Oligopolies with Contingent Workforce and Unemployment Insurance Systems

Akio Matsumotoa, Ugo Merloneb, Ferenc Szidarovszkyc

aDepartment of Economics, Chuo University, Japan
bDepartment of Psychology, University of Torino, Italy
cDepartment of Applied Mathematics, University of Pécs, Hungary

MDEF 2014
Urbino, Italy, September, 18, 2014
Outlining

1. Motivation
2. The Model with Contingent Workforce
3. The Model with Unemployment Insurance Systems
4. Conclusion
Motivation
Motivation

Classical oligopoly analysis has provided several insights

nevertheless some aspects seem to be unrealistic.
Motivation

Classical oligopoly analysis has provided several insights

nevertheless some aspects seem to be unrealistic.
Motivation

Given the persistent economic scenario we assume the oligopolists need to take into account the workforce cost.

- contingent workforce
- unemployment insurance systems
Motivation

Given the persistent economic scenario we assume the oligopolists need to take into account the workforce cost

- contingent workforce
- unemployment insurance systems
The Model with Contingent Workforce
Contingent Workforce

Main features

- N firms industry
- identical product
- x_k firm k output
- $X = \sum_{k=1}^{N} x_k$

Inverse demand function: $p(X) = A - BX$

Cost function: $C_k(x_k) = c_k + d_k x_k$

The output adjustment cost at time period t

$$\bar{C}_k(x_k, x_k(t-1)) = \begin{cases} 0 & \text{if } x_k \leq x_k(t-1) \\ \gamma_k (x_k - x_k(t-1)) & \text{otherwise.} \end{cases}$$

$\gamma_k > 0$, Matsumoto, Merlone, Szidarovszky (2014)
Contingent Workforce

The profit of firm k at time period t

$$\Pi_k = \begin{cases}
 x_k(A - Bx_k - BX_k) - (c_k + d_k x_k) & \text{if } x_k \leq x_k(t-1) \\
 x_k(A - Bx_k - BX_k) - (c_k + d_k x_k) - \gamma_k(x_k - x_k(t-1)) & \text{otherwise,}
\end{cases}$$

where $X_k = \sum_{l \neq k} x_l$ is the output of the rest of the industry.

Some assumptions

- $A > d_k$
- L_k maximum possible output level for firm k
- $0 < x_k(t-1) < L_k$
The possible shapes of the profit functions

If $\partial \Pi_k / \partial x_k \leq 0$ at $x_k = 0$
The possible shapes of the profit functions

that is, if \(X_k \geq \frac{A-d_k}{B} \)

then the best response of firm \(k \) is

\[
R_k (X_k, x_k(t-1)) = 0
\]
The possible shapes of the profit functions

If $\partial \Pi_k / \partial x_k > 0$ at $x_k = 0$ and $\partial - \Pi_k / \partial x_k \leq 0$ at $x_k = x_k(t - 1)$
The possible shapes of the profit functions

that is, if \(\frac{A - d_k}{B} - 2x_k(t - 1) < X_k \leq \frac{A - d_k}{B} \)

then the best response of firm \(k \) is

\[
R_k(X_k, x_k(t - 1)) = \frac{A - d_k - BX_k}{2B}
\]
The possible shapes of the profit functions

If $\frac{\partial - \Pi_k}{\partial x_k} > 0$ at $x_k = x_k(t-1)$ and $\frac{\partial + \Pi_k}{\partial x_k} \leq 0$ at $x_k = x_k(t-1)$.

