Heterogeneous adaptive expectations and cobweb phenomena

D. Colucci and V. Valori

Dipartimento di Matematica per le Decisioni
Università degli Studi di Firenze

MDEF - Urbino, September 25-27, 2008
Questions

- How does the evolution in the number / types of agents affect the long run dynamics of a given economy?
- How does expectations’ heterogeneity influence local stability?
- What can we expect when markets integrate?
- Can we make predictions on stability when only the probability distribution of types is known?
- Can we say anything about transitional dynamics / speed of convergence based on the “amount” of expectations’ heterogeneity?
Questions

- How does the evolution in the number / types of agents affect the long run dynamics of a given economy?
- How does expectations’ heterogeneity influence local stability?
- What can we expect when markets integrate?
- Can we make predictions on stability when only the probability distribution of types is known?
- Can we say anything about transitional dynamics / speed of convergence based on the “amount” of expectations’ heterogeneity?
Two sources of (potential) instability are identified:

- a structural source, linked to the market’s fundamentals
- a behavioural source, embedded in the average profile of expectations.

We find a simple relation connecting these factors to stability/instability.
Can predict outcome of market integration, under (stronger than elsewhere in the paper) qualifications.
Study random selection of firms from a continuous distribution and document a form of polarisation of convergence probabilities when number of market’s participants is increased.
Give conditions that ensure monotone and fastest convergence towards steady state.
Two sources of (potential) instability are identified:
 - a structural source, linked to the market’s fundamentals
 - a behavioural source, embedded in the average profile of expectations.

We find a simple relation connecting these factors to stability/instability

Can predict outcome of market integration, under (stronger than elsewhere in the paper) qualifications

Study random selection of firms from a continuous distribution and document a form of polarisation of convergence probabilities when number of market’s participants is increased

Give conditions that ensure monotone and fastest convergence towards steady state
Preview of results

- Two sources of (potential) instability are identified:
 - a structural source, linked to the market’s fundamentals
 - a behavioural source, embedded in the average profile of expectations.

- We find a simple relation connecting these factors to stability/instability

- Can predict outcome of market integration, under (stronger than elsewhere in the paper) qualifications

- Study random selection of firms from a continuous distribution and document a form of polarisation of convergence probabilities when number of market’s participants is increased

- Give conditions that ensure monotone and fastest convergence towards steady state
Two sources of (potential) instability are identified:
- a structural source, linked to the market’s fundamentals
- a behavioural source, embedded in the average profile of expectations.

We find a simple relation connecting these factors to stability/instability.

Can predict outcome of market integration, under (stronger than elsewhere in the paper) qualifications.

Study random selection of firms from a continuous distribution and document a form of polarisation of convergence probabilities when number of market’s participants is increased.

Give conditions that ensure monotone and fastest convergence towards steady state.
Two sources of (potential) instability are identified:
- a structural source, linked to the market’s fundamentals
- a behavioural source, embedded in the average profile of expectations.

We find a simple relation connecting these factors to stability/instability

Can predict outcome of market integration, under (stronger than elsewhere in the paper) qualifications

Study random selection of firms from a continuous distribution and document a form of polarisation of convergence probabilities when number of market’s participants is increased

Give conditions that ensure monotone and fastest convergence towards steady state
(Closely) Related Literature

- M. Nerlove - *QJE 1958*: introduced adaptive exp. into Cobweb model
- J.A. Carlson - *RES 1968*
 - E. Barucci - *J. Ev. Econ. 1999*: studies the $n = 2$ case
 - G. Negroni - *JEDC 2003*: considers the $n = 2$ case allowing for heterogeneity in fundamentals
M. Nerlove - *QJE 1958*: introduced adaptive exp. into Cobweb model

J.A. Carlson - *RES 1968*

E. Barucci - *J. Ev. Econ. 1999*: studies the $n = 2$ case

G. Negroni - *JEDC 2003*: considers the $n = 2$ case allowing for heterogeneity in fundamentals
(Mildly) Related Literature

