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We consider a discrete-time version of the model proposed by Lamantia and Radi [15]
to describe a fishery where a population regulated by a logistic growth function is
exploited by a pool of agents that can choose, at each time period, between two
different harvesting strategies according to a profit-driven evolutionary selection rule.
The resulting discrete dynamical system, represented by a two-dimensional nonlinear
map, is characterized by the presence of invariant lines on which the dynamics are
governed by one-dimensional restrictions that represent pure, i.e. adopted by all
players, strategies. However, interesting dynamics related to interior attractors, where
players playing both strategies coexist, are evidenced by analytical as well as numerical
methods that reveal local and global bifurcations.

Keywords: discrete-time population model; replicator dynamics; resource exploita-
tion; attractors; bifurcations

1. Introduction

In this paper, we consider a discrete-time version of the model proposed in [15] to describe

a fishery where two different harvesting strategies can be employed, one denoted as

standard and the other one more ecological (less intensive, hence more environmentally

friendly). At any time period, the fish population is assumed to reproduce according to a

discrete-time logistic growth function (see e.g. [7] Chapter 2 and [13]), and the agents that

exploit the fishery are assumed to update their harvesting strategy according to a profit-

driven adaptive mechanism based on the evolutionary selection rule known as replicator

dynamics (see e.g. [14,20]).

Even if dynamic models in ecology have been traditionally formulated in continuous

time, discrete-time population models have received a great amount of attention not only

for the complex and intriguing dynamics that they can produce even in the simplest

systems, but also because biological motivations have been proposed to explain their

usefulness in ecologic modelling. In fact, several authors stress that discrete-time

population models should be used whenever reproduction happens at given breeding

seasons, as several animal species successfully mate only during certain times of the year,

thus giving non-overlapping generations (see e.g. [12,17]). So, more and more discrete-

time population models have been proposed in the literature (see e.g. [5,10,13]).

Moreover, as already stressed in [15], in the model considered in this paper decisions about

the kind of harvesting strategy to be adopted typically occur in discrete time, as such
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decisions imply the adoption of different fishing technologies, and/or different numbers of

workers with different kinds of equipment, hence they cannot be revised at any time.

Sometimes the possibility of switching from a harvesting strategy to another one is

allowed only at given time periods by laws that regulate harvesting activities (see [3,4,6]).

On the basis of these motivations, a discrete-time model, represented by a two-

dimensional nonlinear map, is studied in this paper by using analytical, geometric and

numerical methods. The structure of the map is quite interesting from the point of view of its

mathematical properties, and is typical (hence representative) for a large class of repeated

evolutionary games where a population of N players can choose, at any time, between two

strategies. In fact, one dynamic variable, denoted as rðtÞ [ ½0; 1�, represents the fraction of
players adopting a given strategy at time period t [ N (of course the complementary fraction

12 rðtÞ adopts the other strategy at the same time period). As typically occurs in these kind of

evolutionary games, the two lines r ¼ 0 and r ¼ 1, where all players adopt the same strategy,

are invariant lines, along which the dynamics characterized by unique kind of players (pure

strategy case) are governed by a one-dimensional restriction of the map. In our case, the

dynamics along such invariant boundary lines are given by the iteration of a quadratic map,

topologically conjugate to the standard logistic map. However, interior attractors, where

players carrying out both strategies coexist, can be obtained, and some bifurcations involving

interior and boundary invariant sets can be studied. Indeed, very rich dynamic scenarios can

be highlighted, both analytically and numerically, and regions of the phase space of themodel

can be detected in which quasi-periodic motions prevail (i.e. where the linear approximation

of the map has complex eigenvalues) and other regions where real eigenvalues give rise to

monotonic motions or improper oscillations. In both cases, however, transitions to chaotic

behaviours can be observed. Moreover, the existence of non-topological Milnor attractors

embedded in the invariant lines is proved and numerically shown.

The paper is organized as follows. Section 2 presents the discrete-time model and

discusses the dynamics along the invariant lines where one-dimensional dynamics occurs

when all agents adopt the same strategy. Section 3 contains analytical results on the

existence of equilibrium points and their local stability properties as well as local

bifurcations. Section 4 gives some propositions on global behaviour and some numerical

simulations of the model. Section 5 concludes and indicates further research issues.

2. The model

Following the general setup of the model proposed by [15], let xðtÞ denote the available

quantity at time t of a renewable resource and let us consider a population of N agents that

can exploit the resource by two different technologies: a standard (intensive) one

characterized by technology coefficient q1 . 0, and a more environmentally friendly (let’s

say ecological) technology characterized by q0 [ ð0; q1Þ. Let rðtÞ [ ½0; 1� be the fraction
of agents that adopt the standard technology during time period t and consequently the

complementary fraction of agents ð12 rðtÞÞ adopts the ecological technology, so that

r ¼ 0 means that all the agents adopt the ecological technology q0, and r ¼ 1 means that

all the agents adopt the standard technology q1. If hi denotes the harvesting of resource by

using technology i, i ¼ 0; 1, following again [15] we assume that the cost functions are

given by

CiðhiÞ ¼ ci þ g
h2i
qix

; i ¼ 0; 1; ð1Þ

where ci # 0 represents fixed costs and g . 0 is a cost coefficient.

G.I. Bischi et al.2
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If we denote by a0 . 0 the constant price at which consumers buy the resource

harvested by ecological technology and a1 [ ð0; a0Þ the price at which they buy the

standard one, then, as shown in [15], the optimal harvesting, computed as Nash

equilibrium, of the representative player that uses technology i is given by

hiðxÞ ¼ aiqi

2g
x; i ¼ 0; 1 ð2Þ

In the following a0 . a1 will be assumed, i.e. the loss in efficiency of the more

ecological harvesting strategy is counterbalanced by a higher price that consumers wish to

pay for the more environmentally friendly product.