![Graph showing the profit function shapes](image-url)
The possible shapes of the profit functions

that is, if \(\frac{A-d_k-\gamma_k}{B} - 2x_k(t-1) < X_k \leq \frac{A-d_k}{B} - 2x_k(t-1) \)

then the best response of firm \(k \) is

\[R_k(X_k, x_k(t-1)) = x_k(t-1) \]
The possible shapes of the profit functions

If $\frac{\partial - \Pi_k}{\partial x_k} > 0$ at $x_k = x_k(t - 1)$, $\frac{\partial + \Pi_k}{\partial x_k} > 0$ at $x_k = x_k(t - 1)$, and $\frac{\partial \Pi_k}{\partial x_k} \leq 0$ at $x_k = L_k$.
The possible shapes of the profit functions

That is, if \(\frac{A - d_k - \gamma_k}{B} - 2L_k < X_k \leq \frac{A - d_k - \gamma_k}{B} - 2x_k(t - 1) \)

then the best response of firm \(k \) is

\[
R_k (X_k, x_k(t - 1)) = \frac{A - BX_k - d_k - \gamma_k}{2B}
\]
The possible shapes of the profit functions

If \(\frac{\partial - \Pi_k}{\partial x_k} > 0 \) at \(x_k = x_k(t - 1) \), \(\frac{\partial + \Pi_k}{\partial x_k} > 0 \) at \(x_k = x_k(t - 1) \), and \(\frac{\partial \Pi_k}{\partial x_k} > 0 \) at \(x_k = L_k \).
The possible shapes of the profit functions

That is, if \(X_k \leq \frac{A - d_k - \gamma_k}{B} - 2L_k \)

then the best response of firm \(k \) is

\[
R_k (X_k, x_k (t - 1)) = L_k
\]
Best response of firm k as function of the output of the rest of the industry

Putting together

$$R_k (X_k, x_k (t - 1)) =$$

$$= \begin{cases}
L_k & \text{if } X_k \leq \frac{A-d_k-\gamma_k}{B} - 2L_k \\
\frac{A-Bx_k-d_k-\gamma_k}{2B} & \text{if } \frac{A-d_k-\gamma_k}{B} - 2L_k < X_k \leq \frac{A-d_k-\gamma_k}{B} - 2x_k (t - 1) \\
x_k (t - 1) & \text{if } \frac{A-d_k-\gamma_k}{B} - 2x_k (t - 1) < X_k \leq \frac{A-d_k}{B} - 2x_k (t - 1) \\
\frac{A-d_k-Bx_k}{2B} & \text{if } \frac{A-d_k}{B} - 2x_k (t - 1) < X_k \leq \frac{A-d_k}{B} \\
0 & \text{if } \frac{A-d_k}{B} \leq X_k
\end{cases}$$
Best response of firm k as function of the output of the rest of the industry

$$R_k (X_k, x_k (t - 1))$$
Dynamic extension and steady states

Discrete time dynamics

\[x_k(t) = x_k(t-1) + K_k \left(R_k \left(\sum_{l \neq k} x_l(t-1), x_k(t-1) \right) - x_k(t-1) \right) \]

where \(K_k \) denote the speed of adjustment of firm \(k, k = 1, 2, \ldots, N \). As usual

- \(K_k = 0 \implies \) constant trajectories,
- \(K_k = 1 \implies \) best response dynamics.
Dynamic extension and steady states

Definition

A vector \(\bar{x} = (\bar{x}_k) \) is a steady state of this system if and only if for all \(k \),

\[
\bar{x}_k = R_k \left(\sum_{l \neq k} \bar{x}_l, \bar{x}_k \right)
\]

Given special forms and conditions of the best response functions, for each component of the steady state we have three possibilities:

1. \(\bar{x}_k = 0 \), if \(\frac{A-d_k-\gamma_k}{B} \leq \bar{X}_k \);
2. \(0 < \bar{x}_k < L_k \), if \(\frac{A-d_k-\gamma_k}{B} - 2\bar{x}_k \leq \bar{X}_k \leq \frac{A-d_k}{B} - 2\bar{x}_k \); (1)
3. \(\bar{x}_k = L_k \), if \(\bar{X}_k \leq \frac{A-d_k}{B} - 2L_k \),

where \(\bar{X}_k = \sum_{k \neq l} \bar{x}_l \).
Best response of firm k as function of the total output of the industry

\[\bar{x}_k = L_k \]

where
- \bar{X} on the horizontal axis with domain \([0, \sum_{i=1}^{N} L_i] \),
- \bar{x}_k on the vertical axis,
- the orizontal line is $\bar{x}_k = L_k$.