- ARED stream of literature - Brock-Hommes
 ECONOMETRICA 1997
- Lasselle et al. - *MACRO. DYN. 2005*
- T. Puu - *JEBO 2008*
In a nutshell

- A standard Cobweb model with n firms
- Firms supply a commodity with a one-period production lag
- Output decisions are based on expectations about future prices
- At each period, given aggregate supply, the price is determined by the demand
The model: details

- Supply and demand are monotonic
- The optimal supply is proportional to firm’s size, $\psi_i > 0$ hence $S_i (p_i^e) = \psi_i s (p_i^e)$
- All form adaptive expectations, gain parameter is firm-specific
 $$p_{t+1,i}^e = p_{t,i}^e + \alpha_i (p_t - p_{t,i}^e) \quad i = 1, \ldots, n$$
- Demand, $D(p)$ and aggregate supply are smooth and intersecting at a point p^*
Price equation

- Let $\Psi = \sum_i \psi_i$ the industry scale factor, $S(\cdot) = \Psi s(\cdot)$ and $\phi_i = \frac{\psi_i}{\Psi}$ the firm’s relative weight.
- Market clearing requires that $D(p_t) = \sum_{i=1}^n \phi_i S(p^e_{t,i})$ hence

$$p_t = D^{-1}\left(\sum_{i=1}^n \phi_i S(p^e_{t,i})\right) = F(p^e_{t,1}, \ldots, p^e_{t,n})$$

with the property $p^* = F(p^*, \ldots, p^*)$.
Plugging price equation into expectations gives the following system of n difference equations:

$$p_{t+1,1}^e = p_{t,1}^e + \alpha_1 (F(p_{t,1}^e, \ldots, p_{t,n}^e) - p_{t,1}^e)$$

$$\ldots = \ldots$$

$$p_{t+1,n}^e = p_{t,n}^e + \alpha_n (F(p_{t,1}^e, \ldots, p_{t,n}^e) - p_{t,n}^e)$$

Point p^* is unique steady state.
Plugging price equation into expectations gives the following system of \(n \) difference equations:

\[
\begin{align*}
 p_{t+1,1}^e &= p_{t,1}^e + \alpha_1 \left(F \left(p_{t,1}^e, \ldots, p_{t,n}^e \right) - p_{t,1}^e \right) \\
 \cdots &= \cdots \\
 p_{t+1,n}^e &= p_{t,n}^e + \alpha_n \left(F \left(p_{t,1}^e, \ldots, p_{t,n}^e \right) - p_{t,n}^e \right)
\end{align*}
\]

Point \(p^* \) is unique steady state.
Special case: one representative firm

- With a single firm price equation reduces to

\[p_t = D^{-1} (\psi_s (p_t^e)) = D^{-1} (S(p_t^e)) \]

- Therefore the system evolves according to

\[p_{t+1}^e = p_t^e + \alpha (D^{-1} (S(p_t^e)) - p_t^e) \]

- and stability requires \(-1 < 1 - \alpha + \alpha \frac{S'(p^*)}{D'(p^*)} < 1\)

- Defining \(\delta = -\frac{S'(p^*)}{D'(p^*)}\) and \(\beta = \frac{\alpha}{2-\alpha}\), can write this as

\[\delta \beta < 1 \]

- Label \(\delta\) as structural degree of instability and \(\beta\) as behavioural degree of instability
Special case: one representative firm

- With a single firm price equation reduces to
 \[p_t = D^{-1}(\Psi s(p^e_t)) = D^{-1}(S(p^e_t)) \]

- Therefore the system evolves according to
 \[p^e_{t+1} = p^e_t + \alpha (D^{-1}(S(p^e_t)) - p^e_t) \]

- And stability requires \(-1 < 1 - \alpha + \alpha \frac{S'(p^*)}{D'(p^*)} < 1\)