Differently from [15], we consider a discrete-time model, i.e. a resource is given by a

population with non-overlapping generations growing according to a discrete-time logistic

equation

xðt þ 1Þ ¼ xðtÞ þ axðtÞ 12
x tð Þ
k

� �
2 Nr tð Þh1ðtÞ2 Nð12 rðtÞÞh0ðtÞ: ð3Þ

Herea . 0 is the natural growth rate of the resource, k . 0 represents the carrying capacity,

i.e. the equilibrium level of the resource in the absence of harvesting, and fraction rðtÞ is
assumed to evolve according to an exponential replicator dynamics (see e.g. [9] and [14])

driven by profits

piðxÞ ¼ aihiðxÞ2 ci 2 g
h2i ðxÞ
qix

ð4Þ

and expressed by

r t þ 1ð Þ ¼ r tð Þebp1 tð Þ

r tð Þebp1 tð Þ þ 12 r tð Þð Þebp0 tð Þ ¼
r tð Þ

r tð Þ þ 12 r tð Þð Þeb Dp tð Þð Þ ; ð5Þ

where b [ ½0;þ1Þ is the so-called intensity of choice parameter and measures the

reactiveness of agents to adopt the more profitable strategy and DpðtÞ is the difference

between the two profits. According to Equations (4) and (2), we have that

Dp tð Þ ¼ p0 tð Þ2 p1 tð Þ ¼ a20q0 2 a21q1

4g
x tð Þ2 j ð6Þ

with j ¼ c0 2 c1. The parameter j [ R represents the difference between fixed costs

associated with the two technologies, and may be considered as a policy parameter as it

includes taxes imposed in order to obtain the prevalence of one technology over the other.

In the following, we shall mainly consider j # 0, assuming that fixed costs for the more

intensive harvesting method are higher, due to more sophisticated technology and higher

taxes, or equivalently to government subsidies for agents adopting the more ecological

fishing methods.

All in all, the dynamic model can be written in the form of an iterated map of the plane

T : ðx; yÞ! ðx0; y0Þ with

T :

x0 ¼ 1þ a2 Na0q0
2g

� �
x2 a

k
x2 þ N

2g a0q0 2 a1q1
� �

xr

r0 ¼ r

rþ 12rð Þe
b

a2
0
q02a2

1
q1

4g
x2j

� �
8>>><
>>>:

; ð7Þ

Journal of Difference Equations and Applications 3
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where 0 denotes the unit-time advancement operator, and the dynamic variables represent

feasible states of the system if x $ 0 and 0 # r # 1.

It is worth underlining that the line of resource extinction x ¼ 0, as well as the two

lines of pure strategies r ¼ 0 and r ¼ 1, are invariant sets. The dynamics along the

invariant line x ¼ 0 is governed by the one-dimensional restriction

x ¼ 0 : r0 ¼ g rð Þ ¼ r

r þ 12 rð Þe2j
ð8Þ

which is a convex function in the interval r [ ½0; 1�with fixed points in r ¼ 0 (stable) and

r ¼ 1 (unstable). The dynamics along the invariant line r ¼ 0, where all the agents adopt

the ecological strategy, are governed by the one-dimensional restriction

r ¼ 0 : x0 ¼ f 0 xð Þ ¼ 1þ a2
Na0q0

2g

� �
x2

a

k
x2 ð9Þ

topologically conjugate to the standard logistic map z0 ¼ mzð12 zÞ by the transformation

z ¼ ð2ga=ðk½2gð1þ aÞ2 Na0q0�ÞÞx and parameter m ¼ 1þ a2 Na0q0=ð2gÞ. Its two

fixed points are given by x00 ¼ 0 (extinction equilibrium) and

x*0 ¼
k 2ag2 Na0q0
� �

2ag
ð10Þ

that represents the viable equilibrium under ecological harvesting. Notice that x*0 is stable

for the dynamics along the line r ¼ 0 provided that

a2 2 ,
Na0q0

2g
, a; ð11Þ

where the condition Na0q0=ð2gÞ ¼ a represents the transcritical bifurcation along the line

r ¼ 0 at which the viable equilibrium x*0 merges with the extinction equilibrium x00,

whereas the condition Na0q0=ð2gÞ ¼ a2 2 represents a period-doubling bifurcation, at

which a stable cycle becomes the unique attractor along the line r ¼ 0. As it is well known,

this bifurcation opens the period-doubling cascade, leading to chaotic motion along the

line r ¼ 0, as the aggregate parameter Na0q0=ð2gÞ is further decreased.
Analogously, along the invariant line r ¼ 1 where all agents adopt the standard (more

intensive) fishing strategy, the dynamics are governed by the map

r ¼ 1 : x0 ¼ f 1 xð Þ ¼ 1þ a2
Na1q1

2g

� �
x2

a

k
x2 ð12Þ

conjugate to the logistic map z0 ¼ mzð12 zÞ by the transformation z ¼ ð2ga=ðk½2gð1þ
aÞ2 Na1q1�ÞÞx and parameter m ¼ 1þ a2 Na1q1=ð2gÞ. Here, the viable equilibrium is

x*1 ¼
k 2ag2 Na1q1
� �

2ag
: ð13Þ

Notice x*0 . x*1 if a0q0 , a1q1, a condition that we shall assume in the following in

order to characterize the technology q0 as more ecological. As for x*0, stability conditions

of the viable equilibrium along the line r ¼ 1 can be obtained by straightforward

G.I. Bischi et al.4
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calculations, and are given by

a2 2 ,
Na1q1

2g
, a; ð14Þ

where similar statements about the transcritical and period-doubling bifurcations hold.

The existence of these invariant lines that bound the two-dimensional phase space of

the dynamical system Equation (7) is important in order to characterize its global

dynamical properties. Moreover, the knowledge of the kind of dynamic motion occurring

along the two lines where a single pure strategy exists, tell us what will happen in the long

run when one of the two strategies becomes dominant in terms of profits so that it will

prevail due to evolutionary pressure. The latter problem may be equivalently stated by

asking when the one-dimensional attractors of the restrictions along the invariant lines

r ¼ 0 and r ¼ 1 given by Equations (9) and (12) respectively, are also attractors of the

two-dimensional dynamical system. This depends on the transverse stability as well as on

the existence of attractors interior to the phase space, i.e. characterized by r [ ð0; 1Þ.
These are the questions examined, analytically and numerically, in the next sections. Here,

for the sake of clarity, it is worth specifying that the j-cycle ðj $ 1Þ laying on an invariant

line has one of its eigenvectors that is along the invariant line itself, while the other

eigenvector has generally another direction. This last eigenvector is commonly named

transverse eigenvector, which is tangent to the so-called transverse invariant manifold.

