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Heterogeneous oligopolies
Research aim

GOAL
Investigate the evolutionary behavior of cournotian heterogeneous
oligopolies of generic size N, under the effect of evolutionary pressure
in a play the field context

Each firm select a behavioral rule from a set of two different rules.
We focus on the evolutionary fractions framework, namely

I the firms can choose between different behavioral rules,
adapting their adjustment mechanism endogenously.
(Evolutionary fractions)

The rules we focus on are based on best response mechanisms
and differentiate because of the rationality degree of agents.
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Questions

Oligopoly size: N
Oligopoly composition : ωt is the fraction of oligopolists that adopted

the first mechanism at time t
Evolutionary pressure: β, is the intensity of choice, the propension to
for a firm to change its behavioral rule
Informational costs : C, are the cost associated to the most rational
firm, to take into account its informational effort

Does increasing N always lead to instability?

How local stability is affected by rationality (in terms of
evolutionary pressure β, C?
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Behavioral rules
Best Response mechanisms

We consider best response mechanisms with different rationality degrees

I full informational and computational capabilities
I complete knowledge of economic setting (demand and cost functions)
I endowed with perfect foresight, also of oligopoly composition
I able to optimally respond to the other players strategies

Rational (R) player

I complete knowledge of economic setting (demand and cost functions)
I NOT endowed with perfect foresight, static expectation
I able to optimally respond to the other players (expected) strategies

Best Response (BR) player

I incomplete knowledge of economic setting (market price pt , the produced
quantity Qt , local knowledge of the demand function in (pt ,Qt ))

I conjecture a demand function (local linear approximation), solve optimization

Local Monopolistic Approximation (LMA) player
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Oligopolies
Literature

All firms adopt the same decisional rule.
Several works focus on stability thresholds with respect to oligopoly size

I Linear demand function: Palander (1939), Theocharis (1959), Canovas
et al (2008).

I Isoelastic demand function: Puu (1991), Lampart (2012).
I LMA adjustment: Bischi et al.(2007) and Naimzada and Tramontana

(2009).

Common behavior: increasing oligopoly size leads to instability. LMA is
“more stable“ than Best Response.

Homogeneous oligopolies

Several couplings of different adjustment mechanisms for duopolistic mar-
kets: Agiza and Elsadany (2003,2004), Angelini et. al (2009), Tramon-
tana(2010), C. and Naimzada (2014).
Droste et al. (2002) (linear demand function, no oligopoly size, only evolution-
ary fractions), Hommes et al. (2011) (linear demand function), Bischi et al.
(2014)

Heterogeneous oligopolies
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Framework
Economic setting

Isoelastic (inverse) demand function (Cobb-Douglas preferences)

p(Q) =
1
Q

Constant marginal costs ci :
C(qi ) = ciqi

Identical marginal costs for firms adopting the same rule

Economic setting
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Behavioral rules

Generic R player

→ Compute the best response to the (correctly foreseen) strategies and
oligopoly composition at time t + 1 of remaining R players and F2 players

→ The strategies of R players are identical: compute a (pseudo) best
response to the (correctly foreseen) strategies at time t + 1 of F2 players

qt
1 = R(qt

2, ωt ) = max

{
(ωtN − 1)− 2c1ωt (1− ωt )N2qt

2

√
∆(qt

2, ωt )

2c1ω2
t N2

, 0

}

where ∆(qt
2, ωt ) = (ωtN − 1)2 + 4c1ωt (1− ωt )N2qt

2.
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Behavioral rules

Generic LMA player:

Approximated best response depends on own LMA player strategy qt
t and on

aggegated strategy Qt (which depends on the oligopoly composition ωt at time
t)

qt+1
2 = L(qt

2,Q
t (ωt )) = max

{
1
2

qt
2 +

1
2

(
1− c2Qt

)
Qt , 0

}
.

