 0) a fold bifurcation occurs, being one eigenvalue equal to 1.
The particular case a = 0 and k = −1/b2 corresponds to a bifurcation
of codimension 2, being the eigenvalues equal to 1 and −1. The study
of the occurrence of these bifurcations is beyond the aim of this section.
In order to study the bifurcation occurring when 0 < k = (1− a2) /b2

we follow [50], Theorem 3.5.2 (or [70], Theorem 4.6). At this purpose,
let us set Ω = {(a, k) : −1 < a < 1 ∧ k > 0}.

Proposition 1 If b 6= 0, (a, k) ∈ Ω with a /∈ {0,−0.5} and

3db
¡
a2 + b2 − 1¢− c2

¡
a2 − b2 − 1¢ (a+ 1) (2a− 3) 6= 0 (15)

then at

k = kN =
1− a2

b2

the fixed point E∗ undergoes a Neimark-Sacker bifurcation.
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Proof. See [9]
The NS bifurcation is of supercritical type if A = 3db (a2 + b2 − 1)−

c2 (a2 − b2 − 1) (a+ 1) (2a− 3) < 0 and subcritical in the opposite case
A > 0. Here we consider this latter case.
FromProposition 1, we also deduce that the parameter value (−0.5, 3/4b2) ∈

Ω corresponds to a 1 : 3 resonant case and (0, 1/b2) ∈ Ω to a 1 : 4
resonant case. This means that at these parameter values the closed
invariant curve might appear in a very peculiar way, or there might be
several invariant curves bifurcating from the fixed point.
In the following, we shall fix the values of b, c, d and consider the

maps in (1) as depending only on the parameters a and k belonging to
the parameter space Ω = {(a, k) : −1 < a < 1 ∧ k > 0} . This restriction
of the map family allows us to focus on the scenarios associated with
the occurrence of the subcritical Neimark-Sacker bifurcation. As an
example, in our simulations, we set b = −0.4, c = −6 and d = 150 and,
from Proposition 1, we obtain that the Neimark-Sacker bifurcation is of
subcritical type if a ranges in the interval [−0.897 23, 0.661 03] .
If we look at the phase-space just after the occurrence of the subcrit-

ical NS bifurcation, we observe that the bounded trajectories converge
to an invariant closed curve ΓS, surrounding the repelling focus E∗ (see
Fig.36a), as it occurs when the NS is of supercritical type. But a more
accurate inspection permits to note that the attracting closed curve ΓS
is quite far from the fixed point. This observation exclude the occurrence
of a NS bifurcation of supercritical type and suggests that two invariant
closed curves, one attracting and one repelling have to appear when E∗

is stable. The repelling one decreases in size, merging with E∗ at the
bifurcation value, leaving ΓS as the unique attractor. The two invariant
closed curves are represented in Fig.36b.

Fig.36

The scenario represented in Fig.36b may have some important implica-
tions when occurring in some economic model. Indeed we have that the
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system converges to its dynamic equilibrium for small perturbations, but
shows no such tendency for larger shocks. Indeed, due to the existence
of a repelling curve which bounds the basin of attraction of the stable
fixed point, small shocks of the system have no effects on its dynam-
ical behaviour, but large enough shocks may lead to an aperiodic (or
periodic with large period) fluctuations or to an unfeasible trajectory
(corridor stability). We can also describe a hysteresis effect related to
such a scenario. Consider the system close to its equilibrium, before
the NS bifurcation occurring at the value kN . As k crosses the critical
value kN , the trajectories of the system converge to a large closed in-
variant curve. The loss of stability in such a bifurcation thus recall a
catastrophe. Moreover, if the parameter k is decreased again, the system
does not return to its previous equilibrium but rests in steady oscilla-
tion. This effect is illustrated in Fig.37a, where a bifurcation diagram
is obtained with increasing and decreasing values of the parameter k
and considering at each step as initial condition the state reached at the
previous iteration, and in Fig.37b, where a trajectory of the system is
represented versus and obtained assuming that a exogenous shock on
the k parameter occurs when the fixed point is still stable, causing the
destabilization of E∗. A restoration of the original value of k does not
imply the trajectory again convergent to the fixed point, since the state
of the system now belong to the basin of attraction of the attracting
closed curve coexisting with the stable focus E∗. A qualitative sketch of
the this hysteresis effect is ginven in Fig.37c

Fig.37 (a) Bifurcation diagramm. (b) Trajectory. (c) Qualitative picture

Our aim here is to study the bifurcation leading to the appearance of
the two invariant curve, and by numerical investigation, we can observe
that when they appear they are very close to each other, as in Fig.38
obtained just after the bifurcation.

53



Fig.38

The particular configuration of Fig.38 recalls the bifurcation scenario of
a saddle-node bifurcation, where at the bifurcation value a half-stable
invariant set appear, attracting points located on one side and repelling
those located on the other side. After the bifurcation, we observe the
splitting of such a set into a saddle and a node. And indeed, in many
books such a bifurcation is called saddle-node bifurcation of closed in-
variant curves, in analogy to what occurs in flows.
In order to understand the mechanism that leads to such a config-

uration of the state-phase we look at the case of periodic orbits, whose
existence is suggested by the bifurcation diagram of Fig.37a, since in such
cases, as we known, the existence of an invariant closed curve is due to
a heteroclinic connection (either a saddle-node connection or a saddle-
focus connection) and the bifurcation mechanisms associated with the
appearance of heteroclinic connections are simpler to investigate, since
they can be detected following the asymptotic behaviour of the stable
and unstable sets of the saddle cycle. The periodicity regions related to
the maps in (1) are shown in Fig.39, where a two parameters bifurcation
diagram is represented in the parameter plane (a, k). In such a figure
we observe two quite large regions: the stability region of E∗ (the yellow
points) and the divergence region (the gray points). Only a small por-
tion of the bifurcation curve (pointed out by an arrow in Fig.39) plays
the role of boundary separating these two regions: this means that at
the corresponding parameter constellations after the occurrence of the
subcritical NS bifurcation the generic trajectory is divergent. But in the
other portion of the bifurcation curve we see periodicy regions issuing
from the NS curve, before reaching the divergence region, denoting that
at least an attractor at finite distance exists after the NS bifurcation. In
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particular, the small regions in different colors correspond to the period-
icity regions, each one related to an attracting cycle. The enlargement
of two of them (corresponding to attracting cycles of period 4 and 5) is
proposed in order to appreciate the fact that they originate below the
NS bifurcation curve.

Fig.39 Two parameters bifurcation diagram.

This means that in such a case immediately before the destabilization
of the fixed point two or more attractors coexist. In the generic case,
the attracting cycle appears through a saddle-node bifurcation, which
gives also rise to a saddle cycle of the same period, and coexists with
the stable fixed point E∗. The stable set of the saddle cycle separates
the basins of attraction of the two attractors and the two branches of
the unstable set reach the fixed point and the attracting node cycle,
respectively. Then, at the appearance of the cycles no closed invariant
curves exist, while we know that a repelling closed curve must emerge
before the Neimark-Sacker bifurcation and must shrink, coalescing with
the fixed point at the bifurcation value. How such a curve appears is the
question we aim to deal.

8.3.1 Saddle-node bifurcation for closed curves

We start our analysis considering the periodicity region in which a cycle
of period 4 exists and the particural case of the subfamily of T obtained
by setting a = 0 in (14), that is, the family

T0 =

½
x0 = bky + cky2 + dky3 = f (y)
y0 = −bx+ cx2 + dx3 = g (x)

(16)

As we have seen in Proposition 1, this is a very particular case since
the fixed point E∗ undergoes a local bifurcation corresponding to a 1 : 4
resonant case, being E∗ a node which bifurcates with pure immaginary
eigenvalues (equal to ±i).
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The study of the asymptotic behaviour of the maps in (16) can be
developed in a simple way once we observe that the maps belonging to
the family T0 are such that T 20 (the second iterate of T0) results in a
de-coupled map:

T 20 (x, y) = T0 (f (y) , g (x)) = (f (g (x)) , g (f (y))) = (F (x) , G (y))
(17)

Maps having this property, that we shall call “square separate”, have
been studied in-depth in [20].
The main feature is that the dynamic behaviour of the map T0 can be

deduced from the one-dimensional map F (x) (orG (y)) in (17), obtained
by the composition of the two components of T0. Indeed there exists a
correspondence between the cycles of map F (x) and those of T0. In
particular, if x∗ is a fixed point of F , then (x∗, g (x∗)) is a fixed point
of T0 with eigenvalues6 λ1 =

p
F 0 (x∗) and λ2 = −

p
F 0 (x∗). If x∗1

and x∗2 are fixed points of F (x) then {(x∗1, g (x∗2)) , (x∗2, g (x∗1))} is a cycle
of period 2 of T0, with eigenvalue λ1 = F

0
(x∗1) and λ2 = F

0
(x∗2) . We

deduce that the map T0 has no saddle fixed points, but saddle cycles
may emerge, for instance when F has two fixed points, one attracting
and one repelling.
The local bifurcations of the one-dimensional map F correspond to

local bifurcations of T0; indeed, whenever a bifurcation occurs causing
the appearance (disappearance) of cycles of the map F , many cycles of
the map T0 simultaneously appear (disappear) at the same parameter
values. Such bifurcations of the two-dimensional map are often of par-
ticular type, due to the presence of two eigenvalues that simultaneously
cross the unit circle. In particular, a fold bifurcation of a fixed point of
F causes the appearance of two fixed points of T0, one stable and one
unstable, as well as a saddle cycle of period 2.
Moreover, we have that a vertical (horizontal) segment is mapped

into a horizontal (vertical) segment by a square separate map and the
same holds for the preimages. Consequently, as the saddle cycles always
have eigenvectors parallel to the coordinate axes (see [20]), their unstable
and stable sets consist of the union of vertical and horizontal segments
and the basins of attraction of the different attracting sets are rectangles,
if connected, or have many components with rectangular shape.
Let us return to the maps we are interested in and consider the one-

dimensional map

F (x) = bk
¡−bx+ cx2 + dx3

¢
+ck

¡−bx+ cx2 + dx3
¢2
+dk

¡−bx+ cx2 + dx3
¢3

(18)

6In the following, the symbol F 0 (x) denotes the first derivative of F (x).
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obtained by the composition of the two components of the map T0 in
(16). The map F in (18) admits e∗ = 0 as a fixed point and, being
F 0 (0) = −b2k < 0, we obtain that if k < 1/b2 the fixed point is stable.
Furthermore, by using a center manifold reduction we obtain that if
db + c2 + b2c2 − b3d < 0 (and in particular this holds in relation to the
parameters we are considering) the bifurcation occurring at k = 1/b2

is a flip of subcritical type7. This means that an unstable cycle r∗ of
period 2 exists when the fixed point is still stable and, at the bifurcation,
it merges with e∗, leaving an unstable fixed point. Then, we have that
when k < 1/b2, the cycle r∗ appears through a fold bifurcation together
with a stable one, n∗, of the same period. Then, if the parameter k
ranges in [ksn, 1/b2], where ksn is the saddle-node bifurcation value, the
one-dimensional map F exhibits the coexistence of two attractors, e∗ and
the 2-cycle n∗, whose immediate basins are separated by the periodic
points of r∗.

Fig.40

Coming back to the two-dimensional map in (16), the above detected
saddle-node bifurcation of F 2 (the second iterate of F ) causes the sudden
appearance of six cycles of period 4 of the map T0, shown in Fig.40b,
as described in [20]. Two of these cycles, the attracting node N∗ and
the repelling one R∗, correspond to the cycles n∗ and r∗ respectively.
Moreover 4 further cycles of period 4 exist: two of them, the saddles S

∗

and bS∗, due to the coexistence of N∗ and R∗, and two, a stable node
C∗ and a saddle S∗, due to the coexistence of the cycles N∗ and R∗

with the stable fixed point E∗. Summarizing, as a result of the saddle-
node bifurcation of T0 occurring at k = ksn we obtain three coexisting
attractors, the fixed point and the period 4 cycles C∗ and N∗, a repelling

7See, for example, Th. 3.5.1 in [50].
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cycleR∗, and three saddle cycles, S∗, S
∗
and eS∗. The basins of attraction

of E∗ and C∗ are made up by rectangular components separated by the
stable set of the saddle S∗ which gives rise to a heteroclinic connection
with the periodic points of the repelling cycle R∗. Such a repelling closed
curve bounds the immediate basin of attraction of E∗. The stable sets
of the two saddle cycles S

∗
and eS∗ separate the basins of attractions of

the two cycles C∗ and N∗ while the unstable ones connect the periodic
points of the two stable cycles, giving rise to a second invariant closed
curve (see Fig.40b). The two unstable cycles R∗ and S∗ are those also
involved in the flip bifurcation of the fixed point E∗, indeed as the value
k = 1/b2 is approached, the heteroclinic connection between the two
cycles shrinks, merging with E∗ at the subcritical bifurcation.
Then, starting from the one-dimensional map in (18) we have seen

that two local bifurcations occur for the map T0, a “saddle-node” bi-
furcation, giving rise to six cycles of period 4 and a “subcritical flip”
bifurcation, at which two of the cycles of period 4, a saddle and a re-
pelling node, merge with E∗ leaving an unstable node. The noticeable
point here is that immediately after the occurrence of the first bifurca-
tion two closed curves appear in the phase-space, one attracting, made
up by the unstable sets of the two saddle cycles S

∗
and eS∗, and one re-

pelling, made up by the stable set of the saddle cycle S∗, as qualitatively
represented in Fig.41b.

Fig.41 Qualitative representation of the "saddle-node" bifurcation for closed
curves

In order to explain such an appearance, we analyze the map at the bifur-
cation value k = ksn. At such a value the two cycles N∗ and R∗ coalesce
in a unique cycle (that we shall callNR∗) as well as the cycles C∗ andN∗

in the cycle CS∗. The Jacobian matrix of T0 evaluated at NR∗ has the
eigenvalues equal to ±1 then NR∗ is bifurcating along both the direc-
tions of the eigenvectors (eigen-directions for short). Furthermore, due
to the square separate property of T0, the eigen-directions are vertical
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or horizontal and, consequently, their portions running away from NR∗

must reach the cycle CS∗ (see Fig.41a and Fig.40a). On the other hand,
the cycle CS∗ bifurcates with a unique eigenvalue equal to 1, the second
one being smaller than 1 in modulus, and along the eigenvector associ-
ated with the eigenvalue 1 the two cycles C∗ and S∗ will appear. We
conclude that at the bifurcation a heteroclinic connection exists between
the two cycles CS∗ and NR∗ which surrounds the attracting fixed point
E∗. It attracts the trajectories starting from the external (with respect
to the closed curve) portion of the phase-plane and repels those having
initial condition belonging to the internal one. This is a structurally
unstable situation, which evolves in the appearance of the two invariant
closed curves of Fig.41b.
Summarizing, in this first scenario we have seen that the periodic

orbits appear through a saddle-node of codimension 2, that is, to a bi-
furcation occurring with two eigenvalues which cross the unit circle at the
same time. This particular situation allows us to obtain, at the bifurca-
tion, a half-stable invariant closed curve which is attracting from outside
and repelling from inside. Such a curve can be seen as the merging of
the two invariant closed curves, one repelling and one attracting, that
appear immediately after the bifurcation. Thus, we observe a saddle-
node bifurcation of invariant closed curves, given by the coalescence of
two closed invariant curves, one attracting and one repelling, followed
by their splitting (or their annihilation if the movement of the parame-
ters is reversed). Such a bifurcation, quite common in continuous flows,
is instead not generic when we deal with two-dimensional maps and its
occurrence in the map we are considering seems strongly related to one
of the properties of the map itself. We refer, in particular, to the “square
separate” property, that is, to the fact that the second iterate of the map
results in a de-coupled map.

8.3.2 Saddle connections

In order to consider a more generic situation we set a = 0.3 and let k
range in [5.5713, 5.635], so that the parameters belong to the periodicity
region in which an attracting cycle of period 5 exists. Indeed, at k <
5.5713 a saddle-node bifurcation causes the appearance of a stable cycle
of period 5 as well as a saddle-cycle of the same period. Immediately
after such a local bifurcation no invariant closed curves exist, as shown
in Fig.42a where the attracting cycle is turned in a focus C∗, while at
k = 5.635 two invariant closed curves exist (see Fig.42b), a repelling one
and a stable heteroclinic connection between the periodic points of the
saddle with those of the attracting cycle, turned into a focus (i.e., the
attracting curve is a saddle-focus connection). Looking at the stable and
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unstable sets of the saddle cycle, we can observe that

• i) the branch of the unstable set converging to the fixed point
E∗ in Fig.42a, after the appearance of the repelling closed curve
converges to the cycle C∗;

ii) both the branches of the stable set of the saddle come from the
frontier of the bounded trajectories in Fig.42a, while in Fig.42b one of
them exits from the repelling closed curve.

Fig.42

The enlargements in Fig.43 illustrate the different behaviour of the sta-
ble and unstable sets of the saddle cycle S∗.

Fig.43

This suggest that the appearance of the repelling closed curve can be
explained by the merging of a branch of the stable set of a saddle cycle S
with a branch of the unstable set of the same cycle. Such a merging gives

60



rise to a structurally unstable closed connection (saddle connection) be-
tween the periodic points of S, which develops causing the appearance
of two invariant closed curves, one attracting and one repelling. The
merging of the branches belonging to the stable and unstable sets of the
saddle cycle can be observed around at k = 5.632965625 (see Fig.42c).
We summarize in Fig.44a qualitative sketch of this bifurcation. Be-

fore the bifurcation, Fig.44a, an attracting focus cycle coexists with the
stable fixed point; the basins of attraction of the two attractors are sep-
arated by the stable manifold of the saddle cycle. The unstable branch
WU
1 = ∪α1,i tends to the fixed point and WU

2 = ∪α2,i to the focus cy-
cle. As the bifurcation value is approached, the stable branch ω1,i of the
saddle periodic point Si approaches the unstable branch α1,j of Sj, so
preparing the homoclinic connection. At the bifurcation (Fig.44b) we
have that the two branches ω1,i and α1,j merge giving rise to a connec-
tion between the periodic points of the saddle cycle: the attracting cycle
is external to such a connection and the branchWU

2 still converges to it.
The stable fixed point is internal to the saddle connection which bounds
its basin of attraction. Immediately after the bifurcation, an invariant
repelling close curve is created (from which the branch WS

1 comes out,
rolling up). The unstable branch WU

1 converges to the focus cycle, cre-
ating with WU

2 another closed invariant curve, attracting, given by the
saddle-focus connection (see Fig.44c).

Fig.44

This global mechanism, that does not involve saddle-node bifurcation for
closed curves, neither bifurcations of codimension 2, seems more generic
and it has been observed in different models ([6], [3], [5], [7]) and, as we
shall see in the next section, it works also when we study the interactions
between periodic and quasi periodic trajectories.
Moreover a saddle connection may also lead to the appearance of an

attracting closed curve, as shown in ([5]). We illustrate such a mech-
anism making use of the qualitative picture in Fig.45 where a pair of
cycles of period 5, a saddle and a repelling focus, is considered.
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Fig.45

Before the bifurcation, in Fig.45a, a repelling focus cycle and a saddle
cycle coexist with the attracting fixed point. The unstable set of the sad-
dle cycle converges to E∗ and the two branches of the stable one come
from different repelling sets: in particular, ω2 issues from the repelling
focus. Approaching the bifurcation, the unstable branch α1, turning
around the periodic points of the repelling focus is closer and closer to
the stable branch ω1. At the bifurcation, these two branches merge, cre-
ating a structurally unstable situation given by the saddle connection of
the periodic points of the saddle cycle (Fig.45b). Immediately after the
bifurcation, in Fig.45 c an attracting closed curve Γa appears, surround-
ing the periodic points of the cycles, at which converges the unstable
branch α1. At the same time, the stable branch ω1 gives rise with ω2 to
a repelling heteroclinic connection with the periodic points of the focus
cycle and separates the basins of attraction of E∗ and Γa.
Then, we can conclude that if the cycle C, involved in the global bi-

furcation with the saddle S, is attracting then the closed curve appear-
ing after the saddle connection is repelling, together with an attracting
saddle-connection. If the cycle C, involved in the global bifurcation with
the saddle S, is repelling then the closed curve appearing after the first
step is attracting, together with a repelling saddle-connection. In par-
ticular, in this latter case when the repelling cycle involved in it is a
node instead of a focus the two invariant closed curves may appear very
close to each other, and this is really what is numerically observed when
performing the study of the dynamical behaviours of the model, as in
Fig.38.
It is worth to observe here that the bifurcations represented in Fig.45c

and Fig.45c are simply a schematic representation. Indeed we are deal-
ing with a discrete model and thus it is possible that they occur with
an homoclinic tangle, that is in a certain parameter range the contact
between the stable and unstable set is opened by their quadratic tangen-
cies, at which homoclinic orbits appear (and related complex dynamics),
followed by transversal intersection and closed by a second quadratic
tangencies at the opposite side which destroy all the homoclinic orbits.
Some examples will be shown in the next section.
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8.3.3 Saddle-node bifurcation of a cycle

Finally, we show a further example, to illustrate a different mechanism
leading to two closed invariant curves and involving two pair of cycles,
appearing via two different saddle-node bifucations. We fix a = 0.001,
so that we slightly pertub the square separated map and we are inside to
the period 4 periodicity region. We follow a bifurcation path increasing
k from ksn, value at which a saddle-node bifurcation causes the appear-
ance of an attracting cycle C∗ of period 4 as well as a saddle cycle S∗

of the same period. Immediately after such a bifurcation we obtain the
situation represented in Fig.46a, where the stable fixed point E∗ coexist
with the two cycles and the basins of attraction of E∗ and C∗ are sepa-
rated by the stable set of the saddle cycle S∗. The two branches of the
unstable set of S∗, α1 and α2, converge to E∗ and to C∗, respectively.

Fig.46

As the parameter k increases, each branch ωi
1 of the periodic point S

∗
i

of the saddle cycle approach the branch ωi+1
2 of the subsequent periodic

point S∗i+1, as in Fig.46b where the two branches are very close, suggest-
ing that a bifurcation is going to occur. Notice that at this parameter
constellation no invariant closed curve exists, since the stable set of the
saddle cycle exits from the frontier of the set of bounded trajectories and
the unstable one connects the saddle with the two different attractors.
The situation now detected is quite different from that previously

described, where the appearance of the repelling curve was associated
with an homoclinic connection of a saddle cycle, caused by the merging
of a branch of its stable set with a branch of the unstable one. Now,
we are faced with a new mechanism since only the stable set of the sad-
dle cycle is involved in the bifurcation. Since the two branches of the
stable set cannot merge, the situation of Fig.46b suggests that some in-
variant set is appearing. And this is just what we observe increasing
the parameter k, as shown in Fig.46c. The attractors are still given by
the fixed point E∗ and the attracting cycle C∗ of period 4; the unstable
set of the saddle cycle S∗ exhibits the same behaviour as in Fig.46b,
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reaching both the attractors, but now the basins of attraction of E∗ is
bounded by a repelling closed curve ΓU . This closed curve is made up
by the stable set of the saddle cycle S∗, now coming from the periodic
points of a repelling node cycle, R∗, of period 4. The appearance of the
cycle R∗ is due to a standard saddle-node bifurcation which gives also
rise to a saddle cycle S of period 4. The stable set of this latter sad-
dle cycle separates the basins of attraction of the four fixed points C∗i ,
i = 1, 2, 3, 4, of the map T 4, fourth iterate of the map T . The unstable
set of the saddle S connects the periodic points of the attracting cycle
C∗, so giving rise to an attracting closed curve ΓS. Then, due to the
occurrence of the saddle-node bifurcation, we obtain the appearance of
two invariant closed curves, one attracting and one repelling, and Fig.47
gives a qualitative representation of the mechanism associated with such
an appearance.