3. Existence and stability of equilibrium points

The equilibrium points of the model Equation (7) are solutions of the system

x a2 Na0q0
2g 2 a

k
xþ N

2g a0q0 2 a1q1
� �

r
h i

¼ 0

r 12 rð Þ e
b

a2
0
q02a2

1
q1

4g x2j

� �
2 1

" #
¼ 0

8>>>><
>>>>:

ð15Þ

The extinction fixed points E0
0 ¼ ð0; 0Þ and E0

1 ¼ ð0; 1Þ always exist. Moreover, if

j ¼ 0 then any point of the whole segment ð0; rÞ, with r [ ½0; 1�, is a fixed point. Other

boundary equilibrium points are E*
0 ¼ ðx*0; 0Þ with x*0 given by Equation (10) and E*

1 ¼
ðx*1; 1Þ with x*1 given by Equation (13). Furthermore, an interior equilibrium may exist,

characterized by the co-existence of both harvesting strategies, given by E* ¼ ðx*; r*Þ
with

x* ¼ 4gj

a20q0 2 a21q1
; r* ¼ 2ag k2 x*ð Þ2 Nka0q0

Nk a1q1 2 a0q0
� � ð16Þ

provided that x* . 0 and r* [ ð0; 1Þ.
Let us notice that if j , 0, i.e. c0 , c1 as argued above, then x* . 0 provided that

a20q0 , a21q1, which is a more stringent condition than a0q0 , a1q1 being a0 . a1.

We shall assume that this condition is satisfied in the following3. It is worth noticing that

the condition r* [ ð0; 1Þ can be easily expressed in term of the carrying capacity k, as

Journal of Difference Equations and Applications 5
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r* ¼ 0 for k ¼ k0 with

k0 ¼ 2agx*

2ag2 Na0q0
¼ 8ag2j

2ag2 Na0q0
� �

a20q0 2 a21q1
� � ð17Þ

and r* ¼ 1 for k ¼ k1 with

k1 ¼ 2agx*

2ag2 Na1q1
¼ 8ag2j

2ag2 Na1q1
� �

a20q0 2 a21q1
� � ð18Þ

with k0 , k1 being a0q0 , a1q1, so that r* [ 0; 1
� �

for k0 , k , k1.

These existence conditions are the same as the ones given in [15] for the model in

continuous time, whereas the stability conditions now are different. In order to study the

local stability of the equilibrium points, we consider the Jacobian matrix

J x; r
� � ¼ 1þ a2 Na0

2g 2 2a
k
x2 N

2g a1q1 2 a0q0
� �

r 2
N a1q12a0q0ð Þx

2g

br 12rð Þ a2
1
q12a2

0
q0ð ÞebDp

4g rþ 12rð ÞebDpð Þ2
ebDp

rþ 12rð ÞebDpð Þ2

2
664

3
775: ð19Þ

At E0
0 we have

J 0; 0
� � ¼ 1þ a2 Na0q0

2g 0

0 ebj

2
4

3
5 ð20Þ

so E0
0 is stable along the vertical direction (r direction) and stable along the horizontal one

(x direction) provided that Na0q0=ð2gÞ2 2 , a , Na0q0=ð2gÞ. At E0
1 we have

J 0; 1
� � ¼ 1þ a2 Na1q1

2g 0

0 e2bj

2
4

3
5 ð21Þ

so E0
1 is unstable along the vertical direction and stable along the horizontal one provided

that Na1q1=ð2gÞ2 2 , a , Na1q1=ð2gÞ. At E*
0, we have

J x*0; 0
� � ¼ 12 aþ Na0q0

2g 2
N a1q12a0q0ð Þ 2ag2Na0q0ð Þ

2ag 2

0 e
b

k a2
1
q12a2

0
q0ð Þ 2ag2Na0q0ð Þ
8ag 2 þj

� �
2
664

3
775 ð22Þ

so E*
0 is stable along the eigendirection transverse to r ¼ 0 if k , k0, with k0 given by (17),

and stable along the horizontal direction if Na0q0=ð2gÞ , a , Na0q0=ð2gÞ þ 2.

At E*
1 we have

J x*1; 1
� � ¼ 12 aþ Na1q1

2g 2
N a1q12a0q0ð Þ 2ag2Na1q1ð Þ

2ag 2

0 e
2b

k a2
1
q12a2

0
q0ð Þ 2ag2Na1q1ð Þ
8ag 2 þj

� �
2
664

3
775 ð23Þ

so E*
1 is stable along the eigendirection transverse to r ¼ 1 if k . k1 with k1 given by

Equation (18), and stable along the horizontal direction if Na1q1=ð2gÞ ,
a , Na1q1=ð2gÞ þ 2.

G.I. Bischi et al.6
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Notice that all the stability conditions along the horizontal invariant lines r ¼ 0 and

r ¼ 1, on which the boundary-fixed points are located, correspond to those already

examined for the logistic restrictions Equations (9) and (12). Finally, at E* we have

J x*; r*
� � ¼ 12 ax*

k
2

N a1q12a0q0ð Þx*
2g

b
4g r* 12 r*ð Þ a21q1 2 a20q0

� �
1

2
64

3
75: ð24Þ

Hence, given that trace and determinant of the matrix Equation (24) are respectively

Tr ¼ 22
ax*

k
¼ 22

4agj

k a20q0 2 a21q1
� � ð25Þ

Det ¼ 12
ax*

k
þ Nb

8g2
a1q1 2 a0q0
� �

a21q1 2 a20q0
� �

x*r* 12 r*ð Þ ð26Þ

a sufficient condition for the local asymptotic stability of E* is that the eigenvalues of

Equation (24), which are solutions of the characteristic equation PðzÞ ¼ z22
Tr·zþ Det ¼ 0, are located inside the unit circle of the complex plane. A necessary

and sufficient condition for this is given by the following system of inequalities (known as

Schur or Jury’s conditions, see e.g. [11])

P 1ð Þ ¼ 12 Tr þ Det . 0; P 21ð Þ ¼ 1þ Tr þ Det . 0; 12 Det . 0: ð27Þ
In our case, we have Pð1Þ ¼ 24Nbj=ð8gÞða1q1 2 a0q0Þr*ð12 r*Þ . 0 which

vanishes (and then changes sign) when r* crosses the value r* ¼ 0 from above and

when r* crosses the value r* ¼ 1 from below. These two conditions correspond to

transcritical bifurcations when the interior equilibrium E* ¼ ðx*; r*Þ merges with the

boundary points E*
0 and E*

1 respectively. In fact, the condition r*ðx*Þ ¼ 0 implies x* ¼ x*0
and r*ðx*Þ ¼ 1 implies x* ¼ x*1. The two bifurcation conditions can easily be expressed in

terms of the carrying capacity k as k ¼ k0 and k ¼ k1, respectively, see also Figure 1,

Figure 1. Fixed points E*ðkÞ, E*
0ðkÞ and E*

1ðkÞ are shown as k [ k0; k1
� 	

. The point E* merges with
E*
0 in r ¼ 0 for k ¼ k0 and merges with E*

1 in r ¼ 1 for k ¼ k1. Other fixed points do not depend on k.