- Defining \(\delta = -\frac{S'(p^*)}{D'(p^*)}\) and \(\beta = \frac{\alpha}{2-\alpha}\), can write this as
 \[\delta \beta < 1 \]

- Label \(\delta\) as structural degree of instability and \(\beta\) as behavioural degree of instability
Special case: one representative firm

- With a single firm price equation reduces to
 \[p_t = D^{-1} (\Psi s (p^e_t)) = D^{-1} (S (p^e_t)) \]

- Therefore the system evolves according to
 \[p^e_{t+1} = p^e_t + \alpha (D^{-1} (S (p^e_t)) - p^e_t) \]

- and stability requires \(-1 < 1 - \alpha + \alpha \frac{S'(p^*)}{D'(p^*)} < 1\)

- Defining \(\delta = -\frac{S'(p^*)}{D'(p^*)}\) and \(\beta = \frac{\alpha}{2-\alpha}\), can write this as
 \[\delta \beta < 1 \]

- Label \(\delta\) as structural degree of instability and \(\beta\) as behavioural degree of instability.
Special case: one representative firm

- With a single firm price equation reduces to
 \[p_t = D^{-1}(\Psi s(p^e_t)) = D^{-1}(S(p^e_t)) \]

- Therefore the system evolves according to
 \[p^e_{t+1} = p^e_t + \alpha(D^{-1}(S(p^e_t)) - p^e_t) \]

- and stability requires \(-1 < 1 - \alpha + \alpha \frac{S'(p^*)}{D'(p^*)} < 1\)

- Defining \(\delta = -\frac{S'(p^*)}{D'(p^*)}\) and \(\beta = \frac{\alpha}{2-\alpha}\), can write this as
 \[\delta \beta < 1 \]

- Label \(\delta\) as structural degree of instability and \(\beta\) as behavioural degree of instability
Special case: one representative firm

- With a single firm price equation reduces to

\[p_t = D^{-1} (\Psi_s (p^e_t)) = D^{-1} (S (p^e_t)) \]

- Therefore the system evolves according to

\[p^e_{t+1} = p^e_t + \alpha (D^{-1} (S (p^e_t)) - p^e_t) \]

- and stability requires \(-1 < 1 - \alpha + \alpha \frac{S'(p^*)}{D'(p^*)} < 1\)

- Defining \(\delta = -\frac{S'(p^*)}{D'(p^*)}\) and \(\beta = \frac{\alpha}{2-\alpha}\), can write this as

\[\delta \beta < 1 \]

- Label \(\delta\) as structural degree of instability and \(\beta\) as behavioural degree of instability
The Jacobian matrix of the system evaluated at steady state is

\[
\begin{bmatrix}
1 - \alpha_1 (\phi_1 \delta + 1) & -\alpha_1 \phi_1 \delta & \cdots & -\alpha_1 \phi_1 \delta \\
-\alpha_2 \phi_2 \delta & 1 - \alpha_2 (\phi_2 \delta + 1) & \cdots & -\alpha_2 \phi_2 \delta \\
\cdots & \cdots & \cdots & \cdots \\
-\alpha_n \phi_n \delta & -\alpha_n \phi_n \delta & \cdots & 1 - \alpha_n (\phi_n \delta + 1)
\end{bmatrix}
\]

Define \(\bar{\beta}_n = \sum_{i=1}^{n} \phi_i \beta_i \) the *market degree of behavioural instability* for the \(n \) heterogeneous firms case

Proposition 1: The steady state of the system is locally stable and hyperbolic if and only if \(\delta \bar{\beta}_n < 1 \).
The Jacobian matrix of the system evaluated at steady state is

\[
\begin{bmatrix}
1 - \alpha_1 (\phi_1 \delta + 1) & -\alpha_1 \phi_1 \delta & \cdots & -\alpha_1 \phi_1 \delta \\
-\alpha_2 \phi_2 \delta & 1 - \alpha_2 (\phi_2 \delta + 1) & \cdots & -\alpha_2 \phi_2 \delta \\
\cdots & \cdots & \cdots & \cdots \\
-\alpha_n \phi_n \delta & -\alpha_n \phi_n \delta & \cdots & 1 - \alpha_n (\phi_n \delta + 1)
\end{bmatrix}
\]