Steady states

For each value of \bar{X},

- \bar{x}_k is an interval $[m_k(\bar{X}), M_k(\bar{X})]$ eventually 0 or L_k
- functions $m_k(\bar{X})$ and $M_k(\bar{X})$ are nonincreasing and continuous

Define next

- $m(\bar{X}) = \sum_{k=1}^{N} m_k(\bar{X})$
- $M(\bar{X}) = \sum_{k=1}^{N} M_k(\bar{X})$

We have

$$0 \leq m(0), M(0) \text{ and } m(L), M(L) \leq L = \sum_{k=1}^{N} L_k$$

Therefore there are unique values $\bar{X}^{(1)}$ and $\bar{X}^{(2)}$ from interval $[0, L]$ such that $m(\bar{X}^{(1)}) = \bar{X}^{(1)}$ and $M(\bar{X}^{(2)}) = \bar{X}^{(2)}$.
The set of all steady states can be described as follows. Let \bar{X} be an arbitrary value from interval $[\bar{X}^{(1)}, \bar{X}^{(2)}]$, then the corresponding steady state coordinates form the set

$$S(\bar{X}) = \{ (\bar{x}_1, \ldots, \bar{x}_N) | \sum_{k=1}^{N} \bar{x}_k = \bar{X}, m_k(\bar{X}) \leq \bar{x}_k \leq M_k(\bar{X}), k = 1, 2, \ldots, N \}$$
Example
Example: symmetric duopoly

\[A = 20, \ B = 1, \ c_1 = c_2 = 0, \ d_1 = d_2 = \gamma_1 = \gamma_2 = 1 \] and \(L_1 = L_2 = 10 \)

In this case

\[
m_k(\bar{X}) = \begin{cases}
10 & \text{if } \bar{X} \leq 8 \\
18 - \bar{X} & \text{if } 8 \leq \bar{X} \leq 18 \\
0 & \text{if } \bar{X} \geq 18
\end{cases}
\]

\[
M_k(\bar{X}) = \begin{cases}
10 & \text{if } \bar{X} \leq 9 \\
19 - \bar{X} & \text{if } 9 \leq \bar{X} \leq 19 \\
0 & \text{if } \bar{X} \geq 19
\end{cases}
\]

\(k = 1, 2 \)
Example: symmetric duopoly

By symmetry, \(m(\bar{X}) = 2m_1(\bar{X}) \) and \(M(\bar{X}) = 2M_1(\bar{X}) \)
Example: symmetric duopoly

General duopoly

(i) \(\bar{x}_k = 0, \) if \(\frac{A-d_k-\gamma_k}{B} \leq \bar{x}_l; \)

(ii) \(0 < \bar{x}_k < L_k, \) if \(\frac{A-d_k-\gamma_k}{B} - 2\bar{x}_k \leq \bar{x}_l \leq \frac{A-d_k}{B} - 2\bar{x}_k; \)

(iii) \(\bar{x}_k = L_k, \) if \(\bar{x}_l \leq \frac{A-d_k}{B} - 2L_k \)

with \(k = 1, 2 \) and \(l \neq k. \)

In the case of the previous example

\(\bar{x}_k = 0, \) if \(18 \leq \bar{x}_l; \)
\(0 < \bar{x}_k < 10, \) if \(18 - 2\bar{x}_k \leq \bar{x}_l \leq 19 - 2\bar{x}_k; \)
\(\bar{x}_k = 10, \) if \(\bar{x}_l \leq -1 \)
Example: symmetric duopoly

General duopoly

(i) \(\bar{x}_k = 0 \), if \(\frac{A-d_k-\gamma_k}{B} \leq \bar{x}_l \);

(ii) \(0 < \bar{x}_k < L_k \), if \(\frac{A-d_k-\gamma_k}{B} - 2\bar{x}_k \leq \bar{x}_l \leq \frac{A-d_k}{B} - 2\bar{x}_k \);

(iii) \(\bar{x}_k = L_k \), if \(\bar{x}_l \leq \frac{A-d_k}{B} - 2L_k \)

with \(k = 1, 2 \) and \(l \neq k \).