Journal of Difference Equations and Applications 7
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where the equilibrium points are represented for k in the range ½k0; k1�. Notice that a

change of sign of Pð1Þ also occurs when j changes from negative to positive, and this is a

transcritical bifurcation as well, but of codimension two as it occurs when the fixed point

E* crosses at j ¼ 0 the segment of fixed points along the axis x ¼ 0.

Before analysing the other two stability conditions, let us consider the condition

Tr 2 2 4Det . 0 leading to real eigenvalues. This condition becomes

2a2g2x*þ 16kag2 . k 2Nb a1q1 2 a0q0
� �

a21q1 2 a20q0
� �

r* 12 r*ð Þ ð28Þ

from which it is evident that it is surely satisfied (hence we have real eigenvalues) for r*
very close to 0 or r* very close to 1, whereas it is surely not satisfied (hence we have

complex conjugate eigenvalues) for intermediate values of r* and sufficiently high values

of the parameter b. Notice that both x* and r* do not depend on the parameter b.
Indeed, if the other parameters are fixed so that x* . 0 and r* has intermediate values,

i.e. it is not too close to the invariant lines of pure strategies, then a Neimark–Sacker

bifurcation occurs for increasing values of b. In fact, the third stability condition

12 Det . 0, where a change of sign of the left hand side indicates the occurrence of a

Neimark–Sacker bifurcation of E*, becomes

Nb a1q1 2 a0q0
� �

a21q1 2 a20q0
� �

r* 12 r*ð Þ , 8ag2

k
: ð29Þ

This stability condition can be equivalently written as b , bNS, with

bNS ¼ 8ag2

Nk a1q1 2 a0q0
� �

a21q1 2 a20q0
� �

r* 12 r*ð Þ ð30Þ

and r* given by Equation (16), and a Neimark–Sacker bifurcation occurs when b
increases across bNS.

Finally, the stability condition Pð21Þ . 0 becomes

32kg2 þ Nkb a1q1 2 a0q0
� �

a21q1 2 a20q0
� �

x*r* 12 r*ð Þ . 16ag2x* ð31Þ

that can be equivalently written as b . bF with

bF ¼ 2bNS 2
8g

Nj a0q0 2 a1q1
� �

r* 12 r*ð Þ : ð32Þ

These results can be summarized by the following statement:

Proposition 1. The map Equation (7), with j [ 21;þ1� �
and positive values of all other

parameters, always has the boundary fixed points E0
0 ¼ 0; 0

� �
and E0

1 ¼ 0; 1
� �

, and if

j ¼ 0 any point of the whole segment 0; r
� �

, with r [ 0; 1
� 	

, is a fixed point. Moreover, the

following holds:

. If 2ag . Naiqi, i ¼ 0; 1, then two more boundary-fixed points exist, namely E*
0 ¼

ðx*0; 0Þwith x*0 given by Equation (10) and E*
1 ¼ ðx*1; 1Þwith x*1 given by Equation (13).

. If j , 0, a20q0 , a21q1 and k0 , k , k1, where k0 and k1 are given by Equations (17)

and (18), respectively, then an interior equilibrium E* ¼ ðx*; r*Þ exists with

components given by Equation (16).

G.I. Bischi et al.8
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. If E*
0 exists (i.e. 2ag . Na0q0) then for j , 0 E0

0 is a saddle point with stable

set along the invariant line x ¼ 0 and unstable set along the invariant line r ¼ 0.

. If E*
1 exists (i.e. 2ag . Na1q1), then for j , 0 E0

1 is an unstable node.

. E*
0 is a stable node if k , k0 and Na0q0=ð2gÞ , a , Na0q0=ð2gÞ þ 2. At k ¼ k0, it

undergoes a transcritical bifurcation at which it merges with E*, at a ,
Na0q0=ð2gÞ þ 2 it undergoes a flip bifurcation along the invariant line r ¼ 0.

. E*
1 is a stable node if k . k1 and Na1q1=ð2gÞ , a , Na1q1=ð2gÞ þ 2. At k ¼ k1, it

undergoes a transcritical bifurcation at which it merges with E*, at a ,
Na1q1=ð2gÞ þ 2 it undergoes a flip bifurcation along the invariant line r ¼ 1.

. The interior-fixed point E* is stable if k0 , k , k1 and bF , b , bNS, where bNS

and bF are given by Equations (30) and (32), respectively; hence, the range of

stability is nonempty provided that agj . 2kða21q1 2 a20q0Þ.

It is worth highlighting that condition bF , bNS is equivalent to k , ðax*=4Þ that,
being k . k0, is verified for 1þ a2 Na0q0=ð2gÞ , 5, that is true when the restriction

Equation (9) to r ¼ 0 has bounded dynamics, i.e. when 1þ a2 Na0q0=ð2gÞ # 4. The

stability range of the interior equilibrium E*, as the parameter b varies, is shown by the

bifurcation diagrams in Figure 2, where the supercritical flip and Neimark–Sacker

bifurcations, through which the equilibrium loses its stability for decreasing and

increasing values of b respectively, can be clearly seen.

Figure 2. Left column: bifurcation diagrams for b [ 0; 350
� 	

showing the asymptotic dynamics of
the two state variables x and r. parameters: a ¼ 2:7, y ¼ 1, N ¼ 15, a0 ¼ 1:05487, a1 ¼ 0:5,
q0 ¼ 0:01, q1 ¼ 0:2, k ¼ 6:7 and j ¼ 20:056. Right column: attractors on the ðx; rÞ phase space for
different values of b. The other parameters are as in the left column.
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4. Global dynamics

In this section, we propose further analytical results and numerical explorations of some

global dynamic scenarios of the discrete dynamical system Equation (7) under the

constraints on the parameters imposed by the economic and ecologic meaning of the

model. The numerical simulations will confirm the analytical results on local stability and

bifurcations given in the previous section and will give some snapshots about global

dynamic behaviours.