Fig.47

We start from a phase space in which an attracting cycle C∗ coexists
with a stable fixed point E∗, the basins of attraction being separated
by the stable set of a saddle cycle S∗, as in Fig.47a. In this frame-
work a saddle-node bifurcation of the map T 4 occurs and causes the
appearance of a repelling cycle R∗ of period 4 of the map T together
with a saddle cycle S of the same period. It is worth to observe that
the occurring bifurcation is associated with the eigenvalue λ1 = 1 while
|λ2| > 1. Then, at the saddle-node bifurcation value, we observe the
appearance of a cycle of period 4 (RS in Fig.47b) which is half-stable
along the eigenvector associated with λ1. Along this direction we have a
structurally unstable situation, characterized by a branch (the external
one, with respect to a fictitious line joining the periodic points of the
cycles) whose points converge to RS while the internal one reaches the
saddle cycle S∗. Furthermore, the eigenvector associated with λ2 has a
branch (the external one) converging to the attracting cycle C∗, while
the internal one belongs to the stable set of the saddle cycle S∗. As a
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result, we obtain an invariant closed curve, made up by the stable set
of the saddle S∗ which connects the periodic points of the cycle RS.
Immediately after the bifurcation (Fig.47b) the cycle RS splits up into
a repelling node cycle R∗ and a saddle cycle S; the stable set of the
saddle S∗ persists to give rise to a repelling closed curve, connecting the
periodic points of R∗, and an attracting closed curve appears, made up
by the unstable set of the saddle S which connects the periodic points
of the cycle C∗. Comparing Fig.47b and Fig.41b we remark that the
two bifurcation mechanisms are quite different, even if both are due to
a saddle-node bifurcation of the map T and T0, respectively. Indeed,
while in this latter case at the bifurcation value the two invariant curves
coalesce and are half-stable, the sequence commented above gives not
the merging of the two curves, since at the bifurcation a unique hete-
roclinic connection exists and is attracting only along a branch of the
eigenvector associated with the eigenvalue 1.

8.4 Interaction between invariant closed curves and
cycles. A business cycle model

In this section we consider a map T that exhibits some multistability
phenomena, at least one of the attractor being a closed curve. In such
situations, the invariant closed curve may interact with the other attrac-
tors and interesting dynamic phenomena may occur, often associated
with homoclinic or heteroclinic tangles. In particular, we shall show two
different global bifurcations. The first one causes the transition from one
repelling closed curve to two disjoint repelling closed curves; the second
one causes the transition from an attracting closed invariant curve, say
Γa, with a pair of cycles of period k outside it, a saddle S and an attract-
ing one, C, to a wider attracting closed invariant curve, say Γb, with the
two cycles inside it.
In order to illustrate the mechanisms associated with these phenom-

ena, we consider the following discrete-time version of the Kaldor non-
linear model of the business cycle½

Yt+1 = Yt + α (It − (Yt − Ct))
Kt+1 = It + (1− δ)Kt

(19)

where the dynamic variables Yt and Kt represent the income (or output)
level and the capital stock in period t, respectively, and both the invest-
ment It and the consumptionCt (or equivalently the savings St = Yt−Ct)
are assumed to depend in general on Yt and Kt.
The first equation in (19) views the output level as reacting over time

to the excess demand or, put differently, to the difference between ex-
ante investment (It) and saving (St = Yt−Ct). The speed of adjustment
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is measured by the parameter α (α > 0), where a value of α smaller than
1 means a prudent reaction by firms, while a value of α greater than 1
denotes rash reactions and coordination failure.
The second equation in (19) models the capital stock as being in-

creased by realized investment (here assumed to coincide with ex-ante
investment) It = It (Kt, Yt), and decreased by depreciation δKt, where δ
(0 < δ < 1) represents the capital stock depreciation rate.
The discrete dynamical equations (19) (or, alternatively, their continuous-

time counterparts) provide the common structure of several versions of
the Kaldor model, which have been proposed in the literature up to now
(see [33], [57], [48], [23], [8], [10] among others), and a different exam-
ple will be also shown below. Such models are able to produce both
periodic or quasi-periodic trajectories and further dynamic scenarios,
ranging from chaotic fluctuations to coexistence of different attractors,
once the investment and the savings function It and St are specified in
a way consistent with Kaldor’s original qualitative assumptions.
The assumptions about consumption (Ct) and investment (It), which

are the same as in [57], [74] and [8], are

• Consumption
At each time t, the consumption is a nonlinear sigmoid shaped
function of income:

Ct = c0 +
2

π
c1 arctan

µ
πc2
2c1

(Yt − Y ∗)
¶

(20)

where Y ∗ denotes the exogenously assumed equilibrium (or nor-
mal) level of income and c0, c1, c2 are positive parameters. The
consumption is therefore an increasing function of income (ranging
between c0 − c1 and c0 + c1): however, while for extreme values
of income consumption remains nearly constant, i.e. the fraction
of income spent for consumption decreases as income increases,
there exists a region around the normal level Y ∗ where consump-
tion increases rapidly at a rate close to c2, which represents the
consumption propensity at Y ∗ (we assume 0 < c2 < 1). The
consumption function (20), or equivalently the inverted S-shaped
savings function St = Yt−Ct, reflects the view that the proportion
of income which is saved is higher in non-ordinary periods, when
Yt is far from Y ∗, because in such periods people perceive a larger
portion of their income as being transitory.

• Investment
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At each time t, the investment is a linear function of income and
capital stock. Precisely it is assumed that (gross) investment re-
sponds to a gradual adjustment of the actual capital stock to the
desired capital stock

It = b
¡
Kd

t −Kt

¢
+ δKt

whereKd
t is the desired stock of capital at time t, which is assumed

linear in current output,Kd
t = kYt, k represents the desired capital-

output ratio (which will be considered as an exogenous parameter
here) and b, 0 < b < 1, is the capital stock adjustment parameter.
Therefore the investment function can be rewritten as a linear
function of income and capital, as follows

It = bkYt − (b− δ)Kt (21)

where the Kaldorian negative relation between investment and cap-
ital stock is fulfilled provided that b > δ.

Substituting the consumption and investment functions (20)-(21) in
model (19) we get(
Yt+1 = (1− α+ αbk)Yt + α

³
c0 +

2
π
c1 arctan

³
πc2
2c1
(Yt − Y ∗)

´
− (b− δ)Kt

´
Kt+1 = b (kYt −Kt) +Kt

(22)
from which the coordinates of the exogenous fixed point can be easily
obtained ½

Y ∗ = c0
1−kδ

K∗ = kY ∗ = kc0
1−kδ

In order to simplify the analysis of the model (22), we normalize the
fixed point to (0, 0), by reformulating the model in terms of deviations½

xt = Kt − kY ∗

yt = Yt − Y ∗
(23)

With the new coordinates (23), the dynamical system (22) is represented
by the following map

T :

(
x0 = (1− b)x+ bky

y0 = α (δ − b)x+ (1− α+ αbk) y + 2
π
αc1 arctan

³
πc2
2c1

y
´ (24)

Note first that the map T is independent on c0, which means that c0 is
only a “location” parameter and does not affect the asymptotic behav-
iour of the system. Second, though the map T depends on 6 parameters,
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in our analysis we will assume b, k, δ, c1 as fixed parameters, and we
will perform stability and bifurcation analysis in the parameter space

Ω = {(α, c2) : α > 0 and 0 < c2 < 1}

The properties of the map T in (24) are studied in [8], at which the
interested reader is addressed for major details. We only recall here the
symmetric property of T , whose implications is that any invariant set of
T either is symmetric with respect to the origin, or it admits a symmetric
invariant set, and the existence of a region in the parameter space where
the map is not invertible (being a Z1 − Z3 − Z1 map). In our analysis
we shall consider a parameter range in which T is invertible. Even the
existence of the fixed points and the local stability of the exogenous
fixed point (obtained as usual by the localization of the eigenvalues of
the Jacobian matrix) is performed in [8] and we only recall the main
results:

Proposition 2 The map T in (24) has

• the unique fixed point E∗ = (0, 0), if c2 ≤ 1− kδ or 1− δk ≤ 0
• three fixed points, E∗ = (0, 0) and two further points, P ∗ and Q∗,
symmetric with respect to E∗, if c2 > 1− kδ > 0.

Proposition 3 Assume δk < 1, b < 1.

• If b > δ and (2− b)2 > bk (4− 4δ + δb) the fixed point E∗ =
(0, 0) is locally asymptotically stable if the parameters α and c2
belong to the region OABCD of the plane (α, c2), with vertices

O = (0, 0), A =
³

2(2−b)
2−b−bk(2−δ) , 0

´
, B =

³
(b−2)2
bk(b−δ) ,

(2−b)2−bk(δb−4δ+4)
(−2+b)2

´
,

C =
³

b
k(b−δ) , 1− δk

´
, D = (0, 1− δk), where the sides AB, BC

and CD belong to the hyperbola of equation

c2 = c2f (α) =
α− 2
α
− bk (2− δ)

2− b
(25)

to the hyperbola of equation

c2 = c2N (α) = 1 +
b− αbk (1− δ)

α (1− b)
(26)

an to the line c2 = 1− δk, respectively;
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• if b > δ and (2− b)2 < bk (4− 4δ + δb) the fixed point E∗ = (0, 0)
is locally asymptotically stable if the parameters α and c2 belong
to the region OBCD of the plane (α, c2), with vertices O = (0, 0),

B =
³

b
bk(1−δ)−(1−b) , 0

´
, C =

³
b

k(b−δ) , 1− δk
´
, D = (0, 1− δk),

where the sides BC and CD belong to the hyperbola of equation

c2 = c2N (α) = 1 +
b− αbk (1− δ)

α (1− b)

an to the line c2 = 1− δk, respectively;

• if b < δ the fixed point E∗ = (0, 0) is locally asymptotically sta-
ble if the parameters α and c2 belong to the region OABD of the
plane (α, c2), with vertices O = (0, 0), A =

³
2(2−b)

2−b−bk(2−δ) , 0
´
, B =³

2−b
k(δ−b) , 1− δk

´
, D = (0, 1− δk), where the sides AB and BD be-

long to the hyperbola of equation

c2 = c2f (α) =
α− 2
α
− bk (2− δ)

2− b

an to the line c2 = 1− δk, respectively.

Moreover if the point (α, c2) exits the stability region by crossing
the side AB, then a supercritical flip bifurcation occurs at which
E∗ becomes a saddle point and a period 2 attracting cycle appears;
if the point (α, c2) exits the stability region by crossing the side
BC, then a Neimark bifurcation occurs at which E∗ is transformed
from a stable focus to an unstable focus and an attracting closed
invariant curve appears around it; if the point (α, c2) exits the sta-
bility region by crossing the side CD, then a supercritical pitchfork
bifurcation at which two stable fixed points are created close to E*,
which becomes a saddle.

In the following we shall consider δ ≤ b, so that self-sustained oscilla-
tory behavior around the unstable fixed point E∗ occur, and (2− b)2 <
bk (4− 4δ + δb). In this parameter region the exogeneous fixed point can
be destabilized only via pitchfork bifurcation or via a NS bifurcation and
we shall follow a bifurcation path starting from a point corresponding
to two stable fixed points P ∗ and Q∗ and an unstable fixed point E∗, lo-
cated in the middle, i.e. a situation of bi-stability (without oscillations),
and moving towards a region where self-sustained oscillations exist (see
Fig.48).

69



Fig.48

However, our global analysis will point out that long-run oscillatory be-
havior is possible even for high values of c2 (beyond the pitchfork bound-
ary), in parameter ranges where two further equilibria P ∗ and Q∗ exist
and are stable, or where they exist unstable but further stable periodic
orbits exist. This will reveal phenomena of coexistence of the Kaldorian
business cycle with other possible long-run dynamic outcomes, where
the role played by the initial condition will be crucial.

8.4.1 From one repelling closed curve to two repelling ones

Immediately after the pitchfork bifurcation of the exogenous fixed point
E∗, two attracting fixed points, the nodes P ∗ and Q∗, appear, located
at symmetric positions with respect to the saddle E∗. Their basins of
attraction are separated by the stable manifold W S (E∗). The unstable
set WU (E∗) reaches the two fixed points: more precisely, a branch, say
α1, tends to P ∗ whereas the other one, say α2, goes to Q∗.
The phase portrait of Fig.49a shows an example of this situation:

it has been obtained at α = 1.5 and c2 = 0.98, then quite far from
the bifurcation. Indeed at this parameter values the two nodes have
turned into stable foci and the stable set of the saddle exhibits some
convolutions separating the basins of attraction of P ∗ and Q∗, B (P ∗)
and B (Q∗) respectively, represented in red and gray respectively.
As the speed of adjustment α increases, the set WS (E∗) involves

more and more, winging around the fixed points P ∗ and Q∗, as shown in
Fig.49b. Consequently, the basin boundary appear to be more compli-
cated and a trajectory starting from the region where the convolutions
get thicker is subject to greater uncertainty about its long run behav-
iour. In fact, a slight perturbation of an initial condition taken in such
a region may cause a crossing of the basin boundary and consequently
the convergence to a different equilibrium.
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Fig.49

Moreover this basin structure suggests that some global bifurcation is
about to occur. Indeed, when α is slightly increased, as in Fig.50a, an
attracting closed curve Γ appears in the area where there was many
convolutions of W S (E∗). This means that long-run quasi-periodic self-
sustaining fluctuations are now a possible outcome, as well as dampened
oscillations converging to the fixed points: three typical trajectories,
starting from initial condition taken in the three different basins, are
represented versus time in Fig.50b.

Fig.50

The basins of attraction of P ∗ and Q∗ are still separated by the stable
manifold of the saddle E∗, but, differently from the case illustrated in
Fig.49, now the preimages of the points of WS (E∗) accumulate on a re-
pelling closed curve eΓ, appeared with Γ and very close to it (see Fig.50).
The appearance of Γ and eΓ could be due in principle to a “saddle-node”
bifurcation for closed curves, given that the two curves are very close
each other, but we know that such a bifurcation is very infrequent in
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discrete maps. Then a mechanism similar to that described in the pre-
vious section may be conjectured in this case: a saddle cycle appears
via saddle-node together with a repelling (attracting) node cycle of the
same period, then a saddle connection made up by the merging of two
branches of the stable and unstable manifolds of the saddle gives rise
to an attracting (repelling) closed invariant curve and to a heteroclinic
connection between the periodic points of the two cycles made up by
the stable (unstable) set. These two invariant closed curves appear very
close to each other and if the period of the cycle is very high they look
like those of Fig.50a.
Whatever be the underlying mechanism, the appearance of the two

invariant closed curves, one attracting and one repelling, has a noticeable
effect on the asymptotic behaviour of the model, since three attractors
now coexist (the two equilibria, P ∗and Q∗, and the closed curve Γ), the
basins B (P ∗) and B (Q∗) are strongly reduced and the majority of the
trajectories are quasi-periodic (or periodic of very high period), since
the curve eΓ is now the basin boundary of Γ.
Moreover the repelling closed curve eΓ is involved in other important

qualitative change in the structure of the basins of attraction as the
adjustment speed is increased further. Indeed, as we can see in Fig.51a,
it progressively reduces in size and shrinks in proximity of the saddle E∗.
Up to now, initial conditions taken close to the exogenous equilibrium
give rise to trajectories converging to P ∗ or Q∗, but this is not true in
the parameter constellation of Fig.51c, where trajectories starting close
to E∗ exhibit self-sustaining oscillations.

Fig.51

This means that the points of the unstable manifold ofE∗ no longer reach
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the two equilibria but converge to Γ. This change in the asymptotic
behaviour of WU (E∗) proves that a global bifurcation has occurred,
involving both the unstable branches of the saddle E∗. Indeed in the
phase portrait of Fig.51b we can observe the splitting of eΓ into two
repelling closed curves, ΓP and ΓQ, each one bounding the basin of
the corresponding fixed point. These two repelling closed curves are
the α-limit sets of the points of the two branches ω1 and ω2 of the
stable set WS (E∗), which have modified their behaviour as well. Then
we deduce that when the parameter α ranges from 1.568 to 1.57, a
homoclinic bifurcation of E∗ occurs, whose effect is the transition from
one “big” repelling closed curve, basin boundary of the attracting set
{P ∗, Q∗}, to two “small” repelling closed curves, basin boundaries of
B (P ∗) and B (P ∗) respectively. This situation can be classified as a
double homoclinic loop, since it involves both the branches of the stable
and unstable sets of the saddle E∗: its evolution is represented in Fig.52,
where some enlargements of the phase space as well as of the stable and
unstable sets of E∗ are shown.

Fig.52

The first homoclinic tangency is shown in Fig.52a,b, obtained at α =
1.56855: the branch α1 of WU (E∗) converges to P ∗ and it is completely
contained in its basin of attraction; the same is true for α2 with respect
to the fixed point Q∗. The stable branches have a complex structure:
the repelling closed curve Γ is replaced by a strange repellor, generated
by the tangency and separating the basins of {P ∗, Q∗} and Γ. After the
transversal crossing of WS (E∗) and WU (E∗) , at which more and more
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homoclinic points of E∗ are created, the second homoclinic tangency
occurs at α = 1.5685501, as shown in Fig.52c,d, and closes the tangle.
The homoclinic points of E∗ disappear as well as the chaotic repellor,
leaving the two disjoint curves ΓP and ΓQ as boundaries of the basins of
attraction of P ∗ and Q∗, respectively. After the homoclinic tangle both
the branches of WU (E∗) converge to the attracting closed curve Γ and
those of the stable set WS (E∗) come from the repelling closed curve ΓP
and ΓQ.
A different illustration of this homoclinic tangle, occurring in a very

narrow parameter α range, is proposed in Fig.53, where we show the
asymptotic behaviour of the whole unstable set of the saddle E∗. In
Fig.53a, obtained at the same parameter value as Fig.53a corresponding
to the first homoclinic tangency, the points of WU (E∗) converge to the
two equilibria, forming an eight-shaped structure; then, in Fig.53b the
unstable set WU (E∗) enters the basin of attraction of the attracting
closed curve Γ as well as that of the attracting set {P ∗, Q∗}: the sep-
arator of the three basins of attraction is a chaotic repellor, associated
with the infinitely many periodic points existing close to the homoclinic
trajectories. As α is further increased, more and more points ofWU (E∗)
converge to Γ until at the second homoclinic tangency, shown in Fig.53c,
no points of the unstable set converge to the two stable foci.

Fig.53

As the parameter α further increases, the two repelling closed curves
ΓP and ΓQ become smaller and smaller, until a new bifurcation value
α = eαN is reached at which a Neimark subcritical bifurcation occurs:
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the two repelling closed curves collapse in P ∗ and Q∗ respectively and at
α > eαN the attracting closed curve Γ is the unique surviving attractor,
since the two fixed points become unstable foci.

8.4.2 Interaction between coexisting invariant curve and cy-
cles.

After the subcritical Neimark bifurcation of P ∗ andQ∗, the saddleE∗ co-
exists with two repelling foci, from which the stable set W S (E∗) comes.
The points of the unstable manifoldWU (E∗) converges to the attracting
closed curve Γ surrounding the three unstable fixed points.
This situation persists until at a certain value of α, say αsn, a saddle-

node bifurcation occurs, causing the appearance of two cycles of period
8, a saddle, S, and a stable node, C , which turns into a stable focus cy-
cle immediately after. The two cycles are located outside the attracting
closed curve and, as α increases from αsn, a larger and larger portion
of trajectories exhibits period-8 oscillations, as shown in Fig.54a, where
the basins of attraction of the two attractors are represented in yellow
and light blue. The points close to the endogenous equilibrium E∗ still
give rise to quasi-periodic fluctuations.

Fig.54

The phase portrait shown in Fig.54b is completely different: quasi-
periodic and period-8 trajectories still coexist, but now the attracting
closed curve eΓ surrounds the stable focus cycle C and the majority of
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the trajectories exhibit quasi-periodic motion. Moreover the long run
behaviour of trajectories starting in the area close to E∗ is no longer
predictable, since a small shock on them may have strong consequences
given the many and many convolution of the separatrix of the two basins
in this area.
The global mechanisms which cause this important modification in

the basin structures, transforming an attracting closed curve, coexist-
ing with a stable cycle external to it, in a larger one, surrounding it,
has to involves the stable and unstable sets of the saddle, since they
change behaviour. Indeed, in Fig.54a, obtained at α = 1.7 > αsn, two
attractors exist, the closed curve Γ and a focus cycle C, surrounding the
curve, while the two basins, B (C) and B (Γ), are separated by the stable
manifold W S (S) = ω1 ∪ ω2 of the saddle S. Both the branches of the
stable manifold have as α-limit set the frontier of the set of bounded
trajectories. The branches of the unstable one WS (S) reach the at-
tracting closed curve (α1) and the stable focus cycle (α2). While, in
Fig.54b, two attractors still exist, the closed curve Γ and the focus cycle
C, surrounded by the curve; the stable manifold of the saddle cycle still
separate the basins of attraction of the two attractors, but its α-limit
set now belongs to the attracting set given by the three fixed points.
Moreover, the branches of the unstable one play the opposite role, α1
reaching the stable focus and α2 the attracting closed curve. Then, to
understand the bifurcation, we follow these invariant sets, increasing
slowly the parameter α.

Fig.55

As the parameter α is increased, the two branches ω1 and α1 start to
oscillate until a homoclinic tangency occurs. More precisely, at α =
1.7102384 the stable branch α1,i of the periodic point Si has a tangen-
tial contact with the unstable branch ω1,j of a different periodic point
Sj (see Fig.55a) and this occurs cyclically for all the periodic points of
the saddle S. This contact is the starting point of a heteroclinic tangle,
which develops in a transversal crossing of the involved inner branches
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(Fig.55b) and closes at α = 1.7102387, at which value a second cyclical
homoclinic tangency occurs (Fig.55c). Observe that at the end of the
heteroclinic tangle, the two branches α1 and ω1 (but not α2 and ω2) have
exchanged they reciprocal position with respect to Fig.55a. Approaching
the heteroclinic tangle, the curve Γ exhibits more and more oscillations,
as in Fig.56a obtained at the same parameter values of Fig.55a, before
its disappearance. Moreover during the tangle a chaotic repellor R is
created in the area occupied by the transversal crossing of the two man-
ifolds. The presence of the chaotic repellor can be detected by looking
the map T 8 and, in particular, to the basins of attraction of its 8 sta-
ble fixed points given by the periodic points of the attracting cycle C.
As we show in Fig.56b, such basins, well separated in a portion of the
phase-space, are instead strongly intermingled in the area occupied by
the transversal crossing of the two manifolds, denoting the existence of
infinitely many repelling cycles which cause an erratic behaviour of the
trajectories converging to the different fixed points.

Fig.56

The existence of the R has important effects on the long run behaviour
of the trajectories starting from the area occupied by the chaotic repel-
lor, since they have a very long transient part before to reach the period
8 oscillations.
The effects of the observed heteroclinic tangle are illustrated in Fig.57:

the attracting closed curve Γ disappears, or better, it comes into reso-
nance with the cycle, forming an attracting set with the saddle S and
the focus cycle C, with C the attractor within it. leaving the focus cycle
C as unique attractor (Fig.57a). More precisely, Γ has been replaced by
the heteroclinic connection of the periodic points of the cycles, made up
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by the unstable manifold of the saddle S which reach the periodic points
of the focus cycle (Fig.57b).