Define \(\bar{\beta}_n = \sum_{i=1}^n \phi_i \beta_i \) the market degree of behavioural instability for the \(n \) heterogeneous firms case

Proposition 1: The steady state of the system is locally stable and hyperbolic if and only if \(\delta \bar{\beta}_n < 1 \)
How does this compare with the $n = 1$ case?

Proposition 2: Consider an n-firms market with gains $\alpha_1, \ldots, \alpha_n$ and weights ϕ_1, \ldots, ϕ_n and an average-single-firm market with gain $\alpha = \sum_{i=1}^{n} \phi_i \alpha_i$. Conditions for stability in the heterogeneous market are sufficient but not necessary for the average homogeneous market.

Heterogeneity matters, from the dynamic stability/instability viewpoint: can’t be safely sterilized by using an average representation instead of the whole heterogeneous picture.
How does this compare with the $n = 1$ case?

Proposition 2: Consider an n-firms market with gains $\alpha_1, \ldots, \alpha_n$ and weights ϕ_1, \ldots, ϕ_n and an average-single-firm market with gain $\alpha = \sum_{i=1}^{n} \phi_i \alpha_i$. Conditions for stability in the heterogeneous market are sufficient but not necessary for the average homogeneous market.

Heterogeneity matters, from the dynamic stability/instability viewpoint: can’t be safely sterilized by using an average representation instead of the whole heterogeneous picture.
How does this compare with the $n = 1$ case?

Proposition 2: Consider an n-firms market with gains $\alpha_1, \ldots, \alpha_n$ and weights ϕ_1, \ldots, ϕ_n and an average-single-firm market with gain $\alpha = \sum_{i=1}^n \phi_i \alpha_i$. Conditions for stability in the heterogeneous market are sufficient but not necessary for the average homogeneous market.

Heterogeneity matters, from the dynamic stability/instability viewpoint: can’t be safely sterilized by using an average representation instead of the whole heterogeneous picture.
What is the role of n ceteris paribus?

Proposition 3: Consider economy A and economy B where B has some extra firms in the supply side, given the same industry scale factor. Economy B’s extra firms have a weight $1 - \rho$ and a given $\bar{\beta}_{\text{extra}}$. Then if economy A is stable so is economy B if $\delta \bar{\beta}_{\text{extra}} < 1$. If instead $\delta \bar{\beta}_{\text{extra}} > 1$ then economy B is stable if and only if $\rho > \frac{\delta \bar{\beta}_{\text{extra}} - 1}{\delta \bar{\beta}_{\text{extra}} - \delta \bar{\beta}_A}$.

Stability (or instability) persists when a larger span of jointly stable (or unstable) firms is allowed for.
Comparative statics on n

- What is the role of n ceteris paribus?

- **Proposition 3**: Consider economy A and economy B where B has some extra firms in the supply side, given the same industry scale factor. Economy B’s extra firms have a weight $1 - \rho$ and a given $\bar{\beta}_{\text{extra}}$. Then if economy A is stable so is economy B if $\delta \bar{\beta}_{\text{extra}} < 1$. If instead $\delta \bar{\beta}_{\text{extra}} > 1$ then economy B is stable if and only if $\rho > \frac{\delta \bar{\beta}_{\text{extra}} - 1}{\delta \bar{\beta}_{\text{extra}} - \delta \beta_A}$.

- Stability (or instability) persists when a larger span of jointly stable (or unstable) firms is allowed for.
What is the role of n ceteris paribus?