Let us start by commenting the bifurcation diagrams presented in Figure 2. They show

the long run dynamics of the model varying the intensity of choice parameter b, that
represents the evolutionary propensity to switch to the more profitable technology.

In evolutionary models a common occurrence is that an increase of the value of b leads to

instability and complex dynamics, see e.g. [14]. However, this is not necessarily true in the

case of the evolutionary model studied herein. Indeed, starting from values close to zero,

as b increases we observe a transition from oscillatory dynamics (periodic or chaotic)

towards non-oscillatory dynamics through a cascade of period-halving bifurcations

leading to the stability of the fixed point E*. Moreover, we have a range of the values of b,
namely b [ ðbF;bNSÞ as stated in Proposition 1, such that the fixed point E* is stable.

Furthermore, for b . bNS, E* becomes unstable again through a supercritical Neimark-

Sacker bifurcation, at which a stable invariant closed curve is created around E*, whose

amplitude increases as b increases, see Figure 2 right panel. So, this example underlines

the unusual result that low values of intensity of choice, as well as high values, lead to

instability of the fixed point E* with the creation of periodic or quasi-periodic or even

chaotic attractors, whereas intermediate levels of the intensity of choice are required for

the local asymptotic stability of E*.

Other interesting results regard the evolutionary dominance of one of the two

harvesting strategies. On the basis of the analytical results in the previous section, we

know that as long as E* exists, then the two fixed points E*
0 and E*

1 are transversally

unstable. At first sight, this may suggest that an evolutionary dominant strategy, or

equivalently an attractor along the invariant lines r ¼ 0 or r ¼ 1, exits if and only if the

interior fixed point E* is unfeasible and at the same time an attractor with r [ ð0; 1Þ exits if
and only if the interior fixed point E* is feasible. Instead, interior attractors (cyclic or

chaotic) may exist even for k . k1, i.e. after the transcritical bifurcation at which the

equilibrium E* merges with E*
1 and becomes unfeasible. Moreover, convergence towards

the invariant line r ¼ 0 may occur even when the equilibrium E* is feasible, i.e.

k0 , k , k1. These two occurrences are stated by the following two Propositions,

respectively.

Proposition 2. Consider map Equation (7). Let j , 0 and the other parameters are

positive and such that E*
1 exists and it is unstable along the manifold r ¼ 1, and a period-2

cycle, say C21 ¼ fðx*11 ; 1Þ; ðx*21 ; 1Þ}, exists on the invariant set r ¼ 1, as the result of the

period-doubling bifurcation of E*
1. If the following condition holds

j2
k a20q0 2 a21q1
� �

2ag
,

k a20q0 2 a21q1
� �

2ga2 Na1q1
� �

8ag2
2 j , 0 ð33Þ

then the fixed point E*
1 has stable transverse invariant manifold and period-2 cycle C21 is

transversely unstable. The contrary cannot occur.

G.I. Bischi et al.10
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Proof. See Appendix A. A

Proposition 2 hints at an interesting dynamic scenarios, confirmed by the numerical

simulations shown in Figure 3. In this case, although there are no interior-fixed points and

the border equilibrium E*
1 is transversely stable, the dynamics of the model can still

converge in the long run to a stable inner attractor, a stable period-2 cycle C21 shown in

Figure 3 (left panel). This evidence indicates that the stability of the transverse invariant

manifold of E*
1 does not imply the predominance by evolutionary pressure of the standard

(or intensive) technology.

The situation is different (and in some sense reverted) when we consider the invariant

line r ¼ 0, as stated in the following proposition.

Proposition 3. Consider map Equation (7). Let j , 0 and the other parameters are

positive and such that E*
0 exists and it is unstable along the invariant manifold r ¼ 0, and a

period-2 cycle, say C20 ¼ fðx*10 ; 0Þ; ðx*20 ; 0Þ}, exists on the invariant set r ¼ 0, as the result

of the period-doubling bifurcation of E*
0. If the following condition holds

j2
k a20q0 2 a21q1
� �

2ag
,

k a20q0 2 a21q1
� �

2ga2 Na0q0
� �

8ag2
2 j , 0 ð34Þ

then the fixed point E*
0 is transversely unstable and period-2 cycle C20 has a stable

transverse invariant manifold. The contrary cannot occur.

Proof. See Appendix B. A

The proposition 3 provides an interesting result highlighted by the numerical

simulations shown in Figure 3 (right panel), where, although the border equilibrium E*
0 is

Figure 3. Left panel: the grey region is the basin of attraction of the inner period-2 cycle C21, while
the fixed point E*

1 is transversely attractive. The point E* is unfeasible, i.e. it lies in the region r . 1.
Parameters’ values: a ¼ 3:1, k ¼ 1, N ¼ 8, q1 ¼ 1, q0 ¼ 0:01, g ¼ 4, a0 ¼ 1:1, a1 ¼ 1, b ¼ 10,
j ¼ 20:0415. Right panel: the grey region is the basin of attraction of the transversely stable fixed
point E* and the white region is the basin of attraction of the period-2 cycle C20. Parameters’ values:
a ¼ 2:6, k ¼ 1, N ¼ 8, q1 ¼ 1, q0 ¼ 0:1, g ¼ 2, a0 ¼ 1:1, a1 ¼ 1, b ¼ 80:615, j ¼ 20:095.
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transversally unstable, the 2-cycle C20 is locally asymptotically stable and coexists with the

locally asymptotically stable interior fixed point E*.