Generic BR player

Classical best response to the others’ past time aggregated strategy Qt
−i

(static expectations) i = 1, 2 (which depends on the oligopoly composition
ωt at time t)

qt+1
i = B(Qt

−i (ωt )) = max


√

Qt
−i

ci
−Qt

−i0

 ,
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Switching mechanism

How do the firms select the rule to adopt? We assume that
I the decisional rules past performance and costs are commonly known
I the firms choose their decisional mechanism on the base of the previous

period performance
I according to this choice, they decide their strategy

We investigate the dynamics given by the logit choice rule

z(x , y) =
exp(βx)

exp(βx) + exp(βy)
=

1
1 + exp(β∆xy)

,

where ∆xy = y − x .
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Performance evaluation

How do the firms select decide which is the most performing mechanism?
They compare past period net profits πi − Ci , in which C are informational
supplementary costs associated to the most rational firms (without loss of
generality, we assume that informational costs of the least rational firm are
null)
Profit

πi =
qi

Q
− ciqi

Switching mechanism

ωt+1 =
1

1 + exp(β∆πt )
.

where ∆πt = πt
2 − πt

1 + C1.

I β = 0 → ωt+1 = 1/2, for any initial partitioning of the decisional
mechanism, the players do not consider and compare the performance
but they (immediately) uniformly distribute between the two decisional
mechanisms.

I β → +∞, the logit function approaches a step function, so the firms are
inclined to rapidly switch to the most profitable mechanism and ωt+1

approaches 0 or 1.
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Profits positivity

Due to the supplementary informational costs, profits of the most rational
firms can become negative.
This is acceptable only for short periods.
To check this, we introduce cumulative profits, namely the sum of the net
profits

Πt+1
i = Πt

i + πt+1
i − Ci ,

We couple numerical investigations with cumulative profits diagrams, to prove
that the results are economically meaningful.
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First evolutionary fraction model: Rational vs. LMA

Two dimensional model

qt+1
2 = max

{
1
2

qt
2 +

1
2

(
1− c2Qt

)
Qt , 0

}
,

ωt+1 =
1

1 + exp(β(πLMA,t
2 (qt

1, q
t
2, ωt )− πR,t

2 (qt
1, q

t
2, ωt ) + C))

where Qt = ωtNR(qt
2, ωt ) + (1− ωt )Nqt

2 and

πR,t
1 (qt

1, q
t
2, ωt ) =

R(qt
2, ωt )

Qt − c1R(qt
2, ωt ),

πLMA,t
2 (qt

1, q
t
2, ωt ) =

qt
2

Qt − c2qt
2

We focus on identical marginal costs c = c1 = c2

Proposition

The Nash equilibrium q?
i = (N − 1)/(N2c) is the only positive steady state, to

which corresponds the equilibrium fraction ω? = 1/(1 + expβC)
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Evolutionary fractions Rational vs. LMA
Results

Local Stability

Proposition

If N ≤ 5 the Nash equilibrium is always stable. When N > 5, the Nash
equilibrium is stable provided that

βC < log
(

3N − 3
N − 5

)
.

I Oligopolies with N ≤ 5 have stable equilibrium independently of the
equilibrium fraction ω∗, regulated by βC.

I For N > 5, we always have suitable C and β that make stable the
equilibrium.

I As C and β sufficiently increase, the equilibrium become unstable.
I However, if βC ≤ log(3), the equilibrium is stable for all the oligopoly

sizes N.
I When stability condition is violated, equilibrium loses stability through a

flip bifurcation.
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Evolutionary fractions Rational vs. LMA
Simulations

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

β C

q 1

N=9

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

β C

q 2

N=9

Bifurcation diagrams of strategies qi for c = 0.1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

β C

ω

N=9

Bifurcation diagram of oligopoly composition ω for c = 0.1
14 / 33



Evolutionary fractions Rational vs. LMA
Simulations
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Second model: Evolutionary fractions BR vs. LMA