Proposition 3: Consider economy A and economy B where B has some extra firms in the supply side, given the same industry scale factor. Economy B’s extra firms have a weight $1 - \rho$ and a given $\bar{\beta}_{\text{extra}}$. Then if economy A is stable so is economy B if $\delta \bar{\beta}_{\text{extra}} < 1$. If instead $\delta \bar{\beta}_{\text{extra}} > 1$ then economy B is stable if and only if $\rho > \frac{\delta \bar{\beta}_{\text{extra}} - 1}{\delta \beta_{\text{extra}} - \delta \beta_A}$.

Stability (or instability) persists when a larger span of jointly stable (or unstable) firms is allowed for.
Market Integration

- What happens when two previously separated markets are integrated?
- (In progress) Basically things are straightforward if steady state does not move.
- Results in more general case require stronger conditions on supply and demand (e.g. linearity or concavity/convexity).
Market Integration

- What happens when two previously separated markets are integrated?
- (In progress) Basically things are straightforward if steady state does not move
- Results in more general case require stronger conditions on supply and demand (e.g. linearity or concavity/convexity)
Market Integration

- What happens when two previously separated markets are integrated?
- (In progress) Basically things are straightforward if steady state does not move
- Results in more general case require stronger conditions on supply and demand (e.g. linearity or concavity/convexity)
How about the path of convergence to the steady state?

Propositions 4-5: The system shows monotonic local convergence to the steady state if and only if
\[\sum_{i=1}^{n} \phi_i \frac{\alpha_i}{1-\alpha_i} < \frac{1}{\delta}. \]
If \(\phi_1 = \cdots = \phi_n = 1/n \) then the maximum speed of convergence to the steady state is
\[\ln \left(\frac{\delta+2}{\delta} \right) \]
and it is attained if and only if \(\alpha_1 = \cdots = \alpha_n = \frac{2}{\delta+2} \).
How about the path of convergence to the steady state?

Propositions 4-5: The system shows monotonic local convergence to the steady state if and only if

$$\sum_{i=1}^{n} \phi_i \frac{\alpha_i}{1-\alpha_i} < \frac{1}{\delta}.$$

If \(\phi_1 = \cdots = \phi_n = 1/n \) then the maximum speed of convergence to the steady state is \(\ln \left(\frac{\delta+2}{\delta} \right) \) and it is attained if and only if \(\alpha_1 = \cdots = \alpha_n = \frac{2}{\delta+2} \).
Stability when firms are sampled

- Know very little about actual expectations
 - Assume firms’ behavioural parameter results from a random choice, given a distribution, e.g. uniform on unit interval
 - Define a *stable sample* of behavioural parameters one for which the corresponding system has a locally stable steady state
 - Then probability of a stable sample will look like this:
Stability when firms are sampled

- Know very little about actual expectations
- Assume firms’ behavioural parameter results from a random choice, given a distribution, e.g. uniform on unit interval
- Define a *stable sample* of behavioural parameters one for which the corresponding system has a locally stable steady state
- Then probability of a stable sample will look like this:
Stability when firms are sampled

- Know very little about actual expectations
- Assume firms’ behavioural parameter results from a random choice, given a distribution, e.g. uniform on unit interval
- Define a stable sample of behavioural parameters one for which the corresponding system has a locally stable steady state
- Then probability of a stable sample will look like this:
Stability when firms are sampled

- Know very little about actual expectations
- Assume firms’ behavioural parameter results from a random choice, given a distribution, e.g. uniform on unit interval
- Define a stable sample of behavioural parameters one for which the corresponding system has a locally stable steady state
- Then probability of a stable sample will look like this:
Probabilities as δ varies
Conclusions

- We study the effect of varying the level of market’s heterogeneity in a Cobweb model with adaptive expectations.
- We fully characterize the local stability properties for the generic n-firms case.
- We discuss the case of market integration giving conditions which grant stability in the resulting, integrated, market.
- We study the possibility of making predictions about the properties of market dynamics when firm’s types are unknown. We show that when types are uniformly distributed the probability of having a stable system polarizes towards 0 or 1 depending on the structural characteristics of the market.