In the case of the previous example

\(\bar{x}_k = 0 \), if \(18 \leq \bar{x}_l \);

\(0 < \bar{x}_k < 10 \), if \(18 - 2\bar{x}_k \leq \bar{x}_l \leq 19 - 2\bar{x}_k \);

\(\bar{x}_k = 10 \), if \(\bar{x}_l \leq -1 \)
Set of steady states for Example 1

It can be proved that all the steady states are internal

\[x_1 - \bar{x}_1 = \frac{18 - x_1}{19^2} \]

\[18 - 2\bar{x}_1 \]

\[19 - 2\bar{x}_1 \]
Asymptotic behavior
Asymptotic behavior

Nonempty simplex with usually infinitely many points → there is no reason to examine analytically local or global asymptotical stability:

If \bar{x} is a steady state and the initial state of the system is selected in its neighborhood as another steady state, then the trajectory will stay there for all $t > 0$, so it does not converge back to \bar{x}.

The asymptotic properties of the system are therefore examined by using computer simulation.

- semisymmetric case of N firms ($N > 1$)
- $p(X) = 20 - 2X$,
- cost functions:
 - $C_k(x_k) = x_k$, for $k = 1, 2, \ldots, N - 1$
 - $C_N(x_N) = 2x_N$, for N-th firm
- $\gamma_k = 1$
- $L_k = 10$
- identical initial output quantities. for firms $k = 1, 2, \ldots, N - 1$
Asymptotic behavior

Nonempty simplex with usually infinitely many points → there is no reason to examine analytically local or global asymptotical stability:

If \(\bar{x} \) is a steady state and the initial state of the system is selected in its neighborhood as another steady state, then the trajectory will stay there for all \(t > 0 \), so it does not converge back to \(\bar{x} \).

The asymptotic properties of the system are therefore examined by using computer simulation.

- semisymmetric case of \(N \) firms (\(N > 1 \))
- \(\rho (X) = 20 - 2X \),
- cost functions:
 - \(C_k (x_k) = x_k \), for \(k = 1, 2, \ldots, N - 1 \)
 - \(C_N (x_N) = 2x_N \), for \(N \)-th firm
- \(\gamma_k = 1 \)
- \(L_k = 10 \)
- identical initial output quantities. for firms \(k = 1, 2, \ldots, N - 1 \)
The case of $N = 4$

- $K = 0.2$: steady state A
- $K = 0.92$: 2-cycle $B_1 - B_2$
Basins with different values of parameter K

(a) $K \approx 0.8352941$

(b) $K \approx 0.835295$

(c) $K \approx 0.86$

(d) $K \approx 1.0$
The case of $N = 9$

- $K = 0.07$: steady state A
- $K = 0.52$: 2-cycle $B_1 - B_2$
- $K = 0.696$: steady state C
- $K = 0.92$: 2-cycle $D_1 - D_2$
The case of $N = 12$

- $K = 0.30$, steady state: A
- $K = 0.40$, 2-cycle: $B_1 - B_2$
- $K = 0.45$, 4-cycle: $C_1 - C_4$
- $K = 0.66$, chaotic trajectory
- $K = 0.72$, 2-cycle: $E_1 - E_2$
- $K = 0.92$, 4-cycle: $F_1 - F_4$
Bifurcation diagrams with $N = 13, 20$

(a) $N = 13$

(b) $N = 20$
Unemployment Insurance Systems
We assume that each firm k pays a certain proportion of the lost wages to the unemployed workers:

- with all the workers employed, each firm would be able to produce the maximum amount L_k
- the number of unemployed workers is proportional to the output difference $L_k - x_k$
- the total amount of unemployed compensation is also proportional to $L_k - x_k$.