Three dimensional system with inertial mechanims (inertia αi )
qt+1

1 = qt
1 + αBR

√Qt
−1

c1
− qt

1

−Qt
−1,

qt+1
2 = qt

2 + αLMA

(
1
2

qt
2 +

1
2

(
1− c2Qt

)
Qt − qt

2

)
ωt+1 = 1/(1 + exp(β(πLMA,t

2 (qt
1, q

t
2, ωt )− πR,t

2 (qt
1, q

t
2, ωt ) + C)))

where Qt
−1 = (ωtN − 1)qt

1 + (1− ωt )Nqt
2, Qt = ωtNqt

1 + (1− ωt )Nqt
2 and

πBR,t
1 (qt

1, q
t
2, ωt ) = qt

1/Q
t − c1qt

1, πLMA,t
2 (qt

1, q
t
2, ωt ) = qt

2/Q
t − c2qt

2

We focus on identical marginal costs c = c1 = c2.
Inertia has to be considered, otherwise only for small oligopolies (N < 5)
equilibrium can be stable.

Proposition

The Nash equilibrium q?
i = (N − 1)/(N2c) is the only positive steady state, to

which corresponds the equilibrium fraction ω? = 1/(1 + expβC)
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Evolutionary fractions Best Response vs. LMA

Proposition

For N > 2, let us define

γ̃ =
(Nα1 − 4)(N − 1)(4− α2)

(4N − Nα1 − 4)(α2 − Nα2 + 4)
, γ(α2) =

2(N − 1)(8− Nα2)

N(N(2− α2) + α2)
.

Then, setting α̂BR = 4/N and α̂LMA = 4/(N − 1), we have
• E∗ is stable ∀βC > 0⇔

{
N < 5,
αi ∈ (0, 1],

or


N ≥ 5
αBR ∈ (0, γ(αLMA)], αLMA ∈ (0, α̂LMA]
(αBR , αLMA) 6= (γ(α2), α̂LMA) .

• E∗ is unstable ∀βC > 0⇔ N ≥ 5 and αBR ∈ [γαLMA, 1], αLMA ∈ [α̂LMA, 1].
• E∗ is conditionally stable on ω for

βC > γ̃ ⇔ βC < log(γ̃)⇔
N ≥ 5,
αBR ∈ (γ(α)LMA, 1],

αLMA ∈
(
−2N2 + 16N − 16

N2 − N
, α̂LMA

)
,


N ≥ 5,
αBR ∈ (0, γ(α)LMA),
αLMA ∈ (α̂LMA, 8/N].

17 / 33



Evolutionary fractions BR vs. LMA
Stability

Four different situations are possible:
I Equilibrium is unconditionally stable , independently of evolutionary

pressure β and informational costs C;
I Equilibrium is unconditionally unstable , independently of evolutionary

pressure β and informational costs;
I Evolutionary pressure β and informational costs C are destabilizing

I Evolutionary pressure β and informational costs C are stabilizing

18 / 33



Evolutionary fractions BR vs. LMA
Simulations

Neutrally unstable scenario (c = 0.2, αBR = 0.8, αLMA = 0.5)
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Evolutionary fractions BR vs. LMA
Simulations

Stabilizing scenario (c = 0.2, αBR = 1, αLMA = 0.5667)
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Evolutionary fractions BR vs. LMA
Simulations

Stabilizing scenario (c = 0.2, αBR = 1, αLMA = 0.5667)
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plot the value of Π after T = 1000.
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Evolutionary fractions BR vs. LMA
Simulations

Destabilizing scenario (c = 0.2, αBR = 0.27, αLMA = 0.9)
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Evolutionary fractions BR vs. LMA
Simulations
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Cumulative profits of BR and LMA
players. For each value of βC, we
plot the value of Π after T = 1000.
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Third model: Evolutionary fractions BR vs. BR

Two dimensional model

qt+1
2 = max


√

Qt
−2

c2
−Qt

−2, 0

 ,

ωt+1 =
1

1 + exp(β(πLMA,t
2 (qt

1, q
t
2, ωt )− πR,t

2 (qt
1, q

t
2, ωt ) + C))

where Qt = ωtNR(qt
2, ωt ) + (1− ωt )(N − 1)qt

2 and

πR,t
1 (qt

1, q
t
2, ωt ) =

R(qt
2, ωt )