Fig.57

With a similar mechanism the final situation of Fig.54b is obtained.
Indeed, increasing α the two outer branches α2 and ω2 approach each
other, oscillating. This is the prelude to a new heteroclinic tangle, still
occurring in a very small range of the parameter α: the first tangen-
tial contact between the unstable branch α2,i of the periodic point Si
and the stable branch ω2,j of a different periodic point Sj is followed by
their transversal crossing and then by the homoclinic tangency occurring
at the opposite side with respect to the previous one (as illustrated in
Fig.58).

Fig.58

In the area occupied by the transversal crossing of the invariant sets, a
chaotic repellor appears at the first homoclinic tangency (see Fig.59a),
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persists during the transversal crossing phase and disappears at the clos-
ing of the tangle: consequently, the trajectories starting close to it have
a longer transient part before converging to the period 8 cycle. But the
main effect of this global bifurcation is the appearance of an attracting
closed curve eΓ, which replaces the heteroclinic connection between the
periodic points of the cycles S and C. As soon as it has appeared, it
exhibits many oscillations, as shown in Fig.59b obtained at the same
parameter value as Fig.58c, and surrounds the periodic points of the
attracting cycle. As α increases, eΓ becomes smoother and smoother
reaching the shape of Fig.54b.

Fig.59

To sum up, we qualitatively describe the sequence of bifurcations caus-
ing the transition from an attracting closed invariant curve with a pair
of cycles outside it, a saddle and an attracting one, into another wider
attracting closed invariant curve, occurring via heteroclinic loops of the
saddle. Let us consider the situation described in Fig.60. In Fig.60a we
have an attracting closed invariant curve Γa, and a pair of cycles that
have been created via a saddle-node bifurcation outside Γa. Such ex-
ternal cycles do not form an heteroclinic connection, whereas the stable
set of the saddle S bounds the basin of attraction of the related attract-
ing fixed points Ci of the map T k. The unstable branches α1,i of Si
tend to the attracting curve Γa, while the unstable branches α2,i of Si
tend to the attracting cycle. At the bifurcation (Fig.60b) we may have
that the closed invariant curve Γa merges with the unstable branches
WU
1 (S) = ∪α1,i and with the stable ones WS

1 (S) = ∪ω1,i as well, in a
heteroclinic loop, or tangle, of the saddle S, causing the disappearance
of the attracting closed invariant curve Γa, and leaving another closed
invariant curve, see Fig.60c, which is now the heteroclinic connection
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Figure 1: Fig.60

involving the saddle S and the related attracting cycle C. After the
bifurcation of the heteroclinic loop a closed curve still exists, but differ-
ently from Γa it includes the two cycles on it (Fig.60c).
Starting from this situation, a second heteroclinic loop (or tangle)

may be formed. The heteroclinic connection turns into a heteroclinic
loop in which the unstable branches WU

2 (S) = ∪α2,i merge with the
stable ones WS

2 (S) = ∪ω2,i (see Fig.60d). After the bifurcation a new
closed attracting curve exists, say Γb, and the two cycles are both inside
Γb (Fig.60e). The stable set of the saddle S separates the basins of
attraction of the k attracting fixed points Ci of the map T k. The unstable
branches ∪α1,i tend to the attracting cycle while the unstable branches
∪α2,i tend to Γb.
As we have seen, in the case of discrete dynamical systems, the dy-

namic behaviors more frequently observed is such that the heteroclinic
loop of Figs.60b,d are replaced by homoclinic tangles. That is, a tangency
occurs between the two manifolds involved in the bifurcation, followed
by transverse intersections and a tangency again on the opposite side,
after which all the homoclinic points of the saddle S, existing during the
tangle, are destroyed.
It is worth noticing that all the unstable periodic points associated

with the first homoclinic tangle, due toWU
1 (S)∩WS

1 (S) 6= ∅, are in the
region interior to the set of periodic points of the saddle S, whereas in the
strange repellor associated with the second homoclinic tangle, in which
WU
2 (S) ∩WS

2 (S) 6= ∅, all the unstable cycles are “outside” the saddle
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cycle S. Notice also that before the first heteroclinic loop (tangle) of
Fig.60 we have two distinct attracting sets: Γa and the stable k−cycle
outside it; after the second one of Fig.60, we have again two distinct
attractors: Γb, which is wider than Γa, and the k−cycle inside it, while
between the two heteroclinic loops only one attractor may survive, that
is the k-cycle.
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9 Basin of attraction and related contact bifurca-
tions.

In this section we recall some definitions and properties associated with
the basins of attractiong sets. Let us consider an m−dimensional map
x0 = T (x) and an invariant attracting set A ⊂ Rm (thus it is mapped
into itself, T (A) = A, i.e. if x ∈ A then Tn(x) ∈ A for any n > 0). As
already defined, the Basin of attraction of A is the set of all the points
that generate trajectories converging to A

B (A) = {x|T n(x)→ A as n→ +∞ } . (27)

Starting from the definition of attracting set, let U(A) be a neighborhood
of a A whose points converge to A. Of course U(A) ⊆ B (A), but note
that also the points of the phase space which are mapped inside U after
a finite number of iterations belong to B (A). Hence, the total basin of
A (or briefly the basin of A) is given by

B (A) =
∞[
n=0

T−n(U(A)), (28)

9.1 One-dimensional maps
Let us start with one-dimensional, continuous and noninvertible maps, to
we illustrate how non-connected basins of attraction arise. Furthermore,
we show how the global bifurcations that cause their qualitative changes
can be described in terms of contacts between critical points and the
basins’ boundaries.
Let us first take a look at iterated invertible maps though. If f :

I → I is a continuous and increasing function, then the only invariant
sets are the fixed points (as already remarked in Section 1). When many
fixed points exist, say x∗1 < x∗2 < ... < x∗k, they are alternatingly stable
and unstable: the unstable fixed points are the boundaries that separate
the basins of the stable ones. Starting from an initial condition where
the graph of f is above the diagonal, i.e. f(x0) > x0, the generated
trajectory is an increasing sequence converging to the stable fixed point
on the right, or it is diverging to +∞. On the other hand, starting from
an initial condition such that f(x0) < x0, the trajectory is a decreasing
sequence converging to the fixed point on the left, or it is diverging
to −∞ (see Fig.61a, where p∗ is a stable fixed point, and its basin is
bounded by two unstable fixed points q∗ and r∗, where q∗ < p∗ and
r∗ > p∗). If f : I → I is a continuous and decreasing map, the only
possible invariant sets are one fixed point and cycles of period 2. Periodic
points of the cycles of period 2 are located around the fixed point, the
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unstable ones being boundaries of the basins of the stable ones (see
Fig.61b, where a stable fixed point x∗ exists, and its basin is bounded
by the periodic points α1, α2 of an unstable cycle of period 2).

Fig.61

In general, in the case of one-dimensional invertible maps the only kinds
of attractors are fixed points and cycles of period two. In the first case,
the basin is an open interval which includes the fixed point, and in
the second case, the basin is the union of two open intervals, each one
including an attracting periodic point.
Obviously, if the map is invertible, the basins of the attracting sets are

simple. This may be no longer true if the map is noninvertible. In this
case the structure of a basin may be very complicated. Non-connected
portions of the basins may be created, given by open intervals that do
not include any point of the related attractor. As a first example, let us
consider the logistic map (3) (Fig.8 of Section2), a noninvertible Z0−Z2
map whose graph is represented again in Fig.62.

Fig.62

For µ < 4 every initial condition x0 ∈ (0, 1) generates bounded se-
quences, converging to a unique attractor A (which may be the fixed
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point x∗ = (µ− 1) /µ or a more complex attractor, periodic or chaotic).
Initial conditions out of the interval [0, 1] generate sequences diverging to
−∞. The boundary that separates the basin of attraction B (A) of the
attractor A, from the basin B (∞) is formed by the unstable fixed point
q∗ = 0 and its rank-1 preimage (different from itself), q∗−1 = 1. Observe
that, of course, a fixed point is always preimage of itself, but in this case
also another preimage exists because q∗ ∈ Z2. If µ < 4, as in Fig.62a,
then q∗−1 > c = µ/4, where c is the critical point (maximum) that sep-
arates Z0 and Z2. Hence, q∗−1 ∈ Z0. When we increase µ, at µ = 4
we have q∗−1 = c = 1, and a contact between the critical point and the
basin boundary occurs. This is a global bifurcation, which changes the
structure of the basin (really it destroys the basin). For µ > 4 (Fig.62b)
we have q∗−1 < c, and the portion

¡
q∗−1, c

¢
of B (∞) enters Z2. This

implies that new preimages of that portion are created, which belong
to B (∞) according to (28). As we know, almost everything will then
belong to the basin of divergent trajectories, the only points which are
left on the interval I are the points belonging to the chaotic invariant
set Λ, as described in Section 2 (on which the restriction of the map is
still chaotic).
A similar situation occurs for a unimodal Z0 − Z2 map where the

attractor at infinity is replaced by an attracting fixed point, as the one
shown in Fig.63a. As in the previous example, we have an attractor A,
which may be the fixed point x∗ (or some other invariant set around it),
with a simply connected basin bounded by the unstable fixed point q∗

and its rank-1 preimage q∗−1. This example differs with respect to the
previous one in so far as in this case initial conditions taken in the com-
plementary set generate trajectories converging to the stable fixed point
z∗. This means that the basin B (z∗) is formed by the union of two non-
connected portions: B0 = (−∞, q∗) ⊂ Z2, which contains z∗ (it is usually
called immediate basin, the largest connected component of the basin
which contains the attractor) and B1 =

¡
q∗−1,+∞

¢
= f−1 (B0) ⊂ Z0. In

Fig.63a the two non-connected portions of the basin B (z∗) are marked by
bold lines. Interesting effects occur, if some parameter variation causes
an increase of the critical point c (maximum value) until it crosses the
basin boundary q∗−1. If this happens, the interval (q

∗
−1, c), which is part

of B1, enters Z2, and infinitely many non-connected portions of B (z∗)
emerge in the interval (q∗, q∗−1). Note that the total basin can still be
expressed as the union of all the preimages of any rank of the immediate
basin B0.
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Fig.63

Another interesting situation is obtained if we change the right branch of
the map of Fig.63a by folding it upwards such that another critical point,
a minimum, is created. Such a situation is shown in Fig.63b. This is a
noninvertible Z1−Z3−Z1 map, where Z3 is the portion of the codomain
bounded by the relative minimum value cmin and relative maximum value
cmax. In the situation shown in Fig.63b we have three attractors: the
fixed point z∗, with B (z∗) = (−∞, q∗), the attractor A around x∗, with
basin B (A) = (q∗, r∗) bounded by two unstable fixed points, and +∞
(i.e. positively diverging trajectories) with basin B (+∞) = (r∗,+∞).
In this case all the basins are immediate basins, each being given by an
open interval. In the situation shown in Fig.63b, both basin boundaries
q∗ and r∗ are in Z1, so they have only themselves as unique preimages
(like for an invertible map). However, the situation drastically changes
if, for example, some parameter changes causes the minimum value cmin
to move downwards, until it goes below q∗ (as in Fig.63c). After the
global bifurcation, when cmin = q∗, the portion (cmin, q∗) enters Z3, so
new preimages f−k (cmin, q∗) appear with k ≥ 1. These preimages con-
stitute non-connected portions of B (z∗) nested inside B (A), and are
represented by the thick portions of the diagonal in Fig.63c.

9.2 Two-dimensional maps.
To better understand the subject, we consider a first example taken
from Bischi and Kopel [22]: a dynamic duopoly game in the tradition of
Cournot. In contrast to the early models on oligopoly dynamics, in their
model players form adaptive expectations and players’ reaction functions
are unimodal. This framework gives rise to a situation of multistability,
where the basins of each stable Nash equilibrium is a rather complicated
set. The second example presents a dynamic brand competition model
proposed by Bischi, Gardini and Kopel [21]. In this game a unique and
stable fixed point exists, but the basin of the fixed point can have a very
complicated structure. Several other examples may be fowd in [89], [2],
[96], [97].
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9.2.1 Example 1: Quantity-setting duopoly games with adap-
tive expectations

The first example we present is a dynamic Cournot duopoly game with
unimodal reaction functions. The two quantity-setting firms produce ho-
mogeneous goods and, since they do not know the competitor’s output,
they try to predict this quantity using an adaptive scheme. Let x1 (t)
and x2 (t) be the outputs at time period t. The two players determine
their production quantities of the next period, x1 (t+ 1) and x2 (t+ 1),
by solving the optimization problems

Max
x1

Π1 (x1, x
e
2(t+ 1)) ; Max

x2
Π2 (x

e
1(t+ 1), x2) (29)

where Πi is the profit of player i, and xei (t + 1), i = 1, 2 represent the
predictions for the output of the competitor. The solutions of the opti-
mization problems (assumed to be unique) are denoted by

x1 (t+ 1) = r1 (x
e
2(t+ 1))

x2 (t+ 1) = r2 (x
e
1(t+ 1))

(30)

where r1 and r2 are called the Best Replies (or reaction functions). In the
original work of Cournot [26], as well as in much of the literature which
followed, naive expectations xei (t+ 1) = xi (t) have been considered.
Under the assumption of naive expectations each firm expects or predicts
that the quantity offered by the competitor in the next period will be
the same as in the current period. The time evolution of the duopoly
system is then represented by the two-dimensional discrete dynamical
system

(x1 (t+ 1) , x2 (t+ 1)) = (r1 (x2 (t)) , r2 (x1 (t))) (31)

which is also referred to as the Cournot tâtonnement process. In contrast
to this, in Bischi and Kopel [22] firms are assumed to revise their beliefs
according to the adaptive expectations scheme

xe1 (t+ 1) = xe1 (t) + α1 (x1 (t)− xe1 (t))
xe2 (t+ 1) = xe2 (t) + α2 (x2 (t)− xe2 (t))

(32)

If the relations (30) are inserted into (32), one gets the following two-
dimensional dynamical system in the belief space

xe1 (t+ 1) = (1− α1)x
e
1 (t) + α1r1 (x

e
2 (t))

xe2 (t+ 1) = (1− α2)x
e
2 (t) + α2r2 (x

e
1 (t))

. (33)

Of course, the quantities chosen by the competitors can be obtained by
the transformations x1 (t) = r1 (x

e
2 (t)), x2 (t) = r2 (x

e
1 (t)), i.e. by a
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mapping from the belief space into the action space. The fixed points of
the dynamical system (33), defined by xei (t+ 1) = xei (t), i = 1, 2, i.e.

xe1 (t) = r1 (x
e
2 (t))

xe2 (t) = r2 (x
e
1 (t))

(34)

are located at the intersections of the two reaction curves and are inde-
pendent of the adjustment coefficients α1 and α2. In other words, a fixed
point is a situation where beliefs are not further revised and quantities do
not change, and at the fixed points the expected outputs coincide with
the realized ones. Hence, in belief space we are considering a situation
where beliefs are consistent and this corresponds to a Nash equilibrium
in the quantity space. In Bischi and Kopel [22] the following reaction
functions have been considered

r1(x2) = µ1x2 (1− x2)
r2(x1) = µ2x1 (1− x1)

(35)

It has been shown elsewhere (see Kopel, [69]) that if the competitors
regard their products as strategic complements over a certain range of
the set of admissible actions, the functions given in (35) can be derived
as Best Responses, and the parameters µi, i = 1, 2 measure the intensity
of the positive externality the actions of one player exert on the payoff
of the other player.
To simplify the notation, we rename the expected outputs by setting

x(t) = xe1 (t) and y(t) = xe2 (t). Inserting the reaction functions specified
in (35) into (33), the time evolution of the competitors’ beliefs is obtained
by the iteration of the two-dimensional map T : (x, y)→ (x0, y0) defined
by

x0 = (1− α1)x+ α1µ1y (1− y)
y0 = (1− α2) y + α2µ2x (1− x)

(36)

Under the assumption µ1 = µ2 = µ , the fixed points can be expressed
by simple analytical expressions: besides the trivial solutionO = (0, 0), a
positive symmetric equilibrium exists for µ > 1, given by S = ((µ− 1)/µ, (µ− 1)/µ).
Two further equilibria E1 = (x̄, ȳ) and E2 = (ȳ, x̄) exist for µ > 3, where
x̄ =

¡
µ+ 1 +

√
ψ
¢
/2µ, ȳ =

¡
µ+ 1−√ψ¢ /2µ with ψ = (µ+ 1)(µ− 3).

These equilibria are located in symmetric positions with respect to the
diagonal ∆. The corresponding Nash equilibria have the same entries.
As shown in Bischi and Kopel [22], a wide range of parameters µ, α1,
α2 exists such that E1 and E2 are both stable. Accordingly, a prob-
lem of equilibrium selection arises, which leads to the question of the
delimitation of the two basins of attraction B (E1) and B (E2).
As already remarked, the properties of the inverses of the map be-

come important in order to understand the structure of the basins and
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their qualitative changes. The map (36) is a noninvertible map. This
can be deduced from the fact that given a point (x0, y0) ∈ R2, its rank-
1 preimages may be up to four; they can be computed by solving the
fourth degree algebraic system (36) with respect to x and y. The critical
curves are computed as follows: LC−1 coincides with the set of points
in which the Jacobian determinant vanishes, i.e. det JT = 0, where

JT (x, y) =

·
1− α1 α1µ1 (1− 2y)

α2µ2 (1− 2x) 1− α2

¸
(37)

and LC = T (LC−1). So, LC−1 is an equilateral hyperbola, of equationµ
x− 1

2

¶µ
y − 1

2

¶
=
(1− α1) (1− α2)

4α1α2µ1µ2
. (38)

Fig.64

Since LC−1 is formed by the union of two disjoint branches, say LC−1 =
LC

(a)
−1 ∪ LC

(b)
−1, it follows that also LC = T (LC−1) is the union of two

branches, say LC(a) = T (LC
(a)
−1 ) and LC(b) = T (LC

(b)
−1), see Figs.64a,b.

The branch LC(a) separates the region Z0, whose points have no preim-
ages, from the region Z2, whose points have two distinct rank-1 preim-
ages. The other branch LC(b) separates the region Z2 from Z4, whose
points have four distinct preimages. Any point of LC(a) has two coin-
cident rank-1 preimages, located at a point of LC(a)

−1 , and any point of
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LC(b) has two coincident rank-1 preimages, located at a point of LC(b)
−1,

plus two further distinct rank-1 preimages, called extra preimages. Fol-
lowing the terminology of Mira et al. [89], we say that the map (36) is a
noninvertible map of Z4 > Z2−Z0 type, where the symbol “>” denotes
the presence of a cusp point in the branch LC(b) (see Fig.64b). The cor-
responding Riemann foliation is shown in Fig.64c. Different sheets are
connected by folds joining two sheets, and the projections of such folds
on the phase plane are arcs of LC. The cusp point of LC is characterized
by three merging preimages at the junction of two folds.
In order to study the structure of the basins and explain the global

bifurcations that change their qualitative properties, we first consider
the symmetric case of players with homogeneous expectations, i.e. α1 =
α2 = α. In this case, the map (36) has a symmetry property, as it
remains the same if the variables x and y are swapped. Formally, we
have T (P (x, y)) = P (T (x, y)), where P : (x, y)→ (y, x) is the reflection
through the diagonal ∆ = {(x, x) , x ∈ R}. This symmetry property
implies that the diagonal ∆ is a trapping subspace for the map T , i.e.
T (∆) ⊆ ∆. The trajectories embedded in ∆ are governed by the re-
striction of the two-dimensional map T to ∆, i.e. f = T |∆ : ∆ → ∆.
The map f , obtained by setting x = y and x0 = y0 in (36), is given by
x0 = f(x) = (1 + α (µ− 1)) x−αµx2. In the symmetric case of homoge-
neous players we can give a complete analytical characterization of the
global bifurcation that transforms the basins from simply connected sets
to multiply connected. In fact, the following result is given in Bischi and
Kopel [22]:

If µ1 = µ2 = µ and α1 = α2 = α and the equilibria E1 and E2 are
both stable, then the common boundary ∂B (E1) ∩ ∂B (E2) which sepa-
rates the basin B (E1) from the basin B (E2) is given by the stable set
W s(S) of the saddle point S. If α (µ+ 1) < 1 then W s(S) = OO

(1)
−1,

where O = (0, 0) and O
(1)
−1 =

³
1+α(µ−1)

αµ
, 1+α(µ−1)

αµ

´
, and the two basins

are simply connected sets. If α (µ+ 1) > 1 then the two basins are non-
connected sets, formed by infinitely many simply connected components.

The bifurcation occurring at α (µ+ 1) = 1 is a global bifurcation. It
cannot be revealed by a study of the linear approximation of the dynam-
ical system and the occurrence of such a bifurcation can be characterized
by a contact between the stable set of the symmetric fixed point S and a
critical curve. In order to explain this, we start from a set of parameters
such that both of the basins are simply connected, like in Fig.65a, where
µ1 = µ2 = µ = 3.4 and α1 = α2 = α = 0.2 < 1/(µ + 1). For this set of
parameters, four fixed points exist, indicated by O, S, E1 and E2. The
fixed points O and S are saddle points, whereas the Nash equilibria E1
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and E2 are both stable, each with its own basin of attraction. These
basins, B (E1) and B (E2), are represented by white and light grey re-
spectively (the dark grey region represents the set of initial conditions
which generate unbounded trajectories; we could refer to this set as the
basin of infinity). In this situation, any bounded trajectory starting with
xe1(0) > xe2(0) (x

e
1(0) < xe2(0)) converges to E1 (E2). In economic terms

this means that an initial difference in the expectations of the competi-
tors uniquely determines which of the equilibria is selected in the long
run. Expectations of the players become self-fulfilling: if xe1(0) > xe2(0)
(xe1(0) < xe2(0)) then xe1(t) > xe2(t) (x

e
1(t) < xe2(t)) for any t and equilib-

rium E1, where firm 1 dominates the market (equilibrium E2 at which
firm 2 dominates the market) is selected in the long run. In contrast to
this, the situation shown in Fig.65b, where the value of the parameter µ
is the same, but α1 = α2 = 0.5 > 1/(µ+1), is quite different. In fact, in
this case the basins are no longer simply connected sets. Many portions
of each basin are present, both in the region above and below the di-
agonal, and the adjustment process of our dynamic game starting with
initial beliefs xe1(0) > xe2(0) (or x

e
1(0) < xe2(0)) may lead to convergence

to either of the equilibria.