Numerical investigations suggest that this dynamic scenario occurs due to a specific

sequence of bifurcations. In particular, a 2-cycle in the region with negative r, let us name

it C2, undergoes a transcritical bifurcation, merging with the 2-cycle C20 originated by a

period-doubling bifurcation of the fixed point E*
0, and becomes feasible. After the

bifurcation, C20 becomes local asymptotically stable, while C2 is a saddle 2-cycle, and its

one-dimensional stable manifold marks the boundary separating the basins of attraction of

E* and C20. Then, changing the values of the parameters in a suitable way, the 2-cycle C2
disappears through a subcritical flip bifurcation at which E* looses stability and becomes a

saddle fixed point. These bifurcations occur before the merging of E* with E*
0. This

underlines that agents can select the environmentally friendly technology even when E* is

a feasible fixed point and E*
0 is transversely unstable. These results point out a quite

peculiar property of the considered evolutionary model. In fact, the instability of the inner

fixed point of the model may lead to an increase in the propensity of the agent to adopt the

environmentally friendly technology. These scenarios do not occur on the continuous (or

hybrid) setting of the model analysed in [15].

The basins of attraction in Figure 3 underline further interesting properties of the

dynamics of themodel. In particular, from the right panel in Figure 3, it is possible to observe

that the transverse unstable manifold of E*
0 belongs to the basin of attraction of E*; hence,

such a basin has a contact with the invariant line r ¼ 0 at the point E*
0. This implies that all

the pre-images of E*
0 along the invariant line r ¼ 0, computed according to the restriction

Equation (9), represent tongues at which the basin of E* has a contact with line r ¼ 0. In the

figure only some of them are visible, but infinitely many exist and accumulate near E0
0. The

fine structure of these tongues is quite complicated and will be analysed in future works.

It is worth observing that the mechanisms that lead to the evolutionary-dominant

environmentally friendly technology when the fixed point E* is feasible, can be even

different from the described one and, as shown in the following, can be due to the

existence of non-topological Milnor attractors on the invariant line r ¼ 0. For example, the

bifurcation diagrams in Figure 4, obtained varying parameter a0 in the range 0:5; 1:3
� 	

,

show another case such that an attracting invariant set As, laying on the axis r ¼ 0, exists

even when the interior equilibrium point E* is feasible. Measure-theoretic arguments

about the transverse attractiveness of the invariant set As can be used to provide an

explanation of this dynamic phenomenon. In particular, we make use of the transverse

Lyapunov exponent (see e.g. [2], [8]) defined as:

L’ ¼ lim
N!1

1

N

XN
n¼0

ln jn’ðxnÞj; ð35Þ

where fxn ¼ f n0ðx0Þ; n $ 0} is a trajectory embedded in As and n’ðxnÞ is the transverse

eigenvalue computed in xn. Precisely, whenAs is a k-cycle Ck0, its transverse attractiveness
is measured by the product of the transverse eigenvalues nk’ ¼ Qk

i¼1n’ðxiÞ and, if

L’ðCkÞ ¼ k21 ln jnk’j , 0, thenAs is a topological attractor. While, when the attractorAs

is chaotic and so includes infinitely many cycles densely distributed within it,

each one characterized by its own transversal Lyapunov exponent, transverse

attractiveness of As can be measured by the spectrum of the Lyapunov exponents. This

is defined, see e.g. [8], as

Lmin
’ # · · · # Lnat

’ # · · · # Lmax
’ ; ð36Þ
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where Lmin
’ and Lmax

’ are the Lyapunov exponents of the most attractive and the most

repelling cycles in As, respectively. Moreover, the natural Lyapunov exponent Lnat
’ is

computed along a generic aperiodic trajectory embedded in As, and it measures

transversal attractiveness on average. In other words, Lnat
’ carries contributions to

attractiveness from all the trajectories in As, giving the mean local behaviour in its

neighbourhood (see e.g. [19]). If As contains at least one transversely repelling cycle with

a dense set of pre-images embedded in As, that is Lmax
’ . 0, then there is no

neighbourhood ofAs containing only points whose v-limit set belongs toAs. According to

the theorem stated in [1], the latter inequality implies that the one-dimensional invariant

chaotic set cannot be a Lyapunov attractor in the two-dimensional space because of the

transversely unstable set of the period-2 cycle as well as its pre-images. If the inequality

Lnat
’ , 0 holds also, thus the setAs attracts a positive measure set of points that converges

to it. It follows that this is an attractor in Milnor sense (see [18]). A large number of results

about global attractiveness of invariant manifold of lower dimension than the total phase

space can be found in the literature, see e.g. [1,2,8].

In the right panel in Figure 4, we present both the transverse Lyapunov exponent

characterizing transverse attractiveness of As and the transverse Lyapunov exponent of to

the period-2 cycle C20. For suitable values of the aggregate parameter

m ¼ 1þ a2 Na0q0=ð2gÞ, at which the 2-cycle of the logistic map undergoes the

homoclinic bifurcation due to which 2-cyclic chaotic intervals are obtained by the merging

of 4-cyclic chaotic intervals, pure chaos exists in As (see e.g [16]). For example, for

a ¼ 2:7, N ¼ 20, g ¼ 1, q0 ¼ 0:01 and a0 ¼ ac ¼ 1:07428, we detect the presence of a

Milnor attractor when m ¼ �m < 3:5925721841, value at which Lnat
’ ð �mÞ , 0, while

Lmax
’ $ L’ðC20Þ . 0. Note that the parameter b is the so-called normal parameter, i.e. it

affects only the transverse stability of As and does not have influence on the dynamics

inside the invariant set As. Setting m ¼ 1þ a2 Na0q0=ð2gÞ ¼ �m and varying b, we vary
the spectrum of Lyapunov exponents, i.e. we change the topological property of the

invariant set As which turns to be a chaotic saddle, a non-topological Milnor attractor and

a topological Lyapunov stable set.

Figure 4. Bifurcation diagram of x vs. a0 (left panel) and r vs. a0 (centre panel) varying
a0 [ ða1; a1

ffiffiffiffiffiffiffiffiffiffiffiffi
q1=q0

p Þ. Dashed lines represent paths of both x* and r*. We can notice that the
asymptotic dynamics is enclosed along the invariant axis r ¼ 0 even for r* a0ð Þ . 0. This is due to
the transverse attractiveness of some subsets of the invariant axes r ¼ 0, while both the fixed point
E*
0 and the period-2 cycle C20 are transversally repelling. For m ¼ 1þ a2 Na0q0=ð2gÞ <

3:5925721841 such that a0 ¼ ac ¼ 1:07428, the attractor As of the logistic map on r ¼ 0 is
characterized by pure chaos. Since Lnat

’ �m
� �

< 20:0034703 , 0 while L’ C20
� �

. 0, it results that
As is a non-topological Milnor attractor. Parameters’ values are as in Figure 2, but N ¼ 20 and
b ¼ 5.
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To sum up, we can say that As can attract a set of positive Lebesgue measures even

when it contains repelling cycles together with dense sets of their pre-images.