So the profit of firm k can be formulated as

$$\Pi_k = x_k (A - Bx_k - BX_k) - (c_k + d_kx_k) - s_k (L_k - x_k).$$
Unemployment Insurance Systems

Again semisymmetric case

- firms 1, 2, \ldots, N - 1

\[c_k \equiv c, \quad d_k \equiv d, \quad s_k \equiv s, \quad L_k \equiv L, \quad K_k \equiv K \]

- firm N

\[c_N = \bar{c}, \quad d_N = \bar{d}, \quad s_N = \bar{s}, \quad L_N = \bar{L}, \quad K_N = \bar{K} \]

In this case the dynamic behavior of the firms can be described by the two-dimensional system

\[
\begin{align*}
 x(t+1) &= x(t) + K \left(-\frac{1}{2} (y(t) + (N - 2) x(t)) + \frac{A-d+s}{2B} - x(t) \right) \\
y(t+1) &= y(t) + \bar{K} \left(-\frac{1}{2} (N - 1) x(t) + \frac{A-\bar{d}+\bar{s}}{2B} - y(t) \right)
\end{align*}
\]

by assuming interior best responses.

This model is equivalent to the well known semisymmetric linear oligopoly model.
Again semisymmetric case
- firms $1, 2, \ldots, N - 1$

\[
c_k \equiv c, \; d_k \equiv d, \; s_k \equiv s, \; L_k \equiv L, \; K_k \equiv K
\]

- firm N

\[
c_N = \bar{c}, \; d_N = \bar{d}, \; s_N = \bar{s}, \; L_N = \bar{L}, \; K_N = \bar{K}
\]

In this case the dynamic behavior of the firms can be described by the two-dimensional system

\[
\begin{align*}
 x(t+1) &= x(t) + K \left(-\frac{1}{2} (y(t) + (N-2)x(t)) + \frac{A-d+s}{2B} - x(t) \right) \\
 y(t+1) &= y(t) + \bar{K} \left(-\frac{1}{2} (N-1)x(t) + \frac{A-\bar{d}+\bar{s}}{2B} - y(t) \right)
\end{align*}
\]

by assuming interior best responses.

This model is equivalent to the well known semisymmetric linear oligopoly model.
Again semisymmetric case

- firms 1, 2, . . . , N − 1

\[c_k \equiv c, \ d_k \equiv d, \ s_k \equiv s, \ L_k \equiv L, \ K_k \equiv K \]

- firm N

\[c_N = \bar{c}, \ d_N = \bar{d}, \ s_N = \bar{s}, \ L_N = \bar{L}, \ K_N = \bar{K} \]

In this case the dynamic behavior of the firms can be described by the two-dimensional system

\[
\begin{align*}
 x(t+1) &= x(t) + K \left(-\frac{1}{2} (y(t) + (N - 2)x(t)) + \frac{A-d+s}{2B} - x(t)\right) \\
 y(t+1) &= y(t) + \bar{K} \left(-\frac{1}{2} (N - 1)x(t) + \frac{A-\bar{d}+\bar{s}}{2B} - y(t)\right)
\end{align*}
\]

by assuming interior best responses.

This model is equivalent to the well known semisymmetric linear oligopoly model.
Unemployment Insurance Systems

- $N = 2$: the system is asymptotically stable
- $N = 3$: $0 < K, \bar{K} \leq 1$ the system is asymptotically stable (if $K = \bar{K} = 1$, then the steady state is marginally stable)
- $N \geq 4$, the condition for asymptotical stability is

$$K < \frac{16 - 8\bar{K}}{4N - \bar{K}(N + 1)}$$
since the system is linear the asymptotical stability is global
Conclusion
contingent workforce
- allows greater flexibility to the firms
- more complex dynamics for higher values of adjustment speeds
- may be unstable
- the dynamics becomes complex with increasing adjustment costs, since the flexibility given by the contingent workforce is damped by the searching and training costs

unemployment insurance system
- simpler dynamics
- no cycles

maybe relying too much on contingent workforce is not such a great idea
Conclusion

- **contingent workforce**
 - allows greater flexibility to the firms
 - more complex dynamics for higher values of adjustment speeds
 - may be unstable
 - the dynamics becomes complex with increasing adjustment costs, since the flexibility given by the contingent workforce is damped by the searching and training costs

- **unemployment insurance system**
 - simpler dynamics
 - no cycles

maybe relying too much on contingent workforce is not such a great idea