Fig.65

Now let us turn to an explanation of the global bifurcation which causes
the transition between these rather different structures of the basins.
First notice that the boundary separating B (E1) and B (E2) contains
the symmetric equilibrium S as well as its whole stable set W s(S). In
fact, just after the creation of the two stable fixed points E1 and E2 for
µ = 3, the symmetric equilibrium S ∈ ∆ is a saddle point. The two
branches of the unstable set W u(S) departing from it reach E1 and E2
respectively. Hence, since a basin boundary is backward invariant (see
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Mira et al., [89], [88]), not only the local stable setW s
loc(S) belongs to the

boundary that separates the two basins, but also its preimages of any
rank: W s(S) =

S
k≥0 T

−k (W s
loc(S)). Because of the symmetry property

of the system (36) with homogeneous players, the local stable set of S
belongs to the invariant diagonal ∆. As long as α (µ+ 1) < 1, the whole
stable set W s(S) belongs to ∆ and is given by W s(S) = OO

(1)
−1, where

O
(1)
−1 is the preimage of O located along ∆. Observe that if α (µ+ 1) < 1
holds, the cusp point K of the critical curve LC(b) has negative coordi-
nates and, consequently, the whole segment OO(1)

−1 belongs to the regions
Z0 and Z2, see Fig.65a. This implies that the two preimages of any point
of OO(1)

−1 belong to ∆ (they can be computed by the restriction f of T
to the invariant diagonal ∆). This proves that the segment OO(1)

−1 is
backward invariant, i.e. it includes all its preimages. The structure of
the basins B (Ei), i = 1, 2, is very simple: B (E1) is entirely located be-
low the diagonal ∆ and B (E2) is entirely located above it. Both of the
basins B (E1) and B (E2) are simply connected sets.
Their structure becomes a lot more complex for α (µ+ 1) > 1. In

order to understand the bifurcation occurring at α (µ+ 1) = 1, we con-
sider the critical curves of the map (36). At α (µ+ 1) = 1 a contact
between LC(b) and the fixed point O occurs, due to the merging be-
tween O and the cusp point K.8 For α (µ+ 1) > 1, the portion KO of
WS

loc (S) belongs to the region Z4, where four inverses of T exist. This
implies that besides the two rank-1 preimages on ∆, the points of KO
have two further preimages, which are located on the segment O(2)

−1O
(3)
−1

of the line ∆−1. Since OO
(1)
−1 = W s

loc(S) ⊂ ∂B (E1) ∩ ∂B (E2), also its
preimages of any rank belong to the boundary which separates B (E1)
from B (E2). So the rank-1 preimages of the segment O(2)

−1O
(3)
−1, which ex-

ist because portions of it are included in the regions Z2 and Z4, belong
to W s (S) as well, being preimages of rank-2 of OO(1)

−1. This repeated
procedure, based on the iteration of the multi-valued inverse of T , leads
to the construction of the whole stable set W s(S).
Similar results can be obtained in the case of heterogeneous players,

8To compute the coordinates of the cusp point of LC(b) notice that in any point
of LC−1 at least one eigenvalue of DT vanishes. In the point C−1 = LC

(a)
−1 ∩ ∆ =

(c−1, c−1), with c−1 = (α (µ− 1) + 1) /2αµ, the eigenvalue zk with eigendirection
along ∆ vanishes, and its image C = LC(a) ∩ ∆ = (c, c) with c = f(c−1) =
(α (µ− 1) + 1)2 /4αµ is the point at which LC(a) intersects ∆. This corresponds to
the unique critical point of the restriction of T to∆. At the other intersection of LC−1
with ∆, given by K−1 = LC

(b)
−1 ∩ ∆ = (k−1, k−1) with k−1 = (α (µ− 1)− 1) /2αµ

the eigenvalue z⊥ vanishes, and the curve LC(b) = T (LC
(b)
−1) has a cusp point

(see e.g. Arnold et al., 1986) K = LC(b) ∩ ∆ = (k, k) with k = f(k−1) =
(α (µ+ 1)− 1) (αµ+ 3(1− α)) /4αµ
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where the heterogeneity arises e.g. due to different speeds of adjustment
α1 6= α2. The main difference with respect to the homogeneous case lies
in the fact that the diagonal ∆ is no longer invariant. Even if the fixed
points remain the same, the basins are no longer symmetric with respect
to ∆. Nevertheless, many of the arguments given above continue to hold
in the case of heterogeneous beliefs. In particular, the boundary which
separates the basin of equilibrium E1 from that of E2 is still formed by
the whole stable set W s(S), but in the case α1 6= α2 the local stable
set W s

loc(S) is not along the diagonal ∆. The contact between W s(S)
and LC(b), which causes the transition from simple to complex basins,
does not occur at O (since now O /∈ W s(S)) and no longer involves the
cusp point of LC(b). So, the parameter values at which such contact
bifurcations occur cannot be computed analytically.
In Fig.66a, obtained with µ = 3.6, α1 = 0.55 and α2 = 0.7, the two

equilibria E1 and E2 are stable, and their basins are connected sets. An
asymmetry in the expectation formation process has a negligible effect
on the local stability properties of the equilibria, but it results in an
evident asymmetry in the basins of attraction. As shown in Fg.66a,
when α2 > α1 the extension of B (E2) is, in general, greater than the
extension of B (E1).
Moreover, the situation is not always as simple as in Fig.66a. The

symmetric equilibrium S is a saddle fixed point and is included in the
boundary — the whole stable setW s(S) — which separates the two basins.
It can be noticed that in the simple situation shown in Fig.66a, the whole
stable setW s(S) is entirely included inside the regions Z2 and Z0. How-
ever, the fact that a portion of W s(S) is close to LC suggests that a
contact bifurcation may occur if, e.g., the adjustment coefficients are
slightly changed. In fact, if a portion of B (E1) enters Z4 after a contact
with LC(b), new rank-1 preimages of that portion will appear near LC(b)

−1.
This is the situation illustrated in Fig.66b, obtained after a small change
of α1. The portion of B (E1) inside Z4 is denoted byH0. It has two rank-
1 preimages, denoted by H

(1)
−1 and H

(2)
−1 , which are located at opposite

sides with respect to LC
(b)
−1 and merge on it (by definition the rank-1

preimages of the arc of LC(b) which bound H0 must merge along LC
(b)
−1).

The set H−1 = H
(1)
−1 ∪H(2)

−1 constitute a non-connected portion of B (E1).
Moreover, since H−1 belongs to the region Z4, it has four rank-1 preim-
ages, denoted by H

(j)
−2 , j = 1, ..., 4 in Fig.66b, which constitute other

four “islands”9 of B (E1). Points of these “islands” are mapped into H0

after two iterations of the map T . Indeed, infinitely many higher rank
preimages of H0 exist, thus giving infinitely many smaller and smaller

9We follow the terminology introduced in Mira et al. 1994 [88].
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disjoint “islands” of B (E1). Hence, at the contact between W s (S) and
LC, the basin B (E1) is transformed from a simply connected into a
non-connected set, constituted by infinitely many disjoint components.
The larger connected component of B (E1) which contains E1 is the im-
mediate basin B0 (E1), and the whole basin is given by the union of the
infinitely many preimages of B0 (E1): B (E1) =

S
k≥0 T

−k (B0 (E1)). Ob-
serve that even if small differences between the adjustment speeds have
negligible effects on the properties of the attractors, they may cause re-
markable asymmetries in the structure of the basins, which can only be
detected when the global properties of the economic model are studied.

Fig.66

So, as in the one-dimensional case, the global bifurcation which causes
a transformation of a basin from connected set into the union of infi-
nitely many non-connected portions, is caused by a contact between a
critical set and a basin boundary. However, since the equations of the
curves involved in the contact often cannot be analytically expressed in
terms of elementary functions, the occurrence of contact bifurcations can
only be revealed numerically. This happens frequently in the study of
nonlinear dynamical systems of dimension greater than one: results on
global bifurcations are generally obtained through an interplay between
theoretical and numerical methods, and the occurrence of these bifurca-
tions is shown by computer-assisted proofs, based on the knowledge of
the properties of the critical curves and their graphical representation.
This “modus operandi” is typical in the study of global bifurcations of
nonlinear two-dimensional maps.
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9.2.2 Example 2: A rent-seeking/competition game

The second dynamic model we present is used to describe a market
game where a population of consumers can choose between two brands
of homogeneous goods which are produced by two competing firms. Let
x1 and x2 represent the marketing efforts of two firms (e.g. advertising
effort) andB the total sales potential of the market (in terms of customer
market expenditures). If firm 1’s effort is x1 and firm 2’s effort is x2,
then the shares of the market (in terms of sales) accruing to firm 1 and
to firm 2 are Bs1 and Bs2 = B −Bs1, where

s1 =
ax

β1
1

ax
β1
1 + bx

β2
2

, s2 =
bx

β2
2

ax
β1
1 + bx

β2
2

. (39)

The terms A1 = ax
β1
1 and A2 = bx

β2
2 represent the recruitment of cus-

tomers by firm 1 and 2, given the firms’ efforts x1 and x2. The parameters
a and b denote the relative effectiveness of the effort made by the firms.
Since dA1

dx1
x1
A1
= β1 and

dA2
dx2

x2
A2
= β2, the parameters β1 and β2 denote the

elasticities of the attraction of firm (or brand) i with regard to the effort
of firm i. A dynamic model is obtained by assuming that the two com-
petitors adjust their marketing efforts in response to the profits achieved
in the previous period:

T :


x1 (t+ 1) = x1(t) + λ1x1(t)

³
B [x1(t)]

β1

[x1(t)]
β1+k[x2(t)]

β2
− x1(t)

´
x2 (t+ 1) = x2(t) + λ2x2(t)

³
B [x2(t)]

β2

[x1(t)]
β1+k[x2(t)]

β2
− x2(t)

´ (40)

The parameters λi > 0, i = 1, 2, measure the rate of this adjustment and
k := b/a.
An important feature of the map (40) is that the two coordinate axes

are invariant lines, since T (x1, 0) = (x01, 0) and T (0, x2) = (0, x
0
2). The

dynamics of (40) along the axis xi = 0 are governed by one-dimensional
maps x0j = fj(xj), where fj is the restriction of T to the correspond-
ing axis. The map fj is given by fj(xj) = (1 + λjB)xj − λjx

2
j . It is

conjugate to the standard logistic map (??) by the homeomorphisms
xj = x (1 + λjB) /λj, where the parameters µ is given by µ = 1 + λjB.
Thus, the properties of the trajectories embedded in the invariant axes
can be easily deduced from the well-known properties of the standard
logistic map (3).
The fixed points of the map (40) are the solutions of the system

x1
³
B

x
β1
1

x
β1
1 +kx

β2
2

− x1
´
= 0

x2
³
B

kx
β2
2

x
β1
1 +kx

β2
2

− x2
´
= 0

(41)
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There are three evident “boundary solutions”,

O = (0, 0) ; E1 = (B, 0) ; E2 = (0, B) , (42)

but O is not a fixed point because the map is not defined in it. The
fixed points E1 and E2 are related to the positive fixed points of the one-
dimensional quadratic maps f1 and f2 governing the dynamics along the
invariant axes. There is also another fixed point, interior to the positive
quadrant R2+, given by

E∗ = (x∗1, B − x∗1) . (43)

The coordinate x∗1 ∈ (0, B) is the unique solution of the equation F (x) =
k

1
1−β2 x

1−β1
1−β2 + x − B = 0, since F a continuous function with F (0) < 0,

F (B) > 0 and F 0(x) > 0 for each x > 0. With a given set of parameters
B, β1 and β2, the positive fixed point E∗ is locally asymptotically stable
for sufficiently small values of the adjustment speeds λ1 and λ2. It loses
stability as one or both of the adjustment speeds are increased and more
complex attractors are created around it.
In the following we focus our attention on the global properties of

the map (40), in particular on the boundaries of the feasible set B. This
feasible set is defined as the set of points which generate trajectories
which are entirely in the positive orthant (feasible trajectories). A feasi-
ble trajectory may converge to the positive fixed point E∗, to other more
complex attractors inside B or to a one-dimensional invariant set embed-
ded inside a coordinate axis (the last occurrence means that one of the
two brands disappears). Trajectories starting outside of the set B repre-
sent infeasible evolutions of the economic system. As proved in Bischi,
Gardini and Kopel [21], (40) is a noninvertible map of Z4 > Z2−Z0 type,
and the qualitative shape of the critical curves, as well as the Riemann
foliation, are similar to the ones of the previous example, see Fig.64c. As
before, starting from the knowledge of the global properties of the map
(40), we illustrate how the boundaries of the feasible set changes when
a structural parameter of the game is changed. By using the method of
critical curves, we try to reveal the mechanism which is responsible for
these changes.
With values of the parameters βi in the range (0.2, 0.3), our nu-

merical investigation has shown that the invariant coordinate axes are
transversely repelling, i.e. they act as repelling sets with respect to tra-
jectories approaching them from the interior of the nonnegative orthant.
Moreover, for the parameters used in our simulations, we have observed
only one attractor inside B, although more than one coexisting attrac-
tors may exist, each with its own basin of attraction. On the basis of
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this numerical evidence, in what follows we will often speak of a unique
bounded and positive attracting set A, which attracts the generic fea-
sible trajectory, even if its existence and uniqueness are not rigorously
proved. Let ∂B be the boundary of B. Such a boundary can have a
simple shape, as in the situation shown in Fig.67a, where the attractor
A is the fixed point E∗ and B is represented by the white region. How-
ever, the basin can also have a very complex structure, as in Fig.67b,
where, again, B is given by the white points and A is a chaotic attractor
represented by the black points inside B.

Fig.67

An exact determination of ∂B is the main goal of the remainder of this
analysis. Let us first consider the dynamics of T restricted to the invari-
ant axes. We know that the maps fj that govern the dynamics along the
invariant axes are topologically conjugated to the logistic map (3). This
insight is important, and the reader is urged to recall the properties of
this one-dimensional map (see Section 2). For λ1B ≤ 3 (corresponding
to µ ≤ 4), we can deduce that bounded trajectories along the x1 axis
are obtained, as long as the initial conditions are taken inside the seg-
ment ω1 = OO

(1)
−1. The point O

(1)
−1 is the rank-1 preimage of the origin O

computed for the one-dimensional restriction f1, i.e.

O
(1)
−1 =

µ
1 + λ1B

λ1
, 0

¶
. (44)

Divergent trajectories along the x1 axis are obtained starting from an
initial condition out of the segment ω1. Analogously, when λ2B ≤ 3,
bounded trajectories along the invariant x2 axis are obtained provided
that the initial conditions are taken inside the segment ω2 = OO

(2)
−1. In
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this case the point O(2)
−1 is the rank-1 preimage of the origin computed

for the restriction f2, i.e.

O
(2)
−1 =

µ
0,
1 + λ2B

λ2

¶
. (45)

Divergent trajectories along the x2 axis are obtained starting from an
initial condition out of the segment ω2. Consider now the region bounded
by the segments ω1 and ω2 and their rank-1 preimages ω−11 = T−1 (ω1)
and ω−12 = T−1 (ω2). Such preimages can be analytically computed as
follows. Let X = (p, 0) be a point of ω1, i.e. 0 < p < 1+λ1B

λ1
. Its

preimages are the real solutions of the algebraic system obtained from
(40) with (x01, x

0
2) = (p, 0):

x1
³
1 + λ1B

x
β1
1

x
β1
1 +kx

β2
2

− λ1x1
´
= p

x2
³
1 + λ2B

kx
β2
2

x
β1
1 +kx

β2
2

− λ2x2
´
= 0

(46)

It is easy to see that the preimages of the point X are either located on
the same invariant axis x2 = 0 (in the points whose coordinates are the
solutions of the equation f1(x1) = p) or on the curve of equation

x1 =

·
kx

β2
2

µ
λ2B − λ2x2 + 1

λ2x2 − 1
¶¸ 1

β1

. (47)

Analogously, the preimages of a point Y = (0, q) of ω2, i.e. 0 < q <
1+λ2B
λ2

, belong to the same invariant axis x1 = 0 (in the points whose
coordinates are the solutions of the equation f2(x2) = q), or lie on the
curve of equation

x2 =

"
x
β1
1

k

µ
λ1B − λ1x1 + 1

λ1x1 − 1
¶# 1

β2

. (48)

It is straightforward to see that the curve (47) intersects the x2 axis in
the point O(2)

−1 given in (45), the curve (48) intersects the x1 axis in the
point O(1)

−1 given in (44), and the two curves (47) and (48) intersect at a
point O(3)

−1 interior to the positive orthant (see Fig.67a). The point O
(3)
−1 is

another rank-1 preimage of the origin. The four preimages of the origin
are the vertexes of a “quadrilateral” OO(1)

−1O
(3)
−1O

(2)
−1, whose sides are ω1,

ω2 and their rank-1 preimages ω−11 and ω−12 , which are located on the
curves of equation (47) and (48). All the points outside this quadrilateral
cannot generate feasible trajectories. In fact, points located on the right
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of ω−12 are mapped into points with negative x1 coordinate after one
iteration, as can be easily deduced from the first line of (40). Points
located above ω−11 are mapped into points with negative x2 coordinate
after one iteration, as can be deduced from the second line of (40).
The boundary of B is given, in general, by the union of all preimages

(of any rank) of the segments ω1 and ω2:

∂B(∞) =
µ ∞S
n=0

T−n (ω1)
¶
∪
µ ∞S
n=0

T−n (ω2)
¶
. (49)

As long as λ1B ≤ 3 and λ2B ≤ 3 the boundary of B has the simple shape
shown in Fig.67a, because no preimages of higher rank of ω1 and ω2 exist.
This is due to the fact that ω−11 and ω−12 are entirely included inside the
region Z0 of the plane whose points have no preimages. The situation is
different when the values of the parameters are such that some portions
of these curves belong to the regions Z2 or Z4 whose points have two
and four preimages respectively. In this case preimages of higher order
of ω1 and ω2 exist, say ω−k1 and ω−k2 , which form new portions of ∂B.
Such preimages of ω1 and ω2 of rank k > 1 bound regions whose points
are mapped out of the feasible set B after k iterations. In such a case
the shape of the boundary of B becomes far more complex. This change
is due to a global bifurcation that can be explained by using the critical
curves.
If λ1 or λ2 are increased so that the bifurcation value λb = 3/B

is crossed by at least one of them, then ∂B changes from smooth to
fractal. To see this, we fix the parameters B, k, β1, β2 and λ1 and
vary the speed of adjustment λ2. As λ2 is increased, the branch LC(b)

of the critical curve that separates Z0 from Z2 moves upwards, and
at λ2 = 3/B it has a contact with ω−11 at the point O(2)

−1. After this
contact, a segment of ω−11 enters the region Z2, so that a portion S1 of
the infeasible set, bounded by LC(b) and ω−11 , now has two preimages
(see Fig.67b). These two preimages, say S

(1)
0 and S

(2)
0 , merge in points

of LC(b)
−1 (as the points of LC

(b) have two merging preimages belonging
to LC

(b)
−1) and form a “grey tongue” issuing from the x2 axis (denoted

by S0 in Fig.67b, with S0 = S
(1)
0 ∪ S(2)0 ). S0 belongs to the “grey set” of

points that generate infeasible trajectories because the points of S0 are
mapped into S1, so that negative values are obtained after two iterations.
Again, it is important to recall the fact that along the axes the dynamical
behavior is governed by one-dimensional maps which are conjugate to the
logistic map. We already know that the logistic map undergoes a global
bifurcation at µ = 4, where a contact between the critical point and the
basin boundary occurs. This global bifurcation changes the structure
of the basin for the one-dimensional map. A similar mechanism is at
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work here. To see this, look at the intersection of the “main tongue”
S0 with the x2 axis. This gives a set I0 around the critical point c2
of the restriction f2. Of course, I0 corresponds to the “main hole in
the middle part” of the logistic map with µ > 4 (Fig.62b, or in the
Myrberg’s map for b > 2, see Fig.14b). However, we already know that
I0 has an infinite sequence of further preimages, I

(1)
−1 and I

(2)
−1 , and so

on. Accordingly, the set S0 is only the first of infinitely many preimages
of S1. Preimages of S1 of higher rank form a sequence of smaller and
smaller grey tongues issuing from the x2 axis, whose intersection with the
x2 axis correspond to the infinitely many preimages I−k of the main hole
I0. Only some of them are visible in Fig.67b, but smaller tongues become
numerically visible by enlargements, as it usually happens with fractal
curves. The fractal structure of the boundary of B is a consequence of
the fact that the tongues are distributed along the segment ω2 of the x2
axis according to the structure of the intervals I−k described in Section
2, whose complementary set is a Cantor set. In the situation shown in
Fig.67b the main tongue S0 has a wide portion in the region Z4. Hence,
besides the two preimages along the x2 axis (denoted by S

(1)
−1 and S

(2)
−1

in Fig.67b) issuing from the intervals I(1)−1 and I
(2)
−1 , two more preimages

exist. Hence, in the two-dimensional case the structure of the basin is
even more complex. The additional preimages are denoted by S

(3)
−1 and

S
(4)
−1 in Fig.67b, and are located at opposite sides with respect to LC

(a)
−1 .

The tongues S(3)−1 and S
(4)
−1 belong to Z0, hence they do not give rise to

new sequences of tongues. On the other hand, S(1)−1 and S
(2)
−1 have further

preimages, since they are located inside Z4 and Z2 respectively. If the
preimages are two, as in the case of S(2)−1 , they form two tongues issuing
from the x2 axis. In the case of four preimages, as in the case of S

(1)
−1 ,

two of them are tongues issuing from the x2 axis and two are tongues
issuing from the opposite side, i.e. ω−12 .
As λ2 is further increased, LC(b) moves upwards, the portion S1

enlarges and, consequently, all its preimages (i.e. the infinitely many
tongues) enlarge and become more pronounced. This causes the occur-
rence of another global bifurcation, that changes the set B from simply
connected to multiply connected (or connected with holes). The mecha-
nism is similar to the one described in Mira et al. [89], [88] and Abraham
et al. [1]. This second global bifurcation occurs when a tongue, belong-
ing to Z2, has a contact with LC(a) and subsequently enters the region
Z4. If such a contact occurs out of the x2 axis, it causes the creation of
a pair of new preimages. These preimages merge along LC(a)

−1 and their
union is a hole (or lake, following the terminology introduced in Mira et
al. [88]) inside the feasible set B. Accordingly, a set of points that gener-
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ate infeasible trajectories has been created, and this set is surrounded by
points of the feasible set B. Such a situation is shown in Fig.68a, where
a tongue has crossed LC(a) and the set H1 is now in Z4. The hole H0

of infeasible points is the preimage of the set H1, and is completely in-
cluded in the feasible set. As λ2 is further increased, other tongues cross
LC(a) and, hence, new holes are created, giving a complicated structure
of B like the one shown in Fig.68b, where many holes inside B are clearly
visible.

Fig.68

To sum up, the transformation of the set B from a simply connected re-
gion with smooth boundaries into a multiply connected set with fractal
boundaries occurs through two types of global bifurcations, both due to
contacts between ∂B and branches of the critical set LC. In Fig.68b it
can be noticed that also the attractor inside B changed its structure.
For low values of λ2, as in Fig.68a, the attractor is the fixed point E∗,
to which all the trajectories starting inside the set B converge. As λ2 in-
creases, E∗ loses stability through a flip (or period doubling) bifurcation,
at which E∗ becomes a saddle point, and an attracting cycle of period
2 is created near it. As λ2 is further increased, a sequence of period
doublings occurs, similar to the well-known Myrberg (or Feigenbaum)
cascade for one-dimensional maps, which creates a sequence of attracting
cycles of period 2n followed by the creation of chaotic attractors, which
may be cyclic chaotic sets or a connected chaotic set. So, both kinds of
complexities can be observed in this model, even if there are no relations
between them (for more details see Bischi, Gardini and Kopel, [21]).
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10 Piecewise smooth systems.

In this section we shall consider maps which are not continuously differ-
entiable or not continuous. These maps may undergo bifurcations which
are not described by those already seen in the previous Sections. In fact,
in such cases a new kind of bifurcation may occur, which involves the
disconitinuity point or set, which is the locus in which the discontinu-
ity occurs (either in the first derivative or in the function definition).
These new kind of bifurcations are nowadays known as "Border Colli-
sion Bifurcations" (BCB henceforth). This kind of bifurcation is a quite
recent topic of research. We shall consider here only piecewise smooth
continuous systems, giving some results for maps in 1D and 2D phase
spaces.