Qt − c1R(qt
2, ωt ), π

BR,t
2 (qt

1, q
t
2, ωt ) =

qt
2

Qt − c2qt
2

We consider different marginal costs, we focus on c1 ≥ c2

Proposition

The Nash Equilibirum is the only positive steady state. The explicit
expression for equilibrium fraction is not available.
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Evolutionary fractions Rational vs. BR
c1 = c2

Analytical results for identical marginal costs
Equilibrium fraction

ω? =
1

1 + expβC
,

Proposition

Equilibrium is stable provided that

βC < log
(

3N − 4
N − 4

)
I Oligopolies with N ≤ 4 have stable equilibrium independently of the

equilibrium fraction, regulated by βC.
I For N > 4, we always have suitable C and β that make stable the

equilibrium
I As C and β sufficiently increase, the equilibrium become unstable.
I However, if βC ≤ log(3), the equilibrium is stable for all the oligopoly

sizes N.
I When stability condition is violated, equilibrium loses stability through a

flip bifurcation.
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FIXED FRACTIONS Rational vs. Best Response

We recall stability result for fixed fraction situation

Proposition

Let

ω1,2 =
c2

(
3c1N − 2c1 − c2N − 2c2 ±

√
2∆̃
)

2c1c2N + c2
1N − 3c2

2N
,

where ∆̃ = c2
2N2 + 2c2

1N2 + c2
1 + c2

2 − 2c2
1N − 2c1c2N2 + 2c1c2 − 2c2

2N. Then
equilibrium is stable provided that ω ∈ (ω1, ω2).

With respect to the R player fraction, four possible scenarios arise

ω1

1/N 1 − 1/N

ω2

Neutrally stable

1/N

ω1

1 − 1/N

ω2

Stabilizing

ω1

1/N

ω2

1 − 1/N

Destabilizing

1/N

ω1 ω2

1 − 1/N

Mixed

Question:
Do we have, also in the evolutionary fractions framework with different
marginal costs, TWO stability thresholds, with βC acting as ω?
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Evolutionary fractions Rational vs. BR revisited

Also in the evolutionary fractions R vs. BR model, we need to introduce a
function to limit output levels variations to preserve strategies positivity

Two dimensional model

qt+1
2 = qt

2 + f (γ(BR(Qt
−2)− qt

2)),

ωt+1 =
1

1 + exp(β(πLMA,t
2 (qt

1, q
t
2, ωt )− πR,t

2 (qt
1, q

t
2, ωt ) + C))

where f is an increasing, sign preserving, bounded function and γ is the reac-
tion speed of the BR agents.

Improved model

Example: sigmoid function

f (x) = a2

(
a1 + a2

a2 + a1 exp(−x)
− 1
)
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Evolutionary fractions BR vs. LMA
Simulations

Stabilizing scenario (a1 = 3, a2 = 1, γ = 2.65, c1 = 0.2, c2 = 0.1)
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Evolutionary fractions R vs. BR
Simulations

Stabilizing scenario (a1 = 3, a2 = 1, γ = 2.65, c1 = 0.2, c2 = 0.1)
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Cumulative profits of R and BR
players. For each value of βC, we
plot the value of Π after T = 1000
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Evolutionary fractions R vs. BR
Simulations

Mixed scenario (a1 = 3, a2 = 1, γ = 2.665, c1 = 0.18, c2 = 0.1)
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Evolutionary fractions R vs. BR
Simulations

Mixed scenario (a1 = 3, a2 = 1, γ = 2.665, c1 = 0.18, c2 = 0.1)
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Cumulative profits of R and BR
players. For each value of βC, we
plot the value of Π after T = 1000
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Evolutionary fractions R vs. BR
Simulations

Destabilizing scenario (a1 = 3, a2 = 1, γ = 2.5, c1 = 0.1, c2 = 0.1)
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Evolutionary fractions R vs. BR
Simulations
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Cumulative profits of R and BR
players. For each value of βC, we
plot the value of Π after T = 1000.
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(most unstable situation). After a
transient of T = 950 iterations, the
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