In the last part of the section, we point out that numerical simulations of the model can

show dynamic scenarios that are difficult to infer analytically. For example, in Figure 5 we

observe a chaotic attractor in the region r [ ð0; 1Þ where both harvesting strategies

coexist, although there is a prevalence of the environmentally friendly one. The time series

rðtÞ shows an apparently stochastic behaviour, which typically characterizes the

evolutionary dynamics driven by a replicator equation.

To conclude this section, we want to emphasize that the conducted investigation

underlines that the class of evolutionary games, represented by the discrete-time model

considered here, reveals some interesting and economically insightful dynamics, such as

non-topological Milnor attractors, that are not observable in other and more simple

evolutionary games, see e.g. [14].

5. Conclusions

In this paper, we have analysed some local and global dynamical properties of a map that

represents the discrete-time version of an evolutionary game model proposed in [15] to

describe a fishery where a pool of fishermen can select between two different technologies

of harvesting, that is an environmentally friendly technology and a standard technology.

The analysis of the dynamics underlines interesting scenarios that cannot occur on the

continuous version of the model. In particular, Neimark–Sacker bifurcations and cascade

of period-doubling bifurcations can lead to quite complicated, even chaotic, dynamics.

Moreover, a deeper analytical and numerical analysis reveals the existence of Milnor

attractors. Those attractors have interesting economic implications not only for the model

proposed here, but also for an entire class of evolutionary games that this model could

represent. For this reason, the analysis and the presence of the Milnor attractors and related

Figure 5. Upper panel: a trajectory in the phase space. Lower panel: a time series of rðtÞ.
Parameters’ values are as in Figure 2, but N ¼ 20 and b ¼ 5.
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study of riddled basins for this class of evolutionary games represent an interesting aspect

that deserve further investigation.
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Appendix A

Let us rewrite the map T as follows:

T :

x0 ¼ Ax2 Bx2 þ Cxr

r0 ¼ r
rþ 12rð ÞeDx2bj

8<
: ; ð37Þ

where

A ¼ 1þ a2
Na0q0

2g
; B ¼ a

k
; C ¼ N

2g
a0q0 2 a1q1
� �

; D ¼ b
a20q0 2 a21q1

4g
ð38Þ

and let us consider the second iterate of the map T , i.e.

T 2 :

x0 ¼ Ax2 Bx2 þ Cxr
� �

Aþ C r
rþ 12rð ÞeDx2bj

� �
2 B Ax2 Bx 2 þ Cxr

� �2
r0 ¼

r

rþ 12rð ÞeDx2bj

r

rþ 12rð ÞeDx2bjþ 12 r

rþ 12rð ÞeDx2bj

� �
e
D Ax2Bx 2þCxrð Þ2bj

8>>><
>>>:

ð39Þ

Its restriction to the invariant line r ¼ 1 is

T 2jr¼1 :
x0 ¼ F Fx2 Bx2

� �
2 B Fx2 Bx 2

� �2
r0 ¼ 1

(
; ð40Þ

where

F ¼ Aþ C ¼ 1þ a2
Na1q1

2g
: ð41Þ

The map T 2 can have at most four fixed points, given by the solutions of the equation

x B3x3 2 2FB2x2 þ FB 1þ Fð Þxþ 12 F 2
� � ¼ 0 ð42Þ

from which we obtain

E0
1 ¼ 0; 1

� �
;E*

1 ¼ x*1; 1
� �

;E*1
1 ¼ x*11 ; 1

� �
and E*2

1 ¼ x*21 ; 1
� �

; ð43Þ

G.I. Bischi et al.16
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where x*1 is given by Equation (13) and

x*11 ¼ 1þ F þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 2 32 2F

p
2B

; x*21 ¼ 1þ F 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 2 32 2F

p
2B

:

Assuming the existence of period-2 cycle fðx*11 ; 1Þ; ðx*21 ; 1Þ} of T is equivalent to the

existence of E*1
1 and E*2

1 for T 2 which, requiring also x*11 . 0, x*21 . 0, implies F . 3, i.e.

a2 2 . Na1q1=ð2gÞ. The Jacobian matrix associated to T 2 along the restriction r ¼ 1 is

J 2 x; 1
� � ¼ F 2 2Bxð Þ F 2 2BFxþ 2B2x2

� �
J212 x; 1

� �
0 J222 x; 1

� �
2
4

3
5; ð44Þ

where J222ðx; 1Þ ¼ eDðFx2Bx 2þxÞ22bj, from which we have the condition for transverse

stability of E*1
1 and E*2

1 , given by J222ðx*11 ; 1Þ ¼ J222ðx*21 ; 1Þ , 1. By trivial algebra, we

obtain the condition

D
F þ 1

B

� �
2 2bj , 0: ð45Þ

Substituting for D, F and B, we obtain

k a20q0 2 a21q1
� �

4gþ 2ga2 Na1q1
� �
8ag2

2 2j , 0: ð46Þ

By similar calculation, the condition to have stable the transverse manifold of the fixed

point E*
1 of T

2 is given by

k a20q0 2 a21q1
� �

2ga2 Na1q1
� �

8ag2
2 j , 0: ð47Þ

From conditions Equations (46) and (47), it follows that the transverse invariant

manifold of E*
1 is stable and the transverse invariant manifolds of E*1

1 and E*2
1 are unstable

if and only if

k a20q0 2 a21q1
� �

4gþ 2ga2 Na1q1
� �
8ag2

2 2j . 0 .
k a20q0 2 a21q1
� �

2ga2 Na1q1
� �

8ag2
2 j

ð48Þ
which can be rewritten as follows:

j2
k a20q0 2 a21q1
� �

2ag
,

k a20q0 2 a21q1
� �

2ga2 Na1q1
� �

8ag2
2 j , 0: ð49Þ

By simple considerations, it is easy to note that conditions Equation (49) and condition

a2 Na1q1= 2g
� �

. 2 required for the existence of E*1
1 and E*2

1 identify a nonempty set of

the parameter space.