10.1 1D map.
A recent application in the conomic context (see Gardini, Sushko and
Naimzada, 2008 [39]) may be useful to introduce the subject associated
with a one-dimensional piecewise smooth map. Besids this work we refer
to [53], [59], [75], [77], [94], [95], [31], [15], [106], [107], for some works
related to one-dimensional piecewise smooth maps.
Let us consider the model first proposed by Matsuyama in [81], which

describes the interaction of two sources of economic growth: The mech-
anism of capital accumulation and the process of technical change and
innovation. Matsuyama constructed a one-dimensional dynamic model
described by two different functions, each of which characterizes a differ-
ent regime: The Solow regime, with high rates of growth, no innovations
and a competitive market structure, as in the neoclassical model, and
the Romer regime, with low rates of growth, innovations and a monopo-
listic market structure, as in the neo-shumpeterian model. In this model
the dynamics often alternates between the two different regimes: There
is a trade off between growth and innovation. Analytically the model is
represented by a piecewise smooth unimodal map, xt+1 = φ(xt), where
the function φ(x) is given by

φ(x) =

(
f(x) = Gx1−

1
σ if 0 < x < 1 (Solow regime)

g(x) = Gx
1+θ(x−1) if x > 1 (Romer regime)

(50)

with θ = (1− 1
σ
)1−σ, and σ > 1. The independent variable xt corresponds

to the independent variable kt in the original paper [81], that is, xt =
Kt

NtσFθ
whereKt stands for capital, Nt the number of types of intermediate

goods introduced up to time t, and F is some constant. The output
Yt is related to the amount of capital Kt, and the available types of
intermediates, Ns, 0 < s < t, through a production function. The model
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is closed assuming that a constant proportion of the output, Yt, is left
to be used as capital in the next period. When the state is xt < 1
then no innovation occurs and no new intermediates are introduced, the
viceversa takes place in the case xt > 1. The two parameters of the
model are G and σ. Increasing G the gross rate of growth changes, the
fixed point from the Solow region (0 < x < 1) enters the Romer region
(x > 1) and for σ > 2 is destabilized. The parameter σ denotes the
demand elasticity of the intermediate good (and the monopoly margin),
and also has a meaning in determining the share of labor ( 1

σ
).

Besides Matsuyama, the same model was also considered by Mitra in
[90], Mukherjy in [91], and the complete analysis is reported in Gardini
et al. 2008, to which we refer for further details. Here we shall here
recall haw the use of the BCB is fundamental for the undestanding of
the bifurcations occurring in the dynamics of the model.

Fig.69 The function φ(x) with the globally attracting fixed point x∗L in the
Solow regime at G = 0.98, σ = 5 (a), and x∗R in the Romer regime at

G = 1.45, σ = 5 (b).

It is easy to see that for 1 < σ < ∞ we have 1 < θ < e, and this is
the range of interest: σ > 1. The function f(x) on the left side (Solow
regime) is monotonic increasing, because f 0(x) = G(1 − 1

σ
)x−

1
σ > 0. It

has a unique fixed point x∗L = Gσ which exists (in its region of definition:
x < 1) as long as G < 1, and when it exists, it is always stable, as 0 <
f 0(x∗L) = (1− 1

σ
) < 1. Furthermore, it is globally attracting except for the

origin. As the origin is always a repelling fixed point, we have restricted
our interval of interest to x > 0. As mentioned in the Introduction, at
G = 1 a bifurcation occurs, and for G > (θ − 1) the fixed point in the
Romer regime (x > 1) is globally asymptotically stable. In fact, the
function g(x) defining the regime for x > 1 is monotonic decreasing and
convex (as g0(x) = − G(θ−1)

(1+θ(x−1))2 < 0, and g00(x) > 0) and it has a unique
fixed point x∗R = 1 + G−1

θ
which exists (in its region: x > 1) for any
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G > 1, but it may be stable or unstable. From g0(x∗R) = −(θ−1G ) we have
that it is locally stable for G > (θ − 1), and it is easy to see that it is
also globally attracting.
In .Fig.69a, we show the shape of the function φ(x) when the fixed

point x∗L is globally attracting (G < 1), while in Fig.69b, x∗R is globally
attracting (G > (θ−1)). We also see immediately that at the bifurcation
value G = 1, when the fixed point is x∗ = 1, we have the left side
derivative of the function φ0L(1) = (1 − 1

σ
) < 1 and independently on

the value of the derivative of the function on the right, this is enough to
prove that the fixed point x∗ = 1 is globally attracting. In fact, any point
with x > 1 is mapped in one iteration on the left side with x < 1 from
which the iterations converge (increasing monotonically) to the fixed
point x∗ = 1. Similarly, due to the monotonicity of the functions on the
right side for G > (θ − 1), with g(1) = G and g(G) = G2

1+θ(G−1) > 1,

we have that any point x ∈ (0, 1) will reach the region x > 1 in a finite
number of iterations, and the region x > 1 is mapped into itself, with
the fixed point globally attracting.
From the previous observations it follows that the interesting region

is the interval 1 < G < (θ − 1), and the dynamics of the model as G
varies in this interval depend on the value of the other parameter σ. At
the bifurcation value G = (θ − 1) all the points in the interval [1, G]
belong to 2-cycles (stable but not asymptotically stable). In fact, the
bifurcation value G = (θ − 1) is a degenerate flip bifurcation: all the
points of the segments [1, x∗R) and (x

∗
R, 1] are 2-cycles. We can show this

by using the change of variable which puts x∗R in the origin. That is, let
y = x− x∗R then

HR(y) = g(y + x∗R)− x∗R =
(1− θ)y

θy +G
(51)

and

H2
R(y) = HR

◦HR(y) =
(1− θ)2y

y(θ(1− θ) +Gθ) +G2
(52)

so that at the bifurcation value G = (θ − 1) we have H2
R(y) = y. Any

i.c. with x > 0 will be mapped into the interval [1, G] in a finite number
of iterations, thus ending in a 2-cycle with both states in the Romer
regime. It was also shown in [81] that for G < (θ − 1) there exists
a 2-cycle, the dynamics “oscillate” between the Solow regime and the
Romer regime, and the dynamics of the map in (50) always belong to
the absorbing interval [g(G), G]. Any point with i.c. x > 0 will enter this
interval in a finite number of iterations, from which it will never escape
since φ([g(G), G]) ⊆ [g(G), G].
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The rigorous proof of the bifurcations occurring in the map in (50) are
not easy, because of the complex analytical expressions. However, a nu-
merical proof can first be given. In Fig.70 we present a two-dimensional
bifurcation diagram in the (G,σ)-parameter plane in which different gray
tonalities correspond to different dynamic regimes of the map (50).

Fig.70 Bifurcation diagram in the (G,σ)-parameter plane. The lightest gray
color corresponds to the parameter values at which the map φ has a stable
fixed point (which is x∗L for G < 1, or x∗R for G > 1, G > (θ− 1)), followed

by a strip related to the parameter values at which the map φ has an
attracting cycle of period 2, and in sequence gray tonalities correspond to

4-, 2- and 1-piece chaotic intervals, respectively.

Let us here consider the parameter values corresponding to the existence
of a two-cycle. Since in the Romer regime the function g(x) is decreas-
ing and convex, we have that the first derivative g0(x) is negative and it
increases as x increases from 1 (but remaining g0(x) < 0). It follows that
if the derivative in the critical point satisfies −1 < g0(1) we must have
−1 < g0(x) < 0 for any x > 1. From the expression g0(1) = −G(θ − 1)
we have that |g0(1)| < 1 whenever both the conditions hold, G < 1 and
θ ≤ 2, which corresponds to σ ≤ 2. Moreover, in the (G,σ)-parameter
plane the bifurcation curve of equation G = (θ−1) issues from the point
(G, σ) = (1, 2) and is increasing and convex - as can be seen in Fig.2
(this fact was also proven in [91]). Thus, the line σ = 2 never intersects
the bifurcation curve G = (θ− 1) (apart from the issuing point). So, all
the interesting dynamics occur at fixed values of σ with σ > 2, otherwise
we must have a stable fixed point (either on the left, if G < 1, or on the
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right, if G > 1). It follows that in order to detect a stable 2-cycle we
must have σ > 2, which corresponds to (θ − 1) > 1. Now let us assume
that σ > 2 is fixed and G decreases, starting from some value G > (θ−1)
for which x∗R is stable (see Fig.70). Then, as we have seen above, the loss
of stability of x∗R occurs via a degenerate bifurcation: At the bifurcation
value G = (θ − 1) all the points of a segment are 2-cycles. In particular
{1, G} forms a 2-cycle. After the bifurcation, for G < (θ − 1), the fixed
point x∗R is unstable. Furthermore no stable 2-cycle can exist with both
the points on the right, in the Romer regime. This is proved by the
fact that we have g0(x) < −1 for all the points x in the interval [1, G],
because in the iterated map HR ◦HR(y) we have the slope equal to 1 in
all the points of a segment (see Fig.71a where φ(x) and φ2(x) are shown
at the bifurcation value G = (θ − 1)), while after the bifurcation (see
Fig.71b, where G < (θ − 1)) we have the slope greater than 1 in the
segment x ∈ [1, G].

Fig.71 The functions φ(x) and φ2(x) at the critical flip bifurcation value
G = (θ − 1) = 1.441408, σ = 5 (a) and after, at G = 1.4 < (θ − 1) (b).
This is rigorously proved by using

d

dy
H2

R(y) =
(1− θ)2G2

[y(θ(1− θ) +Gθ) +G2]2
=

(1−θ
G
)2

[y(θ(1−θ)+Gθ)
G2

+ 1]2

from which we have d
dy
H2

R(0) > 1. Moreover, from (θ − 1) > G, we
have θ(θ − 1) > Gθ so that Gθ + θ(1 − θ) < 0, and for y in a right
neighborhood of 0 the denominator of d

dy
H2

R(y) is less than 1, and thus
d
dy
H2

R(y) > (1−θ
G
)2 > 1. From the considerations given above, it follows

that a unique 2-cycle exists after the bifurcation, forG < (θ−1), with one
point of the cycle in the Solow regime and one point in the Romer regime,
{xL, xR}. From stable (inside the wide region) it becomes unstable as
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G decreases reaching the value G = G4 in Fig.70. The local stability of
this unique 2-cycle was already studied in [91], and a sufficient condition
for its stability is given, depending on the points of the 2-cycle:

|φ0(xL)φ0(xR)| =
x
1
σ
L (1− 1

σ
)(θ − 1)

G2
< 1. (53)

The bifurcation occurs when |φ0(xL)φ0(xR)| = 1 in (53), once that the
explicit expression of xL is there inserted, but this is not known, thus
it is difficult to obtain an explicit form. However, a different way to
get the bifurcation condition comes from considering the images of the
critical point x = 1 (or equivalently of its first iterate x = G). It can
be noticed that the bifurcation occurring at G = (θ − 1) increasing G,
for the existing stable 2-cycle (with points xL < 1 < xR) corresponds
to a border-collision bifurcation: The periodic point xL merges with the
critical point x = 1, which is a 2-cycle at this parameter value. The con-
dition G = (θ − 1) may thus be written also as φ(G) = 1 or φ2(1) = 1,
which reads explicitly also as g2(1) = 1. Similarly, at the bifurcation
in which the stable 2-cycle becomes unstable as G decreases, one might
think that a stable 4−cycle would appear. Let us first describe what
occurs via an example.

Fig.72 The functions φ(x) and φ4(x) at the parameter values G = 1.1,
σ = 5 in (a) and G = 1.073, σ = 5 in (b), for which the map φ has the

attracting 2-cycle.

In Fig.72a (G = 1.1), we show the same example considered by Mukherji
(σ = 5) at a value of G in which the 2-cycle is stable. We can see that
this corresponds to two stable fixed points for the iterated map φ2(x).
It can be also seen that the bifurcation structure is quite similar to the
critical situation occurring at the bifurcation of the fixed point. That is,
as G decreases approaching the bifurcation value, in the graph of φ4(x)
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two segments tend to collide with the diagonal. In fact this can clearly be
seen in Fig.72b (G = 1.073), although the parameters are only close to
the bifurcation value and the iterations of the critical point still tend to
the stable 2-cycle. The bifurcation occurs at approximately G = 1.0725,
as shown in Fig.73a, where we have indeed that the points 1, G, g(G),
and f ◦ g(G) form a 4-cycle, and the points of the segments [g(G), 1],
[f◦g(G), G] are all fixed points for the map φ4(x) (corresponding to all
4-cycles for φ and only one 2-cycle with periodic points approximately
in the center of the two intervals). It can be noticed that at the bifurca-
tion value, | d

dx
φ4(x)|≥ 1 for all the points of the absorbing segment of the

map, thus it is impossible to get a stable 4-cycle after the bifurcation. In
fact, after the bifurcation (see Fig.73b), also the segments previously on
the diagonal now have slopes higher than 1, thus we have | d

dx
φ4(x)|> 1

in all the points of the absorbing interval.

Fig.73 The functions φ(x) and φ4(x) at the parameter values G = 1.0725,
σ = 5, are related approximately to the critical flip bifurcation of the

2-cycle in (a) and after the bifurcation, at G = 1.05, σ = 5, when the map
φ has 4-cyclical chaotic intervals in (b).

It turns out that a stable 4-cycle is impossible. Moreover, any cycle of
any period cannot be stable, because φ4 is expanding in the absorbing
interval [g(G), G]. Instead, all the asymptotic trajectory inside this in-
terval tend to the unique attractor, which is chaotic and made up of 4
cyclical chaotic intervals for the map φ (corresponding to four invariant
chaotic intervals for φ4), which are bounded by the images of the critical
point, that is: φi(1) for i = 1, 2, ..., 8 (i.e., G, g(G), ...). The consid-
erations given above also show that the bifurcation condition in (53) is
equivalent to the condition φ4(1) = 1 (the critical point must be periodic
of period four), which is given by

g ◦ f ◦ g2(1) = 1. (54)
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We can so state the following:

Proposition. The stability region of the 2-cycle of the map in (50),
shown in Fig.70, for any fixed value σ > 2, is bounded by the curves of
implicit equations g2(1) = 1 (which corresponds explicitly to G = (θ−1))
and g ◦ f ◦ g2(1) = 1 (implicit equation for G(σ) = G4).

The critical bifurcation of the 2-cycle (related with its stability/ in-
stability) also corresponds to the bifurcation curve at which the 4 pieces
chaotic intervals undergo a border collision bifurcation, and thus the
condition is obtained either from φ4(1) = 1 which corresponds to the
condition given in (54), or from the equality in (53) (but there, the co-
ordinate of the point xL of the 2-cycle is not analytically known). We
have seen numerically that for any fixed value of σ > σ4 (' 3.825) the
equation given in (54) has a single solution, which we have called G4 in
the Proposition.

10.1.1 Chaotic intervals

Really the proof given in the previous subsection of the dynamics of
the map is numerical, but the slopes of the function φ4 in the absorb-
ing interval are easy to see (as the pieces of the function look almost
piecewise linear, and it is enough to compare the slopes with the two
diagonals). So we state that also the bifurcation occurring for the at-
tracting 2-cycle is critical (as it is proved for the fixed point), and no
stable cycle can exist. Moreover, as it is easy to see numerically that ,
the slopes become steepest as G further decreases towards 1, so the con-
dition | d

dx
φ4(x)| > 1 persists at any lower value of G up to 1. Thus no

period-doubling bifurcation occurs at the 2-cycle as G decreases, cross-
ing through the value G = G4, at which the equation g ◦f ◦g2(1) = 1, or
equivalently g ◦ f ◦ g(G) = 1, holds, while chaotic regimes exist. Indeed,
as we see in Fig.70, it is also correct to say that cycles of period three
cannot exist, but the chaotic regimes exist anyhow. As we have already
seen in Sections 2 and 3 it is enough to have homoclinic trajectories for
a fixed point or cycle to have also chaotic dynamics. And in this specific
case the chaotic set is also of full measure. In fact, considering the fixed
point, when the condition φ3(1) = x∗R is satisfied we have that the map
is chaotic in the whole interval [g(G), G]. It is worth noticing that the
condition given in Sections 2 and 3 says nothing about the density of
the chaotic set Λ. Indeed, Λ may also be a set of points of zero measure
in I, and in such a case the chaotic dynamics, although existing, is not
detectable by numeric simulations of a generic trajectory. The situation
is different when the chaotic set is an interval or cyclical chaotic intervals
(as it occurs, for example, exactly at the homoclinic bifurcation value of
a cycle). The appearance of such full measure chaotic intervals is indeed
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what occurs in our model (50) whenever the fixed point and the 2-cycle
are not stable, as stated in the following
Proposition. For any fixed value σ > 2 when the fixed point and the

2-cycle of the map in (50) are unstable, the attractors are full measure
chaotic intervals.
In fact, the dynamics which may occur as G is further decreased

below the value G = G4 are always chaotic: After the 2-cycle, 4-cyclical
chaotic intervals appear, which may merge (say at G = G2) into 2-
cyclical chaotic intervals, which in turn may merge (say at G = G1) into
one chaotic interval (see Fig.70).
The bifurcation curve at which 4-cyclical chaotic intervals merge in

pairs into 2-pieces chaotic intervals (and vice-versa) is the first homo-
clinic bifurcation of the repelling 2-cycle (which was external to the four
chaotic intervals). Thus this bifurcation occurs when φ6(1) = (φ2)3(1) =
xL in the Solow regime or, equivalently, when the fifth iterate of the point
of maximum (x = 1) merges into the periodic point xR in the Romer
regime, φ5(1) = xR, which corresponds to

g2 ◦ f ◦ g2(1) = xR. (55)

Although it is quite complicated to find it in explicit form analytically,
we have numerically seen that for any fixed value of σ > σ2 (' 6.123)
the equation given in (55) has a single solution, which we call G2.
The 2-cyclical chaotic intervals are always bounded by the images

of the critical point (now φi(1) for i = 1, 2, 3, 4 i.e., G, g(G), ..., that is
[g(G), g ◦ f ◦ g(G)], [f ◦ g(G), G]). However this does not occur at the
low value of σ (as σ = 5 in the above example). Indeed the chaotic
regime may not be reached either, as can be seen also from Fig.70. The
dynamic behaviors of the map as G decreases or increases depend on the
value of σ, for 2 < σ < σ4 we can only have a stable 2-cycle and chaotic
intervals never occur at any value of G, while chaotic intervals occur for
any σ > σ4.
To illustrate the dynamic behavior let us show a few figures of one-

dimensional bifurcation diagrams (or orbit diagrams) at fixed values of
σ. Fig.s 74-75 show the asymptotic behavior of the state variable x (in
the vertical axis) as a function of G (in the horizontal axis). As already
remarked, it is worth noticing that whichever is the value of σ, as it is
easy to see from the analytical expression of g(G), as G tends to 1 g(G)
also tends to 1, so that the whole absorbing interval [g(G), G] shrinks
to one point, the point of maximum x = 1 and also maximum value
G = 1 (and attracting fixed point). Each figure represents the dynamics
occurring at a crossection of the bifurcation diagram in Fig.70, at fixed
values of σ (the crossections are indicated in Fig.70 by the straight lines
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with arrows).

Fig.74 One-dimensional bifurcation diagrams of the map φ. σ = 3,
g ∈ [0.95, 1.3] , in (a); σ = 5, g ∈ [0.95, 1.1] , in (b).

Fig.75 One-dimensional bifurcation diagrams of the map φ. σ = 15,
g ∈ [0.95, 1.2] , in (a); σ = 30, g ∈ [0.95, 1.8] , in (b).

The bifurcation curves represented there, separating the different kinds
of chaotic intervals, have been done numerically, by using the analyti-
cal conditions related with the homoclinic bifurcations of the relevant
cycles. One is the equation given in (55), while the bifurcation curve at
which 2 pieces chaotic intervals merge into a single one (or vice-versa a
chaotic interval splits into two cyclical chaotic intervals) occurs when the
fixed point in the Romer regime becomes homoclinic. So the condition is
obtained when the third iterate of the point of maximum (x = 1) merges
into the fixed point, φ3(1) = x∗R, which in our case corresponds to

f ◦ g2(1) = x∗R (56)
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i.e. f ◦ g(G) = x∗R, and more explicitly reads as follows:

G

µ
G2

1 + θ(G− 1)
¶(1− 1

σ )
= 1 +

G− 1
θ

. (57)

We have seen numerically that for any fixed value of σ > σ1 (' 21.231)
the equation given in (57) has a single solution, which we call G1 (for
example, at σ = 50, value used by Mitra, we have G1 = 1.024254692,
at σ = 22, value used by Mukherji, we have G1 = 1.001468146, at
σ = 30, value used in the bifurcation diagram in Fig.75b we have G1 =
1.0123131).

10.1.2 Border-collision bifurcation at G = 1

We have seen before that the bifurcations occurring at the fixed point
and the 2-cycle, which are critical bifurcations, may also be considered
as border-collision bifurcations. In fact, the bifurcation of the fixed point
occurring for any value of σ > 2 at G = (θ − 1), may be characterized
as φ2(1) = 1, and the critical bifurcation of the 2-cycle (related with its
stability/instability) also corresponds to the bifurcation curve at which
4 pieces chaotic intervals undergo a border collision bifurcation, and
thus the condition is φ4(1) = 1. However, the main role of the border-
collision bifurcation is clearly the one observed in the model when, at a
fixed values of σ, the parameter G is increased and the stable fixed point
in the Solow regime merges the point x = 1. The kinds of dynamics that
will be observed after the border-collision bifurcation occurring at G = 1
comes from the following
Theorem. The border-collision bifurcation of the fixed point x∗ = 1

of the map φ given in (50), occurring at G = 1 for any σ > 1, gives rise
(as G incraeses) to
• an attracting fixed point x∗R if 1 < σ < 2;
• an attracting cycle of period 2 if 2 < σ < σ4 ' 3.825;
• attracting 4-cyclical chaotic intervals if σ4 < σ < σ2 ' 6.123;
• attracting 2-cyclical chaotic intervals if σ2 < σ < σ1 ' 21.231;
• an attracting chaotic interval if σ > σ1.

Proof. The theorem can be proved by using the normal form of
the border-collision bifurcation occurring in one-dimensional piecewise
smooth maps first proposed in [95]. According to Theorem 3 stated
in [95] applied to the map φ given in (50), the result of the border-
collision bifurcation of the fixed point depends on the left and right side
derivatives of φ(x) evaluated at x = 1 for G = 1, here denoted α and β,
respectively:

α = lim
x→1−

d

dx
φ(x), β = lim

x→1+
d

dx
φ(x). (58)
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The related normal form is given by the skew-tent map ψ : y 7→ ψ(y)
defined by the function

ψ(y) =

½
αy + ε, y ≤ 0,
βy + ε, y ≥ 0. (59)

Here ε is a bifurcation parameter such that as ε varies through 0, the
local bifurcations of the piecewise linear map ψ and the piecewise smooth
map φ are of the same kind. That is, the border-collision bifurcation
occurring for the fixed point x∗ = 1 of the map φ at G = 1 is of the
same kind as the border-collision bifurcation of the fixed point y∗ = 0 of
the map ψ occurring at ε = 0.
The dynamics of the piecewise linear map ψ have already been stud-

ied (see [75], [95], [15] and references therein), and depend on the slopes
α and β of the linear functions. All the possible kinds of border-collision
bifurcation of the fixed point x∗ are classified according to the parti-
tion of the (α, β)-parameter plane into subregions in which the same
qualitative dynamics take place.
We summarize these results in Fig.76, which schematically shows the

related one-dimensional bifurcation diagrams for the border-collision of
the fixed point of the map ψ. The cases 0 < α < 1, β < −1, and α < −1,
0 < β < 1 (see the dashed regions in Fig.76), have been studied by many
authors. They are qualitatively the same case due to the symmetry of
the (α, β)-parameter plane with respect to the line α = β. It has been
shown that for ε > 0 (ε < 0, respectively), all trajectories are bounded
and the map ψ can have an attracting cycle of any period k ≥ 2, denoted
qk, as well as a cyclic chaotic interval of any period m ≥ 1, denoted Qm.
This means that varying ε through 0 from ε < 0 to ε > 0 (from ε > 0
to ε < 0, respectively) we can have the border-collision bifurcation from
the attracting fixed point x∗ to any one of such attractors. The region
α > 1, α/(1− α) < β < −1 (and α < −1, 1 < β < α/(α+ 1)) includes
subregions corresponding to the transition from no attractor to cyclic
chaotic intervals Qm of period m = 2k, k = 0, ..., l, where l → ∞ as
(α, β)→ (1,−1) ((α, β)→ (−1, 1), respectively).
Now we write the coefficients of the normal form (59) in terms of the

parameter σ. From (58) we get

α =

µ
1− 1

σ

¶
, β = (1− θ) (60)

so that we have 0 < α < 1 and β < 0. Moreover, from 1 < θ < e we
have that 1− e < β < 0. Thus, the region of our interest in the (α, β)-
parameter plane is 0 < α < 1, 1− e < β < 0 (see the thick rectangle in
Fig.76).
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Fig.76

The partition of the (α, β)-parameter plane into the regions with qualitatively
similar dynamics of the map ψ at ε < 0 (for β > α) and at ε > 0 (for β < a).
Corresponding BCB of the fixed point of ψ, occuring at ε = 0 as ε varies
from ε < 0 to ε > 0, are shown schematically by means of one-dimensional
bifurcation diagrams (the same kinds of BCB occur for α < β as ε varies
from ε > 0 to ε < 0): The thick and dashed lines indicate attracting and
repelling cycles, respectively. The thin lines correspond to the border point.

Fig.77

The enlarged window of Fig.76 where the BCB curve B of the fixed point
x∗ = 1 of the map φ is shown, as well as the critical flip bifurcation curve S
of the 2-cycle of the map ψ, the homoclinic bifurcation curves Hi, i = 1, 2, 4
of the corresponding cycles of ψ and the bifurcation curves related to the
3-cycle of ψ.
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Substituting first θ = (1− 1
σ
)1−σ and then σ = 1/(1−α) into (60) we

get the expression of the border-collision curve of the fixed point x∗ = 1
in terms of the parameters α and β, which is denoted as B,

B : β = 1− αα/(α−1). (61)

Fig.77 presents an enlargment of the rectangle of interest in Fig.76, and
in it the curve B is shown. By using the analytic expressions of the
bifurcation curves as given in [75], we can describe the regions of the
(α, β)-parameter plane which are crossed by the curve B. We can see
that B intersects:
1) the straight line β = −1 at a point P which is (α, β) = (0.5,−1),

related to the (critical) flip bifurcation of the fixed point y∗;
2) the curve, denoted as S, given by

S : β = − 1
α
,

related to the (critical) flip bifurcation of the 2-cycle (after which the
curve B enter a region of 4-cyclical chaotic intervals). The intersection
point is denoted by α4, i.e., B ∩ S = α4;
3) the curve, denoted as H2, given by

H2 : α =
−1−

p
1 + 4β4

2β3
,

which is related to the homoclinic bifurcation of the 2-cycle of the map ψ
giving rise to the transition from 4-cyclical chaotic intervals to 2-cyclical
chaotic intervals, B ∩H2 = α2;
4) the curve denoted as H1 given by

H1 : β =
−1 +√1 + 4α2

2α
,

which is related to the homoclinic bifurcation of the fixed point y∗ of the
map ψ, giving rise to the transition from 2-cyclical chaotic intervals to
one chaotic interval; B ∩H1 = α1.
Other bifurcation curves are also shown in Fig.77, not intersected

by B. For example the curve H4 corresponding to the transition from
4-cyclical chaotic intervals to 8-cyclical chaotic intervals for the map ψ.
Indeed, as proved in [75], the point (α, β) = (1,−1) is an accumulation
point for the curves related to the transition from 2i−1-cyclical chaotic
intervals to 2i-cyclical chaotic intervals, i = 2, .... The bifurcation curves
related to the existence and stability of a cycle of period 3 can also be
seen, and it is not intersected by the curve B (which is of interest to

114



us). The “end point” for the curve B for our map is (α, β) = (1, 1− e)
corresponding to the parameter value σ =∞ (or θ = e).
It is clear that the curve B corresponds to the vertical line atG = 1 in

the bifurcation diagram in the (G, σ)-parameter plane shown in Fig.70,
and the intersection points there evidenced: The point P corresponds to
σ = 2 and the point αi corresponds to σi, for i = 4, 2, 1.
To end our considerations we only have to get the approximate values

of the coordinates of the intersection points αi, i = 4, 2, 1 by using the
analytical expressions of the bifurcation curves and, via (60), to get the
corresponding values of the parameter σ. We obtain that σ4 ' 3.825,
σ2 ' 6.1226 and σ1 ' 21.231.
We have thus proved that the, as G increases through 1, the border-

collision bifurcation of the fixed point x∗ = 1 can directly lead to a
chaotic interval (for σ > σ1), as in the example shown in Fig.76b, or to
2-cyclical chaotic intervals (for σ2 < σ < σ1), as in the example shown
in Fig.76a, or to 4-cyclical chaotic intervals (for σ4 < σ < σ2), as in the
example shown in Fig.75b, or to a stable 2-cycle (for 2 < σ < σ4), as in
the example shown in Fig.75a.

10.2 2D Business Cycle map.
As a relevant application in the economic context let us recall here the
classical works on the business cycle. As well known (we refer to [97]
for details), Hicks (1950 [58]) modified the Samuelson (1939 [102]) linear
multiplier-accelerator model through introducing two constraints. The
linear multiplier-accelerator model itself only has two options: Expo-
nentially explosive or damped motion. According to Hicks, only the
explosive case is interesting, as only this produces persistent motion en-
dogenously, but it had to be limited through two (linear) constraints for
which Hicks gave factual explanations.
When the cycle is in its depression phase it may happen that income

decreases so fast that more capital can be dispensed with than what
disappears through depreciation, i.e., natural wear and aging. As a
result, the linear accelerator would predict not only negative investments
(disinvestments), but to an extent that implies active destruction of
capital. To avoid this, Hicks introduced his floor to disinvestment at the
natural depreciation level.
When the cycle is in its prosperity phase, then it may happen that

income would grow at a pace which does not fit available resources. Hicks
has a discussion about what then happens, in terms of inflation, but he
contended himself with stating that (real) income could not grow faster
than available resources which put a ceiling on the income variable.
Hicks never formulated his final model with floor and ceiling math-
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ematically, it seems that this was eventually done by Rau (1974 [100]),
where the accelerator-generated investments were limited downwards
through the natural depreciation floor, and where the income is limited
upwards through the ceiling, determined by available resources. For-
mally:

It = max(a(Yt−1 − Yt−2),−If);
Ct = cYt−1;

Yt = min(Ct + It, Y
c).

Eliminating Ct and It, one has the single recurrence equation:

Yt = min(cYt−1 +max(a(Yt−1 − Yt−2),−If), Y c). (62)

It remains to say that Hicks’s original discussion included an exponential
growth in autonomous expenditures, combined with the bounds If and
Y c growing at the same pace, but taking the bounds as constant and
deleting the autonomous expenditures, gives a more clear-cut version. It
was this that was originally analyzed in detail by Hommes (1991 [59]).
However, the full understanding of the bifurcation mechanisms occur-
ring in that two-dimensional piecewise linear model is a recent result
(see [37], [97], [109]), and mainly due to a particular degeneracy existing
in that model. In fact, for the BCB occurring in the generic 2D contin-
uous piecewise linear map, as we shall recall below, only recent studies
have been published up to now, and the study is very far from being
completed. And such studies are basic tools for the more general case
of piecewise smooth continuous maps: some examples may be found in
[112], [111], [98], [99], [113]

Description of the Business Cycle map
Let xt := Yt, yt := Yt−1, d := If and r := Y c. Then the model given in
(62) can be rewritten as a two-dimensional piecewise linear continuous
map F : R2 → R2 :

F :

µ
x
y

¶
7→
µ
min(cx+max(a(x− y),−d), r)
x

¶
, (63)

which depends on four real parameters: a > 0, 0 < c < 1, d > 0, r > 0.
The map F is given by three linear maps Fi, i = 1, 2, 3, defined,

respectively, in three regions Ri of the phase plane:

F1 :

µ
x
y

¶
7→
µ
(c+ a)x− ay
x

¶
; (64)

R1= {(x, y) : (1 + c/a)x− r/a ≤ y ≤ x+ d/a} ;
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F2 :

µ
x
y

¶
7→
µ

cx− d
x

¶
; (65)

R2= {(x, y) : y > x+ d/a, x ≤ (d+ r)/c} ;

F3 :

µ
x
y

¶
7→
µ

r
x

¶
; (66)

R3=R2/R1/R2.

Three half lines denoted LC−1, LC 0
−1 and LC 00

−1 are boundaries of the
regions Ri:

LC−1 : y = x+ d/a, x ≤ (r + d)/c,

LC 0
−1 : y = (1 + c/a)x− r/a, x < (r + d)/c,

LC 00
−1 :x = (r + d)/c, y > (r + d)/c+ d/a.

Their images by F are called critical lines:

LC0 : y = (x+ d)/c, x ≤ r,

LC 0
0 :x = r, y < (r + d)/c.

The image of LC 00
−1 by F is a point (r, (r + d)/c). A qualitative view of

the phase plane of the map F for a > 1, d < r and a > c2/(1 − c) is
shown in Fig.78 (the last inequality indicates that the intersection point
of LC 0

−1 and LC0 is in the negative quadrant).

Fig.78 Critical lines of the map F for a > 1, d < r, a > c2/(1− c).
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As mentioned above, an analogous model has been studied by Hommes
in [59], and the main conclusions there given hold also for the map F ,
namely, for a > 1 the map F has an attracting set C homeomorphic
to a circle and all the trajectories of F (except for the fixed point) are
attracted to this set. It was also proved that the dynamics of the map F
on C are either periodic or quasiperiodic. We show how the set C appears
related to the center bifurcation of the fixed point, showing the structure
of the two-dimensional bifurcation diagram in the (a, c)-parameter plane.
First note that the maps F2 and F3 have simple dynamics: The

eigenvalues of F2 are µ1 = c, 0 < c < 1, µ2 = 0, so that any ini-
tial point (x0, y0) ∈ R2 is mapped into a point of LC0, while the map
F3 has two zero eigenvalues, and any (x0, y0) ∈ R3 is mapped into
a point of the straight line x = r. In such a way the whole phase
plane is mapped in one step to the straight line x = r and a cone
D = {(x, y) : y ≤ (x+ d)/c, x ≤ r} (see Fig.78). Thus, the map F is a
noninvertible map of so-called (Z∞−Z1−Z0) type: Any point belonging
to the critical lines or to the half line x = r, y > (r+ d)/c, has infinitely
many preimages, any inner point of D has one preimage and any other
point of the plane has no preimages.
The map F has a unique fixed point (x∗, y∗) = (0, 0) which is the

fixed point of the map F1 (while the fixed points of the maps F2 and
F3 belong to R1, thus, they are not fixed points for the map F ). The
eigenvalues of the Jacobian matrix of F1 are

λ1,2 = (a+ c±
p
(a+ c)2 − 4a)/2, (67)

so that for the parameter range considered the fixed point (x∗, y∗) is a
node if (c + a)2 > 4a, and a focus if (c + a)2 < 4a, being attracting for
a < 1 and repelling for a > 1. Thus, for a < 1 the fixed point (x∗, y∗)
is the unique global attractor of the map F (given that F2 and F3 are
contractions).

Center bifurcation (a = 1)
At a = 1 the fixed point (x∗, y∗) loses stability with a pair of complex-
conjugate eigenvalues crossing the unit circle, that is the center bifurca-
tion occurs. First we describe the phase portrait of the map F exactly
at the bifurcation value a = 1. Analogous description is presented in
Section 2.2 of Chapter 2 for a two-dimensional piecewise linear map de-
fined by two linear maps, which for the particular parameter value b = 0
are the maps F1 and F2 given in (64) and (65). It is proved that for the
parameter values corresponding to the center bifurcation there exists an
invariant region in the phase plane, which either is a polygon bounded
by a finite number of images of a proper segment of the critical line,
or the invariant region is bounded by an ellipse and all the images of
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the critical line are tangent to this ellipse (see Propositions 1 and 2 of
Chapter 2). In the following we use these results for the considered map
F specifying which critical lines are involved in the construction of the
invariant region.
The map F1 at a = 1 is defined by a rotation matrix. Moreover, if

c = cm/n
def
= 2 cos(2πm/n)− 1, (68)

then the fixed point (x∗, y∗) is locally a center with rotation number
m/n, so that any point in some neighborhood of (x∗, y∗) is periodic
with rotation number m/n, and all points of the same periodic orbit are
located on an invariant ellipse of the map F1. Note that from c > 0 it
follows that m/n < 1/6. Denote

c = c∗
def
= 1− (d/r)2. (69)

Proposition. Let a = 1, c = cm/n, then in the phase space of the
map F there exists an invariant polygon P such that

• if cm/n < c∗ then P has n edges which are the generating segment
S1 ⊂ LC−1 and its n − 1 images Si+1 = F1(Si) ⊂ LCi−1, i =
1, ..., n− 1;

• if cm/n > c∗ then P has n edges which are the generating segment
S01 ⊂ LC 0

−1 and its n− 1 images S0i+1 = F1(S
0
i) ⊂ LC 0

i−1;

• if cm/n = c∗ then P has 2n edges which are the segments Si and
S0i, i = 1, ..., n.

Any initial point (x0, y0) ∈ P is periodic with rotation number m/n,
while any (x0, y0) /∈ P is mapped in a finite number of steps into the
boundary of P.

The value c∗ is obtained from the condition of an invariant ellipse
of F1 to be tangent to both critical lines LC−1 and LC 0

−1. It can be
shown that for cm/n < c∗ only the upper boundary LC−1 is involved in
the construction of the invariant region, while if cm/n > c∗ we have to
iterate the generating segment of the lower boundary LC 0

−1 to get the
boundary of the invariant region.
An example of the invariant polygon P in the case cm/n = c∗ is

presented in Fig.79, where a = 1, d = 10, r = 10/
p
2−√2, c = c1/8 =

c∗ =
√
2 − 1. For such parameter values the polygon P has 16 edges,

which are the segments Si ⊂ LCi−2 and S0i ⊂ LC 0
i−2, i = 1, ..., 8. Any

point of P is periodic with rotation number 1/8 (in Fig.79 the points of
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two such cycles belonging to the boundary of P are shown by black and
gray circles), while any point (x0, y0) /∈ P is mapped to the boundary of
P .

Fig.79 The invariant polygon P with 16 edges at a = 1,

c = c1/8 =
√
2− 1 = c∗, d = 10, r = 10/

p
2−√2.

Consider now the case in which the map F1 is defined by the rotation
matrix with an irrational rotation number ρ, which holds if

c = cρ
def
= 2 cos(2πρ)− 1, (70)

where ρ < 1/6. Then any point in some neighborhood of the fixed point
(x∗, y∗) is quasiperiodic, and all points of the same quasiperiodic orbit
are dense on the corresponding invariant ellipse of the map F1. Using
the values c∗ given in (69) we can state the following

Proposition. Let a = 1, c = cρ. Then in the phase space of the map
F there exists an invariant region Q, bounded by an invariant ellipse E
of the map F1 which is tangent to LC−1 (and to all its images) if c < c∗,
to LC 0

−1 if c > c∗, and to both critical lines LC−1 and LC 0
−1 if c = c∗.

Any initial point (x0, y0) ∈ Q belongs to a quasiperiodic orbit dense in the
corresponding invariant ellipse of F1, while any initial point (x0, y0) /∈ Q
is mapped to E.
Note that from (69) it follows that if d > r then the inequality c∗ < 0
holds, thus, given c > 0, for d > r only the lower boundary LC 0

−1 is in-
volved in the construction of the invariant region of the map F at a = 1.

Bifurcation structure of the (a, c)-parameter plane
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We describe now the dynamics of the map F after the center bifurca-
tion, that is for a > 1. In short, an initial point (x0, y0) from some
neighborhood of the unstable fixed point (x∗, y∗) moves away from it
under the map F1 and in a finite number k of iterations it necessar-
ily enters either the region R2, or R3 (in the case in which (x∗, y∗) is
a focus the statement is obvious, while if (x∗, y∗) is a repelling node
this can be easy verified using the eigenvalues λ1,2 given in (67) and
the corresponding eigenvectors). If (xk, yk) ∈ R2, then the map F2 is
applied: F2(xk, yk) = (xk+1, yk+1) ∈ LC0. All consequent iterations
by F2 give points on LC0 approaching the attracting fixed point of F2
(which belongs to R1), until the trajectory enters R1 where the map
F1 is applied again. If (xk, yk) ∈ R3, then the map F3 is applied:
F3(xk, yk) = (xk+1, yk+1) ∈ LC 0

0. We have that either (xk+1, yk+1) ∈ R1,
or (xk+1, yk+1) ∈ R3 and one more application of F3 gives its fixed point
(r, r) ∈ R1, so, the map F1 is applied to this point. In such a way the
dynamics appear to be bounded.
Indeed, it was proved in Hommes [59], that for a > 1 any trajectory

of F rotates with the same rotation number around the unstable fixed
point, and it is attracted to a closed invariant curve C homeomorphic to
a circle. It was also proved that the dynamics of F on C, depending on
the parameters, are either periodic or quasiperiodic. We can state that
such a curve C is born due to the center bifurcation of the fixed point,
described in the previous section: Namely, the bounded region P (or Q),
which is invariant for a = 1, exists also for a > 1, but only its boundary
remains invariant, and this boundary is the curve C.
In the subsection below we shown that also in a more generic case of

a two-dimensional piecewise linear map, defined by two linear maps, the
center bifurcation can give rise to the appearance of a closed invariant
attracting curve C, on which the map is reduced to a rotation with ra-
tional or irrational rotation number. Recall that in the case of a rational
rotation number m/n the map has an attracting and a saddle m/n-cycle
on C, so that the curve C is formed by the unstable set of the saddle
cycle, approaching the points of the attracting cycle. While in the case
of an irrational rotation number the map has quasiperiodic orbits on C.
In Section 2.3 of Chapter 2 the curve C is described in detail for the map
defined by the linear maps F1 and F2 given in (64) and (65). So, we can
use these results for the considered map F if the curve C belongs to the
regions R1, R2 and has no intersection with the region R3, thus, only the
maps F1 and F2 are involved in the asymptotic dynamics. Obviously,
we have a qualitatively similar case if the curve C has no intersection
with the region R2 and, thus, only the maps F1 and F3 are applied to
the points on C. One more possibility is the case in which the curve
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C belongs to all the three regions Ri, i = 1, 2, 3. We can state that in
the first and second cases the curve C can be obtained by iterating the
generating segment of LC−1 and LC 0

−1, respectively, while in the third
case both generating segments can be used to get the curve C.

Fig.80 Two-dimensional bifurcation diagram of the map F in the
(a, c)-parameter plane at d = 10, r = 30. Regions corresponding to
attracting cycles of different periods n ≤ 41 are shown by various gray

tonalities.

To see which parameter values correspond to the cases described above
we present in Fig.80 a two-dimensional bifurcation diagram in the (a, c)-
parameter plane for fixed values d = 10, r = 30. Different gray tonalities
indicate regions corresponding to attracting cycles of different periods
n ≤ 41 (note that regions related to the attracting cycles of the same
period n, but with different rotation numbers are shown by the same
gray tonality). The white region in Fig.80 is related either to periodic
orbits of period n > 41, or to quasiperiodic orbits. Let us first comment
on some particular parameter values of the bifurcation line a = 1. As
described in the previous section, at a = 1, c = cm/n given in (68), in
the phase plane of F there exists an invariant polygon P such that any
point of P is periodic with the rotation number m/n. So, the points
a = 1, c = cm/n, for different m/n < 1/6, are starting points for the cor-
responding periodicity tongues. For example, a = 1, c = c1/8 =

√
2− 1

is the point from which the 8-periodicity tongue starts, corresponding to
the attracting cycle with the rotation number 1/8. Recall that according
to the summation rule (see Hao and Zheng, 1998 [55]), between any two
rotation numbers m1/n1 and m2/n2 there is also the rotation number
m0/n0 = (m1 +m2)/(n1 + n2), so that a = 1, c = cm0/n0 is the starting
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point for the corresponding periodicity region. If the (a, c)-parameter
point is taken inside the periodicity region, then the map F has the
attracting and saddle cycles with corresponding rotation number, and
the unstable set of the saddle cycle form the closed invariant attracting
curve C. Note, that in the case in which both constrains are involved
in the asymptotic dynamics, the map F may have two attracting cycles
and two saddles of the same period coexisting on the invariant curve
(as it occurs, for example, inside the 7-periodicity tongue at a = 2.9,
c = 0.136, d = 10, r = 30). While if the (a, c)-parameter point belongs
to the boundary of the periodicity region, then the border-collision bi-
furcation occurs (see [95]) for the attracting and saddle cycles, giving
rise to their merging and disappearance.
The parameter points a = 1, c = cρ given in (70), for different

irrational numbers ρ < 1/6 correspond to the case in which any point
of the invariant region Q is quasiperiodic. Such parameter points are
starting points for the curves related to quasiperiodic orbits of the map
F .
At a = 1, c = c∗ = 8/9, (which is the value c∗ given in (69) at

d = 10 and r = 30) there exists an invariant ellipse of F1 tangent to
both critical lines LC−1 and LC 0

−1, so that for c < c∗ the boundary of
the invariant region can be obtained by iterating the generating segment
of LC−1, while for c > c∗ we can iterate the segment of LC 0

−1. Thus,
after the center bifurcation for c < c∗ at first only LC−1 is involved in
the asymptotic dynamics, and then increasing a there is a contact of
the curve C with the lower boundary LC 0

−1. And vice versa for c > c∗.
For example, the curve denoted by L inside the 7-periodicity region in
Fig.80 indicates a collision of the curve C with the lower boundary LC 0

−1.
The curves related to similar collision are shown also inside some other
periodicity regions. Before this collision the dynamics of F on C is as
described in the above proposition, while after both boundaries LC−1
and LC 0

−1 are involved in the asymptotic dynamics. One more curve
shown inside the periodicity regions (for example, the one denoted by
R inside the 7-periodicity region) indicates that the point (x, y) = (r, r)
becomes a point of the corresponding attracting cycle.
To clarify, let us present examples of the phase portrait of the map F

corresponding to three different parameter points inside the 7-periodicity
region, indicated in Fig.80. Fig.81a shows the closed invariant attracting
curve C at a = 1.6, c = 0.125, when C has no intersection with the region
R3, being made up by 7 segments of the images of the generating segment
of LC−1.
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Fig.81 The attracting closed invariant curve C with the attracting and
saddle cycles of period 7 at c = 0.125, d = 10, r = 30, and a = 1.6 in (a);

a = 1.75 in (b); and a = 1.85 in (c).

The closed invariant curve C corresponding to the parameter values a =
1.75, c = 0.125, is shown in Fig.81b. In such a case both boundaries
LC−1 and LC 0

−1 are involved in the dynamics. It can be easily seen that
images of the generating segments of LC−1 and LC 0

−1 form the same set,
so it does not matter which segment is iterating to get the curve C.
Fig.81c presents an example of C at a = 1.85, c = 0.125, when two

consequent points of the attracting cycle belong to the region R3, so that
(x, y) = (r, r) is a point of the attracting cycle.