Moreover, from stability condition Equations (46) and (47), it is easy to note that in

order to have the instability of the transverse invariant manifold of E*
1 and the stability of

Journal of Difference Equations and Applications 17
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the transverse invariant manifolds of E*1
1 and E*2

1 is required

k a20q0 2 a21q1
� �

4gþ 2ga2 Na1q1
� �
8ag2

2 2j , 0 ,
k a20q0 2 a21q1
� �

2ga2 Na1q1
� �

8ag2
2 j

ð50Þ

which can be rewritten as:

k a20q0 2 a21q1
� �

2ag
2 j , j2

k a20q0 2 a21q1
� �

2ga2 Na1q1
� �

8ag2
, 0: ð51Þ

Since throughout this paper, we always assume a20q0 2 a21q1 , 0 and a2
Na1q1= 2g

� �
. 2 is required for the existence of E*1

1 and E*2
1 , condition Equation (51)

implies that (j·j is the absolute value of ·)

jj j . k a20q0 2 a21q1
� �

2ga2 Na1q1
� �

8ag2

����
���� . k a20q0 2 a21q1

� �
2ag

����
���� . jj j ð52Þ

which is a contradiction. It follows that condition Equation (51) cannot be satisfied.

Since the condition to have stable (or unstable) transversally manifold of the period 2-

cycle fðx*11 ; 0Þ; ðx*21 ; 0Þ} of the map T is equivalent to condition to have stable transverse

invariant manifold of each of the two fixed points E*1
1 and E*2

1 of T 2 and the condition to

have stable (or unstable) transverse invariant manifold of the fixed point E*
1 are the same

for T and T 2, the claim of the proposition follows.

Appendix B

Let us consider the restriction of T 2, defined in Appendix A (see Equation (37)), on the

invariant line r ¼ 0

T 2jr¼0 :
x0 ¼ AðAx2 Bx 2Þ2 BðAx2 Bx2Þ2
r0 ¼ 0

(
ð53Þ

It has at most four fixed points given by the solutions of the equation

x B3x3 2 2B2Ax2 þ AB 1þ Að Þxþ 12 A2
� � ¼ 0 ð54Þ

from which we obtain:

E0
0 ¼ 0; 0

� �
;E*

0 ¼ x*0; 0
� �

;E*1
0 ¼ x*10 ; 0

� �
and E*2

0 ¼ x*20 ; 0
� �

; ð55Þ

where x*0 is given in Equation (10), and

x*10 ¼ 1þ Aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 2 32 2A

p
2B

; x*20 ¼ 1þ A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 2 32 2A

p
2B

:

Assuming the existence of period-2 cycle fðx*10 ; 0Þ; ðx*20 ; 0Þ} of T is equivalent to the

existence of E*1
0 and E*2

0 for T 2 which, requiring also x*10 . 0 and x*20 . 0, implies A . 3,
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i.e. a2 2 . Na0q0= 2g
� �

. The Jacobian matrix of T 2 along r ¼ 0 is

J 2 x; 0
� � ¼ A2 2Bxð Þ A2 2BAxþ 2B2x2

� �
J212 x; 0

� �
0 J222 x; 0

� �
2
4

3
5; ð56Þ

where J222ðx; 0Þ ¼ e2DðAx2Bx 2þxÞþ2bj, from which the condition for transverse stability of

E*1
0 and E*2

0 is J222ðx*10 ; 0Þ ¼ J222ðx*20 ; 0Þ , 1. By trivial algebra, we obtain the condition

D
1þ A

B

� �
2 2bj . 0: ð57Þ

Substituting for D, A and B, we obtain

k a20q0 2 a21q1
� �

4gþ 2ga2 Na0q0
� �
8ag2

2 2j . 0: ð58Þ

By similar calculation, the condition for transverse stability of the fixed point E*
0 of T

2

is given by

k a20q0 2 a21q1
� �

2ga2 Na0q0
� �

8ag2
2 j . 0: ð59Þ

From the conditions Equations (58) and (59), it follows that transverse invariant

manifold of E*
0 is unstable and transverse invariant manifolds of E*1

0 and E*2
0 are stable if

and only if

k a20q0 2 a21q1
� �

2ga2 Na0q0
� �

8ag2
2 j , 0 ,

k a20q0 2 a21q1
� �

4gþ 2ga2 Na0q0
� �
8ag2

2 2j

ð60Þ

which can be rewritten as follows:

j2
k a20q0 2 a21q1
� �

2ag
,

k a20q0 2 a21q1
� �

2ga2 Na0q0
� �

8ag2
2 j , 0: ð61Þ

By simple considerations, it is easy to note that conditions Equation (61) and condition

a2 Na0q0=ð2gÞ . 2 required for the existence of E*1
0 and E*2

0 identify a nonempty set of

the parameter space.

Moreover, from stability condition Equations (58) and (59), it is easy to note that in

order to have the stability of the transverse invariant manifold of E*
0 and the instability of

the transverse invariant manifolds of E*1
0 and E*2

0 is required

k a20q0 2 a21q1
� �

2ga2 Na0q0
� �

8ag2
2 j . 0 .

k a20q0 2 a21q1
� �

4gþ 2ga2 Na0q0
� �
8ag2

2 2j

ð62Þ
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which can be rewritten as follows:

0 . 2
k a20q0 2 a21q1
� �

2ga2 Na0q0
� �

8ag2
þ j .

k a20q0 2 a21q1
� �

2ag
2 j: ð63Þ

Since throughout this paper, we always assume a20q0 2 a21q1 , 0 and a2
Na1q1=ð2gÞ . 2 is required for the existence of E*1

1 and E*2
1 , condition Equation (51)

implies that (j·j is the absolute value of ·)

jj j . k a20q0 2 a21q1
� �

2ga2 Na1q1
� �

8ag2

����
���� . k a20q0 2 a21q1

� �
2ag

����
���� . jj j ð64Þ

which is a contradiction. It follows that condition Equation (63) cannot be satisfied.

Since the condition to have stable (or unstable) transversally manifold of the period 2-

cycle fðx*11 ; 0Þ; ðx*21 ; 0Þ} of the map T is equivalent to condition to have stable transverse

invariant manifold of each of the two fixed points E*1
1 and E*2

1 of T 2 and the condition to

have stable (or unstable) transverse invariant manifold of the fixed point E*
1 are the same

for T and T 2, the claim of the proposition follows.
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