10.3 2D canonical form.
In the recent years more and more works on the BCB concerned the
stuy of the one- and two-dimensional canonical forms, proposed in Nusse
and Yorke [94], which are piecewise linear maps defined by two linear
functions, being this analysis at the basis also of the BCB occurring
in piecewise smooth systems. The two-dimensional canonical form has
been mainly considered in dissipative cases associated with real eigen-
values of the point which undergoes the BCB. Among the effects studied
up to now are uncertainty about the occurrence after the BCB (see e.g.
[64], [34]), multistability and unpredictability of the number of coex-
isting attractors (see e.g. in [119]), as well as the so-called dangerous
BCB ([56], [38]), related to the case in which a fixed point is attracting
before and after the BCB, while at the bifurcation value the dynamics
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are divergent. However, in the last years the problem of BCB associated
with points having complex eigenvalues, was raised in several applied
models, see e.g. a sigma-delta modulation model in Feely et al. [35],
several physical and engineering models in [118], a dc-dc converter in
[120], business cycles models in economics as previously recolled ([37],
[112], [108], [41], [42]). The so-called center bifurcation, first described in
[112], associated with the transition of a fixed point to an unstable focus
and the appearance of an attracting closed invariant curve, in piece-
wise linear maps is completely new with respect to the theory existing
for smooth maps, the Neimark-Sacker (NS) bifurcation, although, as we
shall see, there is a certain analogy: For example, the closed invariant
curve made up by the saddle-node connections of a pair of cycles (a sad-
dle and a node) is clearly similar to those occurring in smooth maps,
however such a curve is not smooth but made up of finitely or infinitely
many (depending on the type of noninvertibility of the map) segments
and corner points. While similarly to the Arnold tongues in the smooth
case, the periodicity regions in the piecewise linear case may be classified
with respect to the rotation numbers, the boundaries of these periodicity
regions, issuing from the center bifurcation line at points associated with
rational rotation numbers, are BCB curves, instead of saddle-node bi-
furcation curves issuing from the NS bifurcation curve. Moreover, while
the emanating point from the NS curve of an Arnold tongue is a cusp
point (except for the strong resonance cases 1 : n, n = 1, 2, 3, 4), in the
piecewise linear case the periodicity regions are issuing with a nonzero
opening angle.
So let us consider here the two-dimensional piecewise linear map

which is a normal form to study BCB in piecewise smooth two-dimensional
maps, describing the case in which one of the fixed points considered is
a focus which undergoes a center bifurcation, and some BCB associated
with it. The normal form for the border-collision bifurcation in a 2D
phase space, a real plane, is represented by a family of two-dimensional
piecewise linear maps F : R2 → R2 given by two linear maps F1 and F2
which are defined in two half planes L and R:

F : (x, y) 7→
½

F1(x, y), (x, y) ∈ L;
F2(x, y), (x, y) ∈ R;

(71)

where

F1 :

µ
x
y

¶
7→
µ

τLx+ y + µ
−δLx

¶
, L = {(x, y) : x ≤ 0} ; (72)

F2 :

µ
x
y

¶
7→
µ

τRx+ y + µ
−δRx

¶
, R = {(x, y) : x > 0} . (73)
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Here τL, τR are traces and δL, δR are determinants of the Jacobian
matrix of the map F in the left and right halfplanes, i.e., in L and R,
respectively, R2 = L ∪R.
The straight line x = 0 separating the regions L and R, and its

images (backward by F−1 and forward by F ) are called critical lines of
the corresponding rank, that is, LC−1 = {(x, y) : x = 0} is called basic
critical line separating the definition regions of the two maps; LC =
F (LC−1) = {(x, y) : y = 0} is the critical line (of rank 1) and LCi =
F i(LC) is the critical line of rank i. For convenience of notation we shall
identify LCi, i = 0, with LC. Note that due to continuity of the map F
the first image of the straight line x = 0 by either F1 or F2 is the same
straight line y = 0, i.e., F1(LC−1) = F2(LC−1) = LC0, while LCi, i > 0,
is in general a broken line.
Property. The map F is invertible for δLδR > 0, noninvertible of

(Z0 − Z2)-type for δLδR < 0, noninvertible of (Z0 − Z∞ − Z1)-type for
δL = 0, δR 6= 0 or δR = 0, δL 6= 0 and noninvertible of (Z0 − Z∞ − Z0)-
type for δL = 0, δR = 0.
To check this property it is enough to consider images of the regions

L and R, i.e., F1(L) and F2(R). Let δR 6= 0, δL 6= 0. Then the map F
is invertible if F1(L) ∩ F2(R) = LC, i.e., L and R are mapped into two
different halfplanes, that is true for δLδR > 0. The map F is noninvertible
if F1(L) = F2(R), i.e., if L and R are mapped into the same halfplane,
so that the image of the plane is folded into a halfplane, in each part
of which F has two distinct preimages. The map F is noninvertible of
(Z0 − Z2)-type. It is easily to check that this is true for δLδR < 0.
If one of the two determinants is 0 then the related halfplane is

mapped into the straight line LC, that is any point of LC has an infinity
of preimages (a whole halfline), one of the two halfplanes separated by
LC has no preimages, and another has one preimage, so that we have
(Z0−Z∞−Z1)-noninvertibility. In such a case the asymptotic dynamics
of F are often reduced to a one-dimensional subspace of the phase space,
as we have seen in the subsection above. In the case in which both the
determinants are 0 we have two halfplanes mapped into LC. The map F
on LC is reduced to the border-collision normal form for one-dimensional
piecewise smooth continuous maps that we have already seen in the first
subsection.
Following Banerjee and Grebogi [14] we denote by L∗ and R∗ the

fixed points of F1 and F2 determined, respectively, byµ
µ

1− τ i + δi
,
−δiµ

1− τ i + δi

¶
, i = L,R.

Obviously, L∗ and R∗ become fixed points of the map F if they belong
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to the related regions L and R. Namely, L∗ is the fixed point of the
map F if µ/(1 − τL + δL) ≤ 0, otherwise it is a so-called virtual fixed
point which we denote by L

∗
. Similarly, R∗ is the fixed point of F if

µ/(1 − τR + δR) ≥ 0, otherwise it is a virtual fixed point denoted by
R
∗
. Clearly, if the parameter µ varies through 0, the fixed points (actual

or/and virtual) cross the border LC−1, so that the collision with it occurs
at µ = 0, value at which L∗ and R∗ merge with the origin (0, 0).
Let µ vary from a negative to a positive value. As it was noted in

[14], if some bifurcation occurs for µ increasing through 0, then the same
bifurcation occurs also for µ decreasing through 0 if we interchange the
parameters of the maps F1 and F2, i.e., there is a symmetry of the bifur-
cation structure with respect to τR = τL, δR = δL in the (τR, τL, δR, δL)-
parameter space. Thus, it is enough to consider µ varying from negative
to positive.
We consider the parameter values such that the fixed point of the

map F is attracting for µ < 0, i.e., before the border-collision. For
µ < 0, and 1 − τL + δL > 0, the point L∗ is a fixed point of F . Its
stability is defined by the eigenvalues λ1,2(L) of the Jacobian matrix of
the map F1, which are

λ1,2(L) =

µ
τL ±

q
τ 2L − 4δL

¶
/2. (74)

The triangle of stability of L∗, say SL, is defined as follows:

SL = {(τL, δL) : 1 + τL + δL > 0, 1− τL + δL > 0, 1− δL > 0} . (75)

Thus, let (τL, δL) ∈ SL.
At µ = 0 we have L∗ = R∗ = (0, 0), i.e., the fixed points collide with

the border line LC−1. For µ > 0 (i.e., after the border-collision) and for
1 − τR + δR > 0 the point R∗ is the fixed point of F. The eigenvalues
λ1,2(R) of the Jacobian matrix of the map F2, and the triangle of stability
SR of R∗ are defined as in (74) and (75), respectively, putting the index
R instead of L.
Our main purpose is to describe the bifurcation structures of the

(δR, τR) - parameter plane depending on the parameters (τL, δL) ∈ SL
at some fixed µ > 0. Such a bifurcation diagram reflects the possible
results of the border-collision bifurcation occurring when the attracting
fixed point of F crosses the border x = 0 while µ passes through 0.
A classification of the different types of border-collision bifurcation de-
pending on the parameters of F is presented in [14], [16], but related
only to the case in which this map is dissipative on both sides of the
border, i.e., for |δL| < 1, |δR| < 1.
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We consider here a different case, with |δL| < 1, δR > 1, related,
in particular, to a specific type of border-collision bifurcations, giving
rise to closed invariant attracting curves. A similar problem is posed
in [119] where among other results there is a descriptive analysis of the
bifurcation structure of the (τL, τR)-parameter plane (called there as
a chart of dynamical modes) for some fixed δR > 1. Our approach to
investigate the dynamical modes in the (δR, τR)-parameter plane gives
the advantage of discussing the origin of the periodicity regions, namely
to connect this problem to the center bifurcation occurring for δR = 1,
−2 < τR < 2, µ > 0.

10.3.1 Center bifurcation (δR = 1)

Without loss of generality we can fix µ = 1 in the following consideration.
Indeed, one can easily see that µ > 0 is a scale parameter: Due to
linearity of the maps F1 and F2 with respect to x, y and µ, any invariant
set of F contracts linearly with µ as µ tends to 0, collapsing to the point
(0, 0) at µ = 0.
For (τL, δL) ∈ SL, (τR, δR) ∈ SR, µ = 1, the map F has the stable

fixed point R∗ and the virtual fixed point L
∗
. For τ 2R − 4δR < 0 the

fixed point R∗ is an attracting focus. If the (τR, δR)-parameter point
leaves the stability triangle SR crossing the straight line δR = 1, then
the complex-conjugate eigenvalues λ1,2(R) cross the unit circle, i.e., the
fixed point R∗ becomes a repelling focus.
At δR = 1 the fixed point R∗ = (x∗, y∗), x∗ = 1/(2− τR), y

∗ = −x∗,
is locally a center. What is the phase portrait of the map F in such a
case? Note that at δR = 1 the map F2 is defined by a rotation matrix
characterized by a rotation number which may be rational, say m/n, or
irrational, say ρ. Obviously, there exists some neighborhood of the fixed
point in which the behavior of F is defined only by the linear map F2,
i.e., there exists an invariant region included in R filled with invariant
ellipses, each point of which is either periodic of period n (in case of a
rational rotation number m/n, and we recall that the integer n denotes
the period of the periodic orbit while m denotes the number of tours
around the fixed point which are necessary to get the whole orbit), or
quasiperiodic (in case of an irrational rotation number ρ).
Let F2 be defined by a rotation matrix with an irrational rotation

number ρ, which holds for δR = 1, and

τR = τR,ρ
def
= 2 cos(2πρ). (76)

Then any point from some neighborhood of the fixed point is quasiperi-
odic, and all the points of the same quasiperiodic orbit are dense on the
invariant ellipse to which they belong. In such a case an invariant region
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Q exists in the phase space, bounded by an invariant ellipse E of the map
F2, tangent to LC−1, and, thus, also tangent to LCi, i = 0, 1, .... The
equation of an invariant ellipse of F2 with the center (x∗, y∗) through
(x0, y0) is given by:

x2 + y2 + τR,ρxy − x+ y = x20 + y20 + τR,ρx0y0 − x0 + y0. (77)

In order to obtain an ellipse tangent to LC−1, we first get a tangency
point

(x, y) = (0,−1/2), (78)

which is the same for any rotation number. Then we write the equation
of the ellipse (77) through (x, y), that gives us the equation of E :

x2 + y2 + τR,ρxy − x+ y = −1/4. (79)

Thus, we can state the following

Proposition. Let δR = 1, τR = τR,ρ given in (76). Then in the
phase space of the map F there exists an invariant region Q, bounded
by the invariant ellipse E given in (79). Any initial point (x0, y0) ∈
Q belongs to a quasiperiodic orbit dense in the corresponding invariant
ellipse (77).

Let now F2 be defined by the rotation matrix with a rational rotation
number m/n, which holds for δR = 1, and

τR = τR,m/n
def
= 2 cos(2πm/n). (80)

Then any point in some neighborhood of the fixed point R∗ is periodic
with rotation number m/n, and all the points of the same periodic orbit
are located on an invariant ellipse of F2. As before, the invariant region
we are looking for includes obviously the region bounded by an invariant
ellipse, say E1, tangent to LC−1, given by

x2 + y2 + τR,m/nxy − x+ y = −1/4. (81)

But in the case of a rational rotation number the invariant region is
wider: There are other periodic orbits belonging to R. To see this, note
that there exists a segment S−1 = [a0, b0] ⊂ LC−1, which we call gen-
erating segment, such that its end points a0 and b0 belong to the same
m/n-cycle located on an invariant ellipse of F2 which crosses LC−1, de-
noted E2 (note that E2 is not invariant for the map F ). Obviously,
the generating segment S−1 and its images by F2, that is, the segments
Si = F2(Si−1), Si ⊂ LCi = F2(LCi−1), i = 0, ..., n− 2, form a boundary
of an invariant polygon denoted by P, with n sides, completely included
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in the region R. The polygon P is inscribed by E1 and circumscribed by
E2 (see Fig.82 where such a polygon is shown in the case m/n = 3/11).

Fig.82 The invariant polygon P of the map F at δR = 1,
τR = 2 cos(2πm/n), m/n = 3/11.

The case m/n = 1/n is the simplest one: It can be easily shown that the
point LC−1 ∩ LC0 = (0, 0) and its n − 1 images form a cycle of period
n, all points of which are in R. The ellipse E2 through (0, 0) is given by

x2 + y2 + τR,1/nxy − x+ y = 0,

and the generating segment S−1 for any n has the end points a0 = (−1, 0)
and b0 = (0, 0).
The case m/n for m 6= 1 is more tricky. To clarify our exposition we

use the example of the rotation number m/n = 3/11 (see Fig.82). The
end points of the generating segment S−1 are obtained as intersection
points of LC−1 with two critical lines of proper ranks. We first obtain an
equation for the image of LC−1 of any rank i by F2 (for convenience, in
this section we denote these images by LCi, as in the general case, but
recall that in the general case the images by F1 have to be also considered
so that LCi is indeed a broken line). Let A denote the matrix defining
F2, i.e.,

A =

µ
τR,m/n 1
−1 0

¶
=

µ
2 cos(2πm/n) 1

−1 0

¶
.

For any integer 0 < i < n we can write down

Ai =
1

sin(2πm/n)

µ
sin(2π(i+ 1)m/n) sin(2πim/n)
− sin(2πim/n) − sin(2π(i− 1)m/n)

¶
. (82)
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(Note that for i = n we get an identity matrix). Making a proper
change of coordinates and using (82) we get the following equation for
the straight line LCi for 0 ≤ i < n :

LCi : y = − sin(2πim/n)

sin(2π(i+ 1)m/n)
x+

tan(π(i+ 1)m/n)

2 tan(πm/n)
− 1
2
.

The point of intersection of LC−1 and LCi has the following coordinates:µ
0,
tan(π(i+ 1)m/n)

2 tan(πm/n)
− 1
2

¶
. (83)

Nowwe need to determine the proper rank k1 such that the side Sk1 ⊂
LCk1 of the polygon P is an upper adjacent segment of the generating
segment S−1. The number n which is the period of the m/n-cycle, can
be written as n = rm + l, where an integer r = bn/mc is the number
of periodic points visited for one turn around the fixed point, and an
integer l < m is the rest. For our example m/n = 3/11 we have r = 3
and l = 2. Following some geometrical reasoning, which we omit here,
one can get that if (m− 1)/l is an integer, then

k1 =
(m− 1)r

l
, (84)

so that the coordinates of the point b0 are determined through m and n
by substituting i = k1 into (83). It can be easily shown that the coor-
dinates of the other end point a0 of S−1 are determined by substituting
i = k2 into (83), where

k2 = n− 2− k1. (85)

For the example shown in Fig.82 we have k1 = 3 and k2 = 6, so that the
end points of S−1 are a0 = LC−1 ∩ LC6 and b0 = LC−1 ∩ LC3, whose
coordinates are obtained by substituting m/n = 3/11 and, respectively,
i = 6 and i = 3 into (83).
If (m− 1)/l is not an integer number, then we use a numerical algo-

rithm to determine k1 as the rank of the critical line whose intersection
with LC−1 is m/n-periodic point; k2 is determined by (85) as before.
Obviously, such a polygon P can be constructed for any rotation

number m/n. Summarizing we can state the following

Proposition. Let δR = 1, τR = τR,m/n given in (80). Then in
the phase space of the map F there exists an invariant polygon P with n
edges whose boundary is made up by the generating segment S−1 ⊂ LC−1
and its n− 1 images Si = F2(Si−1) ⊂ LCi, i = 0, ..., n − 2. Any initial
point (x0, y0) ∈ P is periodic with rotation number m/n.
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Up to now we have not discussed the behavior of a trajectory with
an initial point (x0, y0) not belonging to the invariant region (either P
or Q), which obviously depends on the parameters δL, τL of the map F1.
Such a behavior can be quite rich, even in the case we are restricted to,
that is for (δL, τL) ∈ SL in which the fixed point L

∗
of F1 is attracting

being virtual for F . Without going into a detailed description we give
here different examples: A trajectory initiated outside P or Q can be

- attracted to a periodic or quasiperiodic trajectory belonging to
the boundary of the invariant region (as, for example, for δL = 0.3,
τL = −0.4, when F is invertible, L

∗
is a focus);

- mapped inside the invariant region (it is possible if F is (Z0 − Z2)
- noninvertible, like, for example, for δL = −0.5, τL = 0.3; L∗ is a flip
node);
- mapped to the boundary of the invariant region (it is possible for

(Z0−Z∞−Z1) - noninvertibility, for example, at δL = 0, τL = −0.3; L∗
is a flip node);
- attracted to some other attractor, regular, i.e., periodic or quasi-

periodic (e.g., to a periodic attractor for τR = 0.25, δL = 0.9, τL = −0.7)
or chaotic (e.g., for τR = −1.5, δL = 0.1, τL = 0.63), coexisting with the
invariant region (for both examples L

∗
is a focus);

- divergent (e.g., for τR = −1.5, δL = 0.9, τL = −0.7; L∗ is a focus).
In the following we investigate the dynamics of the map F ‘after’

the center bifurcation, that is for δR > 1. Among all the infinitely many
invariant curves filling the invariant region (P or Q) at δR = 1, only
the boundary of it survives, being modified, after the bifurcation, that
is for δR = 1+ ε at some sufficiently small ε > 0. Roughly speaking, the
boundary of the former invariant region is transformed into an attracting
closed invariant curve C on which the map F is reduced to a rotation.
Similar to the NS bifurcation occurring for smooth maps, we can use
the notion of rotation numbers: In case of a rational rotation number
m/n two cycles of period n with rotation number m/n are born at the
center bifurcation, one attracting and one saddle, and the closure of the
unstable set of the saddle cycle approaching points of the attracting cycle
forms the curve C. In the piecewise linear case such a curve is not smooth,
but a piecewise linear set, which in general has infinitely many corner
points accumulating at the points of the attracting cycle. Differently
from the smooth case such a curve is born not in a neighborhood of
the fixed point: Obviously, its position is defined by the distance of the
fixed point from the critical line LC. Description of such a curve, born
due to the center bifurcation for some piecewise linear maps, as well
as proof of its existence in particular cases, can be found in [37], [112],
[119], [108], [109]. Our main interest here is related to the bifurcation
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structure of the (δR, τR)-parameter plane, namely, to the periodicity
regions corresponding to the attracting cycles born due to the center
bifurcation.

10.3.2 Bifurcation Diagrams in the (δR, τR)-parameter plane

Before entering into some general considerations we present examples of
the 2D bifurcation diagram in the (δR, τR)-parameter plane for different
values of δL and τL giving some comments on the bifurcation structure
of the parameter plane. Note that each of these examples deserves more
detailed investigation being quite rich in a sense of possible bifurcation
scenarios. Some properties of similar bifurcation diagrams for piecewise
linear and piecewise smooth dynamical systems were described, e. g., in
[54], [112], [118], [108]. Referring to these papers, we recall here a few
properties using our examples.

Fig.83 Two-dimensional bifurcation diargams of the map F in the
(δR, τR)-parameter plane. In (a) δL = 0.25, τL = 0.5. F is invertible and
L
∗
is an attracting focus. In (b) δL = −0.5, τL = 0.3. F is noninvertible, of

(Z0 − Z2)-type, and L
∗
is an attracting flip node.

In the bifurcation diagrams presented in Fig.83a,b the parameter re-
gions corresponding to attracting cycles of different periods n, n ≤ 32,
are shown in different colors (note that the periodicity regions related
to attracting cycles with the same period n, but different rotation num-
bers, say m1/n and m2/n, are shown by the same color). If one takes
the (δR, τR)-parameter point belonging to some m/n-periodicity region,
denoted by Pm/n, then the corresponding map F has an attracting cycle
of period n, which in general may be not the unique attractor. Some pe-
riodicity regions are marked also by the corresponding rotation numbers.
White region on these figures is related either to higher periodicities, or
to chaotic trajectories. Gray color corresponds to divergent trajectories.
Fig.83a presents the 2D bifurcation diagram for δL = 0.25, τL =
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0.5. In such a case the map F is invertible (given that we consider
δR > 1, see Property 1); L

∗
is an attracting focus. Fig.83b presents

the bifurcation diagram at δL = −0.5, τL = 0.3 : For such parameter
values F is noninvertible, of (Z0 − Z2)-type; L

∗
is an attracting flip

node (i.e. one negative eigenvalue exists). Recall that such bifurcation
diagrams representing qualitatively different dynamic regimes, reflect
also possible results of the border-collision bifurcation of the attracting
fixed point of the map F occurring when µ changes from a negative to
a positive value. For example, if we fix δL = 0.25, τL = 0.5, δR = 4,
τL = 0.5 (the parameter point is inside the region P1/5 on Fig.83a),
then for µ < 0 the map F has the attracting focus L∗ which at µ = 0
undergoes the border-collision bifurcation resulting (for µ > 0) in the
attracting and saddle cycles of period 5. First of all we recall that an
issuing point for the periodicity region Pm/n is (δR, τR) = (1, τR,m/n),
where τR,m/n is given in (80). In the vicinity of the bifurcation line
δR = 1 the periodicity regions are ordered in a way similar to that
of the Arnold tongues associated with the NS bifurcation occurring for
smooth maps. In short, the periodicity regions follow a summation rule,
or Farey sequence rule, holding for the related rotation numbers (see,
e.g., [87], [76]). In particular, according to this rule if, for example,
r1 = m1/n1 and r2 = m2/n2 are two rotation numbers, associated at
δR = 1 with τR = τR,r1 and τR = τR,r2, τR,r1 < τR,r2 , then there exists
also a value τR = τR,r3, τR,r1 < τR,r3 < τR,r2 , related to the rotation
number r3 = (m1 + m2)/(n1 + n2), so that (δR, τR) = (1, τR,r3) is an
emanating point for the region Pr3. To illustrate the summation rule
some periodicity regions are marked in Fig.83 by the rotation numbers
of the related cycles.
The kind of bifurcations associated with the boundaries of the peri-

odicity regions differs from the smooth case: It is known that the bound-
aries of the Arnold tongues issuing from the Neimark-Sacker bifurcation
curve are related to saddle-node bifurcations, and the other boundaries
correspond to stability loss of the related cycle. While for piecewise
linear maps the boundaries of the periodicity regions issuing from the
center bifurcation line correspond to so-called border-collision pair bi-
furcations (a piecewise linear analogue of the saddle-node bifurcation),
which we shall consider in detail in the next section.
Note also that differently from the smooth case the periodicity re-

gions can have a ‘sausage’ structure (see Fig.83) with several subregions,
first described in [54], which is typical for piecewise smooth and piece-
wise linear systems (see also [118], [112]). In fact, different subregions
of the same periodicity region for the considered map F are related to
different compositions of the maps F1 and F2 applied to get the corre-
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sponding cycle (attracting or saddle). It can be shown that the first
(leftmost) subregion of the m/n-periodicity region, denoted by P 1

m/n, is
related to an attracting m/n-cycle with two periodic points located in
L and n− 2 points in R, that is, the related composition can be written
as F n = F 2

1 ◦F n−2
2 for m = 1, and Fn = F1 ◦F i

2 ◦F1 ◦F n−2−i
2 , for m 6= 1,

where i > 1 depends on m and n. The corresponding saddle m/n-cycle
for any m for parameters from P 1

m/n has one periodic point in L and
n− 1 points in R, that is, for such a cycle Fn = F1 ◦ Fn−1

2 .

Fig.84 Bifurcation diagram for δR ∈ [1.9, 2.05] , δL = 0.5, τL = 0.25,
related to the parameter path shown in Fig.83a by the thick straight line
with an arrow. The points of the attracting and saddle cycles are shown in

red and blue, respectively.

The ‘waist’ points separating subregions are related to a particular border-
collision bifurcation at which points of the attracting and saddle cycles
exchange their stability colliding with the border: Namely, after the
collision the former attracting cycle becomes a saddle one while the
saddle cycle becomes attracting (for details see [31], [112]). To illus-
trate such a border-collision bifurcation we have chosen the waist point
(δR, τR) ≈ (2,−0.6666) of the region P1/4 at δL = 0.5, τL = 0.25 (see
Fig.83a). Fig.84 presents a bifurcation diagram for δR ∈ [1.9, 2.05] ,
τR = −1.6665δR+2.66635, so that the parameter point moves from the
first subregion P 1

1/4, to the second one, denoted P 2
1/4 (the related para-

meter path is shown by the thick straight line with an arrow in Fig.83a).
On this diagram the points of the attracting and saddle cycles are shown
in red and blue, respectively. Three (x, y)-planes shown in gray represent
a part of the phase portrait of the system: Before the bifurcation, i.e.,
for (δR, τR) ∈ P 1

1/4; at the moment of the border-collision related to the
waist point (δR, τR) ≈ (2,−0.6666); and after the bifurcation, i.e., for
(δR, τR) ∈ P 2

1/4. Comparing the phase portrait related to the subregion
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P 21/4 with the one related to P
1
1/4, one can see that the number of periodic

points in L is increased: Now three points of the attracting cycle are in
L and one in R, and for the saddle cycle we have two points in L and
two in R.
Let us comment also the overlapping of periodicity regions, which

corresponds to multistability (as an example, see Fig.83a on which sev-
eral multistability regions are dashed, related with the periodicity re-
gions P1/3 and P1/4. Some other overlapping zones can be seen in the
same figure, as well as in Fig.83b). Recall that considering the initial
problem of the BCB of the fixed point of F , we have that in the case
of multistability, varying µ through 0, the fixed point bifurcates into
several attractors. As it was already mentioned, any invariant set of F
contracts linearly with µ as µ tends to 0 collapsing to the origin at µ = 0.
Among such invariant sets we have the basins of attraction of coexisting
attractors which shrink to 0 as well. Thus, one cannot answer a priori to
which attractor the initial point will be attracted after the bifurcation.
This gives a source of unpredictability of the results of the BCB. This
problem was posed first in [64], see also [34]. To give an example, we fix
δL = 0.25, τL = 0.5, τR = −2 and will increase the value of δR start-
ing from δR = 1.5, when the map F has attracting and saddle cycles
of period 3 (see the arrow in Fig.83a). At δR ≈ 1.64 a border-collision
pair bifurcation occurs giving birth to attracting and saddle cycles of
period 4, i.e., the parameter point enters the bistability region. Fig.85a
presents a part of the phase portrait of the system at δR = 1.65 when
there are coexisting attracting cycles of period 3 and 4 whose basins of
attraction, separated by the stable set of the period 4 saddle, are shown
in yellow and green, respectively. The unstable set (shown in blue) of
the saddle 3-cycle, approaching points of the attracting 3-cycle, forms a
saddle-node connection which is wrinkled due to two negative eigenval-
ues of the attracting 3 cycle. With further increasing δR the stable set
of the period 3 saddle (shown in red) tends to get a tangency with its
unstable set. Indeed, at δR ≈ 1.68 a homoclinic bifurcation occurs af-
ter which the saddle-node connection is destroyed. Another qualitative
change of the phase space occurs when the attracting 3-cycle undergoes
a ‘flip’ bifurcation (an eigenvalue passing through −1) resulting in a
cyclic chaotic attractor of period 6. After pairwise merging of the pieces
of the attractor it becomes a 3-piece cyclic chaotic attractor shown in
Fig.85b (for further details related to the ‘flip’ bifurcation in a piecewise
linear map see [78]). Note that the boundary separating the basins of
attraction is no longer regular as in Fig.85a but fractal. Such a basin
transformation is a result of the homoclinic bifurcation of the saddle 4-
cycle.
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Fig.85 In (a) δL = 0.25, τL = 0.5, δR = 1.65, τR = −2. Attracting cycles
of periods 3 and 4 with their basins of attraction (shown in yellow and

green, respectively) separated by the stable set of the 4-saddle; The unstable
set (in blue) of the 3-saddle forms a saddle-node connection which is near to
be destroyed by homoclinic tangency with the stable set (in red). In (b)
δR = 2.2. Basins of attraction of the 3-piece cyclic chaotic attractor and

4-cycle are shown in yellow and green, respectively.

A contact with the fractal basin boundary leads to the disappearance
of the chaotic attractor at δR ≈ 2.25. Thus, in the considered sequence
of bifurcations, the attracting 4-cycle coexists first with the attracting
3-cycle, then with the 6-piece chaotic attractor and finally with the 3-
piece chaotic attractor. To illustrate the border-collision bifurcation of
the fixed point of F in a case of multistability we present in Fig.86 a
bifurcation diagram for µ ∈ [−0.2 : 1], related to Fig.85b. The problem
of multiple attractors and the role of homoclinic bifurcation is discussed
in [119], [108].

Fig.86 Phase space (x, y) as µ changes in the interval µ ∈ [−0.2 : 1] at
δL = 0.25, τL = 0.5, δR = 2.2, τR = −2. After the BCB at µ = 0 the

attractor in red is the attracting 4-cycle, while the attractor in black is the
3-piece chaotic attractor.
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10.3.3 1/n periodicity regions and their BCB boundaries

Let us consider now the first subregion, denoted by P 1
1/n, of the main

periodicity region P1/n. For such regions in the parameter space we
can get the analytic representations for their boundaries related to the
BCB, that is, the two boundaries of the regions issuing from the center
bifurcation line, which we shall call BC boundaries for short. Note that
in general any periodicity region has two BC boundaries and may have
also other boundaries which are related to the stability loss of the cor-
responding attracting cycle. Note that (similarly to the smooth case)
inside a periodicity region it is not guaranteed the existence of a closed
invariant curve, which can be destroyed in several ways (for a list of
mechanisms of destruction of a closed invariant attracting curve in the
piecewise linear case see [108]).
So let us consider a periodicity region P1/n and let (δR, τR) ∈ P 1

1/n.

Denote the related attracting and saddle cycles by p = {p0, ..., pn−1} and
p0 =

©
p00, ..., p

0
n−1
ª
, respectively. Let p0, pn−1 ∈ L and p1, ..., pn−2 ∈ R.

As for the saddle cycle, let p00 ∈ L and p01, ..., p
0
n−1 ∈ R.We shall see what

happens with these cycles if the (δR, τR)-parameter point crosses the two
BC boundaries of P 1

1/n. To illustrate our consideration we use an example
shown in Fig.87a for δL = 0.25, τL = 0.5, i.e., (δR, τR) ∈ P 1

1/5 (see
Fig.83a).
We consider a fixed value δR = δ∗R inside the periodicity tongue,

such that the qualitative position of the periodic points in the (x, y)
phase plane is presented in Fig.87a. Now let us increase the value of τR,
then the point pn−1 of the cycle moves towards the critical line LC−1,
so that at some τR = τ ∗R we have pn−1 ∈ LC−1 (and, as a consequence,
p0 ∈ LC0) which indicates a BCB. It occurs not only for the attracting
cycle: Indeed, also the saddle cycle undergoes the BCB, namely, at
τR = τ ∗R we have p0n−1 ∈ LC−1, moreover, p0n−1 = pn−1, as well as
all the other points of the cycles p and p0 are pairwise merging on the
critical lines of the proper ranks (see Fig.87c). In such a way the ‘saddle-
node’ BCB occurs (not related to an eigenvalue equal to 1). The value
τR = τ ∗R corresponds to the (δR, τR)-parameter point crossing the upper
boundary of P 11/n, which we denote by BC1/n(1). While if at the fixed
δR = δ∗R the value τR is decreased, then p0 and p01 move towards the
critical line LC−1, so that at some τR = τ∗∗R we have p0 = p01 ∈ LC−1,
thus one more ‘saddle-node’ BCB occurs (see Fig.87b), related to the
(δR, τR)-parameter point crossing the lower boundary of P 1

1/n, denoted
by BC1/n(2).
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Fig.87 Examples of the ‘saddle-node’ BCB for (δR, τR)-parameter points
crossing the boundaries of P 11/5 at δL = 0.25, τL = 0.5 : (a)

(δ∗R, τR) = (1.25, 0.65) ∈ P 1
1/5 ; (b) (δ

∗
R, τ

∗∗
R ) ∈ BC1/5(2) where

τ ∗∗R ≈ 0.575; (c) (δ∗R, τ ∗R) ∈ BC1/5(1) where τ ∗R ≈ 0.726.
Independently on the way the parameters τR and δR are varying, the two
conditions for the BCB of the cycle p (at this moment we say nothing
about its stability before the bifurcation), are p0 ∈ LC−1 and p0 ∈ LC0,
or, more precisely,

BC1/n(1) (x0, 0)=Fn−1
2 ◦ F1(x0, 0), (86)

BC1/n(2) (0, y0)=F1 ◦ F n−1
2 (0, y0), (87)

where (x0, y0) are coordinates of the point p0.
Let the matrix defining the map F2 be denoted by A, that is

A =

µ
τR 1
−δR 0

¶
.

It is not difficult to note that Ai, i > 1, can be written as follows:

Ai =

µ
ai ai−1

−δRai−1−δRai−2
¶
, (88)

where ai is a solution of the second order difference equation

ai − τRai−1 + δRai−2 = 0 (89)

with the initial conditions

a0 = 1, a1 = τR. (90)

We know that the eigenvalues of the corresponding characteristic equa-
tion of (89) are complex-conjugate: λ1,2(R) =

³
τR ±

p
τ 2R − 4δR

´
/2,
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where τ 2R < 4δR, so the general solution of (89) with the initial condi-
tions (90) can be written as

ai =
³p

δR
´iÃ

cos(2πi/n) +
τRp

4δR − τ 2R
sin(2πi/n)

!
.

For example, a2 = τ 2R − δR, a3 = τ 3R − 2τRδR, and so on.
Now, to get the condition in (86) in terms of the parameters of the

system, we first shift the coordinate system so that the origin becomes
the fixed point of F2, that is we make a change of variables: x0 = x−x∗,
y0 = y−y∗. Note that y∗ = −δRx∗. Then, in the new variables the maps
F1 and F2, say eF1 and eF2, become

eF1 :µ x0

y0

¶
7→
µ

τL(x
0 + x∗) + y0 + y∗ + 1− x∗

−δL(x0 + x∗)− y∗

¶
, x0 ≤ −x∗;

eF2 :µ x0

y0

¶
7→
µ

τRx
0 + y0

−δRx0
¶
, x0 ≥ −x∗.

The equality (86) in the new variables is

(x00 − x∗, δRx∗) = eF n−1
2 ◦ eF1(x00 − x∗, δRx∗). (91)

Note that eF i
2 can be written as

eF i
2 :

µ
x0

y0

¶
7→ Ai

µ
x0

y0

¶
,

where Ai is given in (88). So, substituting (88) with i = n− 1 into (91)
and equating the two expressions for x00, we get the equality

δRan−1 − an + 1

δLan−2 − τLan−1 + 1
=

δRan−2 − an−1 + 1
δLan−3 − τLan−2

which can be also written as

BC1/n(1) :
an−1 + an−2 + ...+ a1 + 1

δLan−2 − τLan−1 + 1
=

an−2 + an−3 + ...+ a1 + 1

δLan−3 − τLan−2
.

(92)
Similarly, the equality in (87) in the new variables (x0, y0) is written as

(−x∗, y00 + δRx
∗) = eF1 ◦ eFn−1

2 (−x∗, y00 + δRx
∗),

from which we get the equality

BC1/n(2) :
δL(an−1 − 1) + δR

δLan−2 + 1
=

τL(an−1 − 1)− δRan−2 + τR − 1
τLan−2 − δRan−3

.

(93)
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Fig.88 The border-collision bifurcation curves BC1/n(1) and BC1/n(2),
n = 3, ..., 9; δL = 0, τL = 0.5.

For fixed values of the parameters δL and τL, the equalities (92) and
(93) represent, in an implicit form, two curves in the (δR, τR)-parameter
plane. As an example, in Fig.88 the curves BC1/n(1) and BC1/n(2) are
plotted for n = 3, ..., 9, where δL = 0, τL = 0.5. Obviously, only partic-
ular arcs of the curves given in (92) and (93) are related to the BCB of
the attracting cycle. The end points of such arcs are the waist points
issuing from the NS curve, being two intersection points of (92) and (93),
and one of them belongs, obviously, to the center bifurcation line, i.e.,
δR = 1, τR = τR,1/n = 2 cos(2π/n) (see (80)).
For example, let us consider in more details the region P 1

1/4 at δL = 0,
τL = 0.5 (see Fig.88). The BC boundaries of P 1

1/4 are given by

BC1/4(1) : τR−δR−τLδR+τLτRδR+τ 2R+τLτ
2
R+τLδ

2
R+1 = 0, (94)

BC1/4(2) : −τLτR− τL+ δR− 1− τLτ
2
R+ τLδR+ δRτR = 0. (95)

For τL = 0.5 we can easily obtain the waist points, which are (δR, τR) =
(1, 0) and (δR, τR) = (3,−1). We can also check that for the curve
BC1/4(1) the derivative of τR with respect to δR, evaluated at (δR, τR) =
(1, 0) is

τ 0R|(1)(δR,τR)=(1,0) =
1− τL
1 + τL

,
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while for the curve BC1/4(2) we have

τ 0R|(2)(δR,τR)=(1,0) =
τL + 1

τL − 1 =
1

τ 0R|(1)(δR,τR)=(1,0)
These two derivatives are not equal (in effect they are reciprocal), thus
the point (δR, τR) = (1, 0), which is an issuing point for the region P 1

1/4,
is not a cusp point.

1/3 periodicity region
Let us consider in more details the region P1/3 in the (δR, τR)-parameter
plane for (δL, τL) ∈ SL. Let p = {p0, p1, p2} be a cycle of period 3 of the
map F such that p0, p1 ∈ L and p2 ∈ R. Substituting n = 3 to (92) and
(93) we get the equations for the BC boundaries of P1/3, which are the
straight lines in the (δR, τR)-parameter plane:

BC1/3(1) :

½
τR = (δR − δRδL − 1− τL)/(δL + τL), for δL 6= −τL;
δR = 1, for δL = −τL;

(96)

BC1/3(2) :

½
τR = (−δRδL − δRτL + δL − 1)/(1 + τL), for τL 6= −1;
δR = 1, for τL = −1.

(97)
We can also obtain the equations defining the boundaries of the triangle
of stability of the cycle p. Indeed, the map F 3 corresponding to the
considered cycle is F 3 = F2 ◦ F 2

1 , for which the related eigenvalues η1,2
are less then 1 in modulus for

½
τR > (δR(τL − δ2L)− 1 + δLτL)/(τ

2
L − δL),

τR > (δR(τL + δ2L) + 1 + δLτL)/(τ
2
L − δL),

for τ 2L > δL;½
τR < (δR(τL − δ2L)− 1 + δLτL)/(τ

2
L − δL),

τR < (δR(τL + δ2L) + 1 + δLτL)/(τ
2
L − δL),

for τ 2L < δL;

δR < 1
δ2L
,

(98)

so that the ‘flip’ bifurcation line denoted by Fl1/3 and related to η2 = −1,
is given by

Fl1/3 :

½
τR = (δR(τL − δ2L)− 1 + δLτL)/(τ

2
L − δL), for τ 2L 6= δL;

δR = (δLτL − 1)/(δ2L − τL), for τ 2L = δL;
(99)

the bifurcation line related to η1 = 1, denoted by T1/3 (a particular
"transcritical" bifurcation in our examples, as we shall see), is given by

T1/3 :

½
τR = (δR(τL + δ2L) + 1 + δLτL)/(τ

2
L − δL), for τ 2L 6= δL;

δR = −(δLτL + 1)/(δ2L + τL), for τ 2L = δL;
(100)
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and by C1/3 we denote the center bifurcation line (related to
¯̄
η1,2
¯̄
= 1

for the complex-conjugate η1,2), which is given by

C1/3 : δR =
1

δ2L
, δL 6= 0. (101)

Thus, in the (δR, τR)-parameter plane we have 5 straight lines such that
two of them, namely, BC1/3(1), BC1/3(2) are necessarily the boundaries
of P1/3, while three others depend on δL and τL : All the three lines
may be involved as boundaries of P1/3, or only two of them, or only one.
Note that it may also happen that P1/3 = ∅, as well as P1/3 may be an
unbounded set (as, for example, in the case shown in Fig.88, in which
the straight line BC1/3(1) is parallel to the straight line Fl1/3). All the
above cases can be classified depending on the values of δL and τL.
Coming back to the initial problem of the BCB of the attracting fixed

point of F occurring for µ varying through 0 at some fixed values of the
other parameters of the normal form (71), one can check analytically,
using (96)-(101), whether an attracting cycle of period 3 is born due to
the bifurcation.
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11 Appendix on the Myrber’s map.

In this Appendix we summarize some of the properties of the maps which
are topologically conjugated to the logistic map or Myrberg’s map T :
x0 = x2 − b, say T : X → X, X = [q−11 , q1] where q1 is the fixed point
always repelling for b ∈ [−1/4, 2]. The critical point is denoted as xc,
and the absorbing interval is I = [T (xc), T 2(xc)].
On the x-axis, the repelling cycles and their preimages and limit

points have a fractal organization when b ≥ b1s where b1s denotes the
Feigenbaum point, i.e. the limit point of the first flip bifurcation se-
quence of the 2−cycle of T . For each value of the parameter b, b ≥ b1s,
the fractal structure of the map singularities is completely identified from
the box-within-a-box bifurcation structure described in the years 1975 by
Mira (see [87] and references therein). Consider b (b ≥ b1s) such that the
map has an attracting k−cycle C, then for the map T k this cycle gives k
attracting fixed points Pi, i = 1, ..., k, each of them with an immediate
basin d0(Pi), and a total non connected basin d(Pi) = ∪n>0T−knd0(Pi).
The total basins d(Pi) have a fractal structure, and a strange repeller Λi

belongs to the boundary of ∪kn=1d(Pi). For the map T this is reflected
in a cyclical property, so that the basin d(C) is the union of the k basins
and its fronties is a strange repeller Λ, i.e. an invariant set, T (Λ) = Λ,
such that the restriction T : Λ→ Λ is chaotic (in the sense of Devaney,
i.e. topological chaos with positive topological entropy). This frontier
(on which the map is chaotic) if a set of zero measure in the interval X.
For any value of b almost all the points x of the interval ]q−11 , q1[ (i.e.

apart from at most a set of points of zero Lebesgue measure) have the
same asymptotic behavior, which sometimes is called metric attractor
Aλ, due to this property, and independently on its nature. This metric
attractor Aλ can only be one of the following three typologies ([24],
[104]):
(1) a k−cycle (of any period k ≥ 1, either stable (|S| < 1), or neutral

(|S| = 1);
(2) a critical attractor (Acr)with Cantor like structure, of zero Lebesgue

measure;
(3) k−cyclic chaotic intervals, k ≥ 1.
In the case (1) the generic omega limit set ω(x) is equal to the omega

limit set of the critical point xc, and the trajectory of xc tends to the
k−cycle, stable or neutral Aλ, ω(xc) = Aλ. In the case in which |S| = 1
the cycle belongs to the frontier of its basin (or better, stable set). In
the case in which |S| < 1 the cycle is an attractor of T . For b > b1s the
frontier of the basin of attraction is a strange repeller Λ, i.e. an invariant
set, T (Λ) = Λ such that the restriction T : Λ → Λ is chaotic (in the
sense of Devaney). This frontier (on which the map is chaotic) if a set
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of zero measure in the interval X, and it is a topological repellor, i.e. a
repelling set in the definition given above.
In the case (2) the generic omega limit set ω(x) is equal to ω(xc) =

Acr and xc ∈ Acr. In this case T : Acr → Acr is chaotic, however Acr

is not a topological attractor, that is, an "attractor of T" in the usual
definition, but an "attractor in Milnor’ sense" and its stable set is the
whole interval, so that we can say that it is globally attracting in the
interval.
We recall that an invariant set is an "attractor in Milnor’ sense" when

its stable set has positive Lebesgue measure in the space of the map.
In the case (3) the critical point xc is either periodic or preperiodic,

merging into a repelling cycle (|S| > 1), which is called a critical periodic
orbit, and at this parameter value a homoclinic bifurcation of this cycle
occurs. The critical periodic orbit belongs to the chaotic intervals Aλ. In
this case T : Aλ → Aλ is chaotic, and Aλ may be a topological attractor
or an "attractor in Milnor’ sense" depending on the parameter value
(for example, at the closure of a box of second kind it is a topological
attractor, while at the closure of a box of first kind it is an attractor in
Milnor’s sense, globally attracting in the whole interval).
In all the cases (1), (2) and (3), the chaotic set is the closure of all

the repelling points in I.
Noticing that in (2) and (3) above the chaotic sets attracts all the

points of the interval, we may generically speak of "chaotic attractors",
but the chaotic set is of full measure only in the case (3).
Let us define as bp the set of parameter values in the interval [−1/4, 2]

at which the typology (1) occurs, bcr and bch respectively the set of
parameter values in the same interval [−1/4, 2] at which the typology (2)
and (3) respectively occurs. Then it is important to notice that the set bp
consists of infinitely many nontrivial intervals having a fractal structure
in the interval [−1/4, 2] and dense in it (i.e. bp =[−1/4, 2]). The set bcr
is a completely disconnected set of zero Lebesgue measure while the set
bch is a completely disconnected set of positive Lebesgue measure (for
the proofs we refer to Thunberg [2001] and references therein).
Thus the set of points in the parameter space [−1/4, 2] in which we

have chaotic attracting sets of full measure in X is a set of positive
Lebesgue measure.
When the parameter b varies in the interval −1/4 ≤ b ≤ 2 sequences

of "boxes" occur, with the related bifurcations. Each box of the first
kind is opened by a fold bifurcation giving rise to a pair of cycles, such
a box of first kind closes when the cycle with S > 1 becomes critical for
the first time (i.e. the first time that a critical point merges in it, at
its first homoclinic bifurcation). Inside each box of first kind the cycle
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with S < 1 starts an infinite sequence of flip bifurcations, each of which
opens a box of second class which closes when it becomes critical for
the first time (i.e. at its first homoclinic bifurcation). Such sequences of
boxes have a fractal structure due to the self similar property. All the
boundaries of boxes of first or second class are bifurcation values. At
all the opening values the map is of typology (1), while all the closure
values are global (homoclinic) bifurcations (belonging to the set bch),
and the map is of typology (3). Inside each box of first kind there exists
a limit value of boxes of second kind at which the the map is of typology
(2) (the so called Feigenbaum point). Particular bifurcation values of b
are those which are limit points of other bifurcation values (for example
boundaries of boxes of first class), such bifurcation values belong to the
set bch and the map is of typology (3). In particular, when the critical
point xc is periodic or preperiodic the map is of typology (